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Snapshot of

angular momentum
0 per unit mass in
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Local Shearing Box Simulations with no Vertical Stratification
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Adding net vertical magnetic flux should increase alpha
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-Pessah, Chan, & Psaltis (2007)



Vertical Stratification Removes the Problem of No Net Flux,
But the Microscopic Dissipation Might Still Matter
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What about radially wide shearing boxes — is MRI transport

even local? S —
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more direct astrophysical implications. The most direct way of

determining « in real accretion disks is the analysis of dwarf
nova outbursts and X-ray transient outburst. As pointed out by

Kingetal. (2007), these estimates suggest ~ 0.1-0.4, whereas
numerical simulations (including those presented here) typically
obtain steady-state values of « that are an order of magnitude
smaller. In light of our results, we note that an accretion disk
that has just entered an outburst state may well go through a
period of field growth that resembles the early transients seen
in our simulations. During these transients, the effective value
of « is substantially enhanced, and spatio-temporal gradients
in « further enhance the angular momentum transport. Thus,
it is interesting to conjecture that the large values of « inferred
from outburst systems correspond to these transient phenomena.
These issues will be explored in a future publication.

-Sorathia et al. (2012)



The Alpha Prescription in the
Radiation Pressure Dominated Regime

Trqb = Od)t

hermal

and P are vertically-averaged quantities.

thermal

T r
Radiation MHD simulations of MRI turbulence (Ohsuga
et al. 2009, Hirose et al. 2009) are consistent with P

thermal

being the fofal (gas plus radiation) thermal pressure, as
Shakura & Sunyaev (1973) originally assumed.



Alternative Stress Prescriptions Are Ruled Out
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-updated from Hirose et al. (2009)



Thermal Equilibrium of an Annulus in Standard Alpha Disk Theory
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Thermal Instability
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The Stratified Shearing Box
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(Apologies to Arthur C. Clarke
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Radiation, Gas Internal, Magnetic, and Turbulent Kinetic Energies
in Local, Radiation Pressure Dominated, Shearing Box Simulations
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No thermal instability! (First shown by Turner 2004.)



Our Most Radiation Pressure Dominated Simulation:
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Fluctuations in thermal energy are correlated to fluctuations
in turbulent magnetic and kinetic energies, but with a LAG

cross correlation
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A Simple Toy Model Can Explain this Behavior

dEmag _ R(t) Emag,O _ Emag(t)
dt tgrowth 4 diss
dErad Emag (t) _ Erad (t)
dt tdiss tcool

-where R(?) is a stochastic function of time with mean of unity
and with power spectrum chosen to match simulations.

-Hirose et al. (2009)
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Fourier phase analysis reveals a more complex behavior...
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¢ — Botal!!!

This then gives the alpha prescription if

TI"
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cool

We find this to be approximately true in the simulations, but why?!?



Alternative Stress Prescriptions Are Ruled Out
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Unfortunately, “viscous” instability has not been probed by
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MRI simulations as yet.




Other Interesting Features: Surface Layers are Magnetically
Supported and Parker Unstable

Parker

MRI turbulence in
midplane regions
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Alpha varies with height!
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-Blaes et al. (2011)



Radiation-dominated regime is now also being simulated
by Jiang, Stone, & Davis using the new radiation module of Athena
(Jiang, Stone, & Davis 2012; Davis, Stone, & Jiang 2012)
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Primary advance is to replace the flux-limited diffusion
treatment in ZEUS with the full radiation momentum

equation. Radiation pressure tensor is computed from a
variable Eddington tensor computed from a full (grey)

solution of the radiative transfer equation — but this is not

yet working in the radiation and scattering dominated regime...



What do they find?

Ask me privately!



But what about the
hydrogen ionization
thermal instability???



Local Shearing Boxes with NO Vertical Structure
(Latter & Papaloizou 2012)

* Fully incorporate MRI turbulence, with zero net flux, net
vertical flux, and net toroidal flux.

* Incorporate dissipation through fixed viscosity and
resistivity, with Pm=v/n=4.

* Mock up cooling through effective cooling functions A(T)
based on prescriptions from Faulkner, Lin & Papaloizou (1983):
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S—curve from zero net flux MRI simulations

S—curve from vertical flux MRI simulations
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density [g cm™] optical depth from boundaries

thermal energy gain [erg cm™s7]
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-1 0
height [h]

0
height [h]

0
height [h]

opacity [cm?%g]

thermal energy loss [erg cm™s™]

pressure

10°
10*

10°+

102
10"
10°
107
1072

107
10°
10°
10

10°

102

10
10°

600 [T

400[

—200}

200/

0
height [h]

0
height [h]

ionization fraction

10.00f

temperature [K]

10%E

10°

0
height [h]

10°F

-1 0 1
height [h]

-Hirose, Coleman,
Blaes, & Krolik,
In progress



Summary

« We still have a lot to learn about the nature and strength of angular
momentum transport (never mind dissipation!) in MRI turbulence.

» Stress appears to scale with total thermal pressure in the radiation
dominated regime, but why simulations appear to give a consistent
value of alpha is a complete mystery.

* There is no evidence of a thermal instability in the radiation dominated
regime. “Viscous” stability is still to be determined.

» Work is ongoing to incorporate the hydrogen ionization instability in
thermodynamically consistent, vertically stratified simulations of MRI
turbulence.



