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ACCELERATION RADIATION
Accelerating charged particles emit radiation. 

Magnetic field exerts Lorentz force on electrons, accelerating them and 
forcing to radiate energy. 

This may produce cyclotron (non-relativistic), synchrotron (relativistic, 
straight field lines), curvature (relativistic, curved field lines) or jitter 
(relativistic, chaotic field lines) radiation. 

The local magnetic field line and the line of sight define a unique coordinate 
system, which naturally leads to polarization. 

The magnetic vector of 
(high-frequency) 
synchrotron radiation 
is aligned with 
the source magnetic field.
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Fig. 2. Spectral distribution of Synchrotron Radiation as function of the electron beam energy Ee (from Ref. [1]).

opening angle (1/! , see Fig. 3) of the synchrotron radiation emis-
sion, whereas in an undulator the deflection angle of the electrons
is smaller than the opening angle. Consequently in an undulator the
entire electron trajectory is located within the cone of the emitted
radiation. There is a smooth and continuous transition between
these two regimes.

On the other hand, this seemingly small difference results in
remarkably large differences in the characteristics of the emit-
ted radiation. In a wiggler, or whenever the deflection angle of
the electrons is larger than the natural collimation angle of the
emitted radiation, the radiation intensity just is summed up inco-
herently along the electron trajectory visible to the experiment
along the length of the device. The main purpose of the wiggler is to
extend the usable photon energy range to higher energies. This is
accomplished by wigglers having a larger magnetic field and thus a
higher critical energy than the bending magnets of the same facility.
Typically wigglers are constructed as a series of superconducting
magnet poles, which have magnetic fields as high as 7 T, whereas a
typical bending magnet has a field of 1 to 1.2 T.

Analytically these devices are distinguished via the dimension-
less deflection parameter K.

K = ˛!

where  ̨ is the maximum angle of deflection of the electron beam in
the device and ! is the reduced energy E/m0c2. Given the maximum
strength of the (sinusoidal) magnetic field Bo and the period of the
undulator (wiggler) "u, K can be calculated as

K = 0.934"u (cm)Bo (T)

For K > 1 the deflection angle is larger than the opening angle
of the radiation and this is a wiggler, whereas for K < 1 the entire
trajectory is contained within the natural radiation cone of the
synchrotron radiation. The angular emission characteristics of the
wiggler is accordingly enhanced by the deflection angle to K/! hor-
izontally, while it remains confined vertically to 1/! .

In the undulator the electron and the photons travel essentially
at the speed of light, but the electron has a slightly longer path,

Fig. 3. Emission pattern of the (dipole) radiation of a relativistic charged particle within its own frame of motion (left side) and as seen from an observer in the laboratory
(right  side).
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SYNCHROTRON RADIATIONn = line of sight (12)
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Erad =
q

(1− n · β)3rc

{

n×

[

(n− β)×
∂β

∂t

]}

(15)

Brad = n×Erad (16)

Erad ⊥ Brad ⊥ n (17)

∂β

∂t
=

q

γmec
(β ×B0) (18)

Erad · [n× (n×B0)] ∝ −
[(

n− β‖

)

·B0

]

[n · (β⊥ ×B0)] (19)

linear inβ⊥ → vanishes on average (20)

Erad · (n×B0) ∝ −[n · (β⊥ ×B0)] [β⊥ · (n×B0)] (21)

−[n · (n− β)] [(β⊥ ×B0) · (n×B0)] (22)

quadratic inβ⊥ → does not vanish (23)

Erad ‖ (n×B0) (24)

Brad ‖ [n× (n×B0)] (25)

2

radiation of accelerating charged particle

strong beamingline of sight particle velocity, acceleration

n = line of sight (12)

β = particle velocity (13)

B0 = magnetic field (14)

Erad =
q

(1− n · β)3rc

{

n×

[

(n− β)×
∂β

∂t

]}

(15)

Brad = n×Erad (16)

Erad ⊥ Brad ⊥ n (17)

∂β

∂t
=

q

γmec
(β ×B0) (18)

Erad · [n× (n×B0)] ∝ −
[(

n− β‖

)

·B0

]

[n · (β⊥ ×B0)] (19)

linear inβ⊥ → vanishes on average (20)

Erad · (n×B0) ∝ −[n · (β⊥ ×B0)] [β⊥ · (n×B0)] (21)

−[n · (n− β)] [(β⊥ ×B0) · (n×B0)] (22)

quadratic inβ⊥ → does not vanish (23)

Erad ‖ (n×B0) (24)

Brad ‖ [n× (n×B0)] (25)

2

source magnetic field

n = line of sight (12)

β = particle velocity (13)

B0 = magnetic field (14)

Erad =
q

(1− n · β)3rc

{

n×

[

(n− β)×
∂β

∂t

]}

(15)

Brad = n×Erad (16)

Erad ⊥ Brad ⊥ n (17)

∂β

∂t
=

q

γmec
(β ×B0) (18)

Erad · [n× (n×B0)] ∝ −
[(

n− β‖

)

·B0

]

[n · (β⊥ ×B0)] (19)

linear inβ⊥ → vanishes on average (20)

Erad · (n×B0) ∝ −[n · (β⊥ ×B0)] [β⊥ · (n×B0)] (21)

−[n · (n− β)] [(β⊥ ×B0) · (n×B0)] (22)

quadratic inβ⊥ → does not vanish (23)

Erad ‖ (n×B0) (24)

Brad ‖ [n× (n×B0)] (25)

Decomposing the particle velocity with respect to n:

β = n− εβ , εβ ' 1

Erad =
q2

(n · εβ)3γmec2r

{[

−(n · εβ) + ε2β
]

(n×B0)− (B0 · εβ) (n× εβ)
}

2

particle velocity close to the line of sight

linear term quadratic term

Rybicki & Lightmann (1979)

polarization of 
synchrotron radiation
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TOTAL ENERGY LOSSES
   spectral emissivity in all directions 

           pitch angle 

   characteristic synchrotron frequency 

   cyclotron frequency 

   total energy losses 

   Thomson cross section 

,   hence    pitch angle averaged energy losses 

   particle energy averaged energy losses

j(ν, γ, α) =
3e3B sin α

mec2
F ( ν

νc )
∫

∞

0
dx F(x) =

8 3
27

π α = ∠( ⃗v , ⃗B )

νc =
3
2

γ2νB sin α =
3eB sin α

4πmec
γ2

νB =
eB

2πmec

j(γ, α) = ∫ dν j(ν, γ, α) =
3e3B sin α

mec2
νc ∫ dx F(x) = 2cσTuB sin2 α γ2

σT =
8π
3

r2
e =

8πe4

3m2
e c4

⟨sin2 α⟩α
=

2
3

j(γ) = ⟨ j(γ, α)⟩α =
4
3

cσTuBγ2

j = ⟨ j(γ)⟩γ =
4
3

cσTuB ⟨γ2⟩



∫ ∞

0
j(ν, γ) dν = 2cσTγ

2uB sin2 α (34)

n(γ) = Kγ−p

j⊥(ν) + j‖(ν) = Γ

(

3p− 1

12

)

Γ

(

3p+ 19

12

)

2πe2K√
3 c

(

3eB sinα

2πmec

)(p+1)/2 ν−(p−1)/2

(p+ 1)

j⊥(ν)− j‖(ν) = Γ

(

3p− 1

12

)

Γ

(

3p+ 7

12

)

πe2K

2
√
3 c

(

3eB sinα

2πmec

)(p+1)/2

ν−(p−1)/2

Π =
p+ 1

p+ 7/3

3

power-law energy distribution of particles

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1  10
i / ic

F

G

W

polarization degree

∫ ∞

0
j(ν, γ) dν = 2cσTγ

2uB sin2 α (34)

n(γ) = Kγ−p

j⊥(ν) + j‖(ν) = Γ

(

3p− 1

12

)

Γ

(

3p+ 19

12

)

2πe2K√
3 c

(

3eB sinα

2πmec

)(p+1)/2 ν−(p−1)/2

(p+ 1)

j⊥(ν)− j‖(ν) = Γ

(

3p− 1

12

)

Γ

(

3p+ 7

12

)

πe2K

2
√
3 c

(

3eB sinα

2πmec

)(p+1)/2

ν−(p−1)/2

Π =
p+ 1

p+ 7/3

3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5  3  3.5  4
p

W

~70%

POLARIZATION

Lang (2010)



CHAOTIC MAGNETIC FIELDS
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Polarization from reconfinement shocks 525

polarization degrees in Section 4.3. Our results are discussed and
summarized in Section 5.

We use a term ‘perpendicular/parallel polarization’, meaning the
orientation of the wave electric vectors with respect to the jet axis.
The primed quantities are those measured in the frame comoving
with the downstream plasma, in contrast to the quantities measured
in the external frame.

2 C A L C U L AT I N G TH E P O L A R I Z AT I O N
F RO M T H E O B L I QU E S H O C K

In weakly magnetized shocks, the cold upstream matter can dissi-
pate a significant fraction of kinetic energy, which is partially trans-
ferred to a population of non-thermal relativistic electrons/positrons.
Those particles emit synchrotron radiation and the most energetic
of them are expected to cool rapidly enough so that the emission
source is tightly localized in the shock vicinity. For a stationary
relativistic shock, although the emitting elements can be moving
with large Lorentz factor ! = (1 − β2)−1/2, β = v/c, the source
position does not change in time. The relativistic enhancement of
the intrinsically isotropic radiation is of the factor D3/! (Sikora
et al. 1997), where

D = 1
! (1 − β cos ξke)

(1)

is the Doppler factor and ξke is the angle between the direction of the
element’s motion and the observer direction in the external frame.
Considering only the bolometric luminosity, we neglect the spectral
index here. Thus, the Stokes parameters in the observer frame are

νIν = D3

!
(νIν)′ , (2)

νQν = % cos(2χE) νIν , (3)

νUν = % sin(2χE) νIν , (4)

where % is the degree of linear polarization and χE is the electric
vector positional angle (EVPA). Like in most studies of polarization
from astrophysical jets, we measure χE from the projected direction
of the jet axis.

In the following, we present our method of calculating % and
χE for emission from oblique shocks with chaotic magnetic fields.
We choose a Cartesian coordinate system (x, y, z), in which the jet
axis is aligned with the z-axis and the observer is pointed by a unit
vector k contained in the xz-plane. The inclination of the observer
direction to the jet axis is θ obs. The shock front is inclined to the jet
axis at angle η and its normal vector n makes an azimuthal angle
φ with the xz-plane. A downstream fluid element is characterized
with velocity β = v/c and the inclination of its velocity direction e
to the jet axis θe. Thus, we have (see Fig. 1)

k = [sin θobs, 0, cos θobs], (5)

e = [sin θe cos φ, sin θe sin φ, cos θe], (6)

n = [cos η cos φ, cos η sin φ,− sin η], (7)

cos ξke = k · e = sin θobs sin θe cos φ + cos θobs cos θe. (8)

We perform a Lorentz transformation into the fluid rest-frame
O′. The observer position vector transforms like

k′ = D {k + [(! − 1) k · e − !β] e} . (9)

x

y

z

k

θobs

φ

e

θe

n

η

Figure 1. The coordinate system used for calculating the polarization de-
gree and the EVPA. The jet direction is along the z-axis. The observer is
located in the xz-plane, inclined to the jet direction by θobs. The black con-
tour represents a shock surface element located at the positional angle φ.
Vector n, normal to the shock element, is inclined to the local radial coordi-
nate by η. The downstream velocity field direction e makes an angle θe with
the jet axis. Since we assume axisymmetric jet, vectors n and e are aligned
with the φ = const plane.

The inclination of the shock surface transforms like

tan(η′ − θe) = ! tan(η − θe). (10)

Using η′, we find the normal vector to the shock surface

n′ = [cos η′ cos φ, cos η′ sin φ,− sin η′]. (11)

Now, we adopt a formula from Hughes et al. (1985) for the degree
of polarization

% = α + 1
α + 5/3

×
(1 − κ2)

[
1 − (k′ · n′)2

]

2 − (1 − κ2)
[
1 − (k′ · n′)2

] , (12)

where 1/κ is the shock compression ratio and α is the spectral index
of optically thin synchrotron radiation: Fν ∝ ν−α . For the rest of
this paper, we will use α = 0.5, for which the maximum value of
the polarization degree is %max ∼ 0.7.

The magnetic vector of the polarized electromagnetic wave in O′

is both normal to the propagation direction (observer) and tangent
to the shock surface, thus

B′ ∝ (k′ × n′). (13)

We show in Appendix A that the polarization angle is invariant in the
Lorentz transformation, when measured with respect to the trans-
formation vector, in this case e. First, we introduce an orthogonal
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CURVATURE RADIATION
Characteristic frequency:    

where  is the curvature radius of the magnetic field line 
(Ruderman & Sutherland 1975) 

Emissivity:    

Total energy losses:    

where  is the classical electron radius 

(Harding & Muslimov 2001) 

Compare that with the synchrotron radiation: 

 

and  

where  is the Larmor radius.
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Fig. 1.—Sketch of the magnetic field lines, currents, and 
magnetospheric charge density for a Goldreich and Julian 
(1969) model in which the rotation axis and magnetic dipole 
axis are antiparallel. The magnetic field is assumed to be 
purely dipolar. The dashed lines, at cos 0 = ±3_1/2, separate 
the magnetospheric regions of positive and negative charge 
density with pe — From the equator to the 
pole: Line a is the last field line to close within the light 
cylinder {Rc = cG"1); Lines between a and b are open and 
pass through regions of negative charge as they penetrate the 
light cylinder; negative currents (/_) flow along these lines 
from the star. The open magnetic field lines between line b and 
the pole pass through regions of positive charge, and positive 
currents y+) flow along them. 

charge flow is presumed to exist, even through a net 
positively (negatively) charged polar magnetosphere. 
In other models (Michel 1974) it is presumed that the 
magnetosphere charge above an emitting region must 
match that of the outflowing charge. Detailed com- 
putations (Kuo-Petravic, Petravic, and Roberts 1974) 
suggest the further complication of some field line 
crossing and backflow into the star to balance the 
outflow from the polar region. We shall consider, in 
this paper, mainly spinning neutron stars whose 
magnetic moments are antiparallel to their spins, i.e., 
those for which the magnetosphere just above the 
polar caps has a net positive charge. These we shall 
call pulsars. If the spin and moment are parallel so 
that the magnetosphere above the polar caps is nega- 
tive, we shall use the designation antipulsar, although 
we shall not consider in this paper possible radiation 
mechanisms for antipulsars. For pulsars the gap 
formed above the polar cap does not depend on the 
detailed way in which electrons leave the star else- 
where or positive particles return to it; this may not 
be true for antipulsars. 

In the pure dipole field approximation for a pulsar, 

the radius of the polar cap region out of which a net 
flow of positive charges is needed to maintain the 
magnetosphere is 

/2\3/4 /OT?\1/2 

rp + d = Rr-^\ * 104P-^ cm , (4) 

where R is the stellar radius. The outer radius to the 
foot of the last open field line of figure 1 is 

(O /?\ 1/2 
^ 1.4 x 104p-1/2cm, (5) 

where P is the rotation period and R ~ 106 cm. In the 
Goldreich and Julian model, negative currents flow 
from an annulus between essentially rp+ and rp_. The 
net magnetic flux through the polar cap region within 
rp+

dis 

4>+ =^+
d)W-0, (6) 

where Bs
d is the surface component of the dipole field 

at the polar cap. For a more realistic pulsar, many 
multipoles contribute to the near field of the neutron 
star, and the cap radii and field strengths are not 
determined by extrapolating in along the distant open 
field lines for which only the dipole component is 
important. However, the combination 

TT(rP?(Bs-f) = <D , (7) 

which gives the total flux penetrating the light cylinder, 
is unchanged by the removal of the dipole superscript 
d because Rc » R. In equation (7) Bs is the actual 
surface field strength. In very many of our applications 
it is just this combination of parameters that is 
relevant. 

Thus, for example, from equation (2) it follows that 
the potential difference between the center of the polar 
cap and the edge of the negative current emission 
region is 

D(rp )2 D ^ ^ /o\ 
~ ~2c Bs'r ~ 2ttc ^ ’ (8) 

so that it can be expressed directly in terms of equa- 
tions (4), (5), and (6) as 

Q2 R3 

A v~ l>?-(Bsd'P) ~ 6,6 x 1012jWp2 volts (9) 

almost independent of the contribution of other 
multipoles to Bs. In equation (9), B12 is the surface 
dipole component in units of 1012 gauss. It is this 
homopolar generator potential difference that can, in 
principle, ultimately be brought to bear across any gap 
or inertial drag which tends to restrict the outward 
flow of current along the open field lines. Although the 
above assumes E*B = 6, and negligible particle 
streaming, the description is not expected to be greatly 
altered (Michel 1974) by current flow, especially near 
the star which will be our main region of concern. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



SUMMARY

Magnetic fields induce non-thermal radiation from 
energetic charged particles by accelerating them. 

Synchrotron radiation is produced by relativistic 
particles in uniform magnetic field, its key signature 
is strong linear polarization. 

Curvature radiation is produced by relativistic 
particles propagating along curved magnetic field 
lines, it is particularly important for pulsars.


