COSMIC MAGNETIC FIELDS

KRZYSZTOF NALEWAJKO, CAMK PAN

KNALEW@CAMK.EDU.PL

Dynamo

DYNAMO

- **Dynamo** means amplification (re-generation) of magnetic fields due to plasma motions (MHD).
- Generation of magnetic fields from zero is termed the **battery** (non-MHD).
- Dynamos are inferred to operate in:
 - planets (inc. Earth), supporting their magnetospheres against diffusion, polarity reversals;
 - low-mass stars (inc. Sun), explaining their activity cycles with polarity reversals;
 - spiral galaxies (inc. Milky Way), explaining their globally ordered fields;
 - (possibly) accretion disks, a hypothesis for the origin of poloidal fields that launch relativistic jets;
 - (possibly) proto-neutron stars, a hypothesis for the origin of magnetar fields.

LOCAL CHANGE OF MAGNETIC FIELD

Recall the induction equation in ideal MHD: $\frac{\partial \vec{B}}{\partial t} = \vec{\nabla} \times \left(\vec{v} \times \vec{B}\right)$

- Kinematic dynamo: \overrightarrow{v} affects \overrightarrow{B} (via induction equation), but \overrightarrow{B} does not affect \overrightarrow{v} .
- Expanding the curl of vector cross product: $\frac{\partial \vec{B}}{\partial t} = \left(\vec{B} \cdot \vec{\nabla}\right) \vec{v} - \left(\vec{v} \cdot \vec{\nabla}\right) \vec{B} - \vec{B} \left(\vec{\nabla} \cdot \vec{v}\right)$

• $\left(\overrightarrow{B}\cdot\overrightarrow{\nabla}\right)\overrightarrow{v}$ means velocity shear along \overrightarrow{B} ;

• $-(\overrightarrow{\mathbf{v}}\cdot\overrightarrow{\nabla})\overrightarrow{B}$ means transport (advection) of \overrightarrow{B} along $\overrightarrow{\mathbf{v}}$;

• $-\overrightarrow{B}(\overrightarrow{\nabla}\cdot\overrightarrow{v})$ means compression due to velocity convergence.

LOCAL CHANGE OF MAGNETIC ENERGY DENSITY

•
$$\frac{\partial \overrightarrow{B}}{\partial t} = \left(\overrightarrow{B} \cdot \overrightarrow{\nabla}\right) \overrightarrow{v} - \left(\overrightarrow{v} \cdot \overrightarrow{\nabla}\right) \overrightarrow{B} - \overrightarrow{B} \left(\overrightarrow{\nabla} \cdot \overrightarrow{v}\right)$$

• recall the magnetic energy density:

$$u_{\rm B} = \frac{B^2}{8\pi} \equiv \frac{\overrightarrow{B} \cdot \overrightarrow{B}}{8\pi}$$

• evolution of magnetic energy density:

$$\frac{\partial u_{\rm B}}{\partial t} = \frac{\overrightarrow{B}}{4\pi} \cdot \frac{\partial \overrightarrow{B}}{\partial t} = \frac{1}{4\pi} \left[\overrightarrow{B} \cdot \left(\overrightarrow{B} \cdot \overrightarrow{\nabla} \right) \overrightarrow{\rm v} - \left(\overrightarrow{\rm v} \cdot \overrightarrow{\nabla} \right) \frac{B^2}{2} - B^2 \left(\overrightarrow{\nabla} \cdot \overrightarrow{\rm v} \right) \right]$$

with contributions from shear, transport and compression, respectively.

EXAMPLE: AMPLIFICATION BY SHEAR

- Consider a sheared velocity field $\vec{v} = v_x(y)\hat{x}$
- Velocity gradient $\overrightarrow{\nabla} \mathbf{v}_x$ has one non-zero component: $\partial_y \mathbf{v}_x$
- The shear term of the induction equation: $\left(\overrightarrow{B}\cdot\overrightarrow{\nabla}\right)\overrightarrow{v} = B_y\partial_y v_x\hat{x}$

The transport and compression terms vanish.

• Magnetic energy changes at the rate:

 $\frac{\overrightarrow{B}}{4\pi} \cdot \left(\overrightarrow{B} \cdot \overrightarrow{\nabla}\right) \overrightarrow{\mathbf{v}} = \frac{B_x B_y}{4\pi} \partial_y \mathbf{v}_x$

• In this illustration $\partial_y v_x > 0$ and $B_x B_y > 0$. Magnetic energy grows since the field line is stretched by velocity shear.

EXAMPLE: AMPLIFICATION BY TRANSPORT

- Consider a uniform velocity shear $\vec{v} = v_x \hat{x}$
- The transport term of the induction equation: $-\left(\overrightarrow{\mathbf{v}}\cdot\overrightarrow{\nabla}\right)\overrightarrow{B} = -\mathbf{v}_{x}\partial_{x}\overrightarrow{B}$

The shear and compression terms vanish.

• Magnetic energy changes at the rate:

$$-\left(\overrightarrow{\mathbf{v}}\cdot\overrightarrow{\nabla}\right)\frac{B^2}{8\pi}=-\mathbf{v}_x\frac{\partial_x(B^2)}{8\pi}$$

• In this illustration $v_x > 0$ and $\partial_x B < 0$. Stronger magnetic field on the left is transported to the right.

EXAMPLE: AMPLIFICATION BY COMPRESSION

- Consider a converging velocity shear $\vec{v} = v_x(x) \hat{x}$ with uniform divergence $\partial_x v_x < 0$, and uniform magnetic field $\vec{B} = [B_x, B_y, 0].$
- The compression term of the induction equation:

$$-\overrightarrow{B}\left(\overrightarrow{\nabla}\cdot\overrightarrow{\mathbf{v}}\right) = -\overrightarrow{B}\partial_{x}\mathbf{v}_{x}$$

The shear term is $\left(\overrightarrow{B}\cdot\overrightarrow{\nabla}\right)\overrightarrow{\mathbf{v}} = B_x\partial_x\mathbf{v}_x$, canceling

the *x* component of the compression term. The transport term vanishes.

• Magnetic energy changes at the rate:

$$\frac{1}{4\pi} \left[\overrightarrow{B} \cdot \left(\overrightarrow{B} \cdot \overrightarrow{\nabla} \right) \overrightarrow{v} - B^2 \left(\overrightarrow{\nabla} \cdot \overrightarrow{v} \right) \right] = -\frac{B_y^2}{4\pi} \partial_x v_x$$

GEODYNAMO

- Earth's magnetic field decays on the time scale of ~50 kyr.
- A regeneration mechanism is necessary the geodynamo.
- The geodynamo is supported by circulation of conducting matter, which is possible in the fluid outer core due to convection.
- Convection is enabled by a net heat flow from the core to the much cooler mantle.
- The Earth's rotation and Coriolis forces are important for shaping the core convection.

SOLAR DYNAMO: NUMERICAL SIMULATIONS

- global 3D MHD simulations of the solar convective layer
- bands of strong toroidal magnetic
 field are generated at the latitudes
 consistent with the
 occurence of
 sunspots

Brun & Browning (2017)

DIFFERENTIAL ROTATION OF THE SUN

AXISYMMETRIC FIELDS

- Consider a magnetic field structure with axial symmetry in cylindrical coordinates (r, ϕ, z) , decomposed into toroidal and poloidal components: $\overrightarrow{B} = B_{\phi} \hat{\phi} + \overrightarrow{B}_{p}$.
- The poloidal component $\vec{B}_{p} \equiv B_{r}\hat{r} + B_{z}\hat{z}$ can be represented by toroidal component of magnetic vector potential $\vec{B}_{p} = \vec{\nabla} \times (A_{\phi}\hat{\phi})$.
- If both B_{ϕ} and A_{ϕ} are independent of ϕ , $\nabla \cdot \vec{B} = 0$ is satisfied automatically.

DIFFERENTIAL ROTATION

- Consider azimuthal velocity field $\vec{v} = r \Omega(z) \hat{\phi}$, where $\Omega(z)$ is the angular velocity that allows for a vertically differential rotation $d\Omega/dz \neq 0$.
- The azimuthal induction equation includes the shear and transport terms (note that $\overrightarrow{\nabla} \cdot \overrightarrow{\nabla} = 0$): $\partial_t B_{\phi} = \left[(\overrightarrow{B} \cdot \overrightarrow{\nabla}) \overrightarrow{\nabla} \right]_{\phi} - \left[(\overrightarrow{\nabla} \cdot \overrightarrow{\nabla}) \overrightarrow{B} \right]_{\phi}$
- Material derivatives in curved coordinates!

$$\partial_t B_{\phi} = \left[(\overrightarrow{B}_{p} \cdot \overrightarrow{\nabla}) \mathbf{v}_{\phi} \, \hat{\phi} \right]_{\phi} - \frac{B_r \mathbf{v}_{\phi}}{r}$$

•
$$\partial_t B_{\phi} = r \left[(\overrightarrow{B}_p \cdot \overrightarrow{\nabla}) \frac{\mathbf{v}_{\phi}}{r} \hat{\phi} \right]_{\phi} = r B_z \frac{\mathrm{d}\Omega}{\mathrm{d}z}$$
 the Ω effect!

differential rotation together with poloidal field make a source term for the growth of toroidal field.

INDUCTION OF POLOIDAL FIELD

• Consider the axial induction equation: $\partial_t B_z = \left[(\overrightarrow{B} \cdot \overrightarrow{\nabla}) \overrightarrow{v} \right]_z - \left[(\overrightarrow{v} \cdot \overrightarrow{\nabla}) \overrightarrow{B} \right]_z$

- For $v_z = 0$ and $\partial_{\phi} B_z = 0$, both RHS terms vanish, hence the axial field cannot be induced in this case.
- The loop $B_z \to B_\phi \to B_z$ cannot be closed for axisymmetric velocity field. This is the simplest case of the Cowling's theorem.

BREAKING THE AXIAL SYMMETRY

MEAN-FIELD ELECTRODYNAMICS

- In addition to globally symmetric mean magnetic and velocity fields \overrightarrow{B}_0 , \overrightarrow{v}_0 , one can consider small-scale (turbulent) fluctuations \overrightarrow{B}_1 , \overrightarrow{v}_1 : $\overrightarrow{B} = \overrightarrow{B}_0 + \overrightarrow{B}_1$ and $\overrightarrow{v} = \overrightarrow{v}_0 + \overrightarrow{v}_1$.
- Not a linearization, but averaging fluctuations over sufficiently large scales gives $\langle \vec{B} \rangle \simeq \vec{B}_0$ and $\langle \vec{v} \rangle \simeq \vec{v}_0$.

MEAN-FIELD INDUCTION EQUATION

- The induction equation: $\partial_t \overrightarrow{B} = \overrightarrow{\nabla} \times \left(\overrightarrow{\mathbf{v}} \times \overrightarrow{B} \right)$
- $\partial_t \langle \overrightarrow{B}_0 \rangle = \overrightarrow{\nabla} \times \langle (\overrightarrow{v}_0 + \overrightarrow{v}_1) \times (\overrightarrow{B}_0 + \overrightarrow{B}_1) \rangle$
- Assuming that $\langle \vec{\mathbf{v}}_0 \times \vec{B}_1 \rangle + \langle \vec{\mathbf{v}}_1 \times \vec{B}_0 \rangle = 0$: $\partial_t \langle \vec{B}_0 \rangle = \vec{\nabla} \times \left(\langle \vec{\mathbf{v}}_0 \rangle \times \langle \vec{B}_0 \rangle + \langle \vec{\mathbf{v}}_1 \times \vec{B}_1 \rangle \right)$
- $\overrightarrow{\mathscr{C}} \equiv \langle \overrightarrow{v}_1 \times \overrightarrow{B}_1 \rangle$ mean turbulent electromotive force

MEAN TURBULENT ELECTROMOTIVE FORCE

•
$$\overrightarrow{\mathscr{C}} \equiv \left\langle \overrightarrow{\mathbf{v}}_1 \times \overrightarrow{B}_1 \right\rangle$$

• $\mathscr{C}_i = \alpha_{ij} \langle B_0 \rangle_j$ where α_{ij} is a symmetric tensor.

• substituting to the mean-field induction equation: $\partial_t \langle \overrightarrow{B}_0 \rangle = \overrightarrow{\nabla} \times \left(\langle \overrightarrow{v}_0 \rangle \times \langle \overrightarrow{B}_0 \rangle + \alpha \langle \overrightarrow{B}_0 \rangle \right)$

the α effect!

MEAN-FIELD DYNAMO

• Induction of the mean axial field:

$$\partial_t \langle B_z \rangle = \left[\overrightarrow{\nabla} \times \left(\alpha \langle \overrightarrow{B}_0 \rangle \right) \right]_z = \frac{1}{r} \partial_r \left(r \alpha \langle B_\phi \rangle \right)$$

- Induction of the mean toroidal field: $\partial_t \langle B_{\phi} \rangle = r \langle B_z \rangle \frac{\mathrm{d}\Omega}{\mathrm{d}z} - \partial_r \left(\alpha \langle B_z \rangle \right)$
- When the $r \langle B_z \rangle \frac{d\Omega}{dz}$ term dominates: $\alpha \Omega$ dynamo (stars) When the $\partial_r \left(\alpha \langle B_z \rangle \right)$ term dominates: α^2 dynamo (planets) When the terms are comparable: $\alpha^2 \Omega$ dynamo (galaxies)

BIERMANN BATTERY

- Can magnetic field be created from scratch? Note that for $\overrightarrow{B} = 0$ resistive MHD predicts $\overrightarrow{E} = 0$, hence $\partial_t \overrightarrow{B} = 0$.
- More general regime: two-fluid plasma (electrons decoupled from ions).
- Consider electrons under a balance of Lorentz force and pressure gradient, $\vec{f}_e = -\vec{\nabla}P_e en_e\vec{E} = 0$, with $P_e = n_e k_{\rm B}T_e$.
- From the Maxwell-Faraday equation:

$$\partial_t \vec{B} = -c \vec{\nabla} \times \vec{E} = c \vec{\nabla} \times \left(\frac{\vec{\nabla} P_e}{en_e}\right) = \frac{ck_{\rm B}}{e} \vec{\nabla} \times \left(\frac{\vec{\nabla} (n_e T_e)}{n_e}\right)$$

•
$$\partial_t \vec{B} = \frac{ck_{\rm B}}{e} \left(\frac{\vec{\nabla} n_e}{n_e}\right) \times \left(\vec{\nabla} T_e\right)$$

density gradient misaligned with the temperature gradient

SUMMARY

- Dynamo is a mechanism of amplifying magnetic fields using the kinetic energy of plasma motions.
- Local magnetic energy density can be amplified due to shear, transport or compression.
- Dynamo can operate as a positive-feedback cycle. Zeldovich cycle: stretch twist fold merge.
- In axially symmetric systems (planets, stars, galaxies), toroidal fields can be amplified by shear due to differential rotation (Ω effect), poloidal fields can be amplified by turbulent electromotive force (α effect).