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MAGNETOROTATIONAL 
INSTABILITY (MRI)

Accretion disk with weak 
vertical magnetic field. 

Unstable axisymmetric 
modes redistributing angular 
momentum. 

Discovered by Velikhov (1959) 
in the context of Couette flow 
experiments. 

see the presentation of 
Balbus & Hawley (1991)
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Fig. 3. Contour plots of (a) the initial poloidal magnetic field lines, and (b) the poloidal magnetic field lines, (c) toroidal field, and (d) angular momentum at 3.3 
orbits in the ß2 = 1000, a = 1 high-resolution simulation (Model 2b). There are 20 linearly spaced contours. The angular momentum values run from 9.91 to 10.08; 
the Keplerian value of the angular momentum at the center of the grid is 10. The toroidal field has a maximum energy density of 2 x 10 ~ 7. 
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orbits in the ß2 = 1000, a = 1 high-resolution simulation (Model 2b). There are 20 linearly spaced contours. The angular momentum values run from 9.91 to 10.08; 
the Keplerian value of the angular momentum at the center of the grid is 10. The toroidal field has a maximum energy density of 2 x 10 ~ 7. 
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MAGNETOROTATIONAL 
INSTABILITY (MRI)

Dispersion relation ( , , , ): 
, 

where , 

 is the vertical Alfvén speed, 

 is the orbital frequency, 

 is the squared epicyclic frequency. 

For , the disk is stable if . Keplerian disk 

with  has , is thus stable. 

Unstable solution for weak vertical field. 
For Keplerian disk: ; 

fastest growth  for .
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ADVECTION OF 
POLOIDAL MAGNETIC FIELDS

Poloidal magnetic field can be 
dragged inwards by accretion 

disk for , 

where H is the disk half-
thickness at radius R, 

 is magnetic diffusivity, 
 is kinematic viscosity. 

Field line inclination angle:
.

𝒟 = ( R
H ) ( η

ν ) ≲ 1

η
ν

tan θ ≃ 1.5/𝒟
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Magnetic field dragging in accretion discs 239 

Field Lines D=20.0 
(a) 

R 

Field Lines D=2.0 
(b) 

Field Lines D=0.2 
(C) 

Figure 2. Plot of field lines in the equilibrium disc for the three values of <2$ in Fig. 1. In each plot, the horizontal line marks the horizontal 
region occupied by the disc. 

tan/= 1.52^-1. (40) 
In Fig. 1, we plot the equilibrium value of Æz/Æ0 against7? for 
various values of 22). This figure shows the expected result 
that, as the diffusivity is decreased, the external field is more 
easily swept inwards. We also note that for 22)^1 the field is 
barely swept inwards at all, whereas for 22 ^1 the field is 

strongly carried inwards, and the value of the field at the 
central grid point is a sensitive function of SL This is remini- 
scent of the behaviour found by Clarke & Pringle (1988) 
with respect to upstream diffusion of contaminant in an 
accretion disc. In Fig. 2, we plot the equilibrium magnetic 
field lines for three values of 2^. The figure shows that, for 
the relatively high magnetic diffusivity case of 2? = 20.0, the 
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Figure 9. Azimuthal mean of −V rBθ (15M), averaged over the time span
5000M–1.5 × 104M at r = 15M . Two θ ranges and scales are used: a scale
appropriate for the corona and excluding only the funnel region (top panel), and
only the disk proper plotted on a scale appropriate to the value there.

fluctuations in the plots of A(t) in Figure 13, one sees that the
average values of the flux at the horizon and the flux contained
within r = 20M are very similar. In other words, the vertical
magnetic flux through the inner disk, Φ(r = 20M), contributes
very little to A. Time-averaging over the last 104M of data, we
find that it is only #0.86% of the initial flux, and it appears
that whatever flux there is is confined to the outer part of the
inner disk. By contrast, averaged over the same period, 5% of
the initial mass can be found in the inner disk. Thus, in the inner
disk, the time-averaged flux/mass ratio is only 17% of the initial
value.

To reconcile this flux/mass ratio with the accreted flux/mass
ratio, there are only two possibilities: either the magnetic flux
moves in at the same rate (or slower) than the mass and (at
least) 2/3 of the flux reaching the horizon between 104M and
2 × 104M arrived there via a different route (most likely the
coronal mechanism), or the magnetic flux on average moved
inward three times faster than the mass. We view the former
alternative as much more plausible. Note, however, any flux
delivery from outside the inner disk must be balanced by flux
losses from the inner disk to the horizon because the magnetic
inflow rate at r = 20M is nearly the same as that at the horizon.

Next, we further explore the nature of the magnetic flux
equilibrium in the inner disk, using two different views of
this quantity. Figure 14 shows the distribution of the vertical
flux function Φ(r) time averaged over the last 5000M of

Figure 10. Schematic of the field line structure in the coronal mechanism.
Field lines within the corona are carried in toward the black hole, forming a
hairpin-like structure. When the hairpin connects to the horizon, flux is added
to the funnel field and opposite-signed flux is added to the disk (shaded region).
Reconnection across the equator (dashed line) allows this field to form loops that
accrete. Accretion of those field loops results in an increase of the net horizon
flux.

the simulation and normalized to the initial flux value. For
comparison, we also plot in that figure both the initial flux
distribution and the final mass distribution in the disk, both
likewise normalized to the initial total. The radial derivative
dΦ/dr shows the magnitude and sign of the vertical magnetic
field piercing the equator. We see that, like the mass, vertical flux
has spread away from its initial location, both in and out, but,
as already mentioned, a much smaller part of the net magnetic
flux than the mass resides in the inner disk.

The time dependence of the magnetic flux in the inner disk
over the last 104M in time is illustrated in Figure 15. As this
figure shows, not only is the magnetic flux contained within
the inner disk a rather small part of the total, it fluctuates in
time, frequently going negative. Little sign of any long-term
trend can be seen, consistent with our contention that the inner
disk magnetic flux has reached a statistical equilibrium. The
frequent sign changes of the local net flux suggest that the
poloidal magnetic field lines in the inner disk predominantly
close within the inner disk.

Moreover, the magnetic field corresponding to the net flux is
a very small fraction of the total field within the disk. Figure 16
shows the azimuthally averaged value of Bθ through the equator
at the end time as a function of radius, along with the initial
value. The MRI has generated considerable field of both signs
throughout the disk. Local regions of the disk have a net vertical
flux, but their contrasting signs lead to little contribution to the
total disk flux. The global net flux is present only as a slight
positive excess moving both inward and outward with time.

To reach the state described by these figures, most of the large-
scale magnetic connections to the disk matter must have been
reconnected away. But this should come as no surprise because
we have already seen that a significant part of the original flux
has moved by reconnection from the disk to the horizon. The

Beckwith, Hawley 
& Krolik (2009)
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IN ACCRETION FLOWS

3658 M. Liska, A. Tchekhovskoy and E. Quataert

Figure 2. (a) Meridional slices through the simulation at the approximate times shown, illustrating the development of large-scale poloidal flux loops (black
lines) of size comparable to the disc thickness, plotted over the density distribution (shown in colour; see the colour bar in panel b). The loops form slightly
offset from the equator and buoyantly rise away from it, as expected in an α − " dynamo. Initially, several poloidal field loops of positive (solid lines) and
negative (dotted lines) polarity stochastically form. However, most of them get expelled, and one largest, lucky, loop takes over. See SI and this link for a
movie. (b) A snapshot at t = 4.2 × 104rg/c reveals two large-scale dynamo-generated poloidal magnetic flux loops: their size, l ! 100rg, vastly exceeds that
of the event horizon, and the loops present themselves to the BH as large-scale poloidal flux. (c) The colour map of the Lorentz factor, γ , shows that this flux
leads to the launching of relativistic jets with a typical spine-sheath structure. The movie (see SI) shows no obvious signs of global kink or pinch modes in the
jets, which reach γ ∼ 5 at z " 500rg. We see no signs of such modes out to z ∼ 2000rg by which the jets reach γ ∼ 10 (not shown due to space constraints).

horizon, rH = rg[1 + (1 − a2)1/2], and the factor of 0.5 converts
it to one hemisphere (Tchekhovskoy et al. 2011). The reservoir
of positive poloidal magnetic flux in the disc, $disc = max r$p(r)
with $p(r) = maxθ

∫ θ

0 BrdAθφ , shown with the red line, also keeps
growing, pointing to a large-scale dynamo activity in the disc. Here,
max r and max θ refer to the maxima taken over r and θ coordinates,
respectively.

Fig. 2(a) shows a time sequence illustrating the generation of
poloidal magnetic flux loops by the MHD turbulence (see the movie
in the SI): several loops form just outside the equatorial plane,
grow in strength, and buoyantly rise away from the equator. This
process is stochastic: one of the loops ends up taking over the
inner 100rg of the disc with the others getting expelled in outflows.
This is consistent with the α − " large-scale poloidal magnetic
flux dynamo (Parker 1955; Moffatt 1978): a toroidal magnetic field
loop undergoes Parker instability, buoyantly rises, and the Coriolis
force twists it into a poloidal magnetic field loop. This way, the α-
effect can convert toroidal into poloidal flux. The "-effect then does
the opposite, shearing out this freshly generated poloidal magnetic
flux loop into toroidal magnetic flux, and thereby completing the
positive feedback cycle. This is a possible mechanism for both
the initial formation of the poloidal magnetic flux loops and
their subsequent runaway growth in strength and size, as seen
here.

This picture is consistent with the butterfly diagram in Fig. 3:
patches of toroidal magnetic field, bφ̂ , rise with alternating signs
away from the equator. However, our dynamo is rather sporadic and
irregular, reminiscent of lower plasma β (e.g. Bai & Stone 2013;
Salvesen et al. 2016a) and sub-Keplerian (Nauman & Blackman
2015) shearing box simulations, and global simulations of very
thick discs (Hogg & Reynolds 2018; Dhang & Sharma 2019) that
show similar irregularity and even complete absence of sign flips.
Global simulations at high β tend to show a more regular butterfly
diagram (Shi, Krolik & Hirose 2010; Beckwith, Armitage & Simon
2011; O’Neill et al. 2011; Simon, Hawley & Beckwith 2011; Flock

Figure 3. The space–time diagram of toroidally averaged rest-frame mag-
netic field bφ̂ at r = 40 rg shows an irregular butterfly pattern, indicating
sporadic dynamo activity characteristic of thick, sub-Keplerian, or strongly
magnetized discs (see Section 3). The black lines track the disc-jet boundary.

et al. 2012; Simon et al. 2012; Jiang, Stone & Davis 2017; Siegel
& Metzger 2018).

Fig. 1(c), right axis, shows that the magnetic flux grows until
the critical value $/(〈Ṁ〉r2

g c)1/2 ≈ 50 (Tchekhovskoy et al. 2011)
at which the BH flux becomes dynamically important, obstructs
accretion, and leads to a MAD. Fig. 1(b) shows that jets reach
ηjet ≈ 150 per cent, comparable to or exceeding 100 per cent: a
tell-tale signature of the MAD state. Figs 4(a) and (b) shows that
the jets collimate to small aspect ratios, R/z ≈ 0.3, 0.12, 0.08, and
accelerate to relativistic Lorentz factors, γ ∼ 3, 5, 10 at z/rg =
100, 500, 2000, respectively, similar to the observed M87 galaxy
jet (see Appendix A; Nakamura & Asada 2013; Mertens et al.
2016; see also Chatterjee et al. 2019). During this process the
jet converts magnetic energy into kinetic energy and heat, while
the total mass and energy fluxes remain conserved, as seen in
Fig. 4.

MNRAS 494, 3656–3662 (2020)
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L70 R. Narayan, I. V. Igumenshchev, and M. A. Abramowicz [Vol. 55,

Fig. 1. (a) The basic elements of the proposed accretion model. An axisymmetric accretion disk is disrupted at a magnetospheric radius Rm by a
strong poloidal magnetic field which has accumulated at the center. Inside Rm the gas accretes as magnetically confined blobs which diffuse through the
field with a relatively low velocity. Surrounding the blobs is a hot low-density corona. (b) The accretion flow around a magnetized compact star. An
axisymmetric disk is disrupted at the magnetospheric radius Rm by the strong stellar field. Inside Rm the gas follows the magnetic field lines and free-falls
on the polar caps of the star.

paper). In the simulations, frozen-in magnetic flux is dragged
to the center by the accreting gas, causing a substantial increase
in the magnetic pressure. This leads to a severe disruption of
the originally axisymmetric flow, and a substantial reduction in
the gas velocity.

Can we be sure that the magnetic field will become strong
enough to disrupt the accretion flow? The answer is yes, at
least under the idealized conditions we have considered where
the accreting gas brings in magnetic field of a fixed polarity.
Initially the field near the BH is not strong enough, so the
gas accretes without hindrance. However, continued accretion
keeps bringing in more field and the magnetic pressure near the
BH builds up with time. Whatever pressure is needed to disrupt
the disk will ultimately be achieved, given enough time; after
that, a MAD flow is inevitable.

The computer simulations mentioned above were done for
a radiatively inefficient accretion flow. Radiatively efficient
disks are sometimes cool enough to be mostly neutral, in
which case the magnetic field would slip through the gas via
ambipolar diffusion, preventing the accumulation of field at the
center. In addition, there could be substantial field slippage
even in a fully ionized disk, if the anomalous magnetic diffu-
sivity is large (Lovelace et al. 1994; Lubow et al. 1994a, b).
However, if magnetic winds play an important role in the
angular momentum loss, then it is plausible that significant
field will be dragged to the center. In what follows, we make
the optimistic assumption that field-dragging is efficient and
that a configuration as in figure 1a does develop.

Magnetically disrupted disks are known in another context,
namely accretion onto magnetized neutron stars and white
dwarfs. A strong field anchored in the star disrupts the accre-
tion flow at a magnetospheric radius Rm ≡ rmRS, as shown in
figure 1b. The topology of the field is, however, very different,
since in this case the gas inside r ∼ rm is able to flow in freely
along field lines down to the magnetic poles of the star. In the
configuration shown in figure 1a, on the other hand, there is no

field line connecting gas at radius rm to the BH horizon. The
only way for gas to move inward is by diffusing (via magnetic
interchanges) through the strong magnetic field. This results in
a low velocity and a high energy efficiency (section 3).

Let us estimate the magnetospheric radius rm in a MAD
flow. By assumption, the gas inside rm moves with a radial
velocity vR = εvff, with fairly small ε. In the numerical simula-
tions of Igumenshchev et al. (2003), ε was found to be ∼ 0.1.
This value is possibly an overestimate since the diffusion was
dominated by numerical resistivity. Elsner and Lamb (1984),
Kaisig, Tajima, and Lovelace (1992), and Ikhsanov (2001,
and references therein) discuss the physics of diffusion via
magnetic reconnection and interchanges, and show that the
diffusion velocity is given by vdiff ∼ αR(λm/Rm)vA, where
αR ∼ 0.1 is a dimensionless constant, λm ∼ 0.1–0.01Rm is the
linear size of reconnection sites, and vA is the Alfven speed.
Setting vA ∼ vff, this gives ε = vdiff/vff ∼ 10−2–10−3. In the
following, we scale all results to ε−2 = ε/10−2.

The surface density Σ of the gas inside rm is given by
Σ = Ṁ/2πRεvff, where Ṁ is the mass accretion rate. Since
the magnetic field supports the gas against gravity, we require
GMΣ/R2 ∼ 2BRBz/4π ∼ B2

z /2π (assuming BR ∼ Bz ). This
gives Bz ∼ 1.5 × 105ε

−1/2
−2 m

−1/2
8 ṁ1/2r−5/4 G, where m8 ≡

M/108M", and ṁ≡ Ṁ/ṀEdd, with ṀEdd = 1.4×1025m8 gs−1.
Assuming ε is independent of r , we may integrate Bz over
radius to estimate the magnetic flux Φ enclosed within rm.
Inverting this relation, we find

rm ∼ 8.2× 103ε
2/3
−2 m−2

8 ṁ−2/3(Φ/0.1pc2G)4/3. (2)

The above estimate should be valid for both spherical and
rotating flows, except that ε is perhaps somewhat smaller for
rotating flows.

How much magnetic flux do we expect to collect at the
center? For a MAD configuration to form it is necessary that
the inflowing gas should have the same sign of Bz (where z
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MAGNETICALLY CHOKED 
ACCRETION FLOW (MCAF)3094 J. C. McKinney, A. Tchekhovskoy and R. D. Blandford

Figure 4. Evolved snapshot (see Supporting Information for the movie) of the fiducial model at t ≈ 15612rg/c showing log of rest-mass density in colour (see
the legend on the right-hand side) in both the z–x plane at y = 0 (top left-hand panel) and the y–x plane at z = 0 (top right-hand panel). The black lines trace
field lines, where the thicker black lines show where field is lightly mass-loaded. The bottom panel has three subpanels. The top subpanel shows Ṁ through
the BH (ṀH), out in the jet (Ṁ j, at r = 50rg), and out in the magnetized wind (Ṁmw,o, at r = 50rg) with legend. The middle subpanel shows ϒ for similar
conditions. The bottom subpanel shows the efficiency (η) for similar conditions. The horizontal lines of the same colours show the averages over the averaging
period, while the square/triangle/circle tickers are placed at the given time and values. In summary, the efficiency is high at η ∼ 200 per cent. Also, despite
plenty (up to 10 times around t ∼ 8500rg/c) of same-signed polarity magnetic flux surrounding the BH, the magnetic flux reaches a stable saturated value of
ϒH ≈ 17 as managed by magnetic RT modes. This suggests that the simulation has reached a force balance between the magnetic flux in the disc and the hot
heavy inflow.

However, during the field inversion, the geometric thickness re-
stores to the prior geometric thickness (θd # 0.7) at all radii, which
indicates that the field (lost during the field annihilation) is respon-
sible for the thinning of the dense part of the disc. After the field
polarity inversion, the magnetic flux re-accumulates near the BH,
which leads again to the vertical compression of the disc flow. The
α-viscosity parameter holds steady at about αb ∼ 0.05. ϒ in the
pure inflow (ur < 0 only) available at large radii (here r = 50rg,
giving ϒouter in the plot) is large (the BH and ‘outer’ values are
similar for this chosen ‘outer’ radius).

The value of r%a shows the radius out to which the magnetic
polarity is the same as on the horizon. As expected, r%a drops
to the horizon during the field inversion (destruction of the inner
part of the second field loop) at t ∼ 2700rg/c. It also gradually
drops as the next polarity inversion (outer part of the third field
loop) eats away at the magnetic flux outside the BH. The process
of field inversion is also evident by looking at %H(t)/%a(t) (i.e.
ratio of time-dependent fluxes) corresponding to [the flux on the

BH] per unit [flux on the BH plus available of the same polarity
just beyond the BH]. %H(t)/%a(t) ∼ 1 is reached during the field
polarity inversion, and at late times %H(t)/%a(t) ∼ 1 is approached.
However, while ϒ holds steady, the value of |%H(t)/%a(t)| $ 1,
which indicates that much more same-polarity flux is available.
This shows that the saturated value of ϒ (and so η) is controlled
by some force balance condition and not simply limited by initial
conditions. Finally, |% tH(t)/&H(t)| ∼ 1 shows that the horizon’s field
is dipolar (l ≈ 1).

5.3 Time-averaged poloidal (r − θ ) dependence

Fig. 6 shows the time-averaged flow field and contours for other
conditions. The figure is comparable to the snapshot shown in
Fig. 3. The jet region contains significant magnetic flux and same-
signed polarity field exists near the BH ready to be accreted. In the
quasi-stationary state, the BH’s magnetic flux oscillates around its
saturated magnitude, whose time-averaged value is determined by

C© 2012 The Authors, MNRAS 423, 3083–3117
Monthly Notices of the Royal Astronomical Society C© 2012 RAS
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quantities on the horizon or other radii, they significantly affect the
time dependence of the solution. A plot (not shown) of (e.g.) ef-
ficiency versus time shows more violent oscillations at lower Nφ .
This suggests that the temporal behaviour is qualitatively affected
by how well resolved the |m| modes are, and only the Nφ = 128
model shows temporal variability similar to the fiducial model.

Consider how changing Nr, Nθ , Nφ by a factor of 2 changes
the results for the models A0.94BfN40 (fiducial model) versus
A0.94BfN100c1 and A0.94BfN30(r). Changes in measured quan-
tities are of the order of tens of per cent as discussed before. In
addition, consider the azimuthal correlation length’s m mode (mcor,
via equation 31) for quantities ρ0, ug, b

2, ut , bi , Bi, FM, F EM
E , F MA

E

(and their absolute value versions) both in the ‘Disc’ and ‘Jet’.
For A0.94BfN40, across all quantities, mcor ∼ 6–14, except in the
‘Disk’ where we found mcor ∼ 20 for br and mcor ∼ 15 for b2 at
r/rg = 4, 8, 30. On the horizon itself, where the disc is quite
geometrically thin and the flow is causally disconnected from the
rest of the solution, magnetic field components in the disc+corona
have mcor ≤ 45. Even for field components, Qm,cor ≥ 14 [via equa-
tion (44), grid cells per correlation length] outside the horizon and
Qm,cor ≥ 6 on the horizon. Beyond the horizon, the jet is always
even better resolved than the disk. So, our lower resolution choice
of Nφ = 128 is sufficient to resolve most structures beyond the
horizon.

Consider the vertical and radial correlation lengths in the
‘Disc’. At r = rH, 4rg, 8rg, 30rg, we find, respectively, lρ0,cor ≈
95, 58, 58, 57 giving Ql,cor,ρ0 ≈ 3, 6, 6, 5 grid cells per vertical
correlation length. Also, lb2,cor ≈ 108, 37, 27, 17 giving Ql,cor,b2 ≈
3, 8, 12, 18. Also, the grid cells per radial correlation length are
Qn,cor,ρ0 ≈ 7, 18, 22, 22 and Qn,cor,b2 ≈ 7, 16, 21, 22. Note that
taking the spectrum of the averaged flow rather than the aver-
aged spectrum leads to about twice higher apparent mode reso-
lution for the vertical and radial correlation lengths. With θd ≈
0.06, 0.13, 0.29, 0.59, this gives λθ,cor,ρ0/θ

d ≈ 0.6, 0.4, 0.2, 0.1
and λθ,cor,b2/θd ≈ 0.5, 0.7, 0.4, 0.3. Beyond the horizon, the jet is
always even better resolved than the disk. Summarizing, this shows
that the narrow density filaments are fairly resolved despite the
strong magnetic RT instabilities, while the magnetic field that fills
in the region between the dense filaments is well resolved beyond
the horizon. Across our poloidal field models, Nθ = 128 is optimal
to resolve the compressed dense magnetic RT filaments outside the
horizon, while the magnetic field is marginally resolved even at
Nθ = 64 (used for sweeping over spin).

Consider the A0.94BtN10(HR, i.e. high-resolution) toroidal field
models. The HR model gives αb and all η as quite similar. So,
our lower resolution toroidal field models are probably quantita-
tively converged. Indeed, all our toroidal models have Qθ,MRI ! 10,
Qθ,weak,MRI ! 10, Qφ,MRI ! 20, Qφ,weak,MRI ! 20, and αmag ≈ 0.4
as required to well-resolve the MRI (Hawley et al. 2011). The
A0.94BtN10 model has Qθ,MRI ≥ 10, Qθ,weak,MRI ≥ 10, Qφ,MRI ≥
58, Qφ,weak,MRI ≥ 32, and αmag ≈ 0.34. The A0.94BtN10HR model
has Qθ,MRI ≥ 50, Qθ,weak,MRI ≥ 30, Qφ,MRI ≥ 170, Qφ,weak,MRI ≥
80, and αmag ≈ 0.38. (The stated Q’s are limited by flow at r = ro

where 3 inflow times have passed.) So the MRI is probably well-
converged. In addition, for A0.94BtN10HR, across all quantities
(see list in previous paragraph) and locations (disk+corona and
jet), the azimuthal correlation’s mcor ≈ 6 − 22 (typically ∼ 10)
at all radii r = rH, 4rg, 8rg, 30rg corresponding to Qm,cor > 12
(typically ∼ 20) grid cells per correlation length. Also, this corre-
sponds to a typical azimuthal correlation length dφcor ∼ 0.9θd , so
that the largest correlated azimuthal structures are about as extended
as the half-vertical disk extent. These facts suggest that Nφ = 128

(our toroidal field models all have Nφ ≥ 128) is sufficient to well
resolve azimuthal structures. The vertical correlation lengths are
resolved with Ql,cor ∼ 18–30 (typically ∼25) cells across all quan-
tities and all radii, while the radial correlation length is resolved
with Qn,cor ≈ 7, 20, 25, 25 grid cells at r = rH, 4rg, 8rg, 30rg,
respectively, for both ρ0 and b2. In summary, our A0.94BtN10HR
model is among the highest resolved global MHD simulations.

The 2D axisymmetric simulations are inappropriate for studying
MCAFs (see also Igumenshchev 2009). Once magnetic flux has
accumulated up to a saturation point even beyond the BH, accretion
cannot occur in axisymmetry except through numerical reconnec-
tion. Once so much magnetic flux has accumulated just beyond the
BH, the entire flow rebounds backwards leading to low ηH. Even-
tually, mass builds up and forces magnetic flux back on to the BH
leading to high ηH. Also, of course, 2D axisymmetric simulations
cannot resolve the non-axisymmetric MRI or sustain a magnetic
dynamo.

We now compare our resolutions with prior simulations of mag-
netic flux accumulation. Stehle & Spruit (2001) used a resolution
up to Nr × Nφ = 156 × 128 per decade in radius. So, their sim-
ulations are roughly equally resolved to our fiducial models that
have about half of the resolution per decade. They used van Leer
interpolation, which has less than half the accuracy of our piece-
wise parabolic method-type interpolation. The 3D PNMHD simu-
lations by Igumenshchev et al. (2003) used a Cartesian grid with
'φ = π/2. Their innermost cell size is 0.5rg at Rin = 4rg (a quite
large Rin, see McKinney & Gammie 2002). Our fiducial model has
dr ∼ 0.1rg, dz ∼ 0.037rg and rsin θdφ ∼ 0.097rg at r = 4rg and
has dr ∼ 0.035rg, dz ∼ 0.0076rg and rsin θdφ ∼ 0.033rg at r =
rH, so our z resolution is about 10 times higher. The 3D PNMHD
energy-conserving PPM-type simulations by Igumenshchev (2008)
and Punsly et al. (2009) are full 'φ = 2π with Nr × Nθ × Nφ =
182 × 84 × 240 for a comparable resolution per radius as our fidu-
cial model, except very close to the BH where we have about four
times the θ resolution.

7 D ISCUSSION

Our simulations show that the accumulation of poloidal magnetic
flux leads to a two-phase-like magnetospheric accretion flow that
is dramatically different from the standard MRI-driven MHD tur-
bulent accretion flow. The flow that develops in our simulations
is conceptually similar to the ‘magnetically arrested disc’ (MAD)
flow (Narayan et al. 2003). While the standard weakly magnetized
MRI-driven MHD turbulent flow has gas and magnetic pressures
in force balance near the BH, the MAD state develops as mag-
netic flux accumulates and magnetic forces balance the inflow’s
ram or gravitational forces. The originally conceived MAD flow
has a sharp magnetospheric boundary layer with a large density
contrast at some radius, as confirmed by low-resolution 3D MHD
simulations (e.g. fig. 13 in Igumenshchev et al. 2003; also seen
in our 2D axisymmetric simulations). In these pioneering studies,
accretion occurs primarily via diffusive reconnection events.

Our high-resolution fully 3D simulations show that efficient non-
axisymmetric magnetic RT instabilities prevent the formation of
the MAD’s sharp magnetospheric barrier. Any additional magnetic
flux that tries to accrete on to the BH is redistributed out in the
disc by these instabilities. Also, we found that the magnetosphere
geometrically compresses the dense inflow. We call this fully non-
linear MAD flow a ‘magnetically choked accretion flow’ (MCAF),
referring to the magnetic flux compressing the dense inflow leading
to enhancement of the magnetization over much of the horizon.

C© 2012 The Authors, MNRAS 423, 3083–3117
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Such a magnetic choke is analogous to chokes in man-made engines,
within which it enriches the fuel mixture by partially shutting off
the air intake.

Our simulations confirm the brief 3D PNMHD simulations by
Igumenshchev (2008) that also show MCAF formation. We also
roughly confirm the magnetospheric QPO mechanism by Li &
Narayan (2004), which in their model drives some disc-based fre-
quency at a vertical magnetic barrier. However, our 3D simulations
show that the disc inflow interacts with the polar magnetic flux
threading the rotating BH, which leads to a new ‘jet–disc QPO’
(JD-QPO) mechanism based upon the BH rotation frequency. We
also reaffirm that the BZ mechanism operates efficiently, except
our low-spin thick-disc models do not form relativistic jets due to
mass infall. Otherwise, the BZ mechanism leads to powerful jets
directly from the BH for our poloidal field models. We confirm
the 3D GRMHD simulations by Tchekhovskoy et al. (2011), who
showed that outflow efficiencies of η ! 100 per cent are possible
once the BH with |a/M| ! 0.9 has reached poloidal magnetic flux
saturation. As in other MHD simulations, the entire wind’s outflow
rate is roughly Ṁw ∝ r .

We also confirm the results of Igumenshchev (2008) that a/M =
0 MCAF models have low heat+outflow efficiencies of η ∼
few per cent. One would expect heat+outflow efficiencies of
η ∼ 100 per cent even for a/M = 0 if even the dense inflow were
significantly arrested (Narayan et al. 2003). In particular, for a/M =
0, our thinner disc models have ηH ∼ 5 per cent, while the NT effi-
ciency is ηNT ∼ 6 per cent. For the thick-disc models, ηH < 0 per cent
and ηEM

H ∼ 0 per cent. In the simulations, the heavy disc inflow is rel-
atively unmagnetized and not sufficiently slowed to achieve high η.

Radiatively efficient MCAF states (not studied in this paper)
might still be hyper-NT efficient even for a/M = 0 (Narayan et al.
2003). Our thinner disc models have a high specific enthalpy such
that ηPAKE

H ∼ 34 per cent and ηEN
H ∼ −28 per cent for a/M =

0 and ηPAKE
H ∼ 64 per cent and ηEN

H ∼ −62 per cent for a/M =
0.99. Emission of that free thermal energy would give a radiative
efficiency of up to ηrad ∼ 28 per cent for a/M = 0 and ηrad ∼ 62 per
cent for a/M = 0.99. However, the trend with thickness is roughly
ηEN ∝ θ t across our models, so we would predict that thin discs with
θ t " 0.03 (as relevant for BH X-ray binaries in the thermal state;
Kulkarni et al. 2011) would have no enhanced radiative efficiency.
Thin radiatively efficient MCAFs should be studied with GRMHD
simulations to check.

We confirm the suggestion by Igumenshchev et al. (2003) that
most prior MHD disc simulations used initial conditions that lim-
ited the available magnetic flux. For example, a relatively radially-
narrow torus can only have a relatively small amount of magnetic
flux inserted if also keeping β $ 1 to allow for the MRI. Also, much
of the matter and field can be ejected or remain beyond the torus
pressure maximum rather than being accreted. After $H reaches
a quasi-steady state, one can test whether an MHD simulation is
limited by such initial conditions. One computes $H/$a (i.e. [flux
on the BH] per unit [flux on the BH plus just outside the BH of
the same polarity]) and also $H/$s ([flux on the BH] per unit [flux
on the BH plus available within the stagnation radius for radial
inflow]). One must compute both because there may be plenty of
same-polarity magnetic flux beyond the BH, but it may not be ac-
creting. One could also compute how much flux is available within
the inflow equilibrium region. Both $H/$a ∼ 1 and $H/$s ∼ 1 for
MB09D, so the initial conditions artificially limited the magnetic
flux that can reach the BH. Also, it appears that $H/$s ∼ 1 in the
simulations by Beckwith et al. (2009), who show much magnetic
flux is ejected to (or remains at) large radii.

A local α-viscosity leads to a poor model of angular momentum
transport for the simulations. The effective α is different from that
predicted by local stresses divided by either total or magnetic pres-
sure for all our thick (H/R ∼ 1 ) disc and poloidal field thinner
(H/R ∼ 0.3 ) disc models. The α-disc theory only works well for
our weak poloidal field models of either very thin (H/R ∼ 0.05) or
relatively thin (H/R ∼ 0.3) disks. Large-scale magnetic confine-
ment forces, rather than local stresses, may be acting on the dense
inflow. Also, for our toroidal thick disk models, convection may be
important because Reynolds stress dominates Maxwell stress.

Interestingly, Sd,MRI ∼ 1 (or Sd,MRI ∼ 0.25 − 0.5) gives the
disk’s saturated vertical field strength in our toroidal (or poloidal)
field models. Also, the effective viscosity is αeff ∼ 0.1−1 (αeff2 is at
most 2× smaller for the new thinner models and at most 4× smaller
for the new thick disk models), which is sufficiently consistent with
observations (King et al. 2007).

MCAFs might explain observations of apparently highly effi-
cient jets (Laing, Riley & Longair 1983; Willott et al. 1999; Bı̂rzan
et al. 2004; Ogle, Whysong & Antonucci 2006; Richards et al.
2006; Ghisellini et al. 2010; McNamara, Rohanizadegan & Nulsen
2011; Punsly 2011; Fernandes et al. 2011). However, more work
is required to ensure the observations are accurately modelled. For
example, the jet models in Fernandes et al. (2011) have factors (e.g.
f , see Willott et al. 1999) that can significantly change depending
upon estimates of the invisible work done by the jet. Also, there are
similar uncertainties in translating to the jet power in McNamara
et al. (2011) as related to work done by bubble expansion
(Bı̂rzan et al. 2004). Also, the blazar estimates of jet power by
Ghisellini et al. (2010) can be affected by models of the Doppler
factor. 178-MHz observations by Ogle et al. (2006) are affected
by a lack of simultaneity between optical and radio emission, and
the systems they observe could be low-luminosity radiatively in-
efficient systems that lower their jet efficiency requirements. Our
simulations may help constrain such jet power estimates.

MCAFs may also help explain the variety of spectral states
seen in BH X-ray binaries (Rutledge et al. 1999; de Gouveia dal
Pino & Lazarian 2005; Igumenshchev 2008, 2009). The accumu-
lation of magnetic flux might lead to the low-hard, bright-hard,
and hard:steep-power-law intermediate states with LFQPOs whose
frequency is controlled by the ‘magnetospheric radius’ (rm) and
with a persistent (mostly invisible) radio jet. The steep-power-law
(very high) state could be due to reconnection as a field polarity
reversal makes its way to the BH, where the reconnection with the
jet on slightly larger scales makes the HFQPOs visible near the
BH. Dissipation of the accumulated magnetic flux on the BH could
cause the jet to light up as a radio bright outgoing reconnecting
plasmoid. The remaining disc without accumulated flux can lead
back to the thermal (high-soft) state that has no jet and no (or very
weak) QPOs. Note that we distinguish between QPOs and jets being
present versus visible. Future work can test these speculations.

8 C O N C L U S I O N S

BH systems may have plenty of coherent magnetic flux available at
large radii that can feed the accretion flow down to the BH. Using
fully 3D GRMHD simulations of extended RIAFs, we found that
poloidal magnetic flux readily accretes from large radii and builds up
to a natural saturation point near the BH independently of the initial
poloidal magnetic flux. The accumulated poloidal magnetic flux
naturally leads to a highly non-axisymmetric ‘magnetically choked
accretion flow’ (MCAF), within which the MRI is suppressed.

C© 2012 The Authors, MNRAS 423, 3083–3117
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3.5. Reconnection Rate

We calculate the reconnection rate in a similar way to the
Orszag–Tang vortex for both MAD and SANE configurations.
We first transform the Eulerian electric and magnetic fields into
a local inertial frame (see, e.g., White et al. 2016) to apply the
standard reconnection analysis. We project the fields in the flat
frame along the direction parallel to the current layer to
determine the upstream geometry, and a typical Harris-type
sheet structure is found in Figure 12 both for the magnetic field
and the current density magnitude J. All three magnetic field
components switch sign in the current sheets, indicating that
zero-guide-field reconnection occurs in both MAD and SANE
cases.

In the local inertial frame, we determine the inflow speed
from the qE B velocity that we project along the direction
perpendicular to the current sheet, and then calculate the
reconnection rate as ( )� �v c v v c2rec up, left up, right . In both
MAD and SANE configurations, we select 10 current sheets at
different times during the quasi-steady-state phase of accretion
and consistently find a reconnection rate between 0.01c and
0.03c. This finding is in accordance with analytic resistive
MHD predictions for plasmoid-dominated reconnection in
isolated current sheets (Bhattacharjee et al. 2009; Uzdensky
et al. 2010). Note that the actual Lundquist number is
approximately ( )I� '2S L c 10sheet

5 , as all current sheets
have a typical length scale of ( – )_' r5 20 g , confirming that
reconnection occurs in the plasmoid-dominated regime as
�S 104.

4. Flare Analysis

Sgr A* shows daily flares in the near-infrared (on average
every ∼6 hr; Eckart et al. 2006) and X-ray (on average every
∼12–24 hr; Baganoff et al. 2003) spectrum, often without a
significant time lag. The X-ray flares are large-amplitude
outbursts followed by a quiescent period, whereas near-infrared

flares appear as peaks within an underlying noise. The near-
infrared flares can typically last for ∼80 minutes, and the X-ray
flares show shorter timescales of ∼50 minutes. Substructural
variability with a characteristic timescale of _1525 minutes is
regularly observed in near-infrared flares (Genzel et al. 2003;
Eckart et al. 2006. The Gravity Collaboration et al. (2018)
resolved the flare locations of three flares in the central r10 g.
The near-infrared flares are polarized, indicating their origin in
synchrotron radiation produced by relativistic electrons. The
polarization angle can change significantly during the flare
(Dodds-Eden et al. 2009, 2010), indicating a change of
topology of the magnetic field, e.g., due to magnetic
reconnection. The near-infrared flares in the spectrum are
explained by a peak synchrotron frequency in accordance with
Lorentz factors of ( )( �2 B B103

quiescence
1 2, where B is the

magnetic field strength in Gauss (G) and –_B 10 50 Gquiescence
is the field strength in quiescent periods in the inner r10 g of the
accretion disk (Dodds-Eden et al. 2009). This in turn requires
particle acceleration, which is likely to be powered by tapping
energy from the magnetic field, to energies well above the
quiescent temperature of _ q3 10 K10 (Bower et al. 2006).
The magnetic field strength is expected to significantly
decrease to –_1 10 G during a flare to explain the simultaneity
and symmetry of the X-ray and near-infrared light curves
(Dodds-Eden et al. 2010).
Here, we compare the first time-dependent GRRMHD model

for flare generation with observational constraints for Sgr A*.
To convert the plasma temperature and magnetic field strength
from code units to cgs units, we find a scaling factor

�B 50 G0 for the MAD state such that the field strength at
r3 g, where the accretion disk starts, is equal to 50 G in
quiescence, as constrained by observations (Dodds-Eden et al.
2009) for Sgr A*. This results in a field strength of 10 G at

r10 g in quiescence, and the field strength scales as ∝r−1

with distance from the black hole. The fluid temperature
Sp is normalized as ( )S�T p m kp0 0 0 B [K], where

Figure 10. ( )C �� b p21 2 at four typical times [ ]�t r c2941, 2971, 2988, 3009 g (from left to right) during the quasi-steady-state phase of accretion in the MAD
configuration. Magnetic field lines are plotted on top as solid black lines. In the top half, one can detect the accretion of a magnetic flux tube (left panel) at
x xx r y r3 , 1g g that opens up and becomes tearing unstable (second panel) after it connects to the black hole and produces copious plasmoids coalescing into large-

scale structures (third and fourth panels) at x xx r y r5 , 2.5g g, with a typical size of about one Schwarzschild radius.
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STRONG TOROIDAL FIELDS

Standard accretion disk models 
suffer from instabilities 
(thermal, viscous, 
fragmentation - self-gravity). 

A central layer of strong 
toroidal field should stabilize 
the disk (Begelman & Pringle 
2007), confirmed by GRMHD 
simulations. 

Increasing  initially 
suppresses the MRI, then new 
modes appear.

Bϕ
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Figure 6. Numerical simulations in PLUTO – norm of the Fourier-transformed perturbation of the radial magnetic field ||B1r|| as a function of time t, measured
at rfid = 1.05 for vAφ = 0.1 and kz = 31. Time is in units of "−1

in and the measured growth rate in this case is ωImax = 0.19. The background accretion flow
has cs = 0.05 and vAz = 0.01, and the simulations are performed on a radial grid r ∈ [1, 5] and a vertical grid z ∈ [−0.1, 0.1], with resolutions Nr = 1536 and
Nz = 128, respectively

Figure 7. Measured maximum linear growth rates ωI max as a function vAφ from numerical simulations in PLUTO (filled dots) and predicted growth rates from
the global eigenvalue analysis (lines), for the most unstable mode at kz = 31, 62, 94 and 125 (represented by different colours). The background accretion flow
has cs = 0.05 and vAz = 0.01, and the simulations are performed on a radial grid r ∈ [1, 5] and a vertical grid z ∈ [−0.1, 0.1], with resolutions Nr = 1536 and
Nz = 128, respectively.

We have performed several simulations with varying vAφ to measure the growth rates of the most unstable modes at kz = 31, 62, 94
and 125. Note that because of the vertical extension of the domain, we can only probe kz in multiples of 10π. The maximum growth rates
obtained from PLUTO are shown in Fig. 7 together with the predicted maximum growth rates from the global eigenvalue analysis. Fig. 7 can
also be compared with the left-hand panels of Fig. 2. We recover the suppression of the MRI growth rate at vAφ = 0.3, as predicted by PP05.
Above vAφ = 0.3, we also see the appearance of the new instabilities, namely, SHMI (see e.g. the non-zero ωI max for kz = 31, 62 < kSI

for vAφ = 0.4) and SSMI (see e.g. the non-zero ωI max for kz = 125 > kSI for vAφ = 0.4, recalling from the eigenvalue analysis that kSI ≈
93 for this field strength). The lowest dispersion (σ ) between the numerical and theoretical growth rates is obtained for vAφ = 0.1, with an
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Figure 5. Heating (Q+, colour markers) and cooling (Q−, grey markers) rates at r ≈ 15rg for the stable simulation Q (left-hand panel) and the unstable
simulation D (right-hand panel) as a function of the average radiation pressure, prad. The values were extracted near radius r = 15rg and 11rg for models Q and
D, respectively. Colours of the markers denote the magnetic to total pressure ratio.

5.2 Lagrangian picture

We now study the heating/cooling balance by following the gas
on its way towards the BH inside the inflow/outflow equilibrium
region. Because such an equilibrium has not been reached for simu-
lation D, we limit ourselves here to the stable simulation Q. We first
approximate the average radial velocity of the flow between radii
r = 6rg and 20rg and get vQ = −3(r/rg)−2.5c. Then, we ‘drop’ a
box, initially located between r = 19rg and 20rg, and calculate the
heating/cooling rates on its way towards the BH.

Fig. 6 shows the radiative cooling (blue line) and viscous heating
(orange line) rates as a function of time and the corresponding
location of the box (denoted with the black line labelled on the right)
for the stable simulation Q. The profiles were obtained by averaging
the properties of five separate boxes ‘dropped’ at different times.
The dashed line shows the emission profile predicted by the thin
disc model for 0.8ṀEdd at the location corresponding to the centre
of the box.

The simulated disc shows exact balance between heating and
cooling in the initial stage of the box infall – this indicates that
the disc is radiatively efficient, i.e. all the generated heat is taken
away from the disc by radiation. At the same time the disc neither
cools nor heats up, but maintains the equilibrium state it has reached.
When the inner boundary of the box is located inside r ≈ 11rg (what
happens roughly after t = 2200rg), the rate of viscous heating starts
to exceed the rate of radiative cooling (calculated by integrating
radiative flux over the vertical boundaries). However, most of the

Figure 6. Heating (orange) and cooling rates (blue lines) in a box infalling
with the average radial velocity of the gas for simulation Q. The radial
boundaries of the box were initially located at r = 19rg and 20rg. The thin
black lines show their location as a function of time.

excess heat is ultimately deposited on the BH as a result of both
strong collimation of the radiation (which was emitted in gas moving
with relativistic velocity towards the BH and crosses the inner radial
box boundary, instead of escaping vertically) and photon trapping.
The rate of radiative cooling, i.e. the rate at which radiation escapes
from the system, follows closely the prediction of the standard
model (denoted with the dashed line).

6 C O L L A P S I N G , W E A K LY
M AGNET I Z ED DI S C

Fig. 7 compares the evolution of the two models over time. The
left-hand set of panels shows the magnetically supported disc. It
maintains its thickness and properties throughout the simulation.
The right-hand panels reflect the evolution of the weakly magnetized
disc which changes its properties on a relatively short (thermal)
time-scale. Because of the excess of cooling over heating, the disc
loses its radiation pressure support and gas collapses towards the
equatorial plane. The density and the amount of gas in that region
increase, and the MRI becomes underresolved.

Figure 7. Time evolution of the strongly (model Q, left-hand panels) and
weakly (model D, right-hand panels) magnetized discs. Only the magneti-
cally supported disc retains the equilibrium state. The weakly magnetized
one cools down, collapses towards the equatorial plane, and leads to under-
resolving the MRI.
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SUMMARY
Accretion flows require a mechanism of redistributing angular 
momentum (viscosity). 

Magnetic fields have long been considered to provide such a 
mechanism. The most important mechanism has been identified in 
the magnetorotational instability (MRI). 

Strong toroidal magnetic fields can stabilize accretion disks (thermal, 
viscous, self-gravity modes), but also induce additional MRI modes, 
can be sustained against buoyancy by shear-driven  dynamo. 

Poloidal magnetic fields must be advected onto central object to 
produce jets. Inwards advection is possible in thick accretion flows 
and via coronae, generation from toroidal fields through an  dynamo 
has also been demonstrated.
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