Current date: 2025-08-29

Setting default datestamp limit: 0

Datestamp limit: 2025-08-29 (0 days ago)

Created/updated limit: 2025-08-22 (7 days ago)

Found keywords_cs.dat
Found keywords_cis.dat

Suggested sets: physics, physics:astro-ph, physics:gr-qc, physics:physics

Setting default set: physics

OAI-PMH request: http://export.arxiv.org/oai2?verb=ListRecords&from=2025-08-29&until=2025-08-29&set=physics&metadataPrefix=arXiv

Scoring abstracts

Number of records retrieved: 401

Keyword score statistics

score 15 -- 1 abstracts

score 8 -- 3 abstracts

score 4 -- 2 abstracts

score 3 -- 5 abstracts

score 2 -- 15 abstracts

in total -- 26 abstracts

Articles that appeared on 2025-08-29

[abstract 1 / 26] Wow! (score: 15)
arXiv:2508.20229 [pdf, ps, other]
Title: Combined DARK MATTER search towards dwarf spheroidal galaxies with FERMI-LAT, HAWC, H.E.S.S., MAGIC, and VERITAS
Authors: LAT Collaboration, S. Abdollahi, L. Baldini, R. Bellazzini, B. Berenji, E. Bissaldi, R. Bonino, P. Bruel, S. Buson, E. Charles, A. W. Chen, S. Ciprini, M. Crnogorcevic, A. Cuoco, F. D'Ammando, A. de Angelis, M. Di Mauro, N. Di Lalla, L. Di Venere, A. Domínguez, S. J. Fegan, A. Fiori, P. Fusco, V. Gammaldi, F. Gargano, D. Gasparrini, F. Giacchino, N. Giglietto, M. Giliberti, F. Giordano, M. Giroletti, I. A. Grenier, S. Guiriec, M. Gustafsson, E. Hays, J. W. Hewitt, D. Horan, H. Katagiri, M. Kuss, J. Li, F. Longo, F. Loparco, L. Lorusso, G. Martí-Devesa, M. N. Mazziotta, J. E. McEnery, I. Mereu, M. Meyer, P. F. Michelson, N. Mirabal, W. Mitthumsiri, T. Mizuno, A. Morselli, I. V. Moskalenko, M. Negro, N. Omodei, M. Orienti, E. Orlando, G. Panzarini, M. Persic, M. Pesce-Rollins, R. Pillera, T. A. Porter, G. Principe, S. Rainò, R. Rando, M. Razzano, O. Reimer, M. Sánchez-Conde, P. M. Saz Parkinson, D. Serini, D. J. Suson, D. F. Torres, G. Zaharijas, HAWC Collaboration, :, A. Albert, R. Alfaro, C. Alvarez, J. C. Arteaga-Velázquez, D. Avila Rojas, H. A. Ayala Solares, R. Babu, E. Belmont-Moreno, K. S. Caballero-Mora, T. Capistrán, A. Carramiñana, S. Casanova, O. Chaparro-Amaro, U. Cotti, J. Cotzomi, S. Coutiño de León, E. de la Fuente, C. de León, R. Diaz Hernandez, B. L. Dingus, M. A. DuVernois, M. Durocher, J. C. Díaz-Vélez, K. Engel, C. Espinoza, K. L. Fan, N. Fraija, J. A. García-González, F. Garfias, M. M. González, J. A. Goodman, J. P. Harding, S. Hernandez, I. Herzog, J. Hinton, D. Huang, F. Hueyotl-Zahuantitla, P. Hüntemeyer, A. Iriarte, V. Joshi, S. Kaufmann, D. Kieda, G. J. Kunde, A. Lara, J. Lee, H. León Vargas, J. T. Linnemann, A. L. Longinotti, G. Luis-Raya, J. Lundeen, K. Malone, O. Martinez, J. Martínez-Castro, H. Martínez-Huerta, J. A. Matthews, P. Miranda-Romagnoli, J. A. Morales-Soto, E. Moreno, M. Mostafá, A. Nayerhoda, L. Nellen, M. U. Nisa, R. Noriega-Papaqui, L. Olivera-Nieto, N. Omodei, A. Peisker, Y. Pérez Araujo, E. G. Pérez-Pérez, C. D. Rho, D. Rosa-González, H. Salazar, D. Salazar-Gallegos, A. Sandoval, M. Schneider, J. Serna-Franco, A. J. Smith, Y. Son, R. W. Springer, O. Tibolla, K. Tollefson, I. Torres, R. Torres-Escobedo, R. Turner, F. Ureña-Mena, E. Varela, L. Villaseñor, X. Wang, I. J. Watson, K. Whitaker, E. Willox, S. Yu, S. Yun-Cárcamo, H. Zhou, H. E. S. S. Collaboration, :, F. Aharonian, F. Ait Benkhali, C. Armand, J. Aschersleben, M. Backes, V. Barbosa Martins, R. Batzofin, Y. Becherini, D. Berge, B. Bi, M. Böttcher, C. Boisson, J. Bolmont, M. de Bony de Lavergne, J. Borowska, M. Bouyahiaoui, F. Bradascio, M. Breuhaus, F. Brun, B. Bruno, T. Bulik, C. Burger-Scheidlin, S. Caroff, S. Casanova, R. Cecil, J. Celic, M. Cerruti, T. Chand, S. Chandra, A. Chen, J. Chibueze, O. Chibueze, G. Cotter, S. Dai, J. Damascene Mbarubucyeye, A. Dmytriiev, V. Doroshenko, J. -P. Ernenwein, G. Fichet de Clairfontaine, M. Filipovic, G. Fontaine, M. Füßling, S. Funk, S. Gabici, S. Ghafourizadeh, G. Giavitto, D. Glawion, J. F. Glicenstein, G. Grolleron, L. Haerer, J. A. Hinton, W. Hofmann, T. L. Holch, M. Holler, D. Horns, M. Jamrozy, F. Jankowsky, A. Jardin-Blicq, V. Joshi, I. Jung-Richardt, E. Kasai, K. Katarzyński, R. Khatoon, B. Khélifi, W. Kluźniak, Nu. Komin, D. Kostunin, R. G. Lang, S. Le Stum, F. Leitl, A. Lemière, M. Lemoine-Goumard, J. -P. Lenain, F. Leuschner, T. Lohse, A. Luashvili, I. Lypova, J. Mackey, D. Malyshev, D. Malyshev, V. Marandon, P. Marchegiani, R. Marx, M. Meyer, A. Mitchell, R. Moderski, A. Montanari, E. Moulin, K. Nakashima, M. de Naurois, J. Niemiec, A. Priyana Noel, L. Oakes, P. O'Brien, S. Ohm, L. Olivera-Nieto, E. de Ona Wilhelmi, M. Ostrowski, S. Panny, M. Panter, R. D. Parsons, V. Poireau, D. A. Prokhorov, G. Pühlhofer, A. Quirrenbach, P. Reichherzer, A. Reimer, O. Reimer, F. Rieger, L. Rinchiuso, G. Rowell, B. Rudak, V. Sahakian, S. Sailer, A. Santangelo, M. Sasaki, J. Schäfer, U. Schwanke, J. N. S. Shapopi, H. Sol, A. Specovius, S. Spencer, Ł. Stawarz, R. Steenkamp, S. Steinmassl, C. Steppa, I. Sushch, H. Suzuki, T. Takahashi, T. Tanaka, T. Tavernier, A. M. Taylor, R. Terrier, C. Thorpe-Morgan, C. van Eldik, M. Vecchi, J. Veh, C. Venter, J. Vink, T. Wach, S. J. Wagner, A. Wierzcholska, Yu Wun Wong, M. Zacharias, D. Zargaryan, A. A. Zdziarski, A. Zech, S. Zouari, N. Żywucka, MAGIC Collaboration, :, H. Abe, S. Abe, V. A. Acciari, I. Agudo, T. Aniello, S. Ansoldi, L. A. Antonelli, A. Arbet Engels, C. Arcaro, M. Artero, K. Asano, D. Baack, A. Babić, A. Baquero, U. Barres de Almeida, J. A. Barrio, I. Batković, J. Baxter, J. Becerra González, W. Bednarek, E. Bernardini, M. Bernardos, J. Bernete, A. Berti, C. Bigongiari, A. Biland, O. Blanch, G. Bonnoli, Ž. Bošnjak, I. Burelli, G. Busetto, A. Campoy Ordaz, A. Carosi, R. Carosi, M. Carretero-Castrillo, A. J. Castro-Tirado, G. Ceribella, Y. Chai, A. Cifuentes, S. Cikota, E. Colombo, J. L. Contreras, J. Cortina, S. Covino, G. D'Amico, V. D'Elia, P. Da Vela, F. Dazzi, A. De Angelis, B. De Lotto, A. Del Popolo, M. Delfino, J. Delgado, C. Delgado Mendez, D. Depaoli, F. Di Pierro, L. Di Venere, D. Dominis Prester, A. Donini, D. Dorner, M. Doro, D. Elsaesser, G. Emery, J. Escudero, L. Fariña, A. Fattorini, L. Foffano, L. Font, S. Fröse, S. Fukami, Y. Fukazawa, R. J. García López, M. Garczarczyk, S. Gasparyan, M. Gaug, J. G. Giesbrecht Paiva, N. Giglietto, F. Giordano, P. Gliwny, N. Godinović, R. Grau, D. Green, J. G. Green, D. Hadasch, A. Hahn, T. Hassan, L. Heckmann, J. Herrera, D. Hrupec, M. Hütten, R. Imazawa, T. Inada, R. Iotov, K. Ishio, I. Jiménez Martínez, J. Jormanainen, D. Kerszberg, G. W. Kluge, Y. Kobayashi, P. M. Kouch, H. Kubo, J. Kushida, M. Láinez Lezáun, A. Lamastra, F. Leone, E. Lindfors, S. Lombardi, F. Longo, R. López-Coto, M. López-Moya, A. López-Oramas, S. Loporchio, A. Lorini, B. Machado de Oliveira Fraga, P. Majumdar, M. Makariev, G. Maneva, N. Mang, M. Manganaro, S. Mangano, K. Mannheim, M. Mariotti, M. Martínez, A. Mas-Aguilar, D. Mazin, S. Menchiari, S. Mender, D. Miceli, T. Miener, J. M. Miranda, R. Mirzoyan, M. Molero González, E. Molina, H. A. Mondal, A. Moralejo, D. Morcuende, C. Nanci, V. Neustroev, M. Nievas Rosillo, C. Nigro, K. Nilsson, K. Nishijima, T. Njoh Ekoume, K. Noda, S. Nozaki, Y. Ohtani, A. Okumura, J. Otero-Santos, S. Paiano, M. Palatiello, D. Paneque, R. Paoletti, J. M. Paredes, L. Pavletić, M. Persic, M. Pihet, G. Pirola, F. Podobnik, P. G. Prada Moroni, E. Prandini, G. Principe, C. Priyadarshi, W. Rhode, M. Ribó, J. Rico, C. Righi, N. Sahakyan, T. Saito, K. Satalecka, F. G. Saturni, B. Schleicher, K. Schmidt, F. Schmuckermaier, J. L. Schubert, T. Schweizer, A. Sciaccaluga, J. Sitarek, V. Sliusar, D. Sobczynska, A. Spolon, A. Stamerra, J. Strišković, D. Strom, M. Strzys, Y. Suda, S. Suutarinen, H. Tajima, M. Takahashi, R. Takeishi, F. Tavecchio, P. Temnikov, K. Terauchi, T. Terzić, M. Teshima, L. Tosti, S. Truzzi, A. Tutone, S. Ubach, J. van Scherpenberg, M. Vazquez Acosta, S. Ventura, V. Verguilov, I. Viale, C. F. Vigorito, V. Vitale, I. Vovk, R. Walter, M. Will, C. Wunderlich, T. Yamamoto, VERITAS Collaboration, :, A. Acharyya, C. B. Adams, A. Archer, P. Bangale, J. T. Bartkoske, P. Batista, W. Benbow, J. H. Buckley, Y. Chen, J. L. Christiansen, A. J. Chromey, M. Errando, M. Escobar Godoy, A. Falcone, S. Feldman, Q. Feng, J. P. Finley, G. M. Foote, L. Fortson, A. Furniss, G. Gallagher, C. Giuri, W. Hanlon, O. Hervet, C. E. Hinrichs, J. Hoang, J. Holder, Z. Hughes, T. B. Humensky, W. Jin, M. N. Johnson, P. Kaaret, M. Kertzman, M. Kherlakian, D. Kieda, T. K. Kleiner, N. Korzoun, F. Krennrich, S. Kumar, M. Lundy, G. Maier, C. E McGrath, M. J. Millard, J. Millis, C. L. Mooney, P. Moriarty, R. Mukherjee, D. Nieto, S. O'Brien, R. A. Ong, M. Pohl, E. Pueschel, J. Quinn, P. L. Rabinowitz, K. Ragan, P. T. Reynolds, D. Ribeiro, E. Roache, J. L. Ryan, I. Sadeh, L. Saha, M. Santander, G. H. Sembroski, R. Shang, M. Splettstoesser, D. Tak, A. K. Talluri, J. V. Tucci, V. V. Vassiliev, A. Weinstein, D. A. Williams, S. L. Wong,
Comments:
Subjects: astro-ph.HE astro-ph.CO
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

Dwarf spheroidal galaxies (dSphs) are excellent targets for indirect DARK MATTER (DM) searches using gamma-ray telescopes because they are thought to have high DM content and a low astrophysical background. The sensitivity of these searches is improved by combining the observations of dSphs made by different gamma-ray telescopes. We present the results of a combined search by the most sensitive currently operating gamma-ray telescopes, namely: the satellite-borne FERMI-LAT telescope; the ground-based imaging atmospheric Cherenkov telescope arrays H.E.S.S., MAGIC, and VERITAS; and the HAWC water Cherenkov detector. Individual datasets were analyzed using a common statistical approach. Results were subsequently combined via a global joint likelihood analysis. We obtain constraints on the velocity-weighted cross section $\langle σ\mathit{v} \rangle$ for DM self-annihilation as a function of the DM particle mass. This five-instrument combination allows the derivation of up to 2-3 times more constraining upper limits on $\langle σ\mathit{v} \rangle$ than the individual results over a wide mass range spanning from 5 GeV to 100 TeV. Depending on the DM content modeling, the 95% confidence level observed limits reach $1.5\times$10$^{-24}$ cm$^3$s$^{-1}$ and $3.2\times$10$^{-25}$ cm$^3$s$^{-1}$, respectively, in the $τ^+τ^-$ annihilation channel for a DM mass of 2 TeV.

[abstract 2 / 26] Wow! (score: 8)
arXiv:2507.03613 [pdf, ps, other]
Title: The physical properties of candidate neutrino-emitter BLAZARs
Authors: Alessandra Azzollini, Sara Buson, Alexis Coleiro, Gaëtan Fichet de Clairfontaine, Leonard Pfeiffer, Jose Maria Sanchez Zaballa, Margot Boughelilba, Massimiliano Lincetto,
Comments: 22 pages, 8 figures, published in Astronomy & Astrophysics
Subjects: astro-ph.HE astro-ph.GA
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

The processes governing the production of astrophysical high-energy neutrinos are still debated, and the sources originating them remain an open question. Among the putative emitters, ACTIVE GALACTIC NUCLEi have gained increasing attention. Blazars, in particular, stand out due to their ability to accelerate particles in environments with external radiation fields. Recent observations suggest they may contribute to the neutrino flux detected by IceCube. We study the physical properties of a subsample of 52 BLAZARs proposed as candidate neutrino emitters, based on a positional cross-correlation analysis between IceCube hotspots and the 5BZCat catalog. We aim to provide a first characterization of their central engines and physical nature, to explore the potential link with neutrino production. We analyze the optical spectroscopic properties of the 52 candidate neutrino-emitter BLAZARs to infer their accretion regime. The study is complemented by radio and $γ$-ray data, which trace the intrinsic JET power. We compare the sample to other BLAZAR populations in the literature, perform statistical tests, and explore, through simulations, the applicability of methods that include censored data. Overall, the target sample shows properties compatible with the reference samples. We observe a mild tendency to prefer objects with intense radiation fields, typical of radiatively efficient accretors, and high radio power. Among them, 24 are detected by FERMI-LAT, spanning various $γ$-ray luminosities. We also show that statistical tests commonly used in the literature need to be handled with caution, as they are sensitive to the number of censored data and the sample size.

[abstract 3 / 26] Wow! (score: 8)
arXiv:2508.20620 [pdf, ps, other]
Title: Modeling the POLARIZATION properties of SYNCHROTRON sources through simulations of RELATIVISTIC MHD turbulence
Authors: Luca Del Zanna, Niccolò Bucciantini, Simone Landi,
Comments: 13 pages, accepted for Astronomy and Astrophysics
Subjects: astro-ph.HE
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

The emission from the RELATIVISTICally hot plasmas of high-energy astrophysical SYNCHROTRON sources, Pulsar Wind Nebulae (PWNe) in particular, depends on the level of MAGNETic fluctuations. Recent observations by the X-ray polarimeter IXPE support the presence of turbulence, with varying conditions even in different regions of a same source. We aim at modeling such SYNCHROTRON emission, and in particular the degree of linear POLARIZATION, by using for the first time 3D RELATIVISTIC MHD turbulence simulations. Thanks to a novel accelerated version of the ECHO code, a series of 3D RELATIVISTIC MHD simulations are performed assuming a RELATIVISTICally hot plasma and various degrees of MAGNETization, mimicking different conditions encountered in SYNCHROTRON sources. Magnetic fluctuations at random directions with respect to a background field are initialized at large scales. After the turbulent cascade is fully developed, the statistical properties of the plasma and of the synthetic SYNCHROTRON emission maps are analyzed. Turbulence rapidly relaxes to a sort of Alfvénic equilibrium and a Kolmogorov cascade with slope -5/3 soon develops, with differences depending on the initial ratio $η$ of MAGNETic fluctuations over the background field. Dissipation mostly occurs in thin current sheets, where (numerical) RECONNECTion takes place, intermittency and deviation from isotropic Gaussian distributions are observed. Synthetic SYNCHROTRON maps and their statistical properties depend on $η$ too, approaching analytical estimates for large $η$. The integrated degree of linear POLARIZATION is found to cover the whole range of observed values in PWNe, and its dependence on the relative amplitude of turbulent fluctuations shows a good agreement with analytical estimates, even in the presence of anisotropy.

[abstract 4 / 26] Wow! (score: 8)
arXiv:2508.20721 [pdf, ps, other]
Title: Upper Limits on the Isotropic Gravitational-Wave Background from the first part of LIGO, Virgo, and KAGRA's fourth Observing Run
Authors: The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, A. G. Abac, I. Abouelfettouh, F. Acernese, K. Ackley, C. Adamcewicz, S. Adhicary, D. Adhikari, N. Adhikari, R. X. Adhikari, V. K. Adkins, S. Afroz, A. Agapito, D. Agarwal, M. Agathos, N. Aggarwal, S. Aggarwal, O. D. Aguiar, I. -L. Ahrend, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, W. Ali, S. Al-Kershi, C. Alléné, A. Allocca, S. Al-Shammari, P. A. Altin, S. Alvarez-Lopez, W. Amar, O. Amarasinghe, A. Amato, F. Amicucci, C. Amra, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Andia, M. Ando, M. Andrés-Carcasona, T. Andrić, J. Anglin, S. Ansoldi, J. M. Antelis, S. Antier, M. Aoumi, E. Z. Appavuravther, S. Appert, S. K. Apple, K. Arai, A. Araya, M. C. Araya, M. Arca Sedda, J. S. Areeda, N. Aritomi, F. Armato, S. Armstrong, N. Arnaud, M. Arogeti, S. M. Aronson, G. Ashton, Y. Aso, L. Asprea, M. Assiduo, S. Assis de Souza Melo, S. M. Aston, P. Astone, F. Attadio, F. Aubin, K. AultONeal, G. Avallone, E. A. Avila, S. Babak, C. Badger, S. Bae, S. Bagnasco, L. Baiotti, R. Bajpai, T. Baka, A. M. Baker, K. A. Baker, T. Baker, G. Baldi, N. Baldicchi, M. Ball, G. Ballardin, S. W. Ballmer, S. Banagiri, B. Banerjee, D. Bankar, T. M. Baptiste, P. Baral, M. Baratti, J. C. Barayoga, B. C. Barish, D. Barker, N. Barman, P. Barneo, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, A. M. Bartoletti, M. A. Barton, I. Bartos, A. Basalaev, R. Bassiri, A. Basti, M. Bawaj, P. Baxi, J. C. Bayley, A. C. Baylor, P. A. Baynard, M. Bazzan, V. M. Bedakihale, F. Beirnaert, M. Bejger, D. Belardinelli, A. S. Bell, D. S. Bellie, L. Bellizzi, W. Benoit, I. Bentara, J. D. Bentley, M. Ben Yaala, S. Bera, F. Bergamin, B. K. Berger, S. Bernuzzi, M. Beroiz, D. Bersanetti, T. Bertheas, A. Bertolini, J. Betzwieser, D. Beveridge, G. Bevilacqua, N. Bevins, R. Bhandare, R. Bhatt, D. Bhattacharjee, S. Bhattacharyya, S. Bhaumik, V. Biancalana, A. Bianchi, I. A. Bilenko, G. Billingsley, A. Binetti, S. Bini, C. Binu, S. Biot, O. Birnholtz, S. Biscoveanu, A. Bisht, M. Bitossi, M. -A. Bizouard, S. Blaber, J. K. Blackburn, L. A. Blagg, C. D. Blair, D. G. Blair, N. Bode, N. Boettner, G. Boileau, M. Boldrini, G. N. Bolingbroke, A. Bolliand, L. D. Bonavena, R. Bondarescu, F. Bondu, E. Bonilla, M. S. Bonilla, A. Bonino, R. Bonnand, A. Borchers, S. Borhanian, V. Boschi, S. Bose, V. Bossilkov, Y. Bothra, A. Boudon, L. Bourg, G. Bouyer, M. Boyle, A. Bozzi, C. Bradaschia, P. R. Brady, A. Branch, M. Branchesi, I. Braun, T. Briant, A. Brillet, M. Brinkmann, P. Brockill, E. Brockmueller, A. F. Brooks, B. C. Brown, D. D. Brown, M. L. Brozzetti, S. Brunett, G. Bruno, R. Bruntz, J. Bryant, Y. Bu, F. Bucci, J. Buchanan, O. Bulashenko, T. Bulik, H. J. Bulten, A. Buonanno, K. Burtnyk, R. Buscicchio, D. Buskulic, C. Buy, R. L. Byer, G. S. Cabourn Davies, R. Cabrita, V. Cáceres-Barbosa, L. Cadonati, G. Cagnoli, C. Cahillane, A. Calafat, T. A. Callister, E. Calloni, S. R. Callos, G. Caneva Santoro, K. C. Cannon, H. Cao, L. A. Capistran, E. Capocasa, E. Capote, G. Capurri, G. Carapella, F. Carbognani, M. Carlassara, J. B. Carlin, T. K. Carlson, M. F. Carney, M. Carpinelli, G. Carrillo, J. J. Carter, G. Carullo, A. Casallas-Lagos, J. Casanueva Diaz, C. Casentini, S. Y. Castro-Lucas, S. Caudill, M. Cavaglià, R. Cavalieri, A. Ceja, G. Cella, P. Cerdá-Durán, E. Cesarini, N. Chabbra, W. Chaibi, A. Chakraborty, P. Chakraborty, S. Chakraborty, S. Chalathadka Subrahmanya, J. C. L. Chan, M. Chan, K. Chang, S. Chao, P. Charlton, E. Chassande-Mottin, C. Chatterjee, Debarati Chatterjee, Deep Chatterjee, M. Chaturvedi, S. Chaty, K. Chatziioannou, A. Chen, A. H. -Y. Chen, D. Chen, H. Chen, H. Y. Chen, S. Chen, Yanbei Chen, Yitian Chen, H. P. Cheng, P. Chessa, H. T. Cheung, S. Y. Cheung, F. Chiadini, G. Chiarini, A. Chiba, A. Chincarini, M. L. Chiofalo, A. Chiummo, C. Chou, S. Choudhary, N. Christensen, S. S. Y. Chua, G. Ciani, P. Ciecielag, M. Cieślar, M. Cifaldi, B. Cirok, F. Clara, J. A. Clark, T. A. Clarke, P. Clearwater, S. Clesse, F. Cleva, E. Coccia, E. Codazzo, P. -F. Cohadon, S. Colace, E. Colangeli, M. Colleoni, C. G. Collette, J. Collins, S. Colloms, A. Colombo, C. M. Compton, G. Connolly, L. Conti, T. R. Corbitt, I. Cordero-Carrión, S. Corezzi, N. J. Cornish, I. Coronado, A. Corsi, R. Cottingham, M. W. Coughlin, A. Couineaux, P. Couvares, D. M. Coward, R. Coyne, A. Cozzumbo, J. D. E. Creighton, T. D. Creighton, P. Cremonese, S. Crook, R. Crouch, J. Csizmazia, J. R. Cudell, T. J. Cullen, A. Cumming, E. Cuoco, M. Cusinato, L. V. Da Conceição, T. Dal Canton, S. Dal Pra, G. Dálya, B. D'Angelo, S. Danilishin, S. D'Antonio, K. Danzmann, K. E. Darroch, L. P. Dartez, R. Das, A. Dasgupta, V. Dattilo, A. Daumas, N. Davari, I. Dave, A. Davenport, M. Davier, T. F. Davies, D. Davis, L. Davis, M. C. Davis, P. Davis, E. J. Daw, M. Dax, J. De Bolle, M. Deenadayalan, J. Degallaix, M. De Laurentis, F. De Lillo, S. Della Torre, W. Del Pozzo, A. Demagny, F. De Marco, G. Demasi, F. De Matteis, N. Demos, T. Dent, A. Depasse, N. DePergola, R. De Pietri, R. De Rosa, C. De Rossi, M. Desai, R. DeSalvo, A. DeSimone, R. De Simone, A. Dhani, R. Diab, M. C. Díaz, M. Di Cesare, G. Dideron, T. Dietrich, L. Di Fiore, C. Di Fronzo, M. Di Giovanni, T. Di Girolamo, D. Diksha, J. Ding, S. Di Pace, I. Di Palma, D. Di Piero, F. Di Renzo, Divyajyoti, A. Dmitriev, J. P. Docherty, Z. Doctor, N. Doerksen, E. Dohmen, A. Doke, A. Domiciano De Souza, L. D'Onofrio, F. Donovan, K. L. Dooley, T. Dooney, S. Doravari, O. Dorosh, W. J. D. Doyle, M. Drago, J. C. Driggers, L. Dunn, U. Dupletsa, D. D'Urso, P. Dutta Roy, H. Duval, S. E. Dwyer, C. Eassa, M. Ebersold, T. Eckhardt, G. Eddolls, A. Effler, J. Eichholz, H. Einsle, M. Eisenmann, M. Emma, K. Endo, R. Enficiaud, L. Errico, R. Espinosa, M. C. Espitia, M. Esposito, R. C. Essick, H. Estellés, T. Etzel, M. Evans, T. Evstafyeva, B. E. Ewing, J. M. Ezquiaga, F. Fabrizi, V. Fafone, S. Fairhurst, A. M. Farah, B. Farr, W. M. Farr, G. Favaro, M. Favata, M. Fays, M. Fazio, J. Feicht, M. M. Fejer, R. Felicetti, E. Fenyvesi, J. Fernandes, T. Fernandes, D. Fernando, S. Ferraiuolo, T. A. Ferreira, F. Fidecaro, P. Figura, A. Fiori, I. Fiori, M. Fishbach, R. P. Fisher, R. Fittipaldi, V. Fiumara, R. Flaminio, S. M. Fleischer, L. S. Fleming, E. Floden, H. Fong, J. A. Font, F. Fontinele-Nunes, C. Foo, B. Fornal, K. Franceschetti, F. Frappez, S. Frasca, F. Frasconi, J. P. Freed, Z. Frei, A. Freise, O. Freitas, R. Frey, W. Frischhertz, P. Fritschel, V. V. Frolov, G. G. Fronzé, M. Fuentes-Garcia, S. Fujii, T. Fujimori, P. Fulda, M. Fyffe, B. Gadre, J. R. Gair, S. Galaudage, V. Galdi, R. Gamba, A. Gamboa, S. Gamoji, D. Ganapathy, A. Ganguly, B. Garaventa, J. García-Bellido, C. García-Quirós, J. W. Gardner, K. A. Gardner, S. Garg, J. Gargiulo, X. Garrido, A. Garron, F. Garufi, P. A. Garver, C. Gasbarra, B. Gateley, F. Gautier, V. Gayathri, T. Gayer, G. Gemme, A. Gennai, V. Gennari, J. George, R. George, O. Gerberding, L. Gergely, Archisman Ghosh, Sayantan Ghosh, Shaon Ghosh, Shrobana Ghosh, Suprovo Ghosh, Tathagata Ghosh, J. A. Giaime, K. D. Giardina, D. R. Gibson, C. Gier, S. Gkaitatzis, J. Glanzer, F. Glotin, J. Godfrey, R. V. Godley, P. Godwin, A. S. Goettel, E. Goetz, J. Golomb, S. Gomez Lopez, B. Goncharov, G. González, P. Goodarzi, S. Goode, A. W. Goodwin-Jones, M. Gosselin, R. Gouaty, D. W. Gould, K. Govorkova, A. Grado, V. Graham, A. E. Granados, M. Granata, V. Granata, S. Gras, P. Grassia, J. Graves, C. Gray, R. Gray, G. Greco, A. C. Green, L. Green, S. M. Green, S. R. Green, C. Greenberg, A. M. Gretarsson, H. K. Griffin, D. Griffith, H. L. Griggs, G. Grignani, C. Grimaud, H. Grote, S. Grunewald, D. Guerra, D. Guetta, G. M. Guidi, A. R. Guimaraes, H. K. Gulati, F. Gulminelli, H. Guo, W. Guo, Y. Guo, Anuradha Gupta, I. Gupta, N. C. Gupta, S. K. Gupta, V. Gupta, N. Gupte, J. Gurs, N. Gutierrez, N. Guttman, F. Guzman, D. Haba, M. Haberland, S. Haino, E. D. Hall, E. Z. Hamilton, G. Hammond, M. Haney, J. Hanks, C. Hanna, M. D. Hannam, O. A. Hannuksela, A. G. Hanselman, H. Hansen, J. Hanson, S. Hanumasagar, R. Harada, A. R. Hardison, S. Harikumar, K. Haris, I. Harley-Trochimczyk, T. Harmark, J. Harms, G. M. Harry, I. W. Harry, J. Hart, B. Haskell, C. J. Haster, K. Haughian, H. Hayakawa, K. Hayama, M. C. Heintze, J. Heinze, J. Heinzel, H. Heitmann, F. Hellman, A. F. Helmling-Cornell, G. Hemming, O. Henderson-Sapir, M. Hendry, I. S. Heng, M. H. Hennig, C. Henshaw, M. Heurs, A. L. Hewitt, J. Heynen, J. Heyns, S. Higginbotham, S. Hild, S. Hill, Y. Himemoto, N. Hirata, C. Hirose, D. Hofman, B. E. Hogan, N. A. Holland, I. J. Hollows, D. E. Holz, L. Honet, D. J. Horton-Bailey, J. Hough, S. Hourihane, N. T. Howard, E. J. Howell, C. G. Hoy, C. A. Hrishikesh, P. Hsi, H. -F. Hsieh, H. -Y. Hsieh, C. Hsiung, S. -H. Hsu, W. -F. Hsu, Q. Hu, H. Y. Huang, Y. Huang, Y. T. Huang, A. D. Huddart, B. Hughey, V. Hui, S. Husa, R. Huxford, L. Iampieri, G. A. Iandolo, M. Ianni, G. Iannone, J. Iascau, K. Ide, R. Iden, A. Ierardi, S. Ikeda, H. Imafuku, Y. Inoue, G. Iorio, P. Iosif, M. H. Iqbal, J. Irwin, R. Ishikawa, M. Isi, K. S. Isleif, Y. Itoh, M. Iwaya, B. R. Iyer, C. Jacquet, P. -E. Jacquet, T. Jacquot, S. J. Jadhav, S. P. Jadhav, M. Jain, T. Jain, A. L. James, K. Jani, J. Janquart, K. Janssens, N. N. Janthalur, S. Jaraba, P. Jaranowski, R. Jaume, W. Javed, A. Jennings, M. Jensen, W. Jia, J. Jiang, H. -B. Jin, G. R. Johns, N. A. Johnson, M. C. Johnston, R. Johnston, N. Johny, D. H. Jones, D. I. Jones, R. Jones, H. E. Jose, P. Joshi, S. K. Joshi, G. Joubert, J. Ju, L. Ju, K. Jung, J. Junker, V. Juste, H. B. Kabagoz, T. Kajita, I. Kaku, V. Kalogera, M. Kalomenopoulos, M. Kamiizumi, N. Kanda, S. Kandhasamy, G. Kang, N. C. Kannachel, J. B. Kanner, S. A. KantiMahanty, S. J. Kapadia, D. P. Kapasi, M. Karthikeyan, M. Kasprzack, H. Kato, T. Kato, E. Katsavounidis, W. Katzman, R. Kaushik, K. Kawabe, R. Kawamoto, D. Keitel, L. J. Kemperman, J. Kennington, F. A. Kerkow, R. Kesharwani, J. S. Key, R. Khadela, S. Khadka, S. S. Khadkikar, F. Y. Khalili, F. Khan, T. Khanam, M. Khursheed, N. M. Khusid, W. Kiendrebeogo, N. Kijbunchoo, C. Kim, J. C. Kim, K. Kim, M. H. Kim, S. Kim, Y. -M. Kim, C. Kimball, K. Kimes, M. Kinnear, J. S. Kissel, S. Klimenko, A. M. Knee, E. J. Knox, N. Knust, K. Kobayashi, S. M. Koehlenbeck, G. Koekoek, K. Kohri, K. Kokeyama, S. Koley, P. Kolitsidou, A. E. Koloniari, K. Komori, A. K. H. Kong, A. Kontos, L. M. Koponen, M. Korobko, X. Kou, A. Koushik, N. Kouvatsos, M. Kovalam, T. Koyama, D. B. Kozak, S. L. Kranzhoff, V. Kringel, N. V. Krishnendu, S. Kroker, A. Królak, K. Kruska, J. Kubisz, G. Kuehn, S. Kulkarni, A. Kulur Ramamohan, Achal Kumar, Anil Kumar, Praveen Kumar, Prayush Kumar, Rahul Kumar, Rakesh Kumar, J. Kume, K. Kuns, N. Kuntimaddi, S. Kuroyanagi, S. Kuwahara, K. Kwak, K. Kwan, S. Kwon, G. Lacaille, D. Laghi, A. H. Laity, E. Lalande, M. Lalleman, P. C. Lalremruati, M. Landry, B. B. Lane, R. N. Lang, J. Lange, R. Langgin, B. Lantz, I. La Rosa, J. Larsen, A. Lartaux-Vollard, P. D. Lasky, J. Lawrence, M. Laxen, C. Lazarte, A. Lazzarini, C. Lazzaro, P. Leaci, L. Leali, Y. K. Lecoeuche, H. M. Lee, H. W. Lee, J. Lee, K. Lee, R. -K. Lee, R. Lee, Sungho Lee, Sunjae Lee, Y. Lee, I. N. Legred, J. Lehmann, L. Lehner, M. Le Jean, A. Lemaître, M. Lenti, M. Leonardi, M. Lequime, N. Leroy, M. Lesovsky, N. Letendre, M. Lethuillier, Y. Levin, K. Leyde, A. K. Y. Li, K. L. Li, T. G. F. Li, X. Li, Y. Li, Z. Li, A. Lihos, E. T. Lin, F. Lin, L. C. -C. Lin, Y. -C. Lin, C. Lindsay, S. D. Linker, A. Liu, G. C. Liu, Jian Liu, F. Llamas Villarreal, J. Llobera-Querol, R. K. L. Lo, J. -P. Locquet, S. C. G. Loggins, M. R. Loizou, L. T. London, A. Longo, D. Lopez, M. Lopez Portilla, M. Lorenzini, A. Lorenzo-Medina, V. Loriette, M. Lormand, G. Losurdo, E. Lotti, T. P. Lott, J. D. Lough, H. A. Loughlin, C. O. Lousto, N. Low, N. Lu, L. Lucchesi, H. Lück, D. Lumaca, A. P. Lundgren, A. W. Lussier, R. Macas, M. MacInnis, D. M. Macleod, I. A. O. MacMillan, A. Macquet, K. Maeda, S. Maenaut, S. S. Magare, R. M. Magee, E. Maggio, R. Maggiore, M. Magnozzi, M. Mahesh, M. Maini, S. Majhi, E. Majorana, C. N. Makarem, D. Malakar, J. A. Malaquias-Reis, U. Mali, S. Maliakal, A. Malik, L. Mallick, A. -K. Malz, N. Man, M. Mancarella, V. Mandic, V. Mangano, B. Mannix, G. L. Mansell, M. Manske, M. Mantovani, M. Mapelli, C. Marinelli, F. Marion, A. S. Markosyan, A. Markowitz, E. Maros, S. Marsat, F. Martelli, I. W. Martin, R. M. Martin, B. B. Martinez, D. A. Martinez, M. Martinez, V. Martinez, A. Martini, J. C. Martins, D. V. Martynov, E. J. Marx, L. Massaro, A. Masserot, M. Masso-Reid, S. Mastrogiovanni, T. Matcovich, M. Matiushechkina, N. Mavalvala, N. Maxwell, G. McCarrol, R. McCarthy, D. E. McClelland, S. McCormick, L. McCuller, S. McEachin, C. McElhenny, G. I. McGhee, J. McGinn, K. B. M. McGowan, J. McIver, A. McLeod, I. McMahon, T. McRae, R. McTeague, D. Meacher, B. N. Meagher, R. Mechum, Q. Meijer, A. Melatos, C. S. Menoni, F. Mera, R. A. Mercer, L. Mereni, K. Merfeld, E. L. Merilh, J. R. Mérou, J. D. Merritt, M. Merzougui, C. Messick, B. Mestichelli, M. Meyer-Conde, P. M. Meyers, F. Meylahn, A. Mhaske, A. Miani, H. Miao, C. Michel, Y. Michimura, H. Middleton, D. P. Mihaylov, S. J. Miller, M. Millhouse, E. Milotti, V. Milotti, Y. Minenkov, E. M. Minihan, Ll. M. Mir, L. Mirasola, M. Miravet-Tenés, C. -A. Miritescu, A. Mishra, C. Mishra, T. Mishra, A. L. Mitchell, J. G. Mitchell, S. Mitra, V. P. Mitrofanov, K. Mitsuhashi, R. Mittleman, O. Miyakawa, S. Miyoki, A. Miyoko, G. Mo, L. Mobilia, S. R. P. Mohapatra, S. R. Mohite, M. Molina-Ruiz, M. Mondin, J. K. Monsalve, M. Montani, C. J. Moore, D. Moraru, A. More, S. More, C. Moreno, E. A. Moreno, G. Moreno, A. Moreso Serra, S. Morisaki, Y. Moriwaki, G. Morras, A. Moscatello, M. Mould, B. Mours, C. M. Mow-Lowry, L. Muccillo, F. Muciaccia, D. Mukherjee, Samanwaya Mukherjee, Soma Mukherjee, Subroto Mukherjee, Suvodip Mukherjee, N. Mukund, A. Mullavey, H. Mullock, J. Mundi, C. L. Mungioli, M. Murakoshi, P. G. Murray, D. Nabari, S. L. Nadji, A. Nagar, N. Nagarajan, K. Nakagaki, K. Nakamura, H. Nakano, M. Nakano, D. Nanadoumgar-Lacroze, D. Nandi, V. Napolano, P. Narayan, I. Nardecchia, T. Narikawa, H. Narola, L. Naticchioni, R. K. Nayak, L. Negri, A. Nela, C. Nelle, A. Nelson, T. J. N. Nelson, M. Nery, A. Neunzert, S. Ng, L. Nguyen Quynh, S. A. Nichols, A. B. Nielsen, Y. Nishino, A. Nishizawa, S. Nissanke, W. Niu, F. Nocera, J. Noller, M. Norman, C. North, J. Novak, R. Nowicki, J. F. Nuño Siles, L. K. Nuttall, K. Obayashi, J. Oberling, J. O'Dell, E. Oelker, M. Oertel, G. Oganesyan, T. O'Hanlon, M. Ohashi, F. Ohme, R. Oliveri, R. Omer, B. O'Neal, M. Onishi, K. Oohara, B. O'Reilly, M. Orselli, R. O'Shaughnessy, S. O'Shea, S. Oshino, C. Osthelder, I. Ota, D. J. Ottaway, A. Ouzriat, H. Overmier, B. J. Owen, R. Ozaki, A. E. Pace, R. Pagano, M. A. Page, A. Pai, L. Paiella, A. Pal, S. Pal, M. A. Palaia, M. Pálfi, P. P. Palma, C. Palomba, P. Palud, H. Pan, J. Pan, K. C. Pan, P. K. Panda, Shiksha Pandey, Swadha Pandey, P. T. H. Pang, F. Pannarale, K. A. Pannone, B. C. Pant, F. H. Panther, M. Panzeri, F. Paoletti, A. Paolone, A. Papadopoulos, E. E. Papalexakis, L. Papalini, G. Papigkiotis, A. Paquis, A. Parisi, B. -J. Park, J. Park, W. Parker, G. Pascale, D. Pascucci, A. Pasqualetti, R. Passaquieti, L. Passenger, D. Passuello, O. Patane, A. V. Patel, D. Pathak, A. Patra, B. Patricelli, B. G. Patterson, K. Paul, S. Paul, E. Payne, T. Pearce, M. Pedraza, A. Pele, F. E. Peña Arellano, X. Peng, Y. Peng, S. Penn, M. D. Penuliar, A. Perego, Z. Pereira, C. Périgois, G. Perna, A. Perreca, J. Perret, S. Perriès, J. W. Perry, D. Pesios, S. Peters, S. Petracca, C. Petrillo, H. P. Pfeiffer, H. Pham, K. A. Pham, K. S. Phukon, H. Phurailatpam, M. Piarulli, L. Piccari, O. J. Piccinni, M. Pichot, M. Piendibene, F. Piergiovanni, L. Pierini, G. Pierra, V. Pierro, M. Pietrzak, M. Pillas, F. Pilo, L. Pinard, I. M. Pinto, M. Pinto, B. J. Piotrzkowski, M. Pirello, M. D. Pitkin, A. Placidi, E. Placidi, M. L. Planas, W. Plastino, C. Plunkett, R. Poggiani, E. Polini, J. Pomper, L. Pompili, J. Poon, E. Porcelli, E. K. Porter, C. Posnansky, R. Poulton, J. Powell, G. S. Prabhu, M. Pracchia, B. K. Pradhan, T. Pradier, A. K. Prajapati, K. Prasai, R. Prasanna, P. Prasia, G. Pratten, G. Principe, G. A. Prodi, P. Prosperi, P. Prosposito, A. C. Providence, A. Puecher, J. Pullin, P. Puppo, M. Pürrer, H. Qi, J. Qin, G. Quéméner, V. Quetschke, L. H. Quiceno, P. J. Quinonez, N. Qutob, R. Rading, I. Rainho, S. Raja, C. Rajan, B. Rajbhandari, K. E. Ramirez, F. A. Ramis Vidal, M. Ramos Arevalo, A. Ramos-Buades, S. Ranjan, K. Ransom, P. Rapagnani, B. Ratto, A. Ravichandran, A. Ray, V. Raymond, M. Razzano, J. Read, T. Regimbau, S. Reid, C. Reissel, D. H. Reitze, A. I. Renzini, A. Renzini, B. Revenu, A. Revilla Peña, R. Reyes, L. Ricca, F. Ricci, M. Ricci, A. Ricciardone, J. Rice, J. W. Richardson, M. L. Richardson, A. Rijal, K. Riles, H. K. Riley, S. Rinaldi, J. Rittmeyer, C. Robertson, F. Robinet, M. Robinson, A. Rocchi, L. Rolland, J. G. Rollins, A. E. Romano, J. D. Romano, R. Romano, A. Romero, I. M. Romero-Shaw, J. H. Romie, S. Ronchini, T. J. Roocke, L. Rosa, T. J. Rosauer, C. A. Rose, D. Rosińska, M. P. Ross, M. Rossello-Sastre, S. Rowan, S. K. Roy, S. Roy, D. Rozza, P. Ruggi, N. Ruhama, E. Ruiz Morales, K. Ruiz-Rocha, S. Sachdev, T. Sadecki, P. Saffarieh, S. Safi-Harb, M. R. Sah, S. Saha, T. Sainrat, S. Sajith Menon, K. Sakai, Y. Sakai, M. Sakellariadou, S. Sakon, O. S. Salafia, F. Salces-Carcoba, L. Salconi, M. Saleem, F. Salemi, M. Sallé, S. U. Salunkhe, S. Salvador, A. Salvarese, A. Samajdar, A. Sanchez, E. J. Sanchez, L. E. Sanchez, N. Sanchis-Gual, J. R. Sanders, E. M. Sänger, F. Santoliquido, F. Sarandrea, T. R. Saravanan, N. Sarin, P. Sarkar, A. Sasli, P. Sassi, B. Sassolas, B. S. Sathyaprakash, R. Sato, S. Sato, Yukino Sato, Yu Sato, O. Sauter, R. L. Savage, T. Sawada, H. L. Sawant, S. Sayah, V. Scacco, D. Schaetzl, M. Scheel, A. Schiebelbein, M. G. Schiworski, P. Schmidt, S. Schmidt, R. Schnabel, M. Schneewind, R. M. S. Schofield, K. Schouteden, B. W. Schulte, B. F. Schutz, E. Schwartz, M. Scialpi, J. Scott, S. M. Scott, R. M. Sedas, T. C. Seetharamu, M. Seglar-Arroyo, Y. Sekiguchi, D. Sellers, N. Sembo, A. S. Sengupta, E. G. Seo, J. W. Seo, V. Sequino, M. Serra, A. Sevrin, T. Shaffer, U. S. Shah, M. A. Shaikh, L. Shao, A. K. Sharma, Preeti Sharma, Prianka Sharma, Ritwik Sharma, S. Sharma Chaudhary, P. Shawhan, N. S. Shcheblanov, E. Sheridan, Z. -H. Shi, M. Shikauchi, R. Shimomura, H. Shinkai, S. Shirke, D. H. Shoemaker, D. M. Shoemaker, R. W. Short, S. ShyamSundar, A. Sider, H. Siegel, D. Sigg, L. Silenzi, L. Silvestri, M. Simmonds, L. P. Singer, Amitesh Singh, Anika Singh, D. Singh, N. Singh, S. Singh, A. M. Sintes, V. Sipala, V. Skliris, B. J. J. Slagmolen, D. A. Slater, T. J. Slaven-Blair, J. Smetana, J. R. Smith, L. Smith, R. J. E. Smith, W. J. Smith, S. Soares de Albuquerque Filho, M. Soares-Santos, K. Somiya, I. Song, S. Soni, V. Sordini, F. Sorrentino, H. Sotani, F. Spada, V. Spagnuolo, A. P. Spencer, P. Spinicelli, A. K. Srivastava, F. Stachurski, C. J. Stark, D. A. Steer, N. Steinle, J. Steinlechner, S. Steinlechner, N. Stergioulas, P. Stevens, M. StPierre, M. D. Strong, A. Strunk, A. L. Stuver, M. Suchenek, S. Sudhagar, Y. Sudo, N. Sueltmann, L. Suleiman, K. D. Sullivan, J. Sun, L. Sun, S. Sunil, J. Suresh, B. J. Sutton, P. J. Sutton, K. Suzuki, M. Suzuki, B. L. Swinkels, A. Syx, M. J. Szczepańczyk, P. Szewczyk, M. Tacca, H. Tagoshi, K. Takada, H. Takahashi, R. Takahashi, A. Takamori, S. Takano, H. Takeda, K. Takeshita, I. Takimoto Schmiegelow, M. Takou-Ayaoh, C. Talbot, M. Tamaki, N. Tamanini, D. Tanabe, K. Tanaka, S. J. Tanaka, S. Tanioka, D. B. Tanner, W. Tanner, L. Tao, R. D. Tapia, E. N. Tapia San Martín, C. Taranto, A. Taruya, J. D. Tasson, J. G. Tau, D. Tellez, R. Tenorio, H. Themann, A. Theodoropoulos, M. P. Thirugnanasambandam, L. M. Thomas, M. Thomas, P. Thomas, J. E. Thompson, S. R. Thondapu, K. A. Thorne, E. Thrane, J. Tissino, A. Tiwari, Pawan Tiwari, Praveer Tiwari, S. Tiwari, V. Tiwari, M. R. Todd, M. Toffano, A. M. Toivonen, K. Toland, A. E. Tolley, T. Tomaru, V. Tommasini, T. Tomura, H. Tong, C. Tong-Yu, A. Torres-Forné, C. I. Torrie, I. Tosta e Melo, E. Tournefier, M. Trad Nery, K. Tran, A. Trapananti, R. Travaglini, F. Travasso, G. Traylor, M. Trevor, M. C. Tringali, A. Tripathee, G. Troian, A. Trovato, L. Trozzo, R. J. Trudeau, T. Tsang, S. Tsuchida, L. Tsukada, K. Turbang, M. Turconi, C. Turski, H. Ubach, N. Uchikata, T. Uchiyama, R. P. Udall, T. Uehara, K. Ueno, V. Undheim, L. E. Uronen, T. Ushiba, M. Vacatello, H. Vahlbruch, N. Vaidya, G. Vajente, A. Vajpeyi, J. Valencia, M. Valentini, S. A. Vallejo-Peña, S. Vallero, V. Valsan, M. van Dael, E. Van den Bossche, J. F. J. van den Brand, C. Van Den Broeck, M. van der Sluys, A. Van de Walle, J. van Dongen, K. Vandra, M. VanDyke, H. van Haevermaet, J. V. van Heijningen, P. Van Hove, J. Vanier, M. VanKeuren, J. Vanosky, N. van Remortel, M. Vardaro, A. F. Vargas, V. Varma, A. N. Vazquez, A. Vecchio, G. Vedovato, J. Veitch, P. J. Veitch, S. Venikoudis, R. C. Venterea, P. Verdier, M. Vereecken, D. Verkindt, B. Verma, Y. Verma, S. M. Vermeulen, F. Vetrano, A. Veutro, A. Viceré, S. Vidyant, A. D. Viets, A. Vijaykumar, A. Vilkha, N. Villanueva Espinosa, V. Villa-Ortega, E. T. Vincent, J. -Y. Vinet, S. Viret, S. Vitale, H. Vocca, D. Voigt, E. R. G. von Reis, J. S. A. von Wrangel, W. E. Vossius, L. Vujeva, S. P. Vyatchanin, J. Wack, L. E. Wade, M. Wade, K. J. Wagner, L. Wallace, E. J. Wang, H. Wang, J. Z. Wang, W. H. Wang, Y. F. Wang, G. Waratkar, J. Warner, M. Was, T. Washimi, N. Y. Washington, D. Watarai, B. Weaver, S. A. Webster, N. L. Weickhardt, M. Weinert, A. J. Weinstein, R. Weiss, L. Wen, K. Wette, J. T. Whelan, B. F. Whiting, C. Whittle, E. G. Wickens, D. Wilken, A. T. Wilkin, B. M. Williams, D. Williams, M. J. Williams, N. S. Williams, J. L. Willis, B. Willke, M. Wils, L. Wilson, C. W. Winborn, J. Winterflood, C. C. Wipf, G. Woan, J. Woehler, N. E. Wolfe, H. T. Wong, I. C. F. Wong, K. Wong, T. Wouters, J. L. Wright, M. Wright, B. Wu, C. Wu, D. S. Wu, H. Wu, K. Wu, Q. Wu, T. Y. Wu, Y. Wu, Z. Wu, E. Wuchner, D. M. Wysocki, V. A. Xu, Y. Xu, N. Yadav, H. Yamamoto, K. Yamamoto, T. S. Yamamoto, T. Yamamoto, R. Yamazaki, T. Yan, K. Z. Yang, Y. Yang, Z. Yarbrough, J. Yebana, S. -W. Yeh, A. B. Yelikar, X. Yin, J. Yokoyama, T. Yokozawa, S. Yuan, H. Yuzurihara, M. Zanolin, M. Zeeshan, T. Zelenova, J. -P. Zendri, M. Zeoli, M. Zerrad, M. Zevin, L. Zhang, N. Zhang, R. Zhang, T. Zhang, C. Zhao, Yue Zhao, Yuhang Zhao, Z. -C. Zhao, Y. Zheng, H. Zhong, H. Zhou, H. O. Zhu, Z. -H. Zhu, A. B. Zimmerman, L. Zimmermann, M. E. Zucker, J. Zweizig,
Comments: 31 pages, 7 figures
Subjects: gr-qc astro-ph.CO astro-ph.HE
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

We present results from the search for an isotropic gravitational-wave background using Advanced LIGO and Advanced Virgo data from O1 through O4a, the first part of the fourth observing run. This background is the accumulated signal from unresolved sources throughout cosmic history and encodes information about the merger history of compact binaries throughout the Universe, as well as exotic physics and potentially primordial processes from the early cosmos. Our cross-correlation analysis reveals no statistically significant background signal, enabling us to constrain several theoretical scenarios. For compact binary coalescences which approximately follow a 2/3 power-law spectrum, we constrain the fractional energy density to $Ω_{\rm GW}(25{\rm Hz})\leq 2.0\times 10^{-9}$ (95% cred.), a factor of 1.7 improvement over previous results. Scale-invariant backgrounds are constrained to $Ω_{\rm GW}(25{\rm Hz})\leq 2.8\times 10^{-9}$, representing a 2.1x sensitivity gain. We also place new limits on gravity theories predicting non-standard POLARIZATION modes and confirm that terrestrial MAGNETic noise sources remain below detection threshold. Combining these spectral limits with population models for GWTC-4, the latest gravitational-wave event catalog, we find our constraints remain above predicted merger backgrounds but are approaching detectability. The joint analysis combining the background limits shown here with the GWTC-4 catalog enables improved inference of the binary BLACK HOLE merger rate evolution across cosmic time. Employing GWTC-4 inference results and standard modeling choices, we estimate that the total background arising from compact binary coalescences is $Ω_{\rm CBC}(25{\rm Hz})={0.9^{+1.1}_{-0.5}\times 10^{-9}}$ at 90% confidence, where the largest contribution is due to binary BLACK HOLEs only, $Ω_{\rm BBH}(25{\rm Hz})=0.8^{+1.1}_{-0.5}\times 10^{-9}$.

[abstract 5 / 26] Yes (score: 4)
arXiv:2508.20190 [pdf, ps, other]
Title: The structure of the giant radio fossil in the Ophiuchus galaxy cluster
Authors: Simona Giacintucci, Maxim Markevitch, Tracy Clarke, Daniel R. Wik,
Comments: 30 pages, 13 figures, published in ApJ
Subjects: astro-ph.CO astro-ph.HE
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

We present high-sensitivity follow-up observations of the giant fossil radio lobe in the Ophiuchus galaxy cluster with the upgraded Giant Metrewave Radio Telescope (uGMRT) in the 125-250 MHz and 300-500 MHz frequency bands. The new data have sufficient angular resolution to exclude compact sources and enable us to trace the faint extended emission from the relic lobe to a remarkable distance of 820 kpc from the cluster center. The new images reveal intricate spatial structure within the fossil lobe, including narrow (5-10 kpc), long (70-100 kpc) radio filaments embedded within the diffuse emission at the bottom of the lobe. The filaments exhibit a very steep spectrum ($S_ν\propto ν^{-α}$ with $α\sim 3$), significantly steeper than the ambient SYNCHROTRON emission from the lobe ($α\sim 1.5-2$); they mostly disappear in recently-published MeerKAT images at 1.28 GHz. Their origin is unclear; similar features observed in some other radio lobes typically have a spectrum flatter than that of their ambient medium. These radio filaments may trace regions where the MAGNETic field has been stretched and amplified by gas circulation within the rising bubble. The spectrum of the brightest region of the radio lobe exhibits a spectral break, which corresponds to a radiative cooling age of the fossil lobe of approximately 174 Myr, giving a date for this most powerful AGN explosion.

[abstract 6 / 26] Yes (score: 4)
arXiv:2508.20214 [pdf, ps, other]
Title: Mapping Gamma-Ray Bursts: Distinguishing Progenitor Systems Through Machine Learning
Authors: Sharleen N. Espinoza, Nicole M. Lloyd-Ronning, Michela Negro, Roseanne M. Cheng, Nicoló Cibrario,
Comments:
Subjects: astro-ph.HE
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

We present an analysis of GAMMA-RAY BURST (GRB) progenitor classification, through their positions on a Uniform Manifold Approximation and Projection (UMAP) plot, constructed by Negro et al. 2024, from FERMI-GBM waterfall plots. The embedding plot has a head-tail morphology, in which GRBs with confirmed progenitors (e.g. collapsars vs. binary neutron star mergers) fall in distinct regions. We investigate the positions of various proposed sub-populations of GRBs, including those with and without radio afterglow emission, those with the lowest intrinsic luminosity, and those with the longest lasting prompt gamma-ray duration. The radio-bright and radio-dark GRBs fall in the head region of the embedding plot with no distinctive clustering, although the sample size is small. Our low luminosity GRBs fall in the head/collapsar region. A continuous duration gradient reveals an interesting cluster of the longest GRBs ($T_{90} > 100s$) in a distinct region of the plot, possibly warranting further investigation.

[abstract 7 / 26] (score: 3)
arXiv:2507.05739 [pdf, ps, other]
Title: A New Search Pipeline for Short Gamma Ray Bursts in FERMI/GBM Data -- A 50% Increase in the Number of Detections
Authors: Ariel Perera, Barak Zackay, Tejaswi Venumadhav,
Comments:
Subjects: astro-ph.HE astro-ph.IM
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

In this paper, we present the development and the results of a new search pipeline for short GAMMA-RAY BURSTs (sGRBs) in the publicly available data from the Gamma-Ray Burst Monitor (GBM) on board the FERMI satellite. This pipeline uses rigorous statistical methods that are designed to maximize the information extracted from the FERMI/GBM detectors. Our approach differs substantially from existing search efforts in several aspects: The pipeline includes the construction of template banks, Poisson matched filtering, background estimation, background misestimation correction, automatic routines to filter contaminants, statistical estimation of the signal location and a quantitative estimator of the signal probability to be of a cosmological, terrestrial, or solar origin. Our analysis also includes operating the pipeline on "time-slided" copies of the data, which allows exact significance assessment and $p_{\text{astro}}$ computation, akin to the state-of-the-art gravitational waves (GW) data analysis pipelines. Depending on the spectral properties of the bursts, our pipeline achieves a signal-to-noise ratio (SNR) improvement by a factor of 2 to 15 over the onboard GBM triggering algorithm. This enhancement increases the detectable volume for sGRBs and results in an approximate 50% increase in sGRB detections in the 2014 GBM dataset. As a further consequence of the sensitivity increase, we detect hundreds of soft gamma-ray flares of galactic origin. This improved sensitivity enhances the chances of detecting fainter, off-axis GRBs that would likely fall below the standard triggering thresholds. Applying this pipeline to the full GBM archive is expected to expand further the joint sGRB-GW detection volume.

[abstract 8 / 26] (score: 3)
arXiv:2508.20156 [pdf, ps, other]
Title: Exploring the Relationship Between SWIFT Short Gamma-Ray Burst Afterglows and their Host Galaxy Properties
Authors: Cristian Castrejon, Anya E. Nugent, Wen-fai Fong, Genevieve Schroeder, Alicia Rouco Escorial, Olivia Guerra,
Comments: 35 pages, 8 figures, 4 tables, submitted to ApJ
Subjects: astro-ph.HE astro-ph.GA
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

We present a comprehensive compilation of short-duration GAMMA-RAY BURST (GRB) afterglows in the X-ray, optical, and radio bands, comprising 150 events discovered primarily by the Neil Gehrels SWIFT Observatory over 2005-2023. We pair these observations with uniformly modeled host galaxies to understand how broadband afterglow luminosities are influenced by their environmental properties. We compare the X-ray and optical afterglow luminosities at 3 hr with projected physical and host-normalized galactocentric offsets, host stellar mass, star-formation rate (SFR), specific SFR, and stellar population age. In the radio band, we explore how these environmental properties may influence afterglow detectability. We find statistical support that X-ray afterglows are brighter in galaxies with younger ages, lower masses, and higher active STAR FORMATION - trends that also scale with ISM density. While we also visualize these differences for optical afterglows, the only statistically significant trend is that they are brighter in hosts with higher SFR. We further find that X-ray (radio) afterglows are more luminous (more likely to be detected) at low projected offsets. Overall, this indicates that X-ray afterglow luminosity is the most predictable indicator of host environment among the three bands. We find the afterglow luminosities of three possible merger-driven long GRBs to be unremarkable compared to the traditional short GRB population, strengthening the case that these events arise from mergers. Finally we find that the estimated on-axis afterglow luminosity of GW170817 is in the faintest ~30%, aligning with its quiescent, old and massive host environment.

[abstract 9 / 26] (score: 3)
arXiv:2508.20220 [pdf, ps, other]
Title: Impact of rotation on MAGNETic field stability and orientation in isolated neutron stars
Authors: Fabrizio Venturi Piñas, Anson Ka Long Yip, Patrick Chi-Kit Cheong, Milton Ruiz,
Comments: 14 pages, 12 figures
Subjects: astro-ph.HE gr-qc
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

Neutron stars are the most compact horizonless objects in the Universe, exhibiting the strongest known MAGNETic fields. They are potential sources of coincident gravitational waves and electroMAGNETic radiation across the entire spectrum. However, the internal configuration of their MAGNETic fields and the mechanisms that stabilize them remain open questions. As a step forward in understanding the timescale for the emergence of MAGNETic instabilities that disrupt stellar field configurations, we study the impact of stellar rotation using three-dimensional general RELATIVISTIC numerical simulations of uniformly rotating, isolated neutron stars threaded by strong, poloidal, pulsar-like MAGNETic fields. The initial stellar configurations assume perfect conductivity and are stationary and axisymmetric. We explore a range of angular velocities, from non-rotating stars to those near the mass-shedding limit. We find that the stars spontaneously develop differential rotation, which triggers the appearance of a strong toroidal MAGNETic field component. Non-rotating neutron stars are unstable to the Tayler and Parker instabilities, which significantly change the MAGNETic field geometry. These instabilities lead to a rapid reduction of the initial MAGNETic energy by $\sim 99\%$ within $\sim 4$ Alfvén times of their onset. In contrast, rotation significantly delays the development of these instabilities and, in some cases, mitigates their effects. Highly rotating models retain up to $\sim 30\%$ of their MAGNETic energy for at least $\sim 10$ Alfvén times. Our results suggest that rotation plays a crucial role in stabilizing the MAGNETic field of neutron stars, regardless of its initial configuration.

[abstract 10 / 26] (score: 3)
arXiv:2508.20303 [pdf, ps, other]
Title: Efficient ion re-acceleration in laboratory-produced interpenetrating collisionless shocks
Authors: W. Yao, I. Cohen, P. Suarez Gerona, H. Ahmed, A. F. A. Bott, S. N. Chen, M. Cook, R. Lelièvre, P. Martin, T. Waltenspiel, P. Antici, J. Béard, M. Borghesi, D. Caprioli, A. Ciardi, E. d'Humières, M. François, L. Gremillet, A. Marcowith, M. Miceli, T. Seebaruth, S. Orlando, J. Fuchs,
Comments:
Subjects: physics.plasm-ph astro-ph.HE
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

Although the origin of COSMIC RAYs (CRs) remains an open question, collisionless MAGNETized shock waves are widely regarded as key sites for particle acceleration. Recent theories further suggest that shock-shock collisions in stellar clusters could provide the additional acceleration needed to explain the observed high-energy CR spectrum. Here, we investigate this hypothesis through a LASER-based experiment that creates MAGNETized plasma conditions similar to astrophysical environments. Our results demonstrate that interpenetrating collisionless shocks can significantly boost the energy of ambient protons previously energized by the individual shocks, while also improving the overall acceleration efficiency. Numerical kinetic simulations corroborate these findings, revealing that protons are reaccelerated via their bouncing motion in the convective electric fields of the colliding MAGNETized flows. By allowing to highly energize ambient protons, our novel colliding-shock platform opens the prospect to test the long-discussed mechanism of diffusive shock acceleration in a controlled laboratory setting.

[abstract 11 / 26] (score: 3)
arXiv:2508.20499 [pdf, ps, other]
Title: Numerical computation of electroMAGNETically sourced nonlinear tails
Authors: Zhen-Tao He, Jia Du, Jiageng Jiao, Caiying Shao, Junxi Shi, Yu Tian, Hongbao Zhang,
Comments: 20 pages, 10 figures
Subjects: gr-qc astro-ph.HE
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

Amazingly, recent studies indicate that nonlinear effects are of great significance for modelling BLACK HOLE ringdown. Transient electroMAGNETic events in the astrophysical environment are typically high-energetic, potentially responsible for some nonlinearities in ringdown. Motivated by the desire to understand these nonlinearities, we solve the inhomogeneous Bardeen-Press-Teukolsky equation numerically, and find second-order gravitational tails induced by an electroMAGNETic source. Our results suggest that the second-order tails of curvature perturbations with multipole numbers $l\geq4$ decay as $t^{-2l-2}$ at fixed spatial position and $u^{-l-3}$ in retarded-time $u$ at null infinity, slower than their linear counterparts, which can play a role in multi-messenger observations.

[abstract 12 / 26] (score: 2)
arXiv:2504.02683 [pdf, ps, other]
Title: Probing patchy reionisation with JWST: IGM opacity constraints from the Lyman-$α$ forest of galaxies in legacy extragalactic fields
Authors: Romain A. Meyer, Guido Roberts-Borsani, Pascal Oesch, Richard S. Ellis,
Comments: 10 pages + appendices. Accepted in MNRAS. Updated to match accepted version
Subjects: astro-ph.GA astro-ph.CO
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

We present the first characterization of the Gunn-Peterson trough in high-redshift galaxies using public JWST NIRSpec spectroscopy. This enables us to derive the first galaxy-based IGM opacity measurements at the end of reionisation. Using galaxy spectra has several advantages over QUASAR spectra: it enables measurements of the IGM opacity in any extragalactic field over a continuous redshift range $4\lesssim z\lesssim 7$, as well as measurements of the intrinsic Lyman-$β$ opacity. Our novel constraints are in good agreement with state-of-the-art ground-based QUASAR Lyman-$α$ forest observations, and will become competitive as the number of JWST $z>5$ galaxy spectra rapidly increases. We also provide the first constraints on the uncontaminated Lyman-$β$ opacity at $5

[abstract 13 / 26] (score: 2)
arXiv:2504.08926 [pdf, ps, other]
Title: Constraints on QCD-based equation of state of QUARK stars from neutron star maximum mass, radius, and tidal deformability observations
Authors: João V. Zastrow, Jonas P. Pereira, Rafael C. R. de Lima, Jorge E. Horvath,
Comments: 14 pages, 11 figures. Accepted for publication in PRD
Subjects: astro-ph.HE gr-qc
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

(Abridged) Neutron stars (NSs), the densest known objects composed of matter, provide a unique laboratory to probe whether strange QUARK matter is the true ground state of matter. We investigate the parameter space of the equation of state of strange stars using a quantum chromodynamics (QCD)-informed model. The parameters - related to the energy density difference between QUARK matter and the QCD vacuum, the strength of strong interactions, and the gap parameter for color superconductivity - are sampled via quasi-random Latin hypercube sampling to ensure uniform coverage. To constrain them, we incorporate observational data on the maximum mass of NSs (from binary and merger systems), the radii of $1.4$ M$_{\odot}$ NSs (from gravitational wave and electroMAGNETic observations), and tidal deformabilities (from GW170817). Our results show that QUARK strong interactions play a key role, requiring at least a $20\%$ deviation from the free-QUARK limit. We also find that color superconductivity is relevant, with the gap parameter reaching up to $\sim 230$ MeV for a strange QUARK mass of $100$ MeV. The surface-to-vacuum energy density jump lies in the range $(1.1-2.2)$ $ρ_{\rm{sat}}$, where $ρ_{\rm{sat}} \simeq 2.7 \times 10^{14}$ g cm$^{-3}$. Observational constraints also imply that a $1.4$ M$_{\odot}$ QUARK star has a radius of $(10.0-12.3)$ km and tidal deformability between $270$ and $970$. These are consistent with the low mass and radius inferred for the compact object XMMU J173203.3-344518. Our results provide useful inputs for future studies on QUARK and hybrid stars, including their tidal properties, thermal evolution, quasi-normal modes, and ellipticities.

[abstract 14 / 26] (score: 2)
arXiv:2506.03354 [pdf, ps, other]
Title: The galaxy-AGN scaling relations over 13 billion years in SHARK v2.0 (I): SMBH masses
Authors: Matías Bravo, Claudia del P. Lagos, Katy L. Proctor, Ángel Chandro-Gómez, Chris Power,
Comments: Resubmitted to ApJ, following feedback from the referee. 25 pages, 14 figures. Comments are welcome!
Subjects: astro-ph.GA
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

The presence of strong correlations between super-massive BLACK HOLE (SMBH) masses and galaxy properties like stellar mass have been well-established in the local Universe, but how these scaling relations evolve with cosmic time is yet to be settled in both observations and theoretical models. Recent works have also highlighted the role of galaxy morphology on the scatter of the SMBH-galaxy mass scaling relations, while the impact of other galaxy properties remains poorly studied, like the role of galaxy environment. We use the state-of-the-art SHARK v2.0 semi-analytic model to explore the evolution of these galaxy-SMBH scaling relations to expand the available predictions from theoretical models to contrast with existing and upcoming observations. We find the relations between SMBH masses and both total and bulge stellar mass predicted by SHARK v2.0 to be in good overall agreement with observational measurements across a wide range of redshift and stellar masses. These scaling relations show a significant evolution as a function of cosmic time in SHARK v2.0, with SMBH masses $\sim1$ dex lower at $z=0$ compared to $z=9$ at fixed stellar mass and the scatter increasing by a factor of $\sim2-5$ towards low redshift. Both relations show a strong dependence with galaxy morphology and the main source for SMBH growth (gas accretion or mergers), with weaker trends with STAR FORMATION rate, galaxy sizes, and environment. We find that galaxy morphology alone explains most of the scatter around both scaling relations, with other galaxy properties tying to the SMBH scaling relations through their correlations with morphology.

[abstract 15 / 26] (score: 2)
arXiv:2508.20155 [pdf, ps, other]
Title: FERMIonic Love of Black Holes in General Relativity
Authors: Sumanta Chakraborty, Pierre Heidmann, Paolo Pani,
Comments: 8 pages, 1 figure
Subjects: gr-qc astro-ph.HE hep-ph hep-th
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

Black holes in General Relativity exhibit a remarkable feature: their response to static scalar, electroMAGNETic, and gravitational perturbations -- as quantified by the so-called tidal Love numbers -- vanishes identically. We present the first exception to this rule: the Love numbers of a BLACK HOLE perturbed by a fermionic field are nonzero. We derive a closed-form expression of these fermionic Love numbers for generic spin in the background of a Kerr BLACK HOLE with arbitrary angular momentum. In contrast, we show that the fermionic dissipation numbers vanish for static perturbations, reflecting the absence of superradiance for fermions. These results highlight a fundamental distinction between BOSONic and fermionic perturbations, which can be interpreted as a breaking of the hidden symmetries that underlie the vanishing of Love numbers in the BOSONic sector.

[abstract 16 / 26] (score: 2)
arXiv:2508.20162 [pdf, ps, other]
Title: Prospects for EMRI/MBH parameter estimation using Quasi-Periodic Eruption timings: short-timescale analysis
Authors: Joheen Chakraborty, Lisa V. Drummond, Matteo Bonetti, Alessia Franchini, Shubham Kejriwal, Giovanni Miniutti, Riccardo Arcodia, Scott A. Hughes, Francisco Duque, Erin Kara, Alberto Sesana, Margherita Giustini, Amedeo Motta, Kevin Burdge,
Comments: Accepted for publication in The Astrophysical Journal (ApJ). Code available at https://github.com/joheenc/QPE-FIT
Subjects: astro-ph.HE gr-qc
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

Quasi-Periodic Eruptions (QPEs) are luminous, recurring X-ray outbursts from galactic nuclei, with timescales of hours to days. While their origin remains uncertain, leading models invoke accretion disk instabilities or the interaction of a massive BLACK HOLE (MBH) with a lower-mass secondary in an extreme mass ratio inspiral (EMRI). EMRI scenarios offer a robust framework for interpreting QPEs by characterizing observational signatures associated with the secondary's orbital dynamics. This, in turn, enables extraction of the MBH/EMRI physical properties and provides a means to test the EMRI scenario, distinguishing models and addressing the question: what can QPE timings teach us about massive BLACK HOLEs and EMRIs? In this study, we employ analytic expressions for Kerr geodesics to efficiently resolve the trajectory of the secondary object and perform GPU-accelerated Bayesian inference to assess the information content of QPE timings. Using our inference framework, referred to as QPE-FIT (Fast Inference with Timing), we explore QPE timing constraints on astrophysical parameters, such as EMRI orbital parameters and MBH mass/spin. We find that mild-eccentricity EMRIs ($e\sim0.1-0.3$) can constrain MBH mass and EMRI semimajor axis/eccentricity to the 10% level within tens of orbital periods, while MBH spin is unconstrained for the explored semimajor axes $\geq 100R_g$ and monitoring baselines $\mathcal{O}(10-100\rm)$ orbits. Introducing a misaligned precessing disk generally degrades inference of EMRI orbital parameters, but can constrain disk precession properties within 10-50%. This work both highlights the prospect of QPE observations as dynamical probes of galactic nuclei and outlines the challenge of doing so in the multimodal parameter space of EMRI-disk collisions.

[abstract 17 / 26] (score: 2)
arXiv:2508.20170 [pdf, ps, other]
Title: Optical Spectroscopy of the Most Compact Accreting Binary Harboring a Magnetic White Dwarf and a Hydrogen-rich Donor
Authors: Ilkham Galiullin, Antonio C. Rodriguez, Kareem El-Badry, Ilaria Caiazzo, Paula Szkody, Pranav Nagarajan, Samuel Whitebook,
Comments: 11 pages, 6 figures, 1 table. Accepted for publication in ApJ Letters
Subjects: astro-ph.SR astro-ph.HE
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

Accreting white dwarfs in close binary systems, commonly known as cataclysmic variables (CVs), with orbital periods below the canonical period minimum ($\approx$ 80 minutes) are rare. Such short periods can only be reached if the donor star in the CV is either significantly evolved before initiating mass transfer to the white dwarf (WD) or metal-poor. We present optical photometry and spectroscopy of Gaia19bxc, a high-amplitude variable identified as a polar CV with an exceptionally short orbital period of 64.42 minutes - well below the canonical CV period minimum. High-speed photometry confirms persistent double-peaked variability consistent with cyclotron beaming, thus indicating the presence of a MAGNETic WD. Phase-resolved Keck/LRIS spectroscopy reveals strong hydrogen and helium emission lines but no donor features, indicating the accretor is a MAGNETic WD and the donor is hydrogen-rich, but cold and faint. The absence of a detectable donor and the low inferred temperature ($\lesssim$ 3500 K) disfavor an evolved donor scenario. Instead, the short period and the system's halo-like kinematics suggest Gaia19bxc may be the first known metal-poor polar. Because metal-poor donors are more compact than solar-metallicity donors of the same mass, they can reach shorter minimum periods. Gaia19bxc is one of only a handful of known metal-poor CVs below the canonical period minimum and has the shortest period of any such MAGNETic system discovered to date.

[abstract 18 / 26] (score: 2)
arXiv:2508.20177 [pdf, ps, other]
Title: MEGA: Spectrophotometric SED Fitting of Little Red Dots Detected in JWST MIRI
Authors: Kaila Ronayne, Casey Papovich, Allison Kirkpatrick, Bren E. Backhaus, Fergus Cullen, Lu Shen, Micaela B. Bagley, Steven L. Finkelstein, Kurt Hamblin, Jeyhan S. Kartaltepe, Dale D. Kocevski, Anton M. Koekemoer, Erini Lambrides, Fabio Pacucci, Guang Yang,
Comments: 34 pages, 14 figures, 6 tables, submitted to ApJ
Subjects: astro-ph.GA
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

We analyze eight spectroscopically confirmed Little Red Dots (LRDs) at redshifts z = 5.1-8.7 with JWST/NIRCam, NIRSpec, and MIRI data. The LRDs have red NIRCam colors, F150W-F444W > 1, but flat NIRCam-MIRI colors, -0.5 < F444W - F770W < 0.5, suggesting weak warm/hot dust components. The LRDs have -1.0 < F1000W - F1500W < 1.1, suggestive of non-uniform rest near-IR properties within the sample. We model the spectral energy distributions (SEDs) of the LRDs using the CIGALE and Prospector codes to assess how the differing templates impact the interpretation for LRDs for cases of: (1) models with star-forming stellar populations only; (2) ACTIVE GALACTIC NUCLEi (AGN) dominated models; and (3) composite AGN and star-forming models. Using the Bayesian information criterion, we find that six of the eight LRDs favor AGN models compared to star-forming models, though no model can fully reproduce all of the observed properties. Two LRDs with pronounced Balmer-breaks and broad H$_α$ have SEDs that can be reproduced with hot, dense-gas (log T/K=5-5.7, log n/cm$^{-3}$ = 9-11) models with low dust attenuation (A(V)~ 0.5mag). However, these models require an additional thermal component (800-1400K) to account for the MIRI data, and fail to reproduce the rest-UV and narrow [OIII] emission. The total bolometric emission from the dense-gas models, and possibly CIGALE AGN models, appear consistent with literature constraints in the far-IR and radio, and require log L$_{bol}$/L$_\odot$ <12. These results suggest that our LRDs cannot be modeled entirely with standard templates, but instead require a novel treatment of gas conditions, AGN and star-formation.

[abstract 19 / 26] (score: 2)
arXiv:2508.20178 [pdf, ps, other]
Title: The orbital period and inclination of the neutron star X-ray transient MAXI J1807+132
Authors: E. A. Saavedra, T. Muñoz-Darias, M. A. P. Torres, I. V. Yanes-Rizo, M. Armas Padilla, A. Álvarez-Hernández, J. Casares, D. Mata Sánchez, S. K. Rout, S. Navarro,
Comments: Accepted in Astronomy & Astrophysics
Subjects: astro-ph.HE
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

The neutron star X-ray transient MAXI J1807+132 has undergone outbursts in 2017, 2019, and 2023. We conducted an $R$-band time series photometry campaign using the Isaac Newton Telescope during the 2022 quiescent state. We detected a periodic variation in the light curve, consistent with ellipsoidal modulation, which allowed us to determine an orbital period of $P_{\rm orb} = 4.258 \pm 0.008$ hr. By modelling the light curve, we obtained a binary inclination of $ i = 72\pm5 \, °$ and a mass ratio $q = 0.24^{+0.19}_{-0.14}$ ($68$ per cent confidence level). Furthermore, our analysis supports an early M-dwarf companion that contributes between 30 and 50 per cent to the total flux in the $R$-band. We extend the previously established absolute magnitude versus orbital period correlation for BLACK HOLE X-ray transients to neutron star systems. We applied the correlation to MAXI J1807+132, estimating its distance as $6.3 \pm 0.7$ kpc and its height above the Galactic plane to be $1.6 \pm 0.2$ kpc.

[abstract 20 / 26] (score: 2)
arXiv:2508.20198 [pdf, ps, other]
Title: Two-particle number and transverse momentum balance function with event-topology in pp collisions at $\sqrt{s}=13$ TeV
Authors: Subash Chandra Behera, Arvind Khuntia,
Comments: 15 pages, 10 figures
Subjects: hep-ex hep-ph
Created: 2025-08-27; Updated: 2025-08-29; Datestamp: 2025-08-29

The first study of charge-dependent two-particle differential number ($B$) and momentum balance functions ($P_{2}^{CD}$) with respect to an event shape variable, transverse spherocity, is reported. Results are presented from PYTHIA8 and EPOS-LHC model calculations in proton-proton (pp) collisions at $\sqrt{s} = 13$ TeV. To distinguish between back-to-back JET-like topologies and isotropic events, low and high transverse spherocity values are chosen. The correlation functions are measured as a function of averaged charged-particle multiplicity ($\langle N_{ch}\rangle$) in relative pseudorapidity ($Δη$) and relative azimuthal angle ($Δϕ$) with $|η| < 2.4$ and $0.2 < p_{T} < 2.0$ GeV. A narrowing of the balance function width is observed in $Δη$ and $Δϕ$ from low- to high-multiplicity collisions. Wider balance functions are found in isotropic events as compared to JET-like events. However, for the momentum correlations, a nearly flat dependence is observed with $\langle N_{ch}\rangle$. This study investigates charge conservation mechanisms and their correlations for events classified with JET-like and isotropic topologies. To isolate medium-driven effects, we compare EPOS-LHC with its hydrodynamic core enabled and disabled and observed narrowing patterns in $B$ and $P_{2}^{CD}$ as a quantitative handle on radial-flow-induced localization of charge-balancing pairs.

[abstract 21 / 26] (score: 2)
arXiv:2508.20419 [pdf, ps, other]
Title: The shadows and photon rings of two minimal deformations of Schwarzschild BLACK HOLEs
Authors: Hong-Er Gong, Junlin Qin, Yusen Wang, Bofeng Wu, Zhan-Feng Mai, Sen Guo, Enwei Liang,
Comments: 19 pages, 50 figures
Subjects: gr-qc
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

This paper primarily investigates the optical characteristics of two minimal Schwarzschild BLACK HOLE deformations - the Kazakov-Solodukhin and Ghosh-Kumar BLACK HOLEs - under different accretion models. The event horizon, photon sphere, and critical impact parameter of the former increase compared with the Schwarzschild BLACK HOLE, but those of the latter decrease. The data from the Event Horizon Telescope Collaboration are used to constrain the parameter ranges of the two BLACK HOLEs. In the case of spherical accretion, the quantum correction of Kazakov-Solodukhin BLACK HOLE leads to the increase of BLACK HOLE shadow size and the decrease of integrated intensity, while the shadow size of MAGNETically charged Ghosh-Kumar BLACK HOLE decreases and the integrated intensity increases. The shadow radius of the BLACK HOLE is independent of the spherical accretion models. For an optically and geometrically thin accretion disk, the integrated intensity is mainly contributed by direct emission, and the contributions of photon rings and lensed rings are very small. In addition, the photon rings and lensed rings of Kazakov-Solodukhin BLACK HOLE are narrower, while those of Ghosh-Kumar BLACK HOLE are wider. Whereas the Kazakov-Solodukhin BLACK HOLE exhibits higher brightness, the Ghosh-Kumar BLACK HOLE shows lower brightness. Additionally, a disk closer to the BLACK HOLE correlates with a smaller shadow radius. This paper proposes a method to distinguish different BLACK HOLEs in a specific thin disk model.

[abstract 22 / 26] (score: 2)
arXiv:2508.20421 [pdf, ps, other]
Title: Self-regularized entropy: How much do quantum BLACK HOLEs violate the no-hair theorem?
Authors: Shokoufe Faraji, Niayesh Afshordi,
Comments: 9 pages
Subjects: gr-qc astro-ph.HE
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

We compute the canonical (brick wall) entropy of Hawking radiation in a quantum BLACK HOLE whose exterior is described, to first order in a small quadrupole parameter, by the static $q$-metric, which is an exact vacuum solution of the Einstein equations. Counting near horizon quasinormal modes shows that a modest quadrupolar deformation self-regularizes the ultraviolet divergence: the entropy of Hawking radiation is finite for any non-vanishing quadrupole, without an ad hoc cutoff. Matching this canonical entropy to the Bekenstein-Hawking entropy leads to no-hair violating multipoles, at percent-to-tens-of-percent level, and provides concrete observational targets for the Next Generation Event Horizon Telescope (ngEHT) and the Laser Interferometer Space Antenna (LISA).

[abstract 23 / 26] (score: 2)
arXiv:2508.20423 [pdf, ps, other]
Title: COCONUT: A time-evolving coronal model with an energy decomposition strategy
Authors: Haopeng Wang, Stefaan Poedts, Andrea Lani, Luis Linan, Tinatin Baratashvili, Hyun-Jin Jeong, Rayan Dhib, Yuhao Zhou, Yucong Li, Mahdi Najafi-Ziyazi, Juan Wang, Brigitte Schmieder, Wensi Wang,
Comments: 12 pages, 8 figures
Subjects: astro-ph.SR
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

In this paper, we propose an energy decomposition method to improve the numerical stability of time-evolving MAGNETohydrodynamic (MHD) coronal models, enabling them to resolve the stronger MAGNETic field during solar maxima without significantly filtering out small-scale structures from the observed MAGNETograms.We advance the decomposed energy that excludes the MAGNETic energy, instead of the total energy, in time. It avoids the operation of subtracting a large MAGNETic energy from the total energy to obtain a very small thermal pressure in low-beta regions, thereby improving the numerical stability of MHD models. We implemented this method in COCONUT and validated the model by performing a time-evolving coronal simulation during Carrington Rotation (CR) 2296, a solar maximum CR. We also compare quasi-steady-state simulation results during the solar minimum and the increasing phase, calculated using both versions of COCONUT adopting the decomposed energy equation and the traditional full energy equation to further validate the reliability of the energy decomposition method. The simulation results show that the energy decomposition method yields results nearly identical to those of the traditional full energy equation during solar minimum, while significantly enhancing COCONUT's ability to simulate coronal evolution under strong MAGNETic fields, even those exceeding 100 Gauss. This method is well suited for performing quasi-realistic time-evolving coronal simulations around solar maxima without excessively filtering out the observed strong MAGNETic fields.

[abstract 24 / 26] (score: 2)
arXiv:2508.20502 [pdf, ps, other]
Title: Assessment of the Runaway Electrons induced damage to the Tokamak First Wall
Authors: L. Singh, M. De Bastiani, R. Bonifetto, F. Subba, D. Borgogno,
Comments:
Subjects: physics.plasm-ph
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

The study assessed the damage caused by Runaway Electrons (RE) on First Wall tiles, comparing the effects on Beryllium and Tungsten. This was done by using realistic RE energy distribution functions to replicate RE impacts through the FLUKA code. These energy distribution functions are based on the ASDEX Upgrade experiment # 39012. The parametric analysis carried out with FLUKA in the presence of MAGNETic fields indicated a clear relationship between the beam impact angle and the material deposited energy, demonstrating that higher impact angles lead to deeper electron penetration and greater deposited energies. A finite element model based on apparent heat capacity formulation in FreeFem++ was developed to analyze the material thermal response to such thermal loads using volumetric energy density profiles from FLUKA simulations as input. Different RE current values were simulated to show its influence on the evolution of the material temperature and melting thickness

[abstract 25 / 26] (score: 2)
arXiv:2508.20575 [pdf, ps, other]
Title: Lensing and Photon Rings in a Magnetized Black Hole Spacetime
Authors: Muhammad Haider Khan, Volker Perlick,
Comments:
Subjects: gr-qc
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

We analyze gravitational lensing, in particular the shadow and photon rings, in the Ernst spacetime, also known as the Schwarzschild-Melvin spacetime, which describes a Schwarzschild BLACK HOLE immersed in a homogenous MAGNETic field. Although the geodesic equation in this spacetime is chaotic, there are some relevant features that can be determined analytically. Among other things, we give analytic formulas for the vertical diameter of the shadow for an observer at arbitrary inclination and for the horizontal diameter of the shadow for an observer in the equatorial plane. Moreover, we use the strong-deflection formalism for analytically calculating the so-called photon rings of order $\ge 2$ and we use the recently introduced gap parameter $Δ_2$ for distinguishing lensing of an Ernst BLACK HOLE from that of a Schwarzschild BLACK HOLE.

[abstract 26 / 26] (score: 2)
arXiv:2508.20627 [pdf, ps, other]
Title: Monte Carlo simulation method for incoherent Thomson scattering spectra from arbitrary electron distribution functions
Authors: Kentaro Sakai, Kentaro Tomita, Takeo Hoshi, Ryo Yasuhara,
Comments: 13 pages, 6 figures
Subjects: physics.plasm-ph
Created: 2025-08-28; Updated: 2025-08-29; Datestamp: 2025-08-29

We developed a Monte Carlo simulation method to calculate incoherent Thomson scattering spectra in high temperature plasmas. The basic idea is to treat the entire scattering process as the superposition of individual photon-electron interactions. We introduce macro-particles, referred from particle-in-cell simulations, to reduce the computational cost, and obtain scattered spectra within a reasonable computational time. Since the velocity of the interacting electron is randomly sampled from an electron distribution function, the method can be applied to arbitrary electron distribution functions provided an appropriate sampling scheme is available. We present simulation results for RELATIVISTIC Maxwellian and kappa distribution functions, and compare them with both analytical and numerical spectra for validation. The simulated spectra show good agreement with both analytical and numerical results, demonstrating that the Monte Carlo simulation method can reliably reproduce incoherent Thomson scattering spectra.