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Dedykuję M. oraz moim rodzicom

”The fault, dear Brutus, is not in our stars,
But in ourselves, that we are underlings.”

- Cassius in William Shakespeare’s ”Julius Caesar”





Abstract

Distance determinations are among the essential tasks of observational astronomy. Dif-
ferent methods that are subject to different systematic errors allow checking consistency
and accuracy of distance determinations. Techniques of partially overlapping and increas-
ing ranges constitute the cosmic distance ladder, whose calibration is pivotal in determining
the Hubble constant. These are especially the nearby galaxies that provide excellent op-
portunities for testing different distance determination methods.

In my dissertation, I present three different distance determination methods based on
two types of stellar distance indicators.

The first part of my thesis presents a new calibration of a distance determination
method based on mean values of luminosity functions of carbon stars in the near-infrared
(NIR) J−band. The calibrated mean absolute magnitude of carbon stars is −6.212 ±
0.010(stat.)±0.030(syst.) mag. I further use the new calibration to determine distances to
nine nearby galaxies and compare my results with the corresponding results from classical
Cepheids. I obtain a very good agreement between the two methods, with the mean
distance difference of 0.01 mag and the corresponding standard deviation of 0.06 mag.

In the second part of the thesis, I describe two distance determination methods based
on RR Lyrae stars. I provide a new calibration of the period-luminosity (PL) and period-
luminosity-metallicity (PLZ) relations in NIR bands for RR Lyrae stars from the Milky
Way. I compare my calibrations with the recent findings available in the literature, and I
determine distances to four nearby galaxies. The zero point of my calibrations of period-
luminosity-metallicity relations for RR Lyrae stars is in agreement with the very accurate
distance to the Large Magellanic Cloud obtained using eclipsing binaries (Pietrzyński et
al., 2019). However, my new calibrations yield distances to four nearby galaxies that
are smaller by 0.013 − 0.020 mag compared to distances based on previous calibrations
available in the literature. Subsequently, I present my calibration of projection factors
and determination of the mean radii for two Galactic RR Lyrae stars. My calibrations
for RR Lyrae stars are based on data gathered at the Cerro Armazones Observatory and
parallaxes from the Early Data Release 3 of the GAIA space mission.

My research on carbon stars provides a method allowing to determine the Hubble con-
stant, independent of classical Cepheids and the Tip of the Red Giant Branch. The new
calibration of P-L-Z relations for RR Lyrae stars allows testing of distance determination
methods in the neighborhood of our Galaxy. Relations allow tracing the old stellar Pop-
ulation II. The precision calibration of projection factors for two RR Lyrae stars provides
auspicious results and when applied to a larger sample of these stars, may provide a genuine
breakthrough in distance determination using this technique.





Streszczenie

Wyznaczenia odległości są jednym z najważniejszych zadań w astronomii obserwacyjnej.
Użycie różnych metod pomiaru podlegających różnym błędom systematycznym pozwala na
sprawdzanie zgodności i dokładności wyznaczeń odległości. Metody o częściowo nakładają-
cych się na siebie, coraz większych zasięgach pozwalają na skonstruowanie kosmicznej dra-
biny odległości, kluczowej w wyznaczeniu stałej Hubble’a. W szczególności pobliskie galak-
tyki dostarczają doskonałych możliwości testowania róznych metod pomiarów odległości.

W mojej rozprawie przedstawiam trzy różne metody pomiarów odległości oparte na
dwóch typach gwiazd - wskaźnikach odległości.

Pierwsza część mojej pracy przedstawia nową kalibrację metody pomiarów odległości
na podstawie średnich wartości funkcji jasności gwiazd węglowych w podczerwonym paśmie
J . Skalibrowana przeze mnie średnia jasność absolutna gwiazd węglowych wynosi −6.212±
0.010(stat.)±0.030(syst.) mag. Na podstawie tej kalibracji dokonuję następnie wyznaczeń
odległości do dziewięciu pobliskich galaktych oraz porównuję moje wyniki z odległościami
otrzymanymi przy użyciu Cefeid klasycznych. Otrzymuję bardzo dobrą zgodność pomiędzy
dwoma metodami, ze średnią różnicą odległości 0.01 mag i opowiadającym jej odchyleniem
standardowym 0.06 mag.

W drugiej części pracy opisuję dwie metody pomiarów odległości przy użyciu gwiazd
typu RR Lutni. Przedstawiam nowe kalibracje zależności okres-jasność oraz okres-jasność-
metaliczność w pasmach podczerwonych dla gwiazd typu RR Lutni z Drogi Mlecznej.
Dokonuję porównania moich kalibracji z ostatnimi wynikami dostępnymi w literaturze
oraz wyznaczam odległości do czterech pobliskich galaktyk. Punkt zerowy moich kali-
bracji zależności okres-jasność-metaliczność dla gwiazd RR Lutni jest zgodny z bardzo
dokładną odległością do Wielkiego Obłoku Magellana wyznaczoną przy użyciu układów
zaćmieniowych (Pietrzyński et al., 2019). Jednakże, odległości do czterech pobliskich
galaktyk uzyskane na podstawie moich nowych kalibracji są mniejsze o 0.13− 0.20 mag w
porównaniu do odległości otrzymanych na podstawie poprzednich kalibracji dostępnych w
literaturze. Następnie przedstawiam kalibracje współczynników projekcji oraz wyznaczenia
średnich promieni dla dwóch gwiazd typu RR Lutni z naszej Galaktyki. Moje kalibracje
dotyczące gwiazd RR Lutni zostały dokonane na podstawie danych zebranych w Obserwa-
torium Cerro Armazones oraz precyzyjnych paralaks z trzeciego (wczesnego) udostępnienia
danych z misji kosmicznej GAIA.

Moje badania dotyczące gwiazd węglowych dostarczają metody pozwalającej na wyz-
naczanie stałej Hubble’a, niezależnie od wyznaczeń dokonanych przy użyciu cefeid klasy-
cznych i wierzchołka gałęzi czerwonych olbrzymów. Nowa kalibracja zależności okres-
jasność-metaliczność dla gwiazd RR Lutni pozwala na sprawdzanie metod wyznaczania
odległości w sąsiedztwie Drogi Mlecznej. Zależności pozwalają na badanie struktur
związanych ze starą Populacją II. Precyzyjna kalibracja współczynników projekcji dla
dwóch gwiazd RR Lutni dostarcza bardzo obiecujących wyników. Przy zastosowaniu jej
do większej próbki tych gwiazd może umożliwić dokonanie prawdziwego przełomu w po-
miarach odległości przy użyciu tej geometrycznej techniki.





Contents
1 Introduction 10

2 Observational data 13

3 Distances to nine nearby galaxies using carbon stars 17
3.1 Carbon stars as a distance indicator . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 The new calibration of the JAGB method . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Distance determinations for a sample of nearby galaxies . . . . . . . . . . . . . . 28
3.4 Summary, prospects and challenges for the future . . . . . . . . . . . . . . . . . . 33

4 Determinations of distances using RR Lyrae stars 38
4.1 RR Lyrae stars as pulsating variables . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Near-infrared period-luminosity(-metallicity) relations for RR Lyrae stars . . . . 42

4.2.1 Calibration of relations for the Galactic RR Lyrae stars . . . . . . . . . . 42
4.2.2 Comparison with other calibrations . . . . . . . . . . . . . . . . . . . . . . 54
4.2.3 Determinations of distances to four nearby galaxies . . . . . . . . . . . . . 66
4.2.4 On the parallax zero point and its influence on calibrations . . . . . . . . 76

4.3 The Baade-Wesselink method for RR Lyrae stars . . . . . . . . . . . . . . . . . . 79
4.3.1 The IRSB method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Determinations of p−factors and mean radii of two Galactic RR Lyraes . 86
4.3.3 Influence of systematic errors . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Final conclusions 96

Acknowledgements 97

Bibliography 98

Appendix: Near-infrared light curves of Galactic RR Lyrae 105

9



1 Introduction
Distance determinations are among the most fundamental tasks in astronomy. They allow for
proper calibration of the energetics of various astrophysical phenomena and are also essential
for the establishment of important cosmological parameters, including the Hubble parameter -
the rate of expansion of the Universe.

The use of various independent methods allows checking for possible systematic errors in
our reasoning. Different techniques are sensitive to systematic errors of different sources. That
is why determinations using various techniques are important. Nearby galaxies, where distance
indicators are available to be observed from ground-based observatories, serve as laboratories
where astronomers may test different methods. The proximity of nearby galaxies allows dis-
tances to be determined with greater precision and accuracy than for systems at the limit of
our methods.

It is not possible to determine distances of different orders of magnitude using only one
method. That is why astronomers rely on the concept of the cosmic distance ladder (Figure
1). Short-range geometrical measurements, based on, e.g., parallax or eclipsing binaries, cali-
brate absolute magnitudes of standard candles that provide secondary techniques. They allow
determining distances to Supernova host galaxies in the Hubble flow (i.e., at distances where
peculiar motions of galaxies are significantly smaller than those resulting from the expansion
of the Universe). This allows us to determine the current value of the Hubble parameter – the
Hubble constant H0 in three steps.

At the beginning of the 21st century, the Hubble Space Telescope (HST) Key Project (Freed-
man et al., 2001), devoted to determine the Hubble constant based on calibrations of four
different long-range distance indicators1 using the Leavitt law2 for classical Cepheids, yielded
the value of H0 = 72 ± 8 km s−1 Mpc−1. The re-calibration (Freedman et al., 2012) of the
zero point of period-luminosity relations for Cepheids using Spitzer Space Telescope’s parallaxes
of 10 Galactic Cepheids allowed determining the constant with significantly better accuracy:
H0 = 74.3± 1.5(stat.)±2.1(syst.) km s−1 Mpc−1.

Independent research performed as a part of the SHOES Project has relied on the calibration
of type Ia Supernovae (SNIa) based on Cepheids. The possible influence of systematic errors was
mitigated by relying on NIR observations, the larger sample of Cepheids used for the calibration,
the use of a new anchor - NGC 4258 megamaser galaxy (Miyoshi et al. 1995, Herrstein et al.
2005), and the utilization of a single photometric system (Riess et al., 2011). The authors
combined three calibrations: i) based on the geometric distance to the megamaser, ii) the
Large Magellanic Cloud (LMC), and iii) HST together with Hipparcos parallaxes of Galactic
Cepheids. They obtained H0 = 73.8± 2.4 km s−1 Mpc−1.

At the same time, the cosmic microwave background (CMB) space observatory WMAP
provided data that allowed determining H0 independent of the calibration of the cosmic distance
scale through analysis of the CMB anisotropy. Based on the nine-year data, the final estimation
of the Hubble constant yielded 70.0± 2.2 km s−1 Mpc−1 (Hinshaw et al., 2013), which agreed
with values based on the calibration of the cosmic distance scale using Cepheids. Different
determinations yielded values of the Hubble constant that were in agreement, with increasingly
better precision. The new space observatory Planck, launched in 2009, provides even better
precision of determinations of H0 resulting from the analysis of CMB anisotropy.

However, together with the expected increased precision, analyses based on Planck data
yielded systematically smaller values for H0 compared to results based on WMAP data. The
most recent result from Planck is H0 = 67.4± 0.5 km s−1 Mpc−1 (Planck Collaboration, 2020)
– a value that is based on the ΛCDM cosmological model. The uncertainty of H0 resulting from
the distance ladder calibrations decreased, too. Riess et al. (2016) improved the accuracy by

1HST Key Project relied on type Ia Supernovae, Tully-Fischer relation, surface-brightness fluctuations, type
II Supernovae, and the fundamental plane in the final determination of the Hubble constant. The determination
was anchored to the Large Magellanic Cloud distance of µLMC = 18.5± 0.1mag.

2The Leavitt law, i.e., the period-luminosity relations for classical Cepheids that were discovered by Henrietta
Swan Leavitt at the beginning of the 20th century.
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Figure 1: Ranges of the most important techniques used to calibrate the cosmic distance scale
and determine the value of H0. Geometric methods provide direct and the most accurate
determinations of distances, but their range is limited. Standard candles such as classical
Cepheids, TRGB, or carbon stars allow calibrating Supernovae in galaxies in the Hubble flow.
Thus, we may determine the Hubble constant in three steps on the cosmic distance ladder.
Distance indicators calibrated in this work are highlighted.

anchoring the zero point of the Leavitt law in the LMC to the accurate distance of Pietrzyński
et al. (2013); the authors added a new anchor – the distance to M 31 as determined from
two eclipsing binaries. In this way, Riess et al. (2016) obtained H0 = 73.24 ± 1.74 km s−1

Mpc−1 as their best value. The discrepancy between the two independent methods that is
now estimated to be around 5σ (Riess et al. 2021 – calibration of the distance ladder based on
GAIA Early Data Release 3 -EDR3- parallaxes, the LMC distance from eclipsing binaries, and
masers in NGC 4258; consistent with the previous calibrations) caused a problem known as the
Hubble tension. It may be related to the need to verify cosmological models, as results indicate
that the Universe might have been expanding slower than expected (based on the late-universe
determinations) at its early stage probed by the CMB.

The very existence of the Hubble tension results from the estimation of accuracy and pre-
cision of the calibration of the cosmic distance scale. Therefore, the calibration is fundamental
and should be checked using various methods. The findings of the Carnegie-Chicago Hubble
Program (Freedman et al. 2019, Freedman 2021) indicate that the Tip of the Red Giant Branch
(TRGB) method provides the intermediate value of H0 = 69.8± 0.6± 1.6 km s−1 Mpc−1 based
on both the anchoring distance to the LMC (Pietrzyński et al., 2019) and GAIA EDR3 par-
allaxes (Gaia Collaboration et al., 2021). This would implicate that either TRGB or classical
Cepheids are subject to yet unknown systematic errors. Proper calibration of distance determi-
nations and evaluation of their uncertainties has been and will continue to be crucial in solving
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Figure 2: Values of H0 determined using different methods – calibrations of the distance scale
using Cepheids, TRGB, and based on measurements of the cosmic microwave background ra-
diation assuming the ΛCDM cosmological model of a flat Universe. The figure is taken from
https://arxiv.org/abs/2106.15656 (Freedman, 2021).

this puzzle, strictly connected to the fundamental understanding of the Universe.
Alternative methods to determine the Hubble constant are also available. A novel method

relies on the notion of standard sirens associated with the determination of distances to sources
of gravitational waves (Abbott et al. 2017, Hotokezaka et al. 2019: H0 = 70.3+5.3

−5.0 km s−1 Mpc−1

based on the GW170817 event in NGC 4993). Although the accuracy of such determinations
will enhance with future detections of more events, it is not yet comparable with the accuracy
of the methods described above. Other determinations of H0 are based on the baryon acoustic
oscillations (BAO, e.g., Macaulay et al. 2019, H0 = 67.8± 1.3 km s−1 Mpc−1 – consistent with
CMB measurements assuming the ΛCDM model), the strong gravitational lensing (e.g., Yang
et al. 2020, H0 = 73.65+1.95

−2.26 km s−1 Mpc−1), dust reverberation of active galactic nuclei (AGN,
Yoshii et al. 2014, H0 = 73± 3 km s−1 Mpc−1 – only statistical error), or megamasers (Pesce
et al. 2020, H0 = 73.9 ± 3 km s−1 Mpc−1). In my work, I focus on classical methods, related
to the cosmic distance ladder.

The aim of my thesis is not the determination of the Hubble constant but rather the in-
troduction of tools that allow cross-checking of methods calibrating H0 through the cosmic
distance ladder. My work results in the calibration of methods that may be used in distance
determinations to Supernova host galaxies and the inspection of systematic errors associated
with distance determinations in the neighborhood of our Galaxy. The calibrations I present
are founded on two independent zero points based on accurate geometric determinations of
distances. The first one is associated with the LMC distance obtained with an accuracy of 1%
using eclipsing binaries (Pietrzyński et al., 2019). The second one is based on GAIA EDR3
parallaxes of RR Lyrae stars from the Solar neighborhood (Gaia Collaboration et al., 2021).
My calibrations prepare the ground for determinations of the Hubble constant in the era of the
new generation of telescopes, such as the recently launched James Webb Space Telescope or the
Extremely Large Telescope that is currently under construction.

In my thesis, I present three distance determination methods based on two types of distance
indicators – carbon stars and RR Lyrae stars. Carbon stars allow us to determine distances at
ranges similar to those probed by classical Cepheids and TRGB. It means that they may serve
as independent calibrators of Supernovae. On the other hand, the RR Lyrae stars are fainter
and allow to establish distances associated with the old stellar Population II. They may also be
used in testing other methods, such as TRGB or the Leavitt law for classical Cepheids in the

12



immediate neighborhood of the Milky Way.
In the third chapter, I propose an improved method for distance determinations using mean

magnitudes of carbon stars. I provide calibration of this method and determine distances to
nine galaxies using it. My calibration is based on carbon stars from the LMC. I will provide a
calibration of this method and determine distances to nine galaxies.

The fourth chapter is devoted to RR Lyrae stars. In its first part, I present the new
calibration of the NIR PL and PLZ relations for Galactic RR Lyrae stars based on the GAIA
EDR3 parallaxes and photometry taken at the Cerro Armazones Observatory, especially for this
project. The second part of the chapter covers a variation of the Baade-Wesselink technique of
distance determinations to single pulsating objects applied to two RR Lyrae stars. The method
requires both optical and NIR photometry, and well-covered radial velocity curves. It is a study
focused on determinations of the crucial parameter of the method – the p−factor – that also
takes advantage of the GAIA EDR3 parallaxes.

2 Observational data
The calibration of carbon stars as a distance indicator and the distance determinations to nearby
galaxies are based on archival data, used before in another project devoted to classical Cepheids
or published as separate photometric maps. Therefore, no calibration or data reduction was
necessary. More details regarding this data set are given in the chapter about carbon stars.

As a part of my work associated with RR Lyrae stars, NIR photometry and radial velocities
were required in an independent and coherent way. I personally took part in the observa-
tions using telescopes at the Cerro Armazones Observatory (OCA) and the European Southern
Observatory (ESO).

OCA is located in the Chilean Atacama desert and is one of the best sites for observational
astronomy in the world; especially its low water vapor content is ideal for NIR photometry.
During the course of my PhD studies, I spent around 180 nights at this mountain.

Since 2010, the observatory has hosted four telescopes: the 0.8 m Infra-Red Imaging Survey
(IRIS), the 0.4,m Bochum Monitoring Telescope (BMT), also known as VYSOS 16, the 0.25 m
Berlin Exoplanet Search Telescope II (BEST II), and the binocular 2× 0.15m Robotic Bochum
Twin Telescope (RoBoTT). I have used IRIS and VYSOS 16 (Figure 4) for the purpose of my
research devoted to RR Lyrae stars.

The 0.8 m IRIS telescope is based on an alt-azimuth mount and equipped with a HAWAII-1
infrared camera (Hodapp et al. 2010, Watermann 2012) installed in a Nasmyth focus. Its field of
view is 12.5×12.5 arcmin with a 0.73 arcsec/pix pixel scale. The focal length of the IRIS optical
system is 5227 mm. The camera is cooled with 3.5 liters of liquid nitrogen to a temperature
of about 77 K to minimize the instrumental thermal noise. The filter wheel includes JHKs3

filters similar to those of 2MASS (Skrutskie et al., 2006). Figure 5 depicts transmission curves
of the IRIS filters in comparison with those of the 2MASS system.

VYSOS 16 is installed on an equatorial fork mount. It is equipped with an SBIG STL-6303
camera installed in a Coudé focus. The field of view is 41.2×27.5 arcmin with a 0.79 arcsec/pix
pixel scale. The focal length of the system is 2337 mm. The camera is cooled down to −10◦C
using a fan. Among others, Johnson BV filters made by Astrodon are installed in the filter
wheel.

I have used IRIS photometry for the determination of PLZ relations for RR Lyrae stars.
Moreover, the Baade-Wesselink determination required optical V−band photometry from
VYSOS 16 and time-series of radial velocities based on stellar spectra. In this work, I am
using radial velocities based on high-resolution (R > 40000) spectra obtained from three ESO
spectrographs: HARPS (Mayor et al., 2003) at the 3.6 m telescope and FEROS (Kaufer et al.,
1999) at the MPG/ESO 2.2 m telescope (both at the La Silla Observatory), and UVES (Dekker
et al., 2000) at the Very Large Telescope (VLT - UT2) at the Paranal Observatory in Chile.

3For simplicity I use K instead of Ks (the abbreviation for K−short) throughout this dissertation.
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Figure 3: Cerro Armazones Observatory (OCA), located in the Chilean Atacama desert, pro-
vides excellent conditions for high-precision photometry – especially in the NIR domain (from
the author’s archive).

Figure 4: Two telescopes of OCA used in my project devoted to RR Lyrae stars. The 0.8 m
IRIS providing JHK photometry and the 0.4,m VYSOS 16 for the Johnson BV photometry of
stars in the Solar neighborhood (from the author’s archive).

14



Figure 5: Transmission curves of IRIS filters (colored) compared with transmissivity of original
2MASS filters (dotted black curves). Transmission curves of 2MASS filters were normalized to
correspond to IRIS filters.

Scientific frames obtained with IRIS and VYSOS 16 were calibrated using an automatic
pipeline (Watermann, 2012) based on IRAF (Tody, 1986), SExtractor (Bertin & Arnouts, 1996),
and SCAMP (Bertin, 2006) software with the courtesy of Dr. Martin Haas from the Astronom-
ical Institute of the Ruhr University Bochum. The calibration pipeline includes:

• Flat-field correction - normalization of different sensitivities of camera pixels.

• Determination and subtraction of the sky thermal background based on the dithering4

technique – i.e. the frequent change of the telescope pointing between the scientific target
and some varying offset position. This differential method allows for an effective cancelling
of the sky background.

• Stacking of individual frames into the final image. It requires precise values of dithering
shifts determined using astrometric solutions derived by the SCAMP software.

I have performed photometric measurements using a custom photometric pipeline written
together with my colleague Piotr Wielgórski. The photometric pipeline is based on the Python
Astropy library (Astropy Collaboration, 2013) that allows data extraction from headers of .fits
files and operations (such as arithmetic operations, cutting etc.) on data matrices. In the
case of IRIS data, the photometry is standardized using photometry from the 2MASS catalog
(Cutri et al., 2003). The VYSOS 16 data are tied up to the TYCHO-2 catalog (Høg et al.,
2000). Photometric scripts are based on the DAOPHOT photometric package (Stetson, 1987).
The photometric reduction pipeline includes:

• Manual designation of a scientific target and comparison stars in a reference frame.

• Aperture photometry of all frames corresponding to a given scientific object. Detection
of sources using find and aperture photometry performed using photometry routines of
DAOPHOT.

• Extraction of instrumental magnitudes minst of the scientific object for all frames based on
positions of objects in the reference frame. Source-matching script based on APMATCH
program authored by Dr. Wojciech Pych.

4Also known as jittering.
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• Standardization of instrumental magnitudes to the 2MASS and Johnson photometric
systems based on magnitudes of comparison stars from 2MASS and TYCHO-2 catalogs.

Both for IRIS and VYSOS 16 the usual precision of the instrumental photometry minst of
0.01− 0.02mag was obtained.

The transformation equation that converts instrumental magnitudes of scientific sources
into the standard magnitudes in a given system is given by:

mstand = minst + αX + βC + γ (1)

where mstand is the desired standard magnitude, minst is the measured instrumental magni-
tude, α is the atmospheric extinction term, X is the air mass (the integral of air density along
a given line of sight, relative to zenith where XZ = 1), β is the color term of the optical system,
C is the apparent instrumental color of the object, and γ is the zero point of standardization.

Given the relatively small sizes of the field of view, comparison stars in a given field are
located at the same air masses as the corresponding scientific sources. Thus, their instrumental
magnitudes are equally affected by the atmospheric extinction (αX = const).

Color coefficients β = −0.070±0.027, 0.015±0.030, and 0.020±0.036 for the J−, H−, and
K−bands, respectively. Colors C corresponding to these coefficients are (J − K) in the case
of J− and K−bands, and (J − H) in the case of the H−band. Since for H− and K−band
magnitudes the corresponding β are consistent with 0, no color correction was applied in their
standardization. In the case of the J−band β = −0.07 was applied.

In the case of VYSOS 16, where only V−band was used, β = 0.006 ± 0.01 corresponds to
the instrumental color (B − V ). Thus, the color correction has also been neglected here.

The accuracy of the overall photometric zero point calculated as an error on the mean of
differences between the catalog and independently derived magnitudes of constant control stars
is estimated at 0.002mag (Wielgórski et al., 2021) with the mean shift between the standard-
ization’s and 2MASS catalog’s zero points equal to zero.

In the case of VYSOS 16 data were tied up to the TYCHO-2 catalog - they were used
only for the purpose of the Baade-Wesselink analysis. Johnson magnitudes of stars from the
catalog are given with lower accuracy. Thus the estimated systematic uncertainty that affects
the whole V−band light curves associated with the uncertainty of magnitudes of comparison
stars is 0.05mag.

High-resolution spectroscopic data from HARPS and UVES were calibrated using dedicated
pipelines from ESO. Data from FEROS were calibrated by Piotr Wielgórski using the CERES
pipeline (Brahm et al., 2017).

I have measured radial velocities using one-dimensional spectra using RaveSpan5 (Pilecki
et al. 2012, Pilecki et al. 2017). I have calculated radial velocities using two techniques imple-
mented in the program. One of them is the cross-correlation function (CCF) of the template
and the stellar spectra. The second approach is based on the broadening function (BF, Rucin-
ski 2002). Both methods give virtually the same results. The most probable radial velocity is
estimated based on a fit of a Gaussian to CCF/BF. The mean of estimated uncertainties of the
measured radial velocities is about 200m/s.

5RaveSpan is available for download at https://users.camk.edu.pl/pilecki/ravespan/.
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3 Distances to nine nearby galaxies using carbon stars
3.1 Carbon stars as a distance indicator
Originally discovered using spectroscopy by Angelo Secchi in 1868 (Secchi 1868, McCarthy
1994), carbon stars are characterized by the presence of radical C2 absorption bands in their
spectra (Swan, 1857) that resemble those of cometary tails or products of combustion of hy-
drocarbon fuels.

Atmospheres of these thermally-pulsating6 asymptotic giant branch (AGB) stars, with ages
in the range (100 M – 3 G)yr, have a surplus of carbon relative to oxygen abundance. It makes
them significantly redder (with temperatures between 2500K and 3900K) than their oxygen-
rich evolutionary progenitors. The convective envelope of a carbon star transports carbon to
the surface from its helium-burning shell during the third dredge-up7. It alters the molecular
opacity of the stellar photosphere, which decreases its effective temperature (Marigo et al.,
2008).

Figure 6: The funneling effect as depicted in the work of Madore & Freedman (2020) based on
theoretical models of Marigo et al. (2008). Carbon stars exist as late evolutionary stages of the
AGB for the tightly concentrated range of stellar masses only. The sketch of the HR diagram
taken from https://arxiv.org/abs/2005.10792.

The effect of concentration of luminosities of carbon stars, which makes them interesting
candidates for standard candles, has been explained in numerous theoretical works (e.g., Iben

6Thermal pulses, also known as He-shell flashes, occur during the late stages of the evolution of AGB stars
that burned out helium above their carbon-nitrogen cores. Hydrogen above the thin layer of helium starts to
burn, and, as a result, the helium shell is being rebuilt. After sufficient helium has accumulated, the fusion of
this element reignites rapidly, and the stellar luminosity rises, which is the reason for periodic thermal pulses.

7Dredge-ups are periods in stellar evolution when a convective envelope penetrates stellar interior deep enough
to reach nuclear fusion products. The third dredge-ups correspond precisely to the evolutionary phases of the
late AGB stars. They accompany thermal pulse cycles and cause transport of, e.g., carbon to the stellar surface.
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1973, Sackmann et al. 1974, Groenewegen & Marigo 2004, Karakas et al. 2018, Ventura et al.
2020). Carbon-rich photospheres are obtainable only for stars having masses from a relatively
compact interval, which makes their magnitudes directly restricted. Hot-bottom burning that
occurs in too massive AGB stars results in the conversion of carbon into nitrogen at the base
of their convective envelopes. Even though the exact mass value needed for ignition of such a
process depends on the metallicity of a star, it typically occurs for M > 3.5M⊙ but may appear
even for M > 2M⊙ for stars of low metallicity. On the other hand, the convective envelopes of
low-mass (M < 1.3M⊙) AGB stars are not extensive enough to bring carbon to their surface.

Carbon stars were utilized for distance determinations for the first time by Richer et al.
(1984), Richer et al. (1985), and Pritchet et al. (1987), who used optical photometry to de-
termine distances to NGC 205, NGC 300, and NGC 55. These determinations were based on
statistical studies on a sample of 70 carbon stars in the LMC in V RI (Richer, 1981), which
proved that their bolometric and I−band magnitudes are relatively well concentrated with
a spread of σI = 0.47mag and the reported uncertainty of the mean I−band magnitude of
±0.06mag. However, in order to distinguish carbon stars from M-type stars having the same
(V − I) colors, authors used the (8100− 7800)Å color. These two narrow-band filters allow to
easily separate stars having strong TiO absorption lines (M-type stars) from those having CN
lines (carbon stars).

Important observational results were described in the work of Nikolaev & Weinberg (2000)
who distinguished different stellar populations in the Large Magellanic Cloud (LMC) appearing
in the color-magnitude diagram (CMD) based on the NIR 2MASS photometry. Among the
described CMD zones, Region J corresponds to the population of carbon stars. The authors
used this CMD feature to analyze the spatial structure of the LMC (Weinberg & Nikolaev, 2001),
showing that the carbon-abundant long-period variables are standard candles for a given narrow
interval of their colors with a well-defined color-luminosity relation8. They also estimated
precision of a single carbon star as a standard candle in JHK of about 0.2mag. The authors
also outlined the advantages of using stars from the mentioned region as distance indicators,
stressing their very high luminosities that potentially make it possible to reach farther than the
Tip of the Red Giant Branch (TRGB) method.

The works of Nikolaev & Weinberg showed the advantages of statistical analysis of carbon
stars using NIR rather than optical photometry. Indeed, NIR observations are less affected
by extinction (which influences the significant differences between the spread of luminosities of
carbon stars in optical and NIR bands). An important advantage is also that photometry in
just two bands is needed to form a J vs. (J −K) CMD where carbon stars are well separated
from other populations through simple color cuts (see Figure 7).

A kind of hybrid solution was proposed by Battinelli & Demers (2005). The authors praised
the selection of samples using (J − K) colors, following the works of Nikolaev & Weinberg.
They showed that samples with more than around 100 carbon stars have their mean absolute
I−band magnitude constant. They also derived a metallicity-absolute magnitude dependence,
obtaining ⟨MI⟩ = −4.33 + 0.28 [Fe/H], and laid prospects on developing the NIR version of
the method in the era of the future James Webb Space Telescope already.

The revival of the topic of carbon stars as a distance indicator came along lately with the
almost simultaneous publications of Ripoche et al. (2020) and Madore & Freedman (2020),
who explicitly articulated for the first time the constant J−band magnitude of carbon stars
occupying Region J in the whole of its (J − K) color interval, i.e., (J − K) ∈ (1.3, 2.0)mag.
This trait allowed to utilize the mean J−band9 magnitude of a population of carbon stars as

8Weinberg & Nikolaev (2001) established the relation of < K >= −(0.99± 0.80) < (J −K) > +K0 based on
14 carbon Miras from the LMC Region J and deduced that luminosity does not change a lot for carbon stars
having 1.6 < (J − K) < 1.7. They further used the mean NIR magnitudes of carbon stars having colors from
this interval as standard candles.

9It is worth mentioning here that the NIR band J is not the reason for the naming of Region J described
by Nikolaev & Weinberg (2000) - they just used subsequent letters of the alphabet to name different zones in
the CMD of the LMC. It is a coincidence that carbon stars which have constant J−band magnitudes along the
population’s color interval appear in Region J; in addition, in their work, Weinberg & Nikolaev used carbon
star luminosity functions in JHK. However, in the peer-reviewed version of their paper, Madore & Freedman
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Figure 7: Exemplary color-magnitude diagrams depicting the JAGB samples (in red) for the
Small Magellanic Cloud for optical and NIR data, dereddened using the extinction maps of
Górski et al. (2020). V− and I−band photometry originates from the OGLE-III Photometric
Maps of the Small Magellanic Cloud (Udalski et al., 2008b), while the J− and K−band pho-
tometry from the IRSF Magellanic Clouds Point Source Catalog of Kato et al. (2007). The two
catalogs were cross-matched, and the JAGB sample is defined as having (J−K) ∈ (1.3, 2.0)mag
and J ∈ (11.5, 14.0)mag (as in Figure 12). The advantage of the NIR over optical photom-
etry in the sample’s specification is associated with the fact that the JAGB population is far
better separated and less contaminated in the NIR CMDs where it is easy to extract car-
bon star samples using rectangular sample-selection boxes. In the case of optical photometry,
one needs to use other criteria (such as narrow-band colors or a spectroscopic survey) to re-
ject M-type dwarfs of similar colors (as in, e.g., Richer et al. 1984). Ripoche et al. (2020)
showed that spectroscopic catalogs of carbon stars like those of Raimondo et al. (2005) or
Kontizas et al. (2001) correspond well to samples selected using simple color cuts in the J vs.
(J − K) CMDs (although they do not reach stars as faint as photometry may reach). The
linear least-squares regression fitted for the JAGB sample in the J vs. (J − K) CMD gives
J0 = (−0.019 ± 0.059)(J − K)0 + (12.785 ± 0.092)mag, which shows the assumption of the
constant J−band magnitude of carbon stars of different colors is justified. However, JAGB
samples in the NIR may also be contaminated, especially by the background galaxies, having
the same colors but surface densities rising exponentially with apparent magnitudes (e.g., Ber-
shady et al. 1998, Madore et al. 2021). Such contamination would be especially problematic
for faint and small samples, and it may introduce positive skewness to the luminosity functions
of the JAGB samples.
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its distance indicator. Madore & Freedman calibrated their method provisionally and called it
simply the JAGB method as derived from Region J AGB stars. Other publications of Freed-
man & Madore (2020), Parada et al. (2020), and Lee et al. (2020), which tackled the issue,
soon followed. Methods and calibrations presented in these papers differ, mainly because of
undertaking numerous arbitrary choices whenever one uses a statistical method that relies on
a CMD feature. Freedman & Madore determined JAGB distances to 16 nearby galaxies. They
compared their results with TRGB distances and obtained a very good agreement. The au-
thors received the mean difference between JAGB and TRGB moduli of 0.007mag with the
corresponding scatter of 0.08mag. They also discussed a possible dependence of the absolute
magnitude of JAGB on metallicity but provisionally found that there is no such correlation.
Ripoche et al. (2020) showed that simple (J−K) ∈ (1.4, 2.0) color cuts allow retrieving samples
of spectroscopically-confirmed carbon stars from catalogs of Kontizas et al. (2001) (LMC, 100%
carbon stars retrieved) and Raimondo et al. (2005) (SMC, 98% carbon stars retrieved), thus
confirming the claims of Nikolaev & Weinberg.

The task of obtaining the mean J−band magnitude of carbon stars from a given population
is subject to several different assumptions that may influence the final determination. In my
project devoted to distance determinations using statistical analysis of the NIR photometry of
carbon stars, I have proposed a new, alternative calibration and method of distance determi-
nations using JAGB. It enables an accurate determination of the mean magnitude of a JAGB
sample for a given population using a custom profile of the luminosity function of these stars.
I have used it to determine distances to nine galaxies from the local Universe, and compared
these with distances obtained by the Araucaria Project using the multi-band PL relations for
classical Cepheids - an already well-established method. It resulted in a publication in The
Astrophysical Journal (Zgirski et al., 2021).

3.2 The new calibration of the JAGB method
In order to estimate the mean absolute magnitude of JAGB in the J−band, I took advantage
of the very accurate distance determination to the LMC based on detached eclipsing binaries
(Pietrzyński et al., 2019), and the recent reddening maps of the Magellanic Clouds (Górski et
al., 2020). The NIR photometry in J− and K− bands used for the purpose of the calibration
of the method was taken from the publicly available Infrared Survey Facility (IRSF) Magellanic
Clouds Point Source Catalog of Kato et al. (2007). That work also gives equations that were
required to transform the photometry from the IRSF/SIRIUS into the 2MASS photometric
system. Each observing field shown in Figure 8 has been dereddened using the reddening maps
of Górski et al. and the corresponding E(B − V ) values given there. The color excess was
transformed into total extinctions AJ and AK following the work of Cardelli et al. (1989). I
have utilized ratios of total extinction in a given band (given its effective wavelength and the
reddening law) to the total reddening in the V band given there. Assuming the reddening
law of RV = 3.1, I obtained the following (Table 1) ratios of total-to-selective extinctions -
Rλ = Aλ

E(B−V ) for the 2MASS bands (details of that photometric system are given in Cohen et
al. 2003):

Aλ

AV
Rλ < Aλ >LMC < Aλ >SMC

J(λeff = 1.235 µm) 0.288 0.892 0.124 mag 0.079 mag
K(λeff = 2.159 µm) 0.117 0.363 0.050 mag 0.032 mag

Table 1: Ratios of extinctions for 2MASS bands obtained from Cardelli et al. (1989) for the
purpose of dereddening the Kato et al. (2007) photometry. Ratios of total-to-selective extinc-
tions Rλ were calculated given the reddening law RV = 3.1. The mean total extinctions for the
LMC and the SMC are given just for the reference in the two last columns, as every such field
has been dereddened separately based on Górski et al. (2020) extinction maps.

(2020) use the term the AGB J-band method.
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Both calibrations of Freedman & Madore (2020) and Ripoche et al. (2020) are based on
samples of JAGB stars from both Magellanic Clouds. My calibration is founded, more con-
servatively, on the LMC sample, with the Small Magellanic Cloud (SMC) sample playing only
a control role for the calibration. The LMC distance is determined with better accuracy and
precision. The LMC sample is also larger and the SMC displays a large spatial span in the
line-of-sight direction as reported by, e.g., Graczyk et al. (2020).

When estimating a mean J−band magnitude of a given population of JAGB stars, we may
choose different statistics. Madore & Freedman (2020), Freedman & Madore (2020), and Lee
et al. (2020) use arithmetic means of magnitudes calculated for relatively small intervals of
J−band magnitudes that define their samples. They use non-uniform criteria of selection of
samples. Most sample-selection boxes have their spans along the J axis of, e.g., 0.7mag, but
they apparently depend on a population. The authors generally define the JAGB population
as having (J −K) color boundaries of (1.3 and 2.0)mag. However, for some galaxies, they also
use CMDs with (J −H) or (Z − J) colors and not strictly defined boundaries of their sample
selection boxes (both in the J axis and in the color axis) in order to select their samples. For the
calibration of their method in both Magellanic Clouds, they actually use CMDs with different
colors for each of the Clouds. It all makes their determinations arbitrary. On the other hand,
Ripoche et al. (2020) and Parada et al. (2020) rely on the median value of magnitudes from their
samples that have optional cut-offs along the J axis just from the faint side (in the apparent
minimum of the luminosity function). Carbon stars from their samples have (J − K) colors
from the (1.4, 2.0)mag interval.

In order to obtain a more objective estimation of the mean J magnitude of carbon stars, I
have applied a profile fit. The estimation of the mean J−band magnitude of the JAGB stars
proposed in my work included binning stellar magnitudes from a given sample into histograms
and fitting a superposition of a Gaussian and a quadratic function to such empirical luminosity
functions. The profile was originally presented by Paczyński & Stanek (1998) for modeling
of luminosity functions of samples of the Red Clump stars contaminated with the Red Giant
Branch stars. The fitted profile takes the form of:

dn

dJ
=

N

σ
√
2π

exp

[
−(J− < J >)2

2σ2

]
+ a(J− < J >)2 + b(J− < J >) + c (2)

where dn
dJ is the number of JAGB stars per J−band magnitude interval, N is a scaling factor

of the Gaussian component, < J > is the estimated mean J−band magnitude of a JAGB
population, and σ corresponds to the spread of its luminosities. Such 6-parameter (N, < J >
, σ, a, b, c) fits were performed using the curve_fit procedure of the SciPy library (Virtanen et
al., 2020) for Python that is based on the non-linear least squares analysis.

While the Gaussian component models the proper, uncontaminated luminosity function of
carbon stars, the quadratic component models the contamination of the sample with foreground
stars and background galaxies. Additionally, while the Gaussian component is always symmet-
ric, its superposition with the parabolic component may also contribute to the skewness of the
modeled luminosity function. The spread of luminosities, denoted by the σ parameter, is a
combination of different factors (Weinberg & Nikolaev, 2001):

σ =
√
σ2
M + σ2

(m−M) + σ2
A + σ2

ph (3)

where σM – the intrinsic spread of the absolute magnitudes of JAGB stars – may be inter-
preted as the precision of a single carbon star as a standard candle; σ(m−M) – the geometric
depth10 of a system associated with different positions of stars in this system along the line
of sight (i.e., different distances of stars); σA – associated with differential extinction, i.e., the
fact that different stars from sample are affected by the extinction of different magnitudes; σph

10σ(m−M) can be easily written in terms of the linear, relative distance spread. By differentiating the defining
formula of the distance modulus: (m − M) = 5log(r) − 5, where r is the distance in parsecs, we obtain the
relation between the absolute geometric depth or uncertainty (spread) of distance modulus and the relative
spread of linear distance: σ(m−M) =

2.17
r

σr.

21



Figure 8: IRSF Magellanic Clouds Point Source Catalog of Kato et al. (2007) observing fields
in the LMC - the NIR photometry that has been utilized to calibrate the JAGB method. The
location of detached eclipsing binary systems used by Pietrzyński et al. (2019) to determine
distance to the LMC with the accuracy of 1% are depicted in green. The background image
comes from Udalski et al. (2008a).
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Figure 9: Determinations of mean, dereddened values of J− band magnitudes for the two
samples of JAGB stars in the LMC that were selected using different (J −K)0 color (where 0
denotes the dereddened value) ranges give results consistent to about 0.01 mag. Corresponding
positions of samples in the CMD produced out of the combined, dereddened IRSF Magellanic
Clouds Point Source Catalog photometry are visible to the left of both determinations. The
determination founded on the broader color range has been used to calibrate the method.

– the photometric error component of the spread. In practice, it is not an easy task to trace
and quantify each component of the total apparent spread of the luminosity function of carbon
stars.

In the case of single-epoch photometry, the apparent intrinsic spread of luminosities of
carbon stars σM is also affected by the fact that virtually all JAGB stars are long-period
variables. Some of them are carbon Mira variables, known for their very large amplitudes
in the optical bands, they have average peak-to-peak ∆J amplitudes from between 0.5 and
0.7mag (Smith et al. 2002, Madore & Freedman 2020). The study of Whitelock et al. (2013)
shows, on the example of NGC 6822, that most of the JAGB stars are actually low-amplitude
variables having ∆K < 0.4mag – most of them are probably semi-regular or irregular variables.
If, for the sake of simplicity, we assume sinusoidal variability, the variance of the J−band
magnitude over the variability period will be: σ2

var =
⟨

∆J2

4 sin2(t)
⟩
= ∆J2

8 . Thus, assuming
∆J = 0.5mag, we obtain the variability component of the total scatter of luminosities of
carbon stars of σvar = ∆J

2
√
2
= 1

4
√
2
= 0.18mag, which leaves just 0.09mag for the variations of

mean magnitudes of these stars given the 0.2mag intrinsic precision of carbon stars claimed by
Weinberg & Nikolaev (2001).

Figure 9 shows < J0 > determinations - the dereddened, mean J−band magnitude of carbon
stars in the LMC. The two determinations were performed in different (J −K)0 color ranges –
(1.3, 2.0)mag and (1.45, 2.0)mag. While the latter will be used further to determine < J0 > for
galaxies contaminated from the bluer side of the sample-selection box, it is the former, broader
span of colors that defines our sample that calibrates the method. Both color intervals give
results coherent within around 0.01mag. The box size along the J axis has been consistently
set to 2.5mag. It has been established empirically by searching for box sizes that give stable
results (i.e., where changes of the result with changes of the box size are relatively small) for all
studied galaxies. Figure 10 compares results obtained with the profile fit, median, and mean.
Among those three, the profile fit gives the most stable results that do not depend significantly

23



Figure 10: < J0 > values obtained for three different statistics and their dependence on the
sample-selection box size and its center for the LMC. The y-axis and x-axis correspond to
< J0 > (in mag) and the sample-selection box size (also in mag) along the J axis, respectively.
The profile fit (upper-left) gives the most stable results that are also little dependent on the
position of center of the box. As can be appreciated, the influence of arbitrary choices on our
result is significantly weaker when we use the profile fit compared to the two simple statistics
– median and arithmetic mean. The vertical dashed line corresponds to the 2.5 mag sample-
selection box size, and the thinner surrounding lines correspond to box sizes that differ by
±0.1 mag. Different colors of points depict results obtained using three different centers of
the sample-selection box. Open, black circles denote results that had σ < 0.075 mag and
were rejected. Similar figures (together with determination and diagnostic plots) for all studied
galaxies are available at my web page: https://users.camk.edu.pl/bzgirski/jagb.html.
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on centering of the sample-selection box. It is especially the central magnitude along the J
axis that is difficult to choose and researcher may easily shift it by 0.1mag arbitrarily. Such a
shift of the sample-selection box may give results that differ by even 0.05mag for boxes of the
width of 1mag along the J axis. It immediately introduces a potential distance error of about
2.5%. Thus, the profile fit allows us to minimize the influence of arbitrary choices on the final
determination.

The fiducial < J0 > magnitude of carbon stars from the LMC that will serve for the purpose
of the calibration of the method is 12.265 ± 0.010mag, where the statistical uncertainty has
been obtained from bootstrapping11. The distribution of simulated results is depicted on the
left side of Figure 11, while the right side of that figure represents a breakdown of the fit into
the two components and the residual distribution resulting from subtraction of the quadratic
component of the fit from the original distribution of magnitudes of JAGB stars. While the
residual distribution is not perfectly Gaussian, the least-squares fit gives the most reliable
determination of the mean value of J− band magnitude of carbon stars in the sample (which is
also not identical to the mode of the distribution which may appear for a given argument due
to random fluctuations).

Finally, we calibrate the mean absolute magnitude of JAGB stars by using the accurate
LMC distance modulus µLMC = 18.477 ± 0.004(stat.)±0.026(syst.) mag of Pietrzyński et al.
(2019): MLMC = −6.212± 0.010(stat.)±0.030(syst.) mag – with the systematic component
corresponding to the total uncertainty of the LMC distance. Ripoche et al. (2020) obtained
MR,LMC = −6.284 ± 0.004(stat.) mag also using the same reddening maps and Madore &
Freedman (2020) report MM,LMC = −6.22 ± 0.01(stat.)±0.04(syst.) using only Galactic (i.e.,
foreground) reddening taken from Schlafly & Finkbeiner (2011). Such an approach gives, in
principle, worse precision as it neglects differentiation between environmental conditions in
different galaxies. Studied carbon stars are affected by intrinsic reddening of mean magnitude
depending on their host galaxy. In my work, I have applied total reddenings for the studied
galaxies obtained from the multi-band PL relations for classical Cepheids (or from the reddening
maps for the Magellanic Clouds of Górski et al.). As thin disk objects, carbon stars should be
affected by the same reddening as classical Cepheids. In order to compare my calibration with
the absolute magnitude obtained by Madore & Freedman, we need to consider that their value
of AJ,LMC = 0.053mag differs from the value of foreground + internal extinction presented in
Table 1. The remaining 0.071mag may be subtracted from the absolute magnitude they report
to compare it with the value from my work.

Table 2 compares my results with the results of Madore & Freedman (2020) and Ripoche et
al. (2020). The three studies are based on photometry from different sources. In the case of my
work it is Kato et al. (2007), while Madore & Freedman (2020) relied on Macri et al. (2015),
and Ripoche et al. (2020) took advantage of Skrutskie et al. (2006). The anchors used for the
purpose of calibrations were the same in the case of the LMC (Pietrzyński et al., 2019). They
were different for the SMC as I relied on Graczyk et al. (2020), Madore & Freedman used the
Graczyk et al. (2014) distance (the previous version of the detached eclipsing binaries distance),
and the Ripoche et al. calibration is based on the Scowcroft et al. (2016) determination (NIR
Leavitt law utilized for individual Cepheids in the SMC).

I did not use the JAGB absolute magnitude calibration based on the SMC in further de-
terminations. The studies by Ripoche et al. and Madore & Freedman yield similar absolute
magnitudes in the case of the LMC (with the statistical error only in the case of Ripoche et
al.). It is worth noticing that the LMC luminosity function of carbon stars is characterized by
relatively large positive skewness (Figure 11) thus mean and median must be larger than the
mean of the Gaussian component of my fit. This will not be a case for the SMC where the
luminosity function is far more symmetric.

11Essentially, simulated samples were drawn from the original sample with replacements in number corre-
sponding to the original sample size (for small samples, the number of draws was larger in order to have at least
a few hundred simulated results). Then, profile fits were performed for each simulated sample, which resulted
in obtaining distributions of possible < J0 > values.
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Figure 11: The distribution of simulated results obtained from bootstrapping used to determine
the statistical uncertainty of < J0 > for the LMC (left), together with the two components of
the fitted luminosity function and residuals (in orange) of the empirical luminosity function
obtained from the subtraction of the quadratic component (blue) from the original distribution
of luminosities (black bins).

Figure 12: Determination of the mean value of the J−band magnitude of carbon stars from
the SMC together with the split of the fitted profile into two components. Even though the
luminosity function of carbon stars for the SMC is much more symmetric than for the LMC,
the obtained mean values of J−band luminosities of carbon stars for the two clouds are in very
good agreement given distances of the two Clouds.
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work MLMC [mag] MSMC [mag] statistic
Zgirski et al. (2021) −6.212± 0.010± 0.030 −6.202± 0.012± 0.044 profile fit

Madore & Freedman (2020) −6.29± 0.01± 0.04 −6.23± 0.01± 0.05 arith. mean
Ripoche et al. (2020) −6.284± 0.004 −6.160± 0.015 median

Table 2: Different values of the absolute J−band magnitudes MLMC and MSMC for both
Magellanic Clouds with the corresponding statistical and systematic errors. For the sake of
comparison, I have additionally dereddened the values from Madore & Freedman as those took
into account only the Galactic foreground extinction. For the LMC I applied 0.07mag, for the
SMC 0.05mag – both values based on Górski et al. 2020. Ripoche et al. report only the statis-
tical component of the error. All three studies use the 2MASS photometric system. Different
centrality measures of luminosity functions of carbon stars correspond to various calibrations
and definitions of the method and thus they yield absolute J−band magnitudes that are not
directly comparable.

The first application of the new calibration was used for the SMC distance. It also plays
a role in the verification of the reliability of the calibration. The source of the photometry
and the dereddening procedure for the SMC were the same as in the case of the LMC. Figure
12 shows the profile fit to the luminosity function of carbon stars from the SMC. The mean
value of the J−band magnitude of carbon stars from the SMC is < J0 >SMC= 12.776mag;
bootstrapping yields the statistical uncertainty of its determination of 0.012mag. Assuming
the absolute magnitude of JAGB calibrated in the LMC, we obtain the SMC distance modulus
µ = 18.988±0.012(stat.) mag. This is in very good agreement with the recent determination of
the SMC distance by Graczyk et al. (2020) using eclipsing binaries µSMC−DEB = 18.977±0.044
(total err.) mag, even within the statistical uncertainty of the JAGB determination. On the
other hand, we may also obtain the calibration of the absolute magnitude of JAGB assuming
the distance of Graczyk et al. (2020). It yields MSMC = −6.201±0.012(stat.)±0.044(syst.) mag.
Calibrations based on carbon stars from the two Magellanic Clouds give practically the same
value of their mean J−band magnitude.

It is worth mentioning that while Madore & Freedman (2020) obtain the two quantities that
are also in agreement with each other (MLMC = −6.22± 0.05mag, MSMC = −6.18± 0.06mag,
total uncertainties), Ripoche et al. (2020) report different values of the absolute magnitude for
the two Clouds (MLMC = −6.284±0.004mag, MSMC = −6.160±0.015mag, only statistical un-
certainties). The authors speculate that the fainter SMC magnitude may be explained by lower
metallicity. However, Freedman & Madore established the provisional metallicity-dependence
of the JAGB absolute magnitude by comparing their JAGB distances with the corresponding
TRGB distances for a sample of galaxies from the Milky Way’s neighborhood and obtained
−0.03 ± 0.05mag dex−1. Parada et al. (2020) who rely on the calibrations of Ripoche et al.
(2020) go further and determine distances to galaxies based on either the SMC, or the LMC
calibration, depending on the skewness of the observed luminosity functions. The authors
claim that both star formation history and metallicity contribute to the skewness of the lumi-
nosity function, and thus they discriminate between ’SMC-like’ and the ’LMC-like’ luminosity
functions. They use the appropriate calibration to determine distances to galaxies with the
corresponding skewness of their luminosity functions. My approach is qualitatively different, as
skewness of luminosity functions is modeled through the shifts between the axes of symmetry
of the two (symmetric) components of the fitted profile. While the Gaussian component models
the JAGB population, the quadratic component takes into account both contamination of the
luminosity function and its skewness. Residuals of the luminosity function obtained by sub-
tracting the quadratic component of the fitted profile reproduce the Gaussian profile worse in
the case of the more skewed luminosity functions (compare splits into components in Figures 11
& 12). However, our task is to determine the mean value of the Gaussian component relatively
well – not necessarily its entire course – and establish it as a standard candle. This task is
fulfilled better with the profile fit than with statistics like mean or median that are vulnerable
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to asymmetries of luminosity functions.
The calibration, and the fiducial mean absolute magnitude of carbon stars in the J− band

may serve for the purpose of precision distance determinations to nearby galaxies.

3.3 Distance determinations for a sample of nearby galaxies
During the last two decades, the photometric J and K data were collected specifically for the
purpose of distance determinations using multi-band PL relations for classical Cepheids as a
part of the Araucaria Project. Distances to such galaxies as NGC 300, NGC 6822, NGC 3109,
Wolf-Lundmark-Melotte (WLM), NGC 247, M 33, NGC 7793 were established (Gieren et al.
2005, Gieren et al. 2006, Soszyński et al. 2006, Gieren et al. 2008, Gieren et al. 2009, Gieren
et al. 2013, Zgirski et al. 2017). Data were collected using the PANIC camera attached to the
Magellan-Baade telescope at the Las Campanas Observatory (NGC 6822, WLM), the HAWK-I
(NGC 7793, M 33) and ISAAC (NGC 3109, NGC 247, NGC 55, NGC 300) instruments installed
on the Very Large Telescope at the Cerro Paranal Observatory of the European Southern Ob-
servatory (ESO), and using the SOFI camera attached to the New Technology Telescope at the
La Silla Observatory of ESO (NGC 6822, WLM).

The method based on the multi-band PL relations for Cepheids allowed not only for distance,
but also for independent reddening determinations. These archival data are perfect for the
purpose of the statistical analysis of carbon stars as they give a unique chance to compare the
currently developed method with the well-established distance determination method based on
the Leavitt law. Relying on the same photometry for the purpose of distance determination
using the two methods guarantees the minimization of systematic errors that could influence
differences between the results obtained with these methods.

All but one published Cepheid distances were anchored to the LMC distance of 18.5mag.
The distance corresponding to NGC 7793 has been anchored to µLMC = 18.493mag (Pietrzyński
et al. 2013, 2% accuracy). In order to properly compare the Cepheid distances with those
resulting from the JAGB method (anchored to the LMC distance determined with the 1%
accuracy – µLMC = 18.477mag - Pietrzyński et al. 2019), I have systematically shifted the
Cepheid distance moduli of the studied galaxies accordingly.

As the Araucaria Project NIR photometry of the nearby galaxies is calibrated onto the
UKIRT photometric system, I have transformed it onto the 2MASS system to make it com-
patible with the calibration of the method that is also defined in 2MASS. Carpenter (2001)
provided transformation equations between these two photometric systems.

Determinations of the mean values of JAGB J−band luminosity functions have been per-
formed using the criteria described in the previous section. Larger samples allowed for a denser
binning of J magnitudes of 3 bins per 0.1mag. The particularly small samples have had their
binning set at 1 bin per 0.1mag (with one exception of the smallest samples of JAGB stars
corresponding to the WLM galaxy, where I used 0.7 bins per 0.1mag). Different binning in-
troduces deviations between the final determinations at the level of a few thousandths of a
magnitude, a value which is negligible compared to the statistical error of the determination
that is an order of magnitude larger.

Optimally, the method is designed to trace a steady, Gaussian-like change of the ’clear’
(i.e., deprived of the contamination that is modeled using the quadratic component) luminosity
function of carbon stars. Very narrow, non-physical Gaussian components are not desired. It
is especially the case when dealing with a quadratic-like luminosity function with a narrow
peak. The profile fits to such functions may lead to unrealistic estimation of the σ parameter
then. Such behavior is especially probable for small samples, similar to the one in WLM (the
only representative of the discussed class of samples in this work). Determinations based on
small samples may be particularly biased by a random fluctuation of the density of stars in the
CMD that may produce narrow and prominent peaks in the luminosity function. The Gaussian
component tends to pick up such a peak and leaves the residual luminosity function to be
covered by the quadratic component. In such a case the determination is still useful (especially
when we do not have any better way to deal with the problem) but the corresponding statistical
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Galaxy ID < J0 >JAGB δJAGB sample size E(B − V ) Reddening source
[mag] [mag] [mag]

LMC 12.265 0.010 8902 0.139 Górski et al. (2020)
SMC 12.776 0.012 1241 0.089 Górski et al. (2020)

NGC 6822 17.031 0.037 208, 233 0.356 Gieren et al. (2006)
M33 18.356 0.064 616 0.19 Gieren et al. (2013)

WLM 18.742 0.080 85, 99 0.082 Gieren et al. (2008)
NGC 3109 19.305 0.046 274 0.087 Soszyński et al. (2006)
NGC 55 20.145 0.019 1525, 1491 0.127 Gieren et al. (2008)
NGC 300 20.257 0.063 98, 73 0.096 Gieren et al. (2005)
NGC 247 21.194 0.023 1887 0.18 Gieren et al. (2009)
NGC 7793 21.489 0.027 1594 0.08 Zgirski et al. (2017)

Table 3: Summary of the mean values of the J− band magnitude of the Region J Asymptotic
Giant Branch (JAGB) stars for all analyzed galaxies. The table contains the mean unreddened
magnitudes obtained with the profile fit, and their corresponding statistical uncertainties as
obtained from bootstrapping - < J0 >JAGB and δJAGB, respectively (in mag). Sizes of samples
of carbon stars are denoted in the next column (two values are present when two photometric
epochs were available - a simple average of mean < J0 > was taken then). The table also includes
E(B−V ) selective extinctions used to deredden the data for each galaxy taken from our previous
papers that reported multi-band Cepheid distances. The dereddening for the Magellanic Clouds
was done using the Górski et al. (2020) reddening maps based on the E(B − V ) grid values.
Means of values corresponding to the used fields of Kato et al. (2007) IRSF photometric maps
were used (with each photometric field dereddened separately).

uncertainty estimated using bootstrapping will be larger. The obtained σ is of no use in such
a case, as it is artificially underestimated (see Figure 13).

Having a well and uniformly defined and calibrated method, determinations of distances for
the sample of nearby galaxies are straightforward. All determinations and diagnostic plots for
all studied galaxies are available at my web page: https://users.camk.edu.pl/bzgirski/
jagb.html. I present plots for only a few exemplary cases in the thesis directly. Table 3 presents
determinations of mean values of J−band magnitudes of carbon stars in a given population.

Statistical uncertainties (i.e., precision) of determinations were estimated using bootstrap
simulations by creating distributions of possible < J0 > results and calculating their standard
deviations. Table 3 and Figure 14 give an insight into how the precision of determinations
depends on sizes of samples of carbon stars in a given population. One can easily see that
for samples having sizes of the order of 103, we obtain the expected precision of distance
determination of about 1% (∼ 0.02mag), while for samples having slightly less than 100 stars
the average precision decreases to around 3% (∼ 0.07mag). As it can be appreciated, the vast
majority of these distributions are of a Gaussian-like shape, with one exception of the M 33
galaxy (Figure 15). The distribution of possible values of the mean magnitude is apparently
a superposition of the two normal distributions having different standard deviations and mean
values here. This is related to the noisy luminosity function which Gaussian component is
less distinct than the quadratic component. I have calculated the statistical uncertainty in the
previously described way also in this case. Its value, δM33 = 0.064, is much higher than it
would arise from a simple interpolation of the sample size - (mostly Gaussian-like) uncertainty
relation (Figure 14) where the uncertainty for a sample of the same size would be twice smaller.

The systematic error is, as usual, harder to trace. We may recognize some of its important
components - the anchoring distance to the LMC of Pietrzyński et al. (2019) is given with the
total uncertainty of 0.03mag, the calibrating < J0,LMC > determination has the precision of
0.01 mag, and zero points of photometry of the studied galaxies are established with uncer-
tainty up to around 0.04mag. In total, I estimate the systematic error of my JAGB distance
determinations at the level of up to 0.05mag.
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Figure 13: Determination of the mean value of the J−band magnitude of carbon stars from the
WLM galaxy together with the luminosity function of its carbon stars separated into the two
components. The narrow Gaussian component is due to the random fluctuation of the density
of carbon stars in the CMD for this particularly small sample. The residual, ’clean’ luminosity
function obtained by subtracting the quadratic component from the empirical distribution is
denoted in orange.
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Figure 14: The precision of the JAGB method. Statistical error of < J0 > determination as a
function of sample size for all studied galaxies except the calibrating LMC. Each uncertainty
was calculated as rms of distribution of possible outcomes derived using bootstrap simulations.
The horizontal axis is in the logarithmic scale. The M 33 sample is peculiar as its distribution
of possible outcomes of < J0 > is not Gaussian, with two prominent peaks.
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Figure 15: Determination of the mean value of the J−band magnitude of carbon stars from
M 33 together with the distribution of possible results modeled using bootstrapping, and the
luminosity function of its carbon stars split into the two components. The sample corresponding
to M 33 is a peculiar and unique case among all studied samples because of its non-Gaussian,
non-symmetric distribution of possible < J0,M33 >. It is also characterized by a noisy luminosity
function with an apparent local minimum, distinct faint continuum, and thus a relatively large
quadratic component.
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Galaxy ID µ0,JAGB µ0,CEP µ0,EB δJAGB δCEP δEB

[mag] [mag] [mag] [mag] [mag] [mag]
SMC 18.988 (...) 18.977 0.012 (...) 0.016

NGC 6822 23.243 23.289 (...) 0.037 0.021 (...)
M33 24.568 24.60 (...) 0.064 0.03 (...)

WLM 24.954 24.901 (...) 0.08 0.042 (...)
NGC 3109 25.517 25.548 (...) 0.046 0.024 (...)
NGC 55 26.357 26.411 (...) 0.019 0.037 (...)
NGC 300 26.469 26.344 (...) 0.063 0.04 (...)
NGC 247 27.406 27.621 (...) 0.023 0.036 (...)
NGC 7793 27.701 27.65 (...) 0.027 0.04 (...)

Table 4: Summary of distance moduli obtained in this work, and their comparison to the
corresponding Cepheid distances. Distance moduli resulting from JAGB determinations using
the profile fit, determined using the Leavitt law for Cepheids, and their corresponding errors are
denoted by µ0,JAGB, µ0,CEP, δJAGB, and δCEP, respectively (in mag). The table also includes
the SMC distance µEB ± δEB from eclipsing binaries (Graczyk et al., 2020). All uncertainties
are statistical. Table adapted from Zgirski et al. (2021).

The ultimate test of the method is a comparison of results it yields with those obtained using
Cepheids. Table 4 and Figure 16 compare results obtained using the two methods. The agree-
ment between them is excellent – apart from NGC 247 where the two determinations deviate by
more than 0.2mag. The difference can only be explained by an unrecognized systematic error.
However, both determinations were performed using the same photometric data and they are
anchored to the same LMC distance. The possible non-vanishing component of the systematic
error may be associated with the unusual shape of the luminosity function of carbon stars from
this galaxy. Indeed, a prominent faint wing is visible in the luminosity function (Figure 17).
The distribution is similar to the one of M 33 and the quadratic component is particularly large
because of that. A possible solution may include the assumption of a different profile (e.g.,
having an exponential instead of the quadratic component). My investigation in this direction
has not lead to any definitive solution. Another possible source of error might be associated
with crowding. However, after performing determinations for fields of the same galaxy with
different source densities, I obtained results that are coherent, given the J−band magnitude
zero point uncertainty (tests were performed for NGC 7793, NGC 55, and NGC 247). Also,
Bresolin et al. (2005) showed that the influence of blending on the distance to NGC 300 using
Cepheids should be smaller than 0.04mag; Cepheids populate similar areas of this galaxy as
carbon stars. The reason for the significant deviation between the two methods in the case of
NGC 247 is thus unsolved.

Finally, we obtain the mean deviation and rms scatter between the two distance determina-
tion methods. After rejecting NGC 247, we obtain a mean difference of 0.01mag with an rms
scatter of 0.06mag. If we keep the outlying galaxy, the mean deviation is −0.02mag and the
rms scatter increases to 0.09mag - which still indicates an excellent general agreement between
the two methods.

3.4 Summary, prospects and challenges for the future
The statistical method of distance determinations using NIR photometry of carbon stars is a
very promising one. Being as bright in the J−band as classical Cepheids with periods of around
20 days, JAGB stars provide an excellent tool to determine distances to Supernova host galaxies
at distances up to around 50 Mpc. Carbon stars allow checking calibrations of other methods
from the cosmic distance ladder and tracing geometrical structures of nearby galaxies.

Just single-epoch photometry is needed for precision determinations of distances, with sta-
tistical uncertainties compared to those associated with determinations based on Cepheids. No
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Figure 16: Comparison between distances obtained based on the JAGB and multi-band PL
relations for Cepheids. The black line represents 1-1 relations. The lower panel presents dif-
ferences between the Cepheid distances and the JAGB distances. The red dot corresponding
to the SMC is an exception here as it depicts a difference between the JAGB distance and the
distance of Graczyk et al. (2020) derived using detached eclipsing binaries.
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Figure 17: Determination of the mean value of the J−band magnitude of carbons stars from
NGC 247. The luminosity function of carbon stars from NGC 247 with its two components and
the residual distribution (in orange). The prominent contamination from the faint side of the
peak is apparent.
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period determinations12 are needed as we are in fact dealing with color-luminosity relations
(Weinberg & Nikolaev, 2001).

The calibration of the JAGB method gives very satisfying results that are in agreement with
distances obtained using multi-band PL relations for classical Cepheids. Further research can
only improve the method. Especially questions like the influence of metallicity or star formation
history on absolute magnitudes of carbon stars should be answered. As it is now, the method
also relies on external determinations of the reddening. Even though the K−band magnitude of
carbon stars is no longer constant for different colors (see Figure 7), a smart generalization and
extension of the method on the other bands (both NIR and optical) could allow for multi-band
solutions, similar to those based on classical Cepheids (e.g., Zgirski et al. 2017), that serve both
as distance and reddening determinants. Such a multi-band solution would be qualitatively
more challenging for carbon stars.

The method proposed here works for JAGB samples of size large enough to model the course
of the luminosity function using the profile fit (having the modeled uncertainty of the mean
JAGB magnitude of about 0.07mag for samples of ∼ 100 in size). Statistics like arithmetic
mean may be in principle calculated for samples having just a few stars (e.g., Freedman &
Madore 2020). Even though in such a case the theoretical statistical uncertainty could take
the form of δ = σ/

√
N , which is of the same order as in the case of my method for samples 10

times larger13. However, this reasoning does not take into account possible errors committed
through the selection of the sample itself. It neglects the non-uniformity of the sample-selection
criterion (we should underline especially the value of the center of the sample-selection box
that is even more important when the apparent peak of the luminosity function of carbon stars
is vague). It also does not take into account errors associated with the contamination with
background galaxies which is especially hard to subtract from samples of small sizes. It is even
more applicable to samples that correspond to galaxies that lie at the edge of our (present and
future) photometric ranges.

Ripoche et al. (2020) and Lee et al. (2021) also studied luminosity functions of carbon stars in
our Galaxy using GAIA Data Release 2 (DR2) (Luri et al., 2018) and EDR3 (Bailer-Jones et al.,
2021) parallaxes and resulting distances, respectively. While Ripoche et al. obtained MJ,MW =
−5.601 ± 0.026(stat.) mag, Lee et al. got MJ,MW = −6.14 ± 0.05(stat.)±0.11(syst.) mag.
The determined σ scatters of the luminosity functions were determined to be of the order
of 0.6 − 0.7mag. The discrepancy between the two results and the relatively large scatters
of both luminosity functions have been attributed to the large parallax errors associated with
particularly red and luminous carbon stars. Better Galactic calibrations of carbon stars will be
available together with the publication of GAIA DR4 (Lee et al., 2021) that originally was meant
to appear in 2022 but was recently postponed to a yet unknown date. Analysis of carbon stars
from our Galaxy could be particularly important for the analysis of the luminosity-metallicity
dependence for these stars.

The first, provisional, calibration of the method for the F110W filter of the Hubble Space
Telescope (HST) was recently published by Madore et al. (2021). The authors calibrated the
central14 absolute magnitude of JAGB in the F110W filter based on archival data and confirmed
a good agreement of the method with TRGB15, estimating that both methods provide the
precision of 3%. The calibration may be particularly useful as it allows utilization of the
archival data collected using the F110W filter of the HST.

With the advent of the new generation of telescopes such as the Extremely Large Telescope
and the James Webb Space Telescope, the method may reach distances of even 50−60Mpc, which
would allow determining distances to Supernova host galaxies, and calibrate H0 independently.

12In the case of carbon Miras, which constitute a part of the JAGB population, the standard approach would
be to use their PL relations. However, periods of such stars are relatively long. Their determination requires
uniform-coverage photometry taken throughout time intervals of more than 100 days.

13Taking the fiducial σ = 0.2 mag from the SMC, we obtain the statistical error δ = 0.02 mag for a sample
having 100 stars, and δ = 0.06 mag for 10 stars using this kind of reasoning.

14Authors calibrated the absolute magnitude using modal value and determined distances based on arithmetic
mean and median values of luminosity functions.

15The zero point of that calibration is tied to TRGB distances.
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Therefore, carbon stars may help to settle one of the fundamental controversies of modern
astronomy - the Hubble tension.
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4 Determinations of distances using RR Lyrae stars
4.1 RR Lyrae stars as pulsating variables
RR Lyrae stars constitute one of the best studied variable stars (Bhardwaj, 2020). They were
discovered by Wilhelmina Fleming in a Galactic globular cluster M 3 and reported in the work of
Pickering (1889). Furthermore, the team of Edward Pickering found many stars of this type in
different Galactic globular clusters in the 1890s. It was also Wilhelmina Fleming who discovered
the variability of the prototype and the brightest star of the class – the star RR Lyrae in the
Lyra constellation that has been apparently indistinguishable from the cluster-type variables
(Pickering et al., 1901). Bailey (1902) divided these variables into three subclasses – a, b, and
c – based on the shapes of their light curves, amplitudes, and periods.

Theoretical advances were achieved in parallel to the observational discoveries. At first,
the variability of these stars was explained by eclipses in a binary system, even though their
light curves were very different from that of Algol, which was already a confirmed spectroscopic
binary in the early 20th century. Martin & Plummer (1915) proposed to explain the variability
of the RR Lyrae type stars by pulsations after studying the changes of their radial velocities.
Ritter (1879) showed that the pulsation period of an adiabatically-pulsating, homogeneous
sphere is inversely proportional to the square root of its density (the pulsation equation):

P =
Q
√
ρ

(4)

where Q is called the pulsation constant, P and ρ are the pulsation period and the stellar
density, respectively. However, it was Eddington (1918, 1919, 1926) who showed that the
adiabatic radial pulsations are adequate to describe the behavior of real stars. The period-
luminosity-color (PLC) relation results from the pulsation equation when we assume the stellar
black-body radiation that yields the applicability of the Stefan-Boltzmann law16:

logP +
1

2
log g + log T + 0.1(Mbol −Mbol⊙) = logQ′ (5)

where g is the gravity at the stellar surface, T the effective temperature, Mbol the bolometric
absolute magnitude, and Mbol⊙ the solar absolute bolometric magnitude. The stellar color,
expressed as a color index, depends on the stellar temperature and gravity.

The model of a radially-pulsating star requires a mechanism that allows to sustain pulsa-
tions. The dissipation of energy of pulsations must be balanced by the energy released in the
stellar interior and transported through the star by the radiative flux. We distinguish two pul-
sating mechanisms that are associated with opacity – the κ mechanism (dominating) and the
γ mechanism. The radiative flux is inversely proportional to the opacity (κ). Usually, for the
regular bound-free and free-free transitions, the opacity decreases with the rising temperature
(Kramers’ law, κ ∝ T−7/2): The contraction of a star results in a higher temperature, which
yields larger radiative flux across the star that transports more energy from the stellar interior.
In the expansion phase, the opposite will happen. Neither energy is accumulated in the con-
traction phase, nor it is released in the expansion phase. Pulsations cannot be sustained in such
a situation. However, the temperature derivative of the opacity switches its sign (the κ mecha-
nism) in stellar layers with the partial ionization of hydrogen or helium; T ≈ 104 K – ionization
of hydrogen (H II) and the first ionization of helium (He II), 5× 104 K – the second ionization
of helium (He III). It is associated with the fact that atoms on higher energy levels have smaller
energetic distances between the subsequent levels and absorb more radiation. More energy is
absorbed because of the ongoing ionization as well. The partially-ionized zone has a larger
opacity than the neighboring non-ionized and fully-ionized zones. Gas in the partially-ionized

16Given that ρ is the mean stellar density, then log ρ = log g − log (GR) (G - the universal gravitational
constant, R - stellar radius). According to the Stefan-Boltzmann law: logR = 1

2
logL− 1

2
log (4πσ)− 2 log T (σ

- the Stefan-Boltzmann constant). Additionally, −2.5 logL/L⊙ = Mbol −Mbol,⊙ (L - stellar luminosity).
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layer also has a lower value of the adiabatic index (γ) than in the two neighboring layers17.
Thus, contraction of the star will result in a lower increase of temperature in the partially-
ionized zone than in the two adjacent zones, and the opacity change will also be lower there
(γ mechanism)18. The two mechanisms yield energy accumulation in the partially-ionized zone
in the contraction phase and release of energy during the expansion phase. The occurrence of
pulsations also depends on the location of the partial ionization layer. It can neither be located
too deep (too small oscillation amplitude), nor too shallow (too diluted matter that will not
accumulate a sufficient amount of energy) in the stellar interior. Colder M-type stars can pul-
sate, thanks to the partially-ionized hydrogen, Cepheids and RR Lyrae stars pulsate because of
the layer of the partial second ionization of helium. In the case of hot stars, like β Cephei, the
increase of opacity is caused by metals. Different stellar populations that pulsate due to the
presence of the partial double ionization of the helium layer, occupy the main instability strip
in the Hertzsprung-Russel diagram. RR Lyrae stars are located at the intersection of the strip
with the horizontal branch (see Figure 18).

The instability strip provides an additional bound on the theoretical PLC relation.
According to the contemporary look at RR Lyrae stars (Catelan & Smith, 2015), they have

masses of (∼ 0.5−0.8)M⊙. They are old (with ages above 10Gyr), metal-poor, helium-burning
stars that inhabit the intersection of the horizontal branch and the main instability strip. They
trace the Population II and are found in the bulge, halo, and thick disk of the Galaxy as well as
in globular clusters. Their temperatures are between ∼ 6000K and ∼ 7250K and they pulsate
with periods of 0.2− 1 day.

RR Lyrae stars are nowadays divided into the two main classes depending on the mode of
their radial pulsations (Schwarzschild, 1940): RRab (RR0) – the fundamental-mode pulsators
and RRc (RR1) – the first-overtone pulsators. While RRab stars exhibit ’saw-like’ optical light
curves with a very steep ascending branch and often a bump apparent near the minimum, the
light curves of RRc are more sinusoidal with typically smaller amplitudes and shorter periods.
Rare stars, having both modes excited simultaneously, are known as RRd (RR01). It is still
debated whether stars pulsating in the second-overtone (RRe or RR2) really exist or whether
they are rather first-overtone stars with very short periods (e.g., Kovács 1998, Catelan 2004b).
On the other hand, stars with modes that may be associated with non-radial pulsations (Smolec,
2021) were also reported.

RRab and RRc stars follow different PL relations – the fundamental pulsators are fainter
than the first-overtone pulsators for the same pulsation periods. The first-overtone pulsators
have, on average, lower periods than RRab stars. Therefore, an important task in the analysis
of PL relations of RR Lyrae stars is to properly fundamentalize periods of the first-overtone
pulsators in order to form uniform relations for mixed populations (i.e., including both RRab
and RRc stars) that cover the broadest possible span of periods, which would give smaller
uncertainties of relation parameters. The widely (e.g., Szewczyk et al. 2008, Karczmarek et al.
2015, Karczmarek et al. 2017b, Muraveva et al. 2018, Cusano et al. 2021) accepted canonical
procedure used for the fundamentalization of periods of RRc stars (P1O) is to multiply them
by 100.127 (Iben 1974, it yields the adopted, fixed ratio of periods of RRc and RRab stars:
P1O

PF
≈ 0.7464). The ratio P1O

PF
of periods is shown using the Petersen diagrams (Petersen,

1973) for RRd stars where it is plotted against the fundamental period PF (see Figure 19).
Not only the ratio is different for each star but also the typical, average value for any two
given populations may differ due to environmental effects such as metallicity (Smolec, 2021).
Additionally, groups of RRc and RRd stars with peculiar periods ratios were reported (e.g.,
Netzel & Smolec 2019).

17The partially-ionized zone is effectively in a state of the phase transition where more energy is needed to
increase its temperature by 1K because part of the energy is absorbed by ionization. The adiabatic index, also
known as the heat capacity ratio, depends on specific heat capacities: γ =

cp
cv

= 1+ R
cv

(Mayer’s law) where cp,
cv are the molar specific heat capacities in constant pressure and volume, respectively, and R is the universal
gas constant.

18While the γ mechanism absolutely requires a zone of partial ionization, the κ mechanism works in any case
where the sign of the temperature derivative of opacity changes its sign.
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Figure 18: The Hertzsprung-Russel diagram depicting the location of RR Lyrae stars (’RRL’)
among other populations of pulsating stars. They inhabit the intersection of the instability
strip (’IS’) and the horizontal branch. The zero-age horizontal branch is denoted with ’ZAHB’.
Figure taken from Bhardwaj (2020) (https://arxiv.org/abs/2006.16262).
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Figure 19: The Petersen diagram for RRd stars from the LMC and the SMC. The typical ratio
of first-overtone to fundamental period is slightly different for the two clouds. Image adapted
from Soszyński et al. (2016) (https://arxiv.org/abs/1606.02727).

Some RR Lyrae variables also experience amplitude modulations with periods longer than
those corresponding to the regular pulsation cycle (Blažko, 1907). This so-called Blazhko effect
has been puzzling for more than a century now. Some observational aspects of the effect may
be explained by interactions of the fundamental mode and the 9th overtone of radial pulsations
together with non-radial modes (e.g., Kolláth, Z. 2021). However, the complete explanation of
the effect is still missing.

RR Lyrae stars have played a fundamental role in distance determinations since the study
of Shapley (1918), who used them to determine distances to a number of globular clusters
This contributed to the estimation of the size of the Galaxy and allowed to determine the
location of the sun within the Milky Way. The mean V magnitudes of RR Lyrae stars do
not depend on their periods. Until the mid-20th century, it was believed that they did also
not depend on metallicity. Oosterhoff (1939) divided the Galactic globular clusters into two
types (Oosterhoff types) depending on the mean pulsation period of their RR Lyrae stars.
Metallicities of clusters started to become available in the 1950s, and soon after that, it turned
out that the two Oosterhoff types also correspond to different metallicity groups. Namely,
clusters having RR Lyrae stars with longer average periods are more metal-poor (Oosterhoff-
II type). Sandage(1958, 1981) showed that stars from this group are more luminous than
those from the other one. According to the pulsation equation (4), given constant effective
temperature and mass, stars having longer periods, have lower density and thus larger size,
which translates into their larger luminosities. Sandage (1990) elaborated these considerations
into a linear relationship between the mean V−band magnitude of RR Lyrae stars in a given
population and its metallicity [Fe/H].

Modern distance determinations using RR Lyrae variables are based on two methods. One
of them relies on PL relations that, optionally, may include a dependence on metallicity. This
method is used to determine distances to samples of RR Lyrae stars (i.e., systems containing
RR Lyrae stars), given the relatively large intrinsic spread of relations. The second, geometrical
method of determinations of distances to single pulsating stars, named the Baade-Wesselink
method, is based on their radial velocity curves and changes of their angular diameters derived
from interferometry or photometry.

I present my calibration of both methods for Galactic RR Lyrae stars based on photometric
data from OCA, radial velocities obtained using ESO spectrographs, and GAIA DR3 parallaxes.
All NIR magnitudes are calibrated in the 2MASS system unless explicitly stated otherwise.
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4.2 Near-infrared period-luminosity(-metallicity) relations for RR Lyrae
stars

Longmore et al. (1986) were the first to derive a PL relation for RR Lyrae stars in the K−band.
The relation follows from bolometric corrections in the NIR, which increase with color. The
spread of PL relations in the NIR domain is smaller than for the optical bands. Additionally,
amplitudes of RR Lyrae stars are smaller in the NIR. In principle, it allows to estimate their
mean magnitudes based on just a few photometric epochs. Influence of extinction is also much
lower in the NIR domain. The PLZ relations in the NIR were identified as an excellent tool
for distance determinations to systems containing the old stellar population. Their calibration
has already been studied by various groups, both theoretical (e.g., Bono et al. 2001, Bono et
al. 2003, Catelan et al. 2004c, Marconi et al. 2015) and empirical (e.g., Sollima et al. 2008,
Muraveva et al. 2015, Muraveva et al. 2018, Neeley et al. 2019, Cusano et al. 2021).

Even though RR Lyrae stars are much fainter than classical Cepheids, they are excellent
standard candles to determine distances to nearby galaxies. In particular, they have been
utilized for this purpose by the Araucaria Project as well. Distances to the LMC (Szewczyk
et al., 2008), the SMC (Szewczyk et al., 2009), Carina (Karczmarek et al., 2015), and Fornax
(Karczmarek et al., 2017b) galaxies were determined using NIR PL relations with additional
metallicity corrections, based on some of the calibrations cited above.

In my thesis, I present a new calibration of the JHK PL and PLZ relations for RR Lyrae
stars based on the photometry from the IRIS instrument (gathered specifically for this purpose),
GAIA EDR3 parallaxes (Gaia Collaboration et al., 2021), and the recent metallicity determina-
tions of the Galactic RR Lyrae stars by Crestani et al. (2021) based on high-resolution spectra.
Furthermore, I present new distance determinations to a few nearby galaxies based on the
photometric data from the literature and on my calibration.

4.2.1 Calibration of relations for the Galactic RR Lyrae stars

The NIR photometry from my thesis for 28 RR Lyrae at distances up to 1.5 kpc allowed to
establish well-covered light curves. Using periods found in the literature (The International
Variable Star Index, https://www.aavso.org/vsx/), I have determined mean magnitudes of
these stars fitting (the curve_fit procedure of Virtanen et al. 2020) the Fourier series to the
phased photometry transformed into flux from magnitudes:

Fλ(ϕ) = a0 +

N∑
i=1

[ai sin(2πϕ) + bi cos(2πϕ)] (6)

where F is the modeled stellar flux in a given band λ for a given phase ϕ, and a0 is the
desired mean flux (offset of the series). Then, the mean magnitude is obtained immediately
from the mean flux. The selection of the upper limit N of the sum does not influence the
determination of the mean magnitude for N =2, 3, and 4 (typical differences are of the order
of few thousandths of a magnitude for different N). I adopted N = 2. If there were 5 or
less photometric epochs available, I used simple mean of fluxes instead of the Fourier series fit.
Figure 20 depicts exemplary light curves together with the determined mean magnitudes.

Statistical errors of mean magnitudes were calculated as the mean uncertainty of magnitude
for all epochs divided by the square root of the number of epochs for a given object. For two
stars (HY Com & SS Leo) only single comparison stars were used to standardize the photometry.
Errors of mean magnitudes were adopted as 0.01mag in these two cases.

The interstellar reddening was estimated as in Suchomska et al. (2015), i.e., by integrating
the reddening and assuming the three-dimensional model of the Milky Way by Drimmel &
Spergel (2001), and total galactic reddening in a given direction from Schlafly & Finkbeiner
(2011). Table 5 includes all derived mean magnitudes and reddening values. Extinctions cor-
responding to the three NIR bands were calculated from E(B − V ) assuming ratios of total-
to-selective extinctions from Cardelli et al. (1989) (as in Table 1, with the additional value
AH

AV
= 0.180) and adopting RV = 3.1.
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ID type < J > < H > < K > P E(B − V )
[mag] [mag] [mag] [days] [mag]

AE Boo RRc 9.934± 0.005 9.759± 0.005 9.729± 0.005 0.31489 0.023
AN Ser RRab 10.061± 0.005 9.877± 0.005 9.786± 0.005 0.52207 0.036
BB Eri RRab 10.543± 0.005 10.298± 0.005 10.221± 0.005 0.56991 0.043
DX Del RRab 8.901± 0.012 8.696± 0.013 8.648± 0.019 0.47262 0.079
EV Psc RRc 9.854± 0.005 9.662± 0.005 9.630± 0.005 0.30626 0.030
FW Lup RRab 7.994± 0.005 - 7.718± 0.005 0.48417 0.062
HY Com RRc 9.692± 0.010 9.563± 0.010 9.426± 0.010 0.44859 0.024
IK Hya RRab 9.088± 0.008 8.851± 0.005 8.781± 0.005 0.65032 0.055
MT Tel RRc 8.321± 0.005 8.148± 0.005 8.111± 0.005 0.31690 0.034
RR Leo RRab 10.081± 0.008 9.795± 0.007 9.768± 0.010 0.45240 0.035
RU Psc RRc 9.347± 0.020 9.112± 0.020 9.109± 0.024 0.39038 0.039
RV Cet RRab 9.975± 0.006 9.774± 0.007 9.672± 0.005 0.62341 0.027
RX Eri RRab 8.702± 0.005 8.452± 0.005 8.358± 0.005 0.58725 0.053
RY Col RRab 10.193± 0.025 9.987± 0.015 9.913± 0.020 0.47884 0.025
SS Leo RRab 10.212± 0.010 9.967± 0.010 9.924± 0.010 0.62634 0.017
SV Eri RRab 8.824± 0.005 8.630± 0.005 8.552± 0.005 0.71388 0.078
SX For RRab 10.163± 0.005 9.965± 0.005 9.856± 0.005 0.60534 0.012
T Sex RRc 9.347± 0.005 9.201± 0.005 9.149± 0.005 0.32470 0.042
U Lep RRab 9.725± 0.005 9.556± 0.005 9.493± 0.005 0.58148 0.029
UU Vir RRab 9.880± 0.010 9.562± 0.005 9.528± 0.005 0.47561 0.016

V467 Cen RRab 9.522± 0.005 9.394± 0.005 9.251± 0.005 0.55140 0.050
V675 Sgr RRab 9.281± 0.005 9.034± 0.005 8.989± 0.005 0.64229 0.089
V753 Cen RRc 9.769± 0.005 9.664± 0.005 9.608± 0.005 0.22135 0.147

V Ind RRab 9.114± 0.005 8.928± 0.005 8.875± 0.005 0.47960 0.04
WY Ant RRab 9.835± 0.005 9.710± 0.005 9.653± 0.005 0.57434 0.055
WZ Hya RRab 9.920± 0.005 9.695± 0.005 9.630± 0.005 0.53772 0.069

X Ari RRab 8.267± 0.005 8.052± 0.005 7.903± 0.005 0.65118 0.158
XZ Gru RRab 9.713± 0.005 9.440± 0.005 9.369± 0.005 0.88310 0.010
median 0.52990 0.040

Table 5: Apparent (reddened) mean magnitudes of RR Lyrae stars observed with IRIS in JHK
together with their pulsation periods (from AAVSO VSX). Extinctions were estimated using
the Milky Way model by Drimmel & Spergel (2001) and the extinction maps from Schlafly
& Finkbeiner (2011). Statistical uncertainties are calculated as standard errors of the mean
from mean statistical uncertainties of single photometric measurements for a given star. Errors
smaller than 0.005 mag were rejected, and this value was fixed instead due to the uncertainty
associated with the choice of Fourier series’ order. The contribution of the photometric errors
to the final uncertainties of the derived parameters of PL and PLZ relations is much smaller
than the components related to uncertainties of stellar parallaxes.
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Figure 20: Light curves of RX Eri in JHK obtained from IRIS together with the mean mag-
nitudes determined using the Fourier series fits.

Absolute magnitudes of RR Lyrae stars from my sample were derived from the apparent
magnitudes using four different approaches:

• parallaxes are inserted directly into the definition of the distance modulus, yielding the
absolute magnitude M = m+ 5 logϖ+ 5 (M is the absolute and m the apparent magni-
tude, ϖ is the parallax in arcsec; a linear least-squares PL fit is applied)

• using distances of Bailer-Jones et al. (2021) derived from GAIA parallaxes using direction-
dependent priors on distance (geometric distances), M = m− 5 log r + 5 (r - distance in
pc; a linear least-squares PL fit)

• as above, but using distance priors dependent on direction, colors, and apparent magni-
tudes of stars (photo-geometric distances)

• using the Astrometry-Based Luminosity (Arenou & Luri, 1999), a quantity that is directly
proportional to the parallax (a non-linear least-squares fit)

Linear least-squares fits were performed using linregress and non-linear least-squares fits
using the curve_fit functions of SciPy (Virtanen et al., 2020). I used parallaxes from GAIA
EDR3 (Gaia Collaboration et al., 2021) after applying corrections of Lindegren et al. (2021).
Bailer-Jones et al. (2021) already took into account these corrections. Parallaxes with the renor-
malized unit weight error for astrometry ruwe > 1.4 and the level of asymmetry of a source
in the GAIA image ipd_gof_harmonic_amplitude > 0.1 in order to avoid resolved binaries
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Figure 21: Location of 28 RR Lyrae stars in the Galactic coordinate system used to estab-
lish PLZ relations; their distances from GAIA EDR3 are indicated by colors. Due to the
location of IRIS near the Tropic of Capricorn there is an inhomogeneity in the distribution
of sources on the largest scale. Background image ’The colour of the sky from Gaia’s Early
Data Release 3’: https://www.esa.int/ESA_Multimedia/Images/2020/12/The_colour_of_
the_sky_from_Gaia_s_Early_Data_Release_3.

(Fabricius et al., 2021). No star was rejected after applying this criterion.

In cases of linear fits, I simply fit a PL relation:

Mλ(P ) = a(logP − logP0) + b (7)
where λ denotes dependence on the photometric band, P is period in days, P0 is the pivot

period value chosen to minimize uncertainties of the fitted b (the intersection) and also minimize
the correlation between the intersection b and the slope a. I have selected logP0 = −0.25, which
is close to the median for the whole studied sample of RR Lyrae.

We assume a Gaussian distributions of parallax errors. Instead of fitting a relation between
the absolute magnitude derived from parallaxes and periods, we may use a quantity that is
directly proportional to the parallax - the Astrometry-Based Luminosity (ABL, Arenou & Luri
1999):

aλ := 100.2Mλ = ϖ10
mλ+5

5 (8)
Such an approach, recently applied by Breuval et al. (2021) for PL relations for classical

Cepheids derived from GAIA EDR3 parallaxes, has the advantage of minimizing the Lutz-
Kelker bias. Its uncertainty, dominated by the parallax component, is practically symmetric.
The ABL is an asymptotically unbiased estimator as the higher number of stars used for the
fit allows obtaining better precision of the mean values derived using it. Assuming the linear
relation between the absolute magnitude and logarithm of the pulsation period, I fit the relation:
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Figure 22: The distribution of pulsation periods of all stars from my sample. P is in days.

aλ(P ) = 100.2[a(logP−logP0)+b] (9)
Table 6 includes slopes and intersections of PL relations established using the four methods.

JHK relations were obtained using dereddened photometry and WJK relations using original
apparent magnitudes that were not dereddened. While results obtained from linear fits give
practically the same results, the ABL usually yields expected values of parameters that deviate
from them slightly (but not significantly in the statistical sense, given the uncertainties of fits).
Figures 23 and 24 show PL relations fitted using photo-geometric distances of Bailer-Jones et
al. (linear fit) and the ABL (exponential fit), respectively. 28 stars were used to establish PL
relations in the J ,K−bands and in the WJK Wesenheit index19. In the case of the H−band, 27
stars were used (without FW Lup whose IRIS H photometry is not available due to its too large
brightness and the fact that the IRIS camera is most sensitive in this band). Fits are divided
into three subsamples of the Galactic RR Lyrae stars: RRab and RRc (with fundamentalized
periods) type stars, and a sample corresponding to the mixed population (RRab+RRc). Periods
of RRc stars were fundamentalized so that logarithms of their periods were shifted by +0.127
following Iben (1974). All approaches give results that are in very good agreement with each
other. The studied stars lie at distances up to 1.5 kpc and their GAIA parallaxes are sufficiently
precise so that the simplest approach gives results that agree with those obtained from more
sophisticated procedures.

One can easily see (Figures 23 and 24) that RRab and RRc samples follow slightly different
PL relations. While in the case of the J−band it can be argued that these relations have
even a different slope, all RRc relations are shifted towards brighter magnitudes (or lower
periods) compared to RRab relations. This can be associated with the adopted non-optimal
period fundamentalization shift value. Therefore, one should be careful when using fiducial PL
relations for the mixed population. It is also visible through the rms scatter of residuals of the
fits for a mixed population compared to those derived separately for each of the populations
(written in Figures 23 and 24). On the other hand, the fit based on the mixed population
provides lower uncertainties of the derived parameters (Table 6) because of the larger span of
periods used in the fit. This will be also the case for relations that include metallicity.

19The Wesenheit index, originally introduced by Madore (1982) for optical bands, is a linear combination of
a magnitude and color that is reddening-free. In this case: WJK = K − 0.69(J − K). The vector [0.69, 1]
is parallel to the reddening vector [E(J − K), AK ] in the K vs. (J − K) CMD. Thus, the extinction in K is
compensated by the subtraction of reddening for (J−K) color that is multiplied by the ratio of total-to-selective
extinction AK/E(J −K).
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Although two points corresponding to the RRab stars UU Vir and XZ Gru are outliers in
the PL relation for the J−band, there is no reason to reject them. UU Vir has a large parallax
error, and XZ Gru has the longest pulsation period among all studied stars. Their deviation
from the fitted relation is smaller at longer wavelengths and, especially, in the reddening-free
WJK Wesenheit index, which suggests that their reddening may be underestimated. The formal
E(B − V ) errors given in Schlafly & Finkbeiner (2011) (recalibration of Schlegel et al. 1998)
are only 0.0004mag for UU Vir and 0.0006mag for XZ Gru.

The uncertainties of the fitted parameters are the errors of the slope and the intersection
of the linear least-squares fits. In the case of the non-linear fit, they are estimated using the
Levenberg-Marquardt algorithm (Virtanen et al., 2020). Error bars corresponding to points in
Figures 23 and 24 are associated with parallax and statistical photometric errors only (where
the parallax error is the dominating component). The uncertainties of reddening (uncertainties
reported in the literature are usually underestimated) are not included in the error budget.
The influence of extinction is minimized in the NIR domain (mean extinction values for stars
from my sample are 0.046 mag, 0.029 mag, and 0.019 mag for J , H, and K, respectively). I
traced the propagation of quantified uncertainties and their influence on the uncertainties of
the fitted parameters using Monte Carlo simulations. Figure 25 depicts the propagation and
the influence of photometric and parallax errors on the uncertainties of the fitted components
independently for the Wesenheit WJK index. The influence of photometric uncertainties is
negligible compared to the influence of parallax errors. The propagation of these two error
components does not recreate real uncertainties of the parameters mostly because physical
properties of RR Lyrae stars having the same pulsation periods are in general different due
to the finite width of the instability strip. Therefore, I adopted uncertainties obtained in the
fitting process. The zero point uncertainty of the IRIS photometry (0.002mag) is negligible
compared to the uncertainties of the intersections of the PL relations (≥ 0.02mag).

Although all methods of the establishment of PL relations give consistent, almost identical
results with very similar uncertainties (especially for the three approaches based on linear
least-squares fits), it is the photo-geometric distance of Bailer-Jones et al. and the linear least-
squares fit that formally yield the lowest values for the uncertainties of the fitted parameters.
I will further use it to establish PLZ relations. I will also use the ABL fit for the purpose of
comparison. Table 7 contains the GAIA EDR3 parallaxes, photo-geometric distances (Bailer-
Jones et al.), and metallicities of Crestani et al. (2021) for stars from my sample.

PLZ relations have a form similar to that of PL relations, with one additional term:

Mλ (P, [Fe/H]) = a(logP − logP0) + b+ c ([Fe/H]− [Fe/H]0) (10)

where c is the additional fitted metallicity parameter and [Fe/H]0 is the pivot metallicity
value that I selected as −1.5 dex. This value is close to the median metallicity of −1.62dex of
the sample.

Alternatively, one may also generalize the ABL to include the metallicity dependence:

aλ(P, [Fe/H]) = 100.2[a(logP−logP0)+b+c([Fe/H]−[Fe/H]0)] (11)

In order to fit planes to three-dimensional data sets, I have used once again the curve_fit
procedure based on the Levenberg–Marquardt least-squares algorithm that provides uncertain-
ties for the three fitted parameters.

Table 8 includes fitted parameters of PLZ relations together with their uncertainties. Sam-
ples of 23 stars were used in the case of J and K and the WJK index, while 22 stars were used
for the H− band. Obviously, results obtained using both the photo-geometric distances and
the ABL approach are virtually identical. The parameters of relations obtained for the mixed
population have smaller uncertainties than those corresponding to the population of fundamen-
tal pulsators. Figure 27 depicts the three-dimensional PLZ space with the fitted relation for
an exemplary case of the K−band. In a two-dimensional plane, it is better to visualize the
fit by plotting residuals. Figures 28 & 29 include residuals of fits plotted against metallicities
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Figure 23: PL relations in JHK and the WJK index based on photo-geometric distances of
Bailer-Jones et al. (2021). RRab stars and the corresponding relation are denoted in green. RRc
stars with fundamentalized periods and their relation are marked in orange. The red dashed
line depicts the relation for the mixed population of all stars. Non-symmetric error bars (Bailer-
Jones et al. give upper and lower 1σ distances) of absolute magnitudes correspond to a propa-
gation of the parallax error (dominating) and of the photometric error: σM =

√(
5 σr

rln10

)2
+ σ2

m

with ln being the natural logarithm.
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Figure 24: Same as Figure 23 but fitted using the ABL. The error bars of absolute magnitudes
correspond to the propagation of the parallax error (dominating) and of the photometric error:
σM =

√(
5 σϖ

ϖln10

)2
+ σ2

m with ln being the natural logarithm.
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Figure 25: Monte Carlo simulations of the independent influences of photometric and parallax
errors as the specific components of uncertainties of the fitted parameters. The distributions
depict the most probable values of parameters while varying the parallax and the apparent
Wesenheit index value for each star, assuming Gaussian distributions of parallax and magni-
tude. In both cases, the fits were performed 5000 times for randomly drawn magnitudes and
parallaxes. The total error is the square root of the sum of squares of all components. The
contribution of the photometric error to the total error budget is negligible compared to the
parallax error. The real uncertainties of fitted parameters are larger, mostly due to the intrinsic
spread of RR Lyrae stars in the instability strip.
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ID type ϖ r (photo-geo) [Fe/H]
[mas] [pc] [dex]

AE Boo RRc 1.143± 0.019 874+14
−16 −1.62± 0.08

AN Ser RRab 1.026± 0.022 976+19
−20 0.05± 0.10

BB Eri RRab 0.722± 0.024 1370+40
−56 −1.66± 0.040

DX Del RRab 1.758± 0.015 567+5
−4 −0.19± 0.050

EV Psc RRc 1.133± 0.03 883+28
−22 −

FW Lup RRab 2.800± 0.017 357+2
−2 −0.17± 0.02

HY Com RRc 0.990± 0.019 1006+18
−20 −1.75± 0.02

IK Hya RRab 1.299± 0.023 774+16
−15 −2.54± 0.08

MT Tel RRc 2.070± 0.030 482+6
−6 −2.58± 0.14

RR Leo RRab 1.084± 0.025 920+23
−25 −1.58± 0.08

RU Psc RRc 1.278± 0.029 779+20
−16 −

RV Cet RRab 0.976± 0.018 1023+15
−17 −1.5± 0.02

RX Eri RRab 1.723± 0.023 585+7
−7 −1.45± 0.15

RY Col RRab 0.993± 0.016 1005+14
−15 −1.21± 0.02

SS Leo RRab 0.795± 0.025 1261+45
−36 −1.8± 0.10

SV Eri RRab 1.361± 0.024 733+12
−10 −2.22± 0.02

SX For RRab 0.868± 0.015 1141+14
−16 −2.2± 0.02

T Sex RRc 1.340± 0.023 740+11
−9 −1.52± 0.03

U Lep RRab 0.989± 0.017 1014+16
−16 −1.81± 0.17

UU Vir RRab 1.281± 0.047 786+32
−33 −

V467 Cen RRab 1.255± 0.023 808+14
−13 −

V675 Sgr RRab 1.199± 0.019 829+13
−9 −2.47± 0.02

V753 Cen RRc 1.436± 0.014 696+8
−5 −0.56± 0.04

V Ind RRab 1.506± 0.019 666+9
−8 −1.62± 0.01

WY Ant RRab 0.979± 0.021 1032+25
−16 −1.6± 0.15

WZ Hya RRab 1.029± 0.016 974+15
−15 −1.48± 0.02

X Ari RRab 1.869± 0.019 534+5
−5 −2.53± 0.08

XZ Gru RRab 0.870± 0.018 1150+17
−23 −

median 1.28 874 −1.62

Table 7: Parallaxes ϖ from GAIA EDR3 (Gaia Collaboration et al., 2021) for Galactic RR Lyrae
stars from my sample corrected with the Lindegren et al. (2021) corrections. Photo-geometric
distances r were taken from Bailer-Jones et al. (2021), metallicities [Fe/H] come from Crestani
et al. (2021).
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Figure 26: The distribution of metallicities for stars from my sample. Metallicities were adopted
from Crestani et al. (2021).

with periods denoted using color maps. The fitted relations indicate smaller metallicity depen-
dence than in the theoretical works of Bono et al. (2001) (0.17mag/dex in K), Catelan et al.
(2004c) (0.17 − 0.19)mag/dex for JHK), and Marconi et al. (2015) (0.15 − 0.18mag/dex for
JK, with lower values corresponding to the RRc stars). However, given the uncertainties of
∼ 0.03mag/dex, as seen in Table 8, they are still in agreement at least for the mixed population
RRab+RRc. Metallicity terms found by me for the population of fundamental pulsators are
smaller but they agree with those determined for the mixed population. On the other hand,
empirical calibrations usually give smaller dependence on metallicity20, in a very good agree-
ment with values reported in this work. Sollima et al. (2006) obtained (0.08 ± 0.11)mag/dex
for the K−band. Muraveva et al. (2015) got (0.03 ± 0.07)mag/dex for the LMC, explaining
the especially low parameter value by a narrow span of metallicities of RR Lyrae stars in that
galaxy. They reported (0.07 ± 0.04)mag/dex for the Galactic RR Lyrae stars in the same
work. Cusano et al. (2021), who utilized the photometry of the Vista Magellanic Cloud Survey
(VMC), report the effect of 0.095 ± 0.004mag/dex and 0.121 ± 0.004mag/dex for the mixed
and the RRab populations in J (and virtually the same in the K−band), respectively.

In addition to the reported statistical uncertainties of PL and PLZ relation intersections,
we are also dealing with their systematic uncertainties associated mainly with the uncertainty
of the zero points of GAIA EDR3 parallaxes. I will discuss this issue to another subsection.

In the following subsection, I will compare my calibrations with those obtained previously
by others. I will also determine distances to a few nearby galaxies using photometry available
in the literature.

4.2.2 Comparison with other calibrations

When it comes to accurate distance determinations using PL or PLZ relations for RR Lyrae
stars (or pulsating stars in general), the most important challenge is to define accurately the
zero point of a calibration. It is especially challenging to estimate the uncertainty of the zero
point of calibration that is associated with the elusive systematic errors. This is why we should
compare our calibrations with others, especially those obtained using independent, alternative
methods. In this subsection, I am comparing my results with calibrations derived in the last

20Calibrations without distinction between populations of fundamental and first-overtone pulsators are given
for the mixed population of RRab+RRc with the applied fundamentalization procedure based on Iben (1974).
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Figure 27: An example of a plane fit; the PLZ relation for the mixed population (RRab+RRc)
in the K−band is based on the photo-geometric distances of Bailer-Jones et al.

Figure 28: Residuals of plane fits for three bands and the Wesenheit index for the mixed
population (RRab+RRc). Dashed lines denote the 2× rms deviation from the model; logP0 =
−0.25 and [Fe/H]0 = −1.5. RRab are depicted as dots, RRc as crosses.
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Figure 29: Same as Figure 28 but for the population of fundamental pulsators (RRab).

years (Muraveva et al. 2015, Muraveva et al. 2018, Neeley et al. 2019 Cusano et al. 2021).
Indirectly, I am comparing my calibration with the older calibrations from the first decade of
the century (Bono et al. 2001, Catelan et al. 2004c, Sollima et al. 2008), as they were utilized, as
a part of the Araucaria Project, for distance determinations to the Magellanic Clouds (Szewczyk
et al. 2008, Szewczyk et al. 2009) and the Fornax and the Carina galaxies (Karczmarek et al.
2015, Karczmarek et al. 2017b) using RR Lyrae PLZ relations (see the next subsection).

Muraveva et al. (2015) established RR Lyrae PLZ relations for the LMC in the VISTA KS–
band21 using the VMC photometry of 70 stars from Cioni et al. (2011). They tied them with two
different anchors. The first one was the very accurate 2% distance to the LMC by Pietrzyński
et al. (2013). In an alternative approach, they assumed the same period and metallicity slopes
of the relations as in the LMC and performed a one-parameter fit to 4 Galactic RR Lyrae stars
having trigonometric parallaxes determined at the HST (Hubble Space Telescope) by Benedict
et al. (2011). Those two zero points do not agree with each other, which may be caused by
the difficulties of the complex analysis of relative parallaxes from the HST. The relation of
Muraveva et al. (2015) based on the anchoring distance of Pietrzyński et al. (2013) is as follows:

MKS
(−2.73± 0.25) logP + (0.03± 0.07)[Fe/H]− (1.06± 0.01) (12)

while the zero point based on the parallaxes of 4 stars by Benedict et al. (2011) is (−1.25±
0.06)mag instead.

At first, we notice that both the period and the metallicity slope are in agreement with
21My K−band relations are calibrated onto the 2MASS KS–band that is shifted by just about 3 − 4mmag

from VISTA KS for the typical color of RR Lyrae stars (Muraveva et al., 2015). For the formal agreement,
I am still converting my photometry to the VISTA system using the transformation equations given at http:
//casu.ast.cam.ac.uk/surveys-projects/vista/technical/photometric-properties (González-Fernández et
al., 2018).
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Figure 30: Residuals of the fit of the zero point of the PLZ relation for the mixed population
of RR Lyrae stars, given the LMC slopes by Muraveva et al. (2015) and the photo-geometric
distances of stars from my sample. The metallicity dependence is still visible due to the ex-
ceptionally low metallicity slope value found by Muraveva et al. for RR Lyrae stars in the
LMC.

those derived in the present study for the K−band and the mixed population. Although the
dependence from metallicity is much smaller in the case of the calibration of Muraveva et al.
(0.03±0.07dex/mag vs. 0.115±0.025dex/mag, see Table 8), the distribution of the differences
between the two may be considered a Gaussian with a mean value of 0.085 dex/mag and a spread
of 0.074 dex/mag. In this sense, the results are consistent within 1.15σ. In order to compare zero
points of our calibrations, I am fixing both slopes and perform a fit of one parameter once again.
The value I obtain is in very good agreement with the calibration of Muraveva et al. based on
the distance to the LMC of Pietrzyński et al. (2013). The ABL fit yields (−1.055± 0.020)mag
while the fit based on the photo geometric distances gives (−1.063 ± 0.020)mag. Besides the
remarkable agreement of these zero points with the LMC-anchored calibration of Muraveva et
al., the two types of fit give extremely similar results when it comes to the determination of the
zero points of the PLZ relations. I will stick to the fits based on the photo-geometric distances
only from now on. Figure 30 depicts residuals of the fit based on the photo-geometric distances.

Muraveva et al. (2015) also presented another calibration based on 23 Galactic RR Lyrae
stars that were used for studies with respect to the Baade-Wesselink (B-W) method (Jones et
al. 1988b, 1992, Fernley et al. 1990b, Liu & Janes 1990a, Cacciari et al. 1992, Skillen et al.
1993, Fernley 1994). They took the photometry and the reddening from Fernley et al. (1998).
Absolute magnitudes of 23 stars (the same sample size as mine) were derived using the B-W
method with the fixed value of p = 1.38. The assumed p value makes the zero point of these
absolute magnitudes arbitrary, as no robust calibration of p− factors for RR Lyrae stars was
performed. Even though the relation is calibrated in the Johnson photometric system, authors
underline the average difference with the 2MASS Ks–band of the order of 0.03mag while the
B-W-based absolute magnitudes have uncertainties of 0.15 − 0.25mag. The Galactic relation
of Muraveva et al. (2015):

MK = (−2.53± 0.36) logP + (0.07± 0.04)[Fe/H]− (0.95± 0.14) (13)

The metallicity dependence is slightly larger now and in better agreement with the value
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Figure 31: Same as Figure 30 but with the Galactic slopes from Muraveva et al. (2015) that were
based on a sample of RR Lyrae stars whose distances were determined by the Baade-Wesselink
method.

derived in this work. However, the zero point uncertainty is much larger compared to the LMC
calibration. Figure 31 presents residuals of the PLZ relation fit for the mixed population of
RR Lyrae stars from my sample with slopes fixed from the Galactic calibration of Muraveva
et al. (2015). The fitted zero point 0.944± 0.018mag is also in excellent agreement despite the
low precision of the Galactic calibration based on the B-W distances.

In their later work, Muraveva et al. (2018) included the zero point of the PLZ relation based
on the GAIA DR2 parallaxes. They used Bayesian modeling, with the parallax offset being
the model’s parameter. The authors found a systematic offset of the GAIA DR2 parallaxes of
−0.054mas in the case of the PLZ relation for the K−band derived from a sample of 400 stars
from the Milky Way. The adopted metallicities of various quality came from different methods.
All these constraints resulted in a distance modulus for the LMC (using the same sample of
RR Lyrae stars from the LMC as in Muraveva et al. 2015) of µLMC = 18.55± 0.11mag. Their
relation (2MASS system) takes the following form:

MKS
= (−2.58± 0.20) logP + (0.17± 0.03)[Fe/H]− (0.84± 0.09) (14)

The metallicity dependence is even larger in this case but still in agreement with the value
obtained here. After fixing the period and the metallicity slopes in my fit, I obtain a zero point
value of −0.802± 0.019 which is consistent with the zero point of Muraveva et al. (2018).

In the following work, that presents PL and PLZ relations for RR Lyrae stars based on
GAIA DR2 parallaxes, Neeley et al. (2019) used the photometry of 55 stars from our Galaxy
gathered for the Carnegie RR Lyrae Program. The authors obtained a rather large scatter of
residuals of their fits ∼ 0.2mag, which they identify as possibly due to unaccounted uncertainties
or systematics. The work includes a variety of different PL, PLZ, PW, and PWZ relations
(including Wesenheit indices instead of luminosity in a given band) obtained using weighted
least-squares fits22. The results (2MASS photometric system) of Neeley et al. (2019) are as
follows:

22The authors also use a Bayesian approach and a ’robust’ analysis (including the weighting of points based
on the scatter of the fit) but find no significant differences between different methods.
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Figure 32: Residuals of the zero point fits using slopes for the PLZ relation for 400 stars from
the Milky Way in the K−band from Muraveva et al. (2018). The relatively large, unaccounted
dependence on the metallicity is apparent.

MJ = (−1.91± 0.29)(logP + 0.3) + (0.20± 0.03)([Fe/H] + 1.36)− (0.14± 0.02) (15)

MH = (−2.40± 0.29)(logP + 0.3) + (0.17± 0.03)([Fe/H] + 1.36)− (0.31± 0.02) (16)

MK = (−2.45± 0.28)(logP + 0.3) + (0.17± 0.03)([Fe/H] + 1.36)− (0.37± 0.02) (17)

WJK = (−2.91± 0.30)(logP + 0.3) + (0.15± 0.03)([Fe/H] + 1.36)− (0.53± 0.02) (18)

Especially the period slopes here are in good agreement with my derivations while the
metallicity slopes are systematically larger but still consistent within the uncertainties. As
Neeley et al. show in their Figure 9, all fitted parameters, slopes and the zero point (intersection)
of PLZ relations depend monotonically on the zero point offset of GAIA DR2 parallaxes; this
may be investigated using quasars and may range from −0.030mas to −0.056mas (Arenou et
al., 2018)23. The authors adopt a smaller offset (in terms of the absolute value) than Muraveva
et al. (2018), i.e., −0.03mas, which is the same as in Bailer-Jones et al. (2018).

It is also worth to notice that Neeley et al. compared distances obtained from simple
inversion of parallaxes with those reported by Bailer-Jones et al. (2018) and found no differences
for stars at distances at least up to about 1.5 kpc (their Figure 2). This is another proof for
the direct applicability of parallaxes in order to calculate absolute magnitudes of RR Lyrae
stars from the solar neighborhood. It is coherent with virtually no differences between relations
obtained from parallaxes and those that are based on geometric and photo-geometric distances
of Bailer-Jones et al. (2021) (see Table 6).

Using the same pivot period and metallicity (logP0 = −0.3 and [Fe/H]0 = −1.36) as
Neeley et al. and fixing slopes obtained by them, I get zero point values of −0.029 ± 0.024,
−0.200± 0.019, −0.261± 0.018, and −0.420± 0.016 for J , H, K, and WJK , respectively. The
zero points of my relations are systematically larger by about 0.11mag. Figure 33 depicts

23Arenou et al. (2018) report an offset of (0.056± 0.005)mas for RR Lyrae stars – a value which is consistent
with the result of Muraveva et al. (2018). Neeley et al. note that it is not possible to set such an offset for
RR Lyrae stars without assuming a PL relation.
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Figure 33: Residuals of the fits of zero points of PLZ relations using slopes from Neeley et al.
(2019). The dependence on metallicity is similar to that reported by Muraveva et al. (2018).
The fits yield zero points that are about 0.11mag larger than those reported by Neeley et al.
(see text). In this case, logP0 = −0.3 and [Fe/H]0 = −1.36.
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Figure 34: PL relations for J and KS from Cusano et al. (2021). The plot on the left includes
separate relations for RRab and RRc stars, while the plot on the right depicts the global
relation with RRc having their periods fundamentalized. The non-optimal alignment of points
corresponding to stars from the two populations is apparent. Figure taken from: https:
//arxiv.org/abs/2103.15492.

residuals of these fits. Interestingly, the authors report that calibrations based on the adoption
of a parallax offset of −0.06mas yield an LMC distance that is 0.1mag smaller than without
an offset. However, one must keep in mind that Neeley et al. used GAIA DR2 parallaxes and
my research is based on EDR3. The parallax zero points (and their corrections) for different
data releases are different: The parallax zero points and uncertainties published in the EDR3
are improved compared to DR2.

Another calibration takes advantage of the VMC photometry of RR Lyrae stars from the
LMC. Cusano et al. (2021) established PL and PLZ relations based on 22 thousand stars; the
measurements were taken in, i.a., J and K and comprised a mixed population – among them
almost 17,000 fundamental pulsators). What is especially striking in those relations is the
question of fundamentalization of periods of the first-overtone pulsators (the accepted +0.127
shift of logarithms of periods). Relations for the mixed population have a significantly smaller
slope compared to relations for the two populations separately (where the slope values are very
similar). It is especially visible in Figures 6 & 7 from that paper: fundamentalized RRc stars
do not follow the same relations as RRab. They are still more luminous, which flattens the
global relation for the mixed population and slightly increases its intersection (Figure 34). It
shows that such a situation of a non-optimal alignment of points corresponding to stars from
the two populations can introduce a bias. RRc stars also form different fractions of different
samples24 of mixed populations. The distributions of periods of RRc and RRab stars vary
from sample to sample. Thus, the weight and impact of the first-overtone pulsators on the
final values of fitted parameters also differ between different samples. The dependence of the
’fundamentalization shift’ on the environmental conditions, typically determined for the double-

24When it comes to PLZ relations, the ratio of numbers of RRc to RRab in my sample – 5/18 (28%) – is
slightly different from that of Cusano et al. (2021), which is ∼ 5, 000/13, 000 (38%) for JK bands. In Muraveva
et al. (2015) (the Galactic sample) it is 2/21 (10%) and in Muraveva et al. (2018) it is 35/366 (10%). I have
not found the relevant information explicitly in Neeley et al. (2019) but one can derive it from their plots – the
corresponding ratio is around 17/38 (44%).
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band population slope µLMC δstat δVMC δLMC rms
[mag] [mag] [mag] [mag] [mag]

RRab+RRc −2.00 18.453 0.028 0.004 0.028 0.15
J RRab −2.50 18.454 0.030 0.005 0.030 0.13

RRc −2.53 18.465 0.037 0.022 0.043 0.09
RRab+RRc −2.53 18.473 0.022 0.004 0.023 0.12

K RRab −2.84 18.462 0.024 0.005 0.024 0.11
RRc −2.98 18.442 0.037 0.023 0.044 0.09

RRab+RRc −2.888 18.500 0.020 0.004 0.020 0.10
WJK RRab −3.075 18.492 0.021 0.006 0.022 0.09

RRc −2.289 18.514 0.038 0.055 0.067 0.09

Table 9: LMC distance moduli µLMC ± δLMC. δstat is a statistical error of the fit of the zero
point of the relation while δLMC is a superposition of errors of fits of intersections, δLMC =√
δ2stat + δ2VMC, where δVMC is the uncertainty of zero point of the fiducial relation reported by

Cusano et al. 2021. δVMC is one of the systematic errors that is involved in the determination.
Obviously, it is usually negligible compared to δstat; however, this is not the case for RRc stars.
The distance moduli were obtained as the differences between intersections of PL relations from
fits with fixed slopes taken from Cusano et al. (2021) and LMC intersections given there. The
canonical LMC distance of Pietrzyński et al. (2019) is µLMC = (18.477± 0.004± 0.026)mag.

band population period metallicity µLMC δstat δVMC δLMC rms
slope slope [mag] [mag] [mag] [mag] [mag]

RRab+RRc −1.91 0.095 18.456 0.022 0.007 0.023 0.103
J RRab −2.45 0.121 18.465 0.022 0.008 0.024 0.091

RRab+RRc −2.41 0.096 18.473 0.016 0.007 0.018 0.078
K RRab −2.80 0.114 18.479 0.017 0.008 0.019 0.069

RRab+RRc −2.810 0.094 18.497 0.015 0.008 0.017 0.070
WJK RRab −3.033 0.111 18.502 0.016 0.009 0.018 0.065

Table 10: Same as Table 9 but based on PLZ relations with the metallicity slope fixed addi-
tionally.

mode RRd stars, makes it difficult to calibrate for extragalactic stars properly. In a sense, it
makes the global relations containing a relatively large number of first-overtone pulsators non-
comparable (especially when it comes to values of individual parameters) with those having just
a few. However, these are zero points, i.e., intersections of relations, that affect the distance
determinations most severely. Even if slopes of different relations are slightly different, we may
fix their values based on given fiducial relations.

Figure 35 depicts PL relations for my sample of RR Lyraes with slopes adopted from Cusano
et al. (2021). Intersections are fitted separately for RRab, RRc, and RRab+RRc samples. Slope
of the relation for RRab in J− band barely agrees with the one from the free fit (−2.50± 0.02
v.s. −3.45± 0.39). On the other hand, RRc stars follow relations with fixed slopes pretty well.
Intersections obtained using fits with fixed slopes serve for distance determinations. Namely,
the LMC distance modulus is the difference between intersection value reported in Cusano et
al. (2021) and the intersection obtained through the fit. As Cusano et al. (2021) give relations
for the non-fundamentalized RRc, I have ’fundamentalized’ intersections of these relations by
subtracting 0.127× slope(RRc), which is consistent with the fundamentalization procedure in
their study and in the present work. In the case of PLZ relations, I have additionally fixed
metallicity slopes at the values reported by Cusano et al. (2021). In this sense, I have been
shifting a plane rather than a line for the purpose of distance determination. Even though
it is not guaranteed that the geometric center of the eclipsing systems from Pietrzyński et
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Figure 35: PL relations for RR Lyrae stars from my sample obtained by fitting the intersections
with the slopes from Cusano et al. (2021)
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Figure 36: Residuals of fits of zero points of PLZ relations to my sample of Galactic RR Lyrae
stars with both period and metallicity slopes taken from Cusano et al. (2021) for the mixed
population of fundamental and first-overtone pulsators.
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Figure 37: As in Figure 36 but just for the fundamental pulsators.
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al. (2019) is identical to the geometric center of the population of RR Lyrae stars in the
LMC, we can see that results, summarized in Tables 9 & 10 (where LMC distance moduli
are given depending on photometric band or, alternatively, the WJK index, and population of
RR Lyraes), are in extremely good agreement with the canonical distance from eclipsing binaries
of µLMC = 18.477± 0.004± 0.026mag. It seems that neither the use of different populations of
RR Lyrae stars nor the inclusion of the metallicity dependence changes the value of the distance
in this case. All determinations, based both on PL and PLZ relations, are in agreement given
the small statistical uncertainties of the zero point fits. However, as expected, uncertainties
and rms of residuals are smaller in the case of PLZ relations .

4.2.3 Determinations of distances to four nearby galaxies

The final test of my calibrations is the determination of distances to four galaxies, which had
already been studied within the Araucaria Project. NIR photometry of RR Lyrae stars from
the LMC, SMC, and from the Carina and Fornax galaxies is available in papers by Szewczyk
et al. (2008), Szewczyk et al. (2009), Karczmarek et al. (2015), and Karczmarek et al. (2017b).
Original distances reported in these papers were based on calibrations of the PLZ relations in K
for RR Lyrae stars by Bono et al. (2003), Catelan et al. (2004c), Sollima et al. (2008); Catelan
et al. supplemented additionally a calibration for the J−band. Carina also had its distance
determined using Dékány et al. (2013) calibration for the K− band, which yields virtually the
same distance modulus as the Catelan et al. (2004c) calibration for the same band.

There are no individual metallicity determinations for the RR Lyrae stars in these galaxies.
Therefore, we rather assume a mean metallicity of a given galaxy, perform a linear fit of the
PL relation with the period slope fixed, and treat the metallicity component as a correction
of the zero point. I will compare this approach with the simpler PL fit without taking into
account the metallicity component25. Given that my PLZ relations are calibrated with the
pivot metallicity value of [Fe/H]0 = −1.5dex, we can immediately estimate the influence of
metallicity on my determinations, adopting the same metallicities for the galaxies as in the
aforementioned papers. The metallicity correction is simply a metallicity slope multiplied by
[Fe/H] − [Fe/H]0. These differences take the values of 0.02dex, −0.2dex, −0.22dex, and
−0.1dex for the LMC, the SMC, Carina, and Fornax, respectively. Given the metallicity slope
of 0.1mag/dex, these values translate into 0.002mag, −0.02mag, −0.022mag, and −0.01mag
metallicity corrections that are very small and at most comparable to the statistical errors.

All original determinations were performed for J and K. Szewczyk et al. (2008) also provide
K−band mean magnitudes that were determined using light curve templates of Jones et al.
(1996) in addition to the averaged magnitudes of the stars. For comparison, I have also fitted
relations based on the Wesenheit index (that were not included in the original papers).

Szewczyk et al. provided already dereddened photometry of RR Lyrae stars from the Mag-
ellanic Clouds using reddening maps of Udalski et al. 1999a, 1999b. Karczmarek et al. reported
original apparent magnitudes. I have dereddened the photometry of RR Lyrae stars published
by Karczmarek et al. using the same E(B − V ) values as in the corresponding papers, i.e.,
E(B − V )CARINA = 0.06mag and E(B − V )FORNAX = 0.021mag. Wesenheit indices for stars
from Fornax and Carina were calculated from the apparent J and K magnitudes while in the
case of the LMC and the SMC they were formed using the dereddened magnitudes. As the
Araucaria Project NIR photometry has been calibrated onto the UKIRT system, I have used
the transformation equations of Carpenter (2001) in order to transform it onto the 2MASS
system.

Tables 11-18 include the derived distances together with their uncertainties depending on the
photometric band and population of pulsators. Figures 38-41 present fitted PL relations for each
photometric band (and the WJK index) and for each population of RR Lyrae stars separately.
The reported distances are accompanied by statistical errors δstat of fits of intersections of PL

25In principle, PL and PLZ relations also have different period slopes and zero points, so one cannot simply
think of a fiducial PL relation as a fiducial PLZ relation without the metallicity component. The comparison
between the two approaches is thus not associated merely with the ’metallicity correction’ but comprehensive.
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band population µLMC δstat δMW δLMC rms
[mag] [mag] [mag] [mag] [mag]

RRab+RRc 18.450 0.034 0.028 0.044 0.27
J RRab 18.450 0.039 0.027 0.047 0.28

RRc 18.389 0.067 0.066 0.094 0.20
RRab+RRc 18.447 0.028 0.022 0.036 0.22

K RRab 18.450 0.031 0.021 0.037 0.22
RRc 18.381 0.053 0.065 0.084 0.16

RRab+RRc 18.440 0.026 0.022 0.034 0.21
Kt RRab 18.440 0.029 0.022 0.036 0.21

RRc 18.381 0.051 0.065 0.082 0.15
RRab+RRc 18.445 0.030 0.020 0.037 0.24

WJK RRab 18.451 0.034 0.019 0.039 0.25
RRc 18.376 0.057 0.066 0.087 0.17

Table 11: LMC distance moduli µLMC together with a superposition of uncertainties of intersec-
tions of fits: δLMC =

√
δ2stat + δ2MW, where δstat is the statistical uncertainty of the zero point.

δMW is the uncertainty of the fiducial zero point from the Milky Way determined in the present
work. It is one of the systematic errors that is involved in the determination. The distance
moduli are obtained as differences between the intersections of the PL relations based on fits
with fixed slopes and LMC intersections. The canonical LMC distance of Pietrzyński et al.
(2019) is µLMC = (18.477±0.004±0.026)mag. Kt denotes the relation where average K−band
magnitudes were determined using templates frpm Szewczyk et al. (2008), thus establishing a
more precise relation.

band population µLMC δstat δMW δLMC rms
[mag] [mag] [mag] [mag] [mag]

RRab+RRc 18.446 0.034 0.024 0.041 0.27
J RRab 18.468 0.038 0.022 0.044 0.28

RRab+RRc 18.441 0.028 0.018 0.033 0.22
K RRab 18.460 0.030 0.017 0.035 0.22

RRab+RRc 18.434 0.026 0.018 0.032 0.20
Kt RRab 18.450 0.028 0.017 0.033 0.20

RRab+RRc 18.438 0.031 0.017 0.035 0.24
WJK RRab 18.454 0.034 0.016 0.038 0.25

Table 12: Same as Table 11 but based on PLZ relations.
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band population µSMC δstat δMW δSMC rms
[mag] [mag] [mag] [mag] [mag]

RRab+RRc 18.781 0.03 0.028 0.041 0.17
J RRab 18.757 0.031 0.027 0.041 0.17

RRc 18.894 0.122 0.066 0.139 0.17
RRab+RRc 18.796 0.027 0.022 0.035 0.15

K RRab 18.770 0.029 0.021 0.036 0.16
RRc 18.948 0.069 0.065 0.095 0.10

RRab+RRc 18.807 0.030 0.020 0.036 0.17
WJK RRab 18.780 0.033 0.019 0.038 0.18

RRc 18.985 0.032 0.066 0.073 0.05

Table 13: SMC distance moduli based on PL relations. The canonical distance to SMC by
Graczyk et al. (2020) based on eclipsing binaries is µSMC = (18.977±0.016±0.028)mag. Note:
only 3 RRc stars from the SMC were used in these determinations, making determinations only
based on RRc stars rather unreliable.

band population µSMC δstat δMW δSMC rms
[mag] [mag] [mag] [mag] [mag]

RRab+RRc 18.796 0.031 0.024 0.039 0.18
J RRab 18.787 0.031 0.022 0.038 0.17

RRab+RRc 18.808 0.027 0.018 0.033 0.16
K RRab 18.794 0.028 0.017 0.033 0.16

RRab+RRc 18.817 0.031 0.017 0.035 0.18
WJK RRab 18.799 0.032 0.016 0.036 0.18

Table 14: Same as Table 13 but based on PLZ relations.

band population µCARINA δstat δMW δCARINA rms
[mag] [mag] [mag] [mag] [mag]

RRab+RRc 19.916 0.021 0.028 0.035 0.12
J RRab 19.933 0.023 0.027 0.036 0.12

RRc 19.928 0.061 0.066 0.090 0.11
RRab+RRc 19.904 0.016 0.022 0.027 0.09

K RRab 19.911 0.020 0.021 0.029 0.10
RRc 19.943 0.024 0.065 0.069 0.04

RRab+RRc 19.896 0.016 0.020 0.026 0.09
WJK RRab 19.897 0.019 0.019 0.027 0.10

RRc 19.954 0.010 0.066 0.067 0.02

Table 15: Carina distance moduli based on PL relations. Note: only 4 RRc stars from Carina
were used in these determinations, making determinations only based on RRc stars rather
unreliable.
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band population µCARINA δstat δMW δCARINA rms
[mag] [mag] [mag] [mag] [mag]

RRab+RRc 19.921 0.02 0.024 0.031 0.11
J RRab 19.954 0.022 0.022 0.031 0.12

RRab+RRc 19.908 0.015 0.018 0.024 0.09
K RRab 19.922 0.018 0.017 0.025 0.1

RRab+RRc 19.899 0.015 0.017 0.023 0.09
WJK RRab 19.899 0.018 0.016 0.024 0.09

Table 16: Same as Table 15 but based on PLZ relations.

band population µFORNAX δstat δMW δFORNAX rms
[mag] [mag] [mag] [mag] [mag]

RRab+RRc 20.606 0.015 0.028 0.032 0.13
J RRab 20.601 0.016 0.027 0.031 0.13

RRc 20.574 0.035 0.066 0.075 0.11
RRab+RRc 20.601 0.013 0.022 0.026 0.11

K RRab 20.600 0.013 0.021 0.025 0.11
RRc 20.561 0.028 0.065 0.071 0.09

RRab+RRc 20.599 0.014 0.020 0.024 0.12
WJK RRab 20.601 0.014 0.019 0.024 0.11

RRc 20.552 0.032 0.066 0.073 0.1

Table 17: Fornax distance moduli based on PL relations.

band population µFORNAX δstat δMW δFORNAX rms
[mag] [mag] [mag] [mag] [mag]

RRab+RRc 20.611 0.015 0.024 0.028 0.13
J RRab 20.625 0.015 0.022 0.027 0.12

RRab+RRc 20.604 0.013 0.018 0.022 0.11
K RRab 20.618 0.013 0.017 0.021 0.10

RRab+RRc 20.601 0.013 0.017 0.022 0.12
WJK RRab 20.613 0.014 0.016 0.021 0.11

Table 18: Same as Table 17 but based on PLZ relations.
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Figure 38: PL relations for RR Lyrae stars from the LMC (Szewczyk et al., 2008) fitted with
slopes fixed and taken from the corresponding relations for Milky Way RR Lyrae stars derived
in this work.
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Figure 39: PL relations for RR Lyrae stars from the SMC (Szewczyk et al., 2009) fitted with
slopes fixed and taken from the corresponding relations for Milky Way RR Lyrae stars derived
in this work.
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Figure 40: PL relations for RR Lyrae stars from the Carina galaxy (Karczmarek et al., 2015)
fitted with slopes fixed and taken from the corresponding relations for Milky Way RR Lyrae
stars derived in this work.
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Figure 41: PL relations for RR Lyrae stars from the Fornax galaxy (Karczmarek et al., 2017b)
fitted with slopes fixed and taken from the corresponding relations for Milky Way RR Lyrae
stars derived in this work.
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relations. The corresponding errors δMW for the fiducial relations play here a role as one of
the components of systematic uncertainty. We immediately notice that distances based on
RRc stars only have relatively low precision. Usually, the number of these stars is much lower
than that of RRab stars. For comparison, I decided to present these distances, too. Keeping
in mind that in order to determine a distance, we fit only the intersection of a relation, we
may perform such a fit even for just a few stars. The apparent problem with determinations
based on such a small number of stars is that the span of their luminosities does not reliably
represent the distribution of luminosities resulting from the uniform coverage of the instability
strip. Fiducial relations should optimally include stars that cover the strip randomly but, given
their relatively large numbers, also uniformly. My fiducial PL relations for RRc stars are based
only on 7 objects so they should be treated with caution. On the other hand, with the relatively
large uncertainty of their zero points of about 0.065mag, determinations based on them should
still agree with determinations based on relations for RRab stars and the mixed population.

Generally, distances from PL relations are in excellent agreement with those obtained from
PLZ relations. The metallicity effect does not seem to play an important role in determining
distances to galaxies with metallicities similar to the typical metallicity of a star from the
calibrating sample. Likewise, the dependence of NIR absolute magnitudes of RR Lyrae stars
on metallicity is small. The divergence between results obtained using PL and PLZ relations
is similar to that between results obtained using the mixed population and just fundamental
pulsators. Poor fundamentalization of periods of RRc stars does not alter determinations in a
significant way.

The sample of RR Lyrae stars from the LMC includes 53 RRab and 10 RRc stars. Distances
obtained for the LMC using fiducial relations for RRab and RRab+RRc described in this work
are in very good agreement with the canonical value of Pietrzyński et al. (2019). Szewczyk et al.
(2008) reports distances between 18.56±0.03mag (stat. err.) and 18.62±0.03mag (stat. err.),
depending on the used calibration. Finally, they report an average distance of µLMC = 18.58±
0.03±0.11 that agrees with values presented in Tables 11 & 12 only with a large systematic error.
The difference between the result of Szewczyk et al. and my results is around 0.13mag. RRc
stars yield systematically smaller distances. This is not a question of the fundamentalization of
their periods as this process is exactly the same as for my calibrating sample. Given the large
uncertainties of these determinations, they are still in agreement with those based on the two
remaining populations. However, a question related to the fundamentalization of periods is the
apparent deviation of RRc stars from the PL relation formed by the fundamental pulsators.
Again, fundamentalized RRc stars are brighter as if they would follow the same relation as
RRab stars.

The SMC sample includes 31 RRab stars and just 3 RRc stars. The distances obtained from
RRab and RRab+RRc yield values that are inconsistent with the distance based on eclipsing
binaries determined by Graczyk et al. (2020), as they are smaller by about 0.2mag. It also
means that the difference of distance moduli for RR Lyrae stars from the Magellanic Clouds
is ∼ 0.33mag. This value is similar to that by Neeley et al. (2019) who found ∼ 0.37mag.
On the other hand, it is quite discrepant with the difference of distances of 0.5mag resulting
from the two studies regarding the eclipsing binaries in the Clouds26. The SMC is known to be
an extended system along the line-of-sight (e.g., Jacyszyn-Dobrzeniecka et al. 2016, Jacyszyn-
Dobrzeniecka et al. 2017, Graczyk et al. 2020). The geometric center of the observed sample
of RR Lyrae stars in a given system may not coincide with the geometric center of eclipsing
binaries used to determine the distance to that system. Szewczyk et al. (2009) derived distances
to the SMC between 18.965 ± 0.161mag and 19.002 ± 0.165mag (tot. err.) with an average
value of µSMC = 18.97 ± 0.03 ± 0.12, This is exceptionally close to the value of Graczyk et al.
but differs again by about 0.2mag from the estimates in the present work. The determinations
based on RRc stars are closer to the canonical value from Graczyk et al..

Similar discrepancies with the original determinations are observed for Carina (29 RRab
26Graczyk et al. (2014) fitted a normal distribution to 17 distance differences ∆µ = µSMC−µLMC determined

using different methods (their Table 11 and Figure 9). They obtained ∆µ = 0.458± 0.068mag.
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method µSMC − µLMC [mag] µC − µLMC [mag] µF − µLMC [mag]
RC 0.47± 0.02 1.67± 0.02 2.36± 0.02

PLZ RR Lyrae27 0.39± 0.04 1.54± 0.03 2.24± 0.03
this work28 0.33± 0.05 1.47± 0.04 2.16± 0.04

Table 19: Distance differences between SMC, Carina, Fornax and the LMC for different meth-
ods. The first row results from K−band photometry of the red clump (RC) of Pietrzyński et
al. (2003). Below there are differences of RR Lyrae distances from Szewczyk et al. and Kar-
czmarek et al. based on PLZ relations from Bono et al. (2003), Sollima et al. (2008), Catelan
et al. (2004c), and Dékány et al. (2013). The last row contains distance differences obtained in
this work resulting from PLZ relations after taking into account just RRab stars and average
distance moduli based on J− and K−bands. Uncertainties are just superpositions of statistical
uncertainties of distances corresponding to the LMC and to a given object.

and 4 RRc stars) and Fornax (66 RRab and 11 RRc stars). Karczmarek et al. (2015) reported
distances between 20.078± 0.016± 0.090mag and 20.142± 0.016± 0.110 mag for Carina, with
the average value of µCARINA = 20.118±0.017±0.11mag. In the case of Fornax, Karczmarek et
al. (2017b) found distances between 20.787± 0.013± 0.116mag and 20.837± 0.015± 0.083mag
with the average distance modulus of µFORNAX = 20.818 ± 0.015 ± 0.116mag. Both average
distances are about 0.2mag larger than values resulting from calibrations based on parallaxes
based on GAIA EDR3 presented in this work.

Pietrzyński et al. (2003) obtained a distance to Carina of µCARINA = 20.165 ± 0.015mag
and to Fornax of µFORNAX = 20.858±0.013mag (statistical errors) using K−band photometry
of red clump (RC) stars. Systematic uncertainties corresponding to the red clump distances
are unknown. Thus, it is hard to compare them with RR Lyrae distances resulting from my
calibration.

Pietrzyński et al. (2009) reported the following distances based on J and K photometry
of the TRGB: µCARINA,J = 20.09 ± 0.03 ± 0.12mag, µCARINA,K = 20.13 ± 0.04 ± 0.14mag,
µFORNAX,J = 20.84± 0.03± 0.12mag, and µFORNAX,K = 20.84± 0.04± 0.14mag. Only large
systematic uncertainties allow for an agreement of these values with my results.

Interestingly, the distances obtained by Pietrzyński et al. (2003) from K−band photometry
of the red clump are different from those resulting from PLZ relations for RR Lyrae stars.
Table 19 contains differences of distances between the LMC and the SMC, Carina, and Fornax.
Even though I am using the photometry of RR Lyrae stars published by Szewczyk et al. and
Karczmarek et al., the differences I obtain are different from those originally reported by these
authors, but still in agreement within the statistical uncertainties. The original distances were
based on K−band PLZ relations of Bono et al. (2003), Sollima et al. (2008), and J and K
relations of Catelan et al. (2004c) (with the Carina distance additionally based on the Dékány
et al. 2013 relation for the K− band); distances resulting from different calibrations were
averaged.

On the other hand, Mackey & Gilmore (2003) found a mean distance of Fornax of µFORNAX =
20.66± 0.03± 0.15mag based on the V−band magnitude of RR Lyrae stars. It is in agreement
with my result within the statistical uncertainty. The authors determined distances to four
globular clusters in the galaxy and reported its relatively large depth along the line of sight.
The distance moduli of the clusters were determined between 20.58 and 20.74mag with sta-
tistical uncertainties of 0.05mag. These distances are based on the calibration of the absolute
V−band magnitude of RR Lyrae stars from Chaboyer (1999) that is based on the Hipparchos
parallaxes.

The substantial systematic uncertainty that affects distance determinations, besides δMW,
is associated with the uncertainty of the mean metallicity of samples. Adopting a conserva-
tive value of ±0.25dex and a metallicity slope of ∼ 0.1mag/dex, we obtain an uncertainty of
0.025mag that should be added quadratically to the reported uncertainties. When it comes to
the uncertainty associated with the reddening, determinations based on the Wesenheit index
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play a control role here. Distances based on both J− and K−bands are in good agreement with
those resulting from WJK . Systematic errors of the PL and PLZ relation zero points arising
from the calibration of the IRIS photometry onto the 2MASS system using comparison stars
from the 2MASS catalog are estimated to be 0.002mag (Wielgórski et al., 2021). This is the
error of the mean calculated by comparing magnitudes of a control set of constant stars ob-
tained from calibrated IRIS photometry with their catalog values. The systematic photometric
error is negligible compared to other uncertainties in this case. Another systematic uncertainty
that is especially vague and hard to estimate is connected to the uncertainty of the zero point
of the GAIA EDR3 parallaxes.

4.2.4 On the parallax zero point and its influence on calibrations

Figure 42: Corrections of Lindegren et al. (2021) for objects from my calibrating sample.

A proper calibration of the GAIA EDR3 parallaxes is pivotal for any calibration of distance
indicators. It is a complex issue as the parallax zero point depends on different variables such as
the stellar color, magnitude, or position of an object in the celestial sphere. The original GAIA
EDR3 parallaxes used for the purpose of calibrations presented in this work were corrected
using the Lindegren et al. (2021) corrections. The same corrections were used in the Bailer-
Jones et al. (2021) study in order to derive geometric and photo-geometric distances. They
were estimated for single objects based on distant quasars and LMC sources that provided a
fixed reference frame. However, in the case of bright stars (G < 13mag, where G is the GAIA
photometric band, all RR Lyraes from my sample have G ∼ 9−11.5mag); the authors had to use
binaries with similar parallaxes but different colors and magnitudes. Given such physical pairs
and using known biases for fainter sources, they were allowed to estimate biases for brighter
companions and subsequently obtained a correcting relation for bright sources. Figure 42 depicts
the distribution of corrections of Lindegren et al. for objects from my calibrating sample. The
median value of corrections is −0.029mas29.

Figure 43, inspired by the analysis done by Neeley et al. (2019), depicts a relationship
between parallax systematic shift, relative to parallaxes corrected using the Lindegren et al.

29Such negative corrections were subtracted from the original GAIA EDR3 parallaxes, so that parallaxes
became larger and the resulting distances smaller.
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Figure 43: Dependence of PLZ parameters from the systematic parallax shift relative to par-
allaxes corrected according to Lindegren et al. (2021). Thick black lines denote fits using the
whole sample of RRab. Thinner colored lines correspond to jackknife resampling, where one
star from the sample was rejected for the purpose of each fit. The gray zone denotes the 1σ
uncertainty of each parameter. The red dashed lines correspond to the values of parameters
realized in the fit using the Lindegren et al. parallax corrections and the whole sample of RRab.
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Figure 44: Dependences of distances to each of the Magellanic Clouds (K− band, RRab stars)
from the systematic parallax offset, relative to GAIA EDR3 parallaxes with Lindegren et al.
(2021) corrections, based on photometry of RR Lyrae stars from the LMC and the SMC from
Szewczyk et al. (2008) and Szewczyk et al. (2009). Zone around each of the relations corresponds
to the statistical error δstat. Superpositions of uncertainties of fiducial intersections of PLZ
relation and their LMC and SMC counterparts, δLMC, δSMC =

√
δ2MW + δ2stat, are denoted using

rose-colored areas - they do not differ much from the statistical errors. Canonical distances of
Pietrzyński et al. (2019) and Graczyk et al. (2020) within their 1σ total errors are given for
comparison. Orange zones denote original results of Szewczyk et al. within their statistical
uncertainties. These determinations would be in agreement with my calibrations if GAIA
parallaxes were shifted by −0.08 mas.
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(2021) corrections, and parameters of PLZ relation for the example of K−band and the RRab
population. Other cases look very similar. One can clearly see that the rms of the fit has
a minimum; it depends on the band and the used population of RR Lyrae. Colored lines
correspond to fits with one star rejected (the jackknife resampling); they all lie within the 1σ
zone of the line corresponding to fits based on the whole sample.

Figure 44 presents the relation between the parallax offset and the distances to the Magel-
lanic Clouds (K−band, fundamental pulsators only) together with the comparison of the canon-
ical distances obtained using eclipsing binaries and original distances reported by Szewczyk et
al.. Differences of distance moduli between the two Clouds are constant for all parallax shifts,
as expected. The original distance moduli of Szewczyk et al. would be in agreement with my
calibrations of PLZ relations after applying a −0.08mas systematic parallax shift. In any case,
distance differences between the SMC and the LMC obtained from RR Lyrae stars differ from
those obtained from eclipsing binaries.

Lindegren et al. (2021) estimate the uncertainty of parallax corrections of a few µas (mi-
croarcseconds). After assuming the conservative error of 10µas, we obtain a parallax component
of the systematic uncertainty of the zero point of my calibration of around 0.02mag. This is the
dominating component of the total systematic uncertainty for the zero point of PL and PLZ
relations. The combination of the above uncertainty with the metallicity error (∼ 0.025mag)
and the statistical uncertainty of intersection of the PL(Z) relation (∼ 0.025mag) yields the
total systematic uncertainty of the distance of 0.04mag.

4.3 The Baade-Wesselink method for RR Lyrae stars
The Baade-Wesselink (B-W) method (Baade 1926, Wesselink 1946) appeared as an idea for
testing the pulsation hypothesis and for determining the mean radii of classical Cepheids. The
method also allows to determine geometrical distances to single, radially pulsating stars. The
inference is based on changes of the stellar metric radius and its angular diameter:

θ(ϕ) =
2R(ϕ)

r
=

2 [R0 +∆R(ϕ)]

r
= 2ϖ [R0 +∆R(ϕ)] (19)

where θ is the angular diameter of a star for a given pulsation phase ϕ; R is the metric
radius of the star, r is its distance, and ϖ is the corresponding parallax. R0 is the radius of the
pulsator corresponding to (arbitrarily chosen) ϕ = 0 while ∆R corresponds to its variations in
time.

Determinations of the angular diameter may be carried out directly through interferometry
or using a previously-calibrated surface brightness-color relation (SBCR) that allows for the
derivation of stellar angular diameter from the color and V−band magnitude of the star. The
latter is a far more economical approach as photometry is more accessible and less demanding
instrumentally than interferometry.

On the other hand, changes of stellar radius can be tracked through integration of radial
velocity curve obtained using spectroscopy:

∆R(ϕ) = −
∫

p [vr(ϕ)− vr,0] dϕ (20)

where vr(ϕ) is the radial velocity of the object measured using spectroscopy, v0,r is its
systemic (average) radial velocity obtained from integrating the radial velocity over the whole
phase; p is a projection factor30, also known as the p-factor. It is a parameter, whose calibration
is crucial for this method of distance determinations. The factor plays a normalization role,
taking into account mostly geometrical effects, limb darkening but also velocity gradients in
the stellar atmosphere (Nardetto et al., 2017). Figure 45 presents a qualitative depiction of
the reason for normalization of the integral of the apparent radial velocity of a star to properly
determine variations of its radius. The derived values of p−factors depend on many arbitrary

30In my considerations, I will assume that p does not depend on the pulsation phase.
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Figure 45: Qualitative depiction of the need to utilize the p− factor. Spectrographs that we
use allow for measuring the effective (i.e., net, single) radial velocity of the stellar photosphere
for a given pulsation phase. However, spectral lines (and their corresponding shifts relative to
the reference, laboratory wavelengths) correspond to different layers of the stellar atmosphere
that move radially with different velocities at a given phase. Additionally, the radial velocity
of a radially-pulsating star corresponds to the velocity of its photosphere only in the geometric
center of the observed (but not resolved) stellar disk, and we measure a superposition of radial
components of velocity integrated over the whole disk. Limb darkening introduces weights to
representations of zones (and the corresponding velocities) at different distances from the center
of the stellar disk.

choices fixed for a specific method. That is the reason why consistent methodology must be
used for calibration and application of the method.

The B-W method has been most notably used for classical Cepheids. Among the important
studies from the last decade there is the paper by Storm et al. (2011), who calibrated the
dependence of classical Cepheid p−factor on their pulsation period and established the Galactic
PL relations for Cepheids using their B-W distances. Gieren et al. (2018) investigated the
dependence of Cepheid PL relations on metallicity through the determination of distances
to single stars in the Milky Way and the Magellanic Clouds based on the dependence of the
p−factor on pulsation period by Storm et al.. Researches paid much attention to the calibration
of p−factors with the aspiration to obtain distances to single stars with precision up to a few
percent. However, lately, Trahin et al. (2021) studied the dependence of the p−factor on a
number of parameters, including the pulsation period for a sample of 63 Galactic Cepheids.
They reported a relatively large dispersion of the determined projection factors and have not
found any clear correlation with any other quantity. This study suggests that, at least in the
case of classical Cepheids, an easy representation of a complex phenomenon using a single
parameter could be overly optimistic.

Research on the B-W method for RR Lyrae stars was carried out primarily in the 1980s
and early 1990s. Series of studies devoted to the estimation of mean absolute – bolometric and
visual – magnitudes of field Galactic RR Lyrae stars and their possible dependence on metallicity
were released. They based on the notion of the visual surface brightness SV (Wesselink 1969,
reevaluation by Manduca & Bell 1981), a quantity that binds the effective stellar temperature
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and the bolometric correction in the V−band on the one hand, and the angular diameter and
the apparent V magnitude on the other hand.

In one of the series of papers (Carney & Latham 1984; Jones et al. 1987a, 1987b; Jones
1988; Jones et al. 1988a, 1988b, 1992; Carney et al. 1992), the authors assumed values for
the p−factor from p = 1.30 to 1.36. In their second paper (Jones et al., 1987a) introduced
an analysis that relied on estimating the stellar apparent bolometric magnitude and effective
temperature using the (V −K) color. The authors estimated that this specific method should
yield an accuracy for the absolute magnitude of an RR Lyrae star of about 0.1mag. In the
same paper, the authors recognized the influence of shock waves appearing in the atmosphere
of RR Lyrae stars (Hill, 1972) that manifested itself as a bump near the minimum brightness in
the V light curve and the corresponding anomalous measurements of the radial velocity. This
resulted in a poor correspondence between the changes of the radius derived from the radial
velocity curve and changes of the angular diameter derived from spectroscopy for pulsation
phases affected by a shock. Such phase intervals apparently affected by shocks were rejected in
this and in the following studies.

In another series (Cacciari et al. 1989a, 1989b; Clementini et al. 1990), the authors based
on (V − I) and (V −R) colors to derive angular diameters of stars. They assumed p = 1.36.

Liu & Janes (1990a) performed a similar analysis as Jones et al. (1987a) and, assuming
p = 1.32, derived absolute magnitudes of 13 field RR Lyrae stars. In a following paper (Liu &
Janes, 1990b), they determined absolute magnitudes of 4 stars from the globular cluster M 4.

Yet another series of papers (Fernley et al. 1989, Skillen et al. 1989, Fernley et al. 1990a,
Fernley et al. 1990b, Skillen et al. 1993) is based on a different (but qualitatively similar)
approach than that deriving from the work of Manduca & Bell (1981). It is the infrared
flux method of Blackwell & Shallis (1977) that utilizes the well-covered ultraviolet, optical,
and NIR photometry to determine the angular diameter at a given pulsation phase. The
authors calibrated the mean absolute magnitude and metallicity dependencies for field Galactic
RR Lyrae stars in V− and K− bands. They used p = 1.33 and noted its 3% uncertainty by
comparing their results with those of other researchers.

More recently, Jurcsik et al. (2017a) applied the B-W method to determine distances to
26 RR Lyrae stars from the globular cluster M 3 based on the dependence of the effective
temperature and log g on the optical color (V − I)C from atmospheric models of Castelli &
Kurucz (2003). The authors applied p = 1.35, as modeled by Nardetto et al. (2004). In a
later work, Jurcsik & Hajdu (2017b) studied the B-W method for Blazhko RR Lyrae stars from
M 3. They showed that the distances derived for these stars are not reliable as there is a large
discrepancy between the changes of the angular diameter and the radius of a Blazhko star; the
distances varied with different modulation phases.

In the era of GAIA parallaxes, a phenomenological determination of p−factors for Galactic
RR Lyrae stars is possible. Trahin et al. (2018) determined p = 1.34 ± 0.07 for the prototype
star RR Lyr based on its GAIA DR2 parallax and using SPIPS code (Mérand et al., 2015). In
my thesis, I am showing the determination of p−factors for two RR Lyrae stars, RX Eri and
U Lep based on the NIR surface brightness method.

4.3.1 The IRSB method

The surface brightness of an extended celestial object in a given band λ is defined as:

Sλ := mλ + 2.5 logA (21)

where mλ is the apparent magnitude integrated over the whole considered area A spanned on
the celestial sphere (in fact, A is a solid angle). The surface brightness is a quantity independent
of distance (given no extinction) as both the measured flux Fλ and the observed area are
inversely proportional to the squared distance of the object. We may easily deduce31 that in
the case of stars Sλ can be written in terms of the stellar angular diameter θ:

31Assuming the local flatness of the celestial sphere for small θ.
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Sλ = mλ + 2.5 log

(
1

4
πθ2

)
= mλ + 5 log θ + 2.5 log

(
1

4
π

)
(22)

Knowing that the amount of energy released from the unit of stellar surface by means
of radiation is proportional to T 4 where T is the effective stellar temperature in Kelvin (the
Stefan-Boltzmann law), we may write:

mbol = −2.5 log T 4 + const. = −10 log T + const. (23)

where mbol is the bolometric magnitude, and the constant includes the arbitrary photometric
zero point32.

The bolometric magnitude is related to magnitude in a given band λ through the bolometric
correction BCλ:

BCλ = mbol −mλ (24)

that depends on the spectral type and luminosity class of a star. It allows us to rewrite the
equation (21):

Sλ = mbol −BCλ + 2.5 logA = −10 log T −BCλ + 2.5 logA+ const. (25)

Let us consider a quantity that is linearly connected to Sλ (Barnes & Evans, 1976):

log T + 0.1BCλ (26)

We will now derive its relation to the stellar angular diameter given in mas (milliarcsec).
Keeping in mind the definition of parsec that introduces the astronomical angle measure of an
arc, we know that mas×kpc=AU, where AU is the astronomical unit. These will be the natural
units used in our B-W considerations. The distance to the star is expressed in kpc, its radius
R and diameter D are expressed in AU, and its angular diameter θ is expressed in mas. We
should re-phrase the distance modulus so that the distance x is expressed in kpc (x× 103 = r):

(m−M) = 5 log x+ 10 (27)

Adding that the luminosity L ∝ D2T 4 and that the stellar absolute bolometric magnitude
is associated with the solar bolometric magnitude through Mbol = Mbol⊙ − 2.5 logL/L⊙, we
may continue with (26):

log T + 0.1BCλ = log T⊙ + 0.25 log (L/L⊙) + 0.5 log (D⊙/D) + 0.1(mbol −mλ) =

= log T⊙ + 0.25 log (L/L⊙) + 0.5 log (D⊙/D)+

+ 0.1[5 log x+ 10 +Mbol⊙ − 2.5 log (L/L⊙)]− 0.1mλ =

= 0.5 logD⊙ − 0.5 log (D/x) + 0.1Mbol⊙ + 1 + log T⊙ − 0.1mλ =

= 0.5 logD⊙ − 0.5 log θ + 0.1Mbol⊙ + 1 + log T⊙ − 0.1mλ

(28)

We may insert D⊙ = 0.0093AU, Mbol,⊙ = 4.74mag, and T⊙ = 5780K and thus obtain
log T + 0.1BCλ = 4.22 − 0.1mλ − 0.5 log θ. In their original paper, Barnes & Evans (1976)
defined a quantity named the visual surface brightness:

FV := 4.2207− 0.1V0 − 0.5 log θ (29)
32According to the Resolution B2 of the International Astronomical Union from 2015 (https://www.iau.

org/static/resolutions/IAU2015_English.pdf) it is recommended that in the case of the absolute bolometric
magnitude scale the zero point mbol = 0mag corresponds to the an irradiance of f = 2.518021002...×10−8W/m2,
which corresponds to the solar absolute bolometric magnitude of M⊙ = 4.739996 ≈ 4.74mag given the nominal
solar luminosity of L⊙ = 3.828× 1026 W.
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Figure 46: Dependence of the visual surface brightness FV from the (V −R)0 color as determined
by Barnes & Evans (1976). Note that the reddening vector is parallel to the relation in a good
approximation. The original figure is taken from https://articles.adsabs.harvard.edu/
pdf/1976MNRAS.174..489B.

where V0 is the dereddened V−band magnitude. We may expect that FV depends on stellar
color as it is a value derived from the effective temperature and the bolometric correction
only. In principle, it could also depend on the metallicity and gravity of objects. Barnes &
Evans studied phenomenological correlations between FV and different optical colors such as
(B − V )0, (V − R)0, and (I − R)0. Such relations are known in the literature as the surface
brightness-color relations (SBCR). The stellar angular diameters required to calibrate these
relations were obtained during lunar occultations and through interferometry. Out of different
studied relations, the one depending on (V − R)0 was found to have the smallest scatter.
Figure 46 presents that original relation of Barnes & Evans.

Welch (1994) extended the method into the NIR and found that the scatter of the empirical
dependence of FV from (V −K)0 color is significantly lower than that based on merely optical
bands for classical Cepheids. Other calibrations followed, and the method became known as the
(near-)infrared surface brightness - color technique (IRSB). Fouqué & Gieren (1997) presented
a FV (V − K) calibration for classical Cepheids based on interferometric observations of cool
giants and supergiants:

FV = (3.947± 0.003)− (0.131± 0.002)(V −K)0 (30)

Kervella et al. (2004a) calibrated the NIR SBCR for dwarfs and subgiants using interferom-
etry of such stars. The authors found:

FV (Dwarf) = (3.9618± 0.0011)− (0.1376± 0.0005)(V −K)0 (31)

In another paper, Kervella et al. (2004b) calibrated an analog relation for classical Cepheids.
They found values of parameters in agreement with the relation of Fouqué & Gieren but more
precise:

FV (Ceph.) = (3.9530± 0.0006)− (0.1336± 0.0008)(V −K)0 (32)
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The relation for classical Cepheids is also in good correspondence with the relation for
dwarfs and subgiants (31). For any given Cepheid color FV (Dwarf) − FV (Ceph.) < 0.005.
Stars of the two luminosity classes have radii between 0.15 and 200 R⊙ and gravities between
log g = 1.5 and 5.2. The good agreement between the two relations suggests that the (V −K)0
color is indeed a good tracer of the effective temperature and depends little on the gravity. Di
Benedetto (2005) confirmed the convergence between relations for dwarfs and giants, obtaining
a difference of about 1%.

Studies also show that SBCR relations including the (V −K)0 color are virtually independent
on metallicity (e.g., Thompson et al. 2001, Pietrzyński et al. 2019).

Even though RR Lyrae stars are Population II, metal-poor stars which are hotter than
Cepheids, the above arguments suggest that SBCR relations, which were not established based
on RR Lyrae stars, may be used to determine their angular diameter with a good precision.

The most recent determinations of SBCR relations include the study of Graczyk et al. (2021),
where it is estimated that the relation between the visual surface brightness and (V −K)0 color
gives a precision of 1.1% in predictions of angular diameters in the color range [−0.2; 2.1].
The relation is nominally derived for dwarfs and subgiants. The work is based on eclipsing
binary stars and the relations were calibrated using GAIA EDR3 parallaxes. The visual surface
brightness is defined slightly different in that work, as its definition is derived directly from
(22); it differs only by the rejection of the constant:

SV := V0 + 5 log θ (33)
Thus it is connected to FV as:

FV = 4.2207− 0.1SV (34)
The SBCR relation is given as a fifth-order polynomial of X := (V −K)0:

SV = 2.521 + 1.708×X − 0.705×X2 + 0.623×X3 − 0.239×X4 + 0.0313×X5 (35)

In summary, the angular diameter (in mas) that might be inserted directly into the B-W
equation (19) is given as:

θ = 102(4.2207−0.1V0−FV ) (36)
or, alternatively, using SV as:

θ = 100.2(SV −V0) (37)
A big advantage of the photometric angular diameter obtained using the IRSB technique

based on the(V −K)0 color is that it depends little on the reddening. If we insert the relation
of Kervella et al. (2004b) (32) with apparent, reddened photometry into the expression for the
angular diameter (36), we get:

log θ = 2 [0.2677− 0.1V + 0.1336(V −K)] =

= 2 [(0.2677− 0.1V0 + 0.1336(V −K)0 − 0.1AV + 0.1336E(V −K)]
(38)

Given the extinction ratio of AK/AV = 0.117 (Table 1), we have AV /E(V −K) = 1.1325 so
that the total extinction component above 2× [0.1336E(V −K)− 0.1AV ] = 0.041E(V −K) =
0.036AV .

I will now describe the methodology leading to determining p−factors used in my work.
The analysis starts with fits of the well-covered radial velocity curve and light curve in the V−
band. However, in the case of the B-W approach, I am not using the fit of the Fourier series
but rather a curve interpolating binned data using an Akima spline (Akima, 1970) through its
implementation in SciPy (Virtanen et al., 2020). Akima spline is a piecewise function made
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Figure 47: SV (V −K) surface brightness-color relation of Graczyk et al. (2021). Figure taken
from https://arxiv.org/abs/2103.02077.

out of cubic polynomials. A valuable property of this mathematical method is that such a
spline does not oscillate between data points (through which it passes). Such a behavior allows
for a more accurate modeling of periodic physical variations, especially when dealing with a
non-uniform coverage of the phase. In my implementation of this method, I fit splines to sets
of binned data where every bin is a moving average calculated for adjustable averaging phase
range and resolution of bins (i.e., the steps of the moving average are independent from the
averaging span). In general, the Akima spline is not a periodic function. In order to force its
periodic behavior, I fit a curve to three courses of data over their entire phase: ϕ ∈ [−1, 2].

The integration of the fitted radial velocity curve allows for modeling the radius variations
(divided by the p−factor). On the other hand, variations of the angular diameter are tracked
through SBCR after determining (V − K)0 for a given phase. In my work, I am comparing
results obtained using the relations of Kervella et al. (2004a) for dwarfs and subgiants, of
Kervella et al. (2004b) for classical Cepheids, and of Graczyk et al. (2021) also for dwarfs and
subgiants. While the relation of Graczyk et al. is calibrated in the 2MASS system, the same
as my IRIS photometry, Kervella et al. give relation calibrated in the NIR SAAO photometric
system. I have transformed K2MASS band into KSAAO using transformation equations given
in Koen et al. (2007)33. All three relations are calibrated in the Johnson V−band – the same as
my V−band data from VYSOS 16. I have dereddened the photometry using the same approach
as in the previous chapter devoted to PL relations34. I determine the (V −K)0 color for each
K−band epoch. The V magnitude for a given phase is interpolated using the corresponding
spline fit. The measured K magnitude is subtracted from the modeled V magnitude. Such a
choice is purely arbitrary and is dictated by the fact of having usually more K epochs than
V epochs. Finally, the angular diameters are determined for phases corresponding to the K
magnitude measurements.

The zero phase is also a subject of choice. Like other authors in the case of classical Cepheids
33The mean shift resulting from the transformation between the two photometric systems for my stars is

(3± 9)mmag. It corresponds to the shift of the angular diameter of (1± 3)× 10−3 mas. The determination of
such a shift also depends on (J −H) and (H −K) colors.

34Dereddened and reddened photometry yield virtually the same, statistically identical results with the corre-
sponding mean angular diameter difference of ∼ 4× 10−4 mas.
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(e.g., Storm et al. 2004, 2011; Gieren et al. 2018), I am using the phase of the highest brightness
in V as the phase zero point. The integral of radial velocities is calculated relative to this phase.
Once again, for each phase of the determined angular diameter, the corresponding value of the
integral is taken35. Having sets of integrals x = −2

∫
[vr(ϕ)− vr,0] dϕ and angular diameter θ

values, we may fit the following relation based on (19):

θ(x) = pϖx+ θ0 (39)
The slope of such a relation is the product of the stellar parallax ϖ and its p−factor36.

θ0 = θ(ϕ = 0) is the angular diameter corresponding to R0. As applied by other authors (e.g.
Storm et al. 2004, 2011; Gieren et al. 2018) who used the IRSB method, the linear fit is based on
the bisector method (Isobe et al., 1990) rather than on the ordinary least-squares (OLS) method
that prefers one axis over the other. Such fit yields a line that bisects OLS(Y|X) and OLS(X|Y)
relations and allows for a more accurate establishment of a relation between the integral of radial
velocities and θ rather than a prediction of θ from the value of integral that is non-essential in
this case (Storm et al., 2004). I am performing such fits for different phase shifts between the
integral of radial velocities and the angular diameter curve37 ∆ϕ ∈ [−0.1, 0.1]. I am keeping
the phase shift that yields the lowest rms around the relation. Phases of θ from the interval
ϕ ∈ [0.8, 1] (calculated after the shift) are excluded from the fit due to the possible abnormal
mismatch between the course of the angular diameter and the integral curves – similarly to
classical Cepheids, the p−factor may have an unusual value or the SBCR relation might be
even not applicable for this interval of phase due to shocks in the stellar atmosphere (e.g.,
Sabbey et al. 1995, Bersier et al. 1997). It is also a regular procedure used by Storm et al.
(2004), Storm et al. (2011), and Gieren et al. (2018) in the case of classical Cepheids.

Uncertainties of p−factors are determined using Monte Carlo simulations through variations
of V K magnitudes (the conservative assumption of 0.01mag of statistical uncertainty for each
band), radial velocity values, and parallaxes, given their uncertainties.

Additionally to p−factors, I am also determining the mean radii of stars:

⟨R⟩ = θ0
2ϖ

+ ⟨∆R⟩ = θ0
2ϖ

− p

1∫
0

ϕ∫
0

[vr(ϕ
′)− vr,0] dϕ

′dϕ (40)

where θ0 is the intersection of the linear obtained using the bisector fit. The mean radius is
obtained using both parameters of the fit and assuming a parallax.

4.3.2 Determinations of p−factors and mean radii of two Galactic RR Lyraes

I have applied the IRSB technique to two RRab stars - U Lep and RX Eri. Periods of these two
stars differ by only about 8 minutes. Figures 48 to 56 depict radial velocity and light curves,
integrals of radial velocities, angular diameters obtained from Kervella et al. (2004a), Kervella
et al. (2004b), and Graczyk et al. (2021) SBCR, determinations of p−factors corresponding to
these relations, and finally distributions of p−factors resulting from Monte Carlo simulations.
Besides p−factors, I am also determining distance d to a star given the p−factor of the other
star – each for the same SBCR. Distances from GAIA calculated as the inverse of parallax,
1/ϖ, are given for comparison. Finally, I am determining mean radii. Table 20 contains the
results. We may see that the distances are recovered with a precision of about 5%. If we
assumed that we are using an exact value of p (i.e., with the zero uncertainty), the distance
precision would improve to 3−4%. The mean radii are determined with a precision better than
2%. The obtained p−factors are also virtually the same for a given SBCR. Otherwise, they all
agree within 1σ (the statistical error).

35Numerical integration based on Virtanen et al. (2020), numerical errors are negligible.
36After determining the slope, we may obtain p given ϖ or vice versa. Distributions obtained from inversions

of GAIA parallaxes are in good approximation symmetric due to their good precision.
37One reason for this shift may be related to the finite precision of pulsation period determination. Spectoscopic

and photometric data collected at different epochs may be shifted due to the propagation of period error.
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star SBCR p ∆ϕ d [pc] < R > [R⊙]

Kervella et al. (2004a) 1.46± 0.06 0.0435 1007± 50(35) 5.47± 0.09
U Lep Kervella et al. (2004b) 1.45± 0.06 0.0430 1001± 48(37) 5.57± 0.09

Graczyk et al. (2021) 1.40± 0.06 0.0430 1011± 50(38) 5.42± 0.09

Kervella et al. (2004a) 1.45± 0.05 -0.0190 584± 30(18) 5.35± 0.07
RX Eri Kervella et al. (2004b) 1.43± 0.05 -0.0190 589± 31(19) 5.45± 0.07

Graczyk et al. (2021) 1.41± 0.05 -0.0190 578± 32(19) 5.30± 0.07

Table 20: Results of determinations of p−factors through application of the method described
in the previous paragraph. Distances d are obtained using p for the other star and the cor-
responding SBCR. Original GAIA EDR3 parallaxes with Lindegren et al. (2021) corrections
yield distances 1/ϖ(U Lep)= 1011± 17 kpc and 1/ϖ(RX Eri)= 573± 8 kpc. Statistical uncer-
tainties are calculated as the rms of the distributions. Errors of distances assuming vanishing
uncertainty of the p−factor are given in parentheses. Mean radii are given in the last column.

Obviously, we are dealing with many arbitrary choices and p depends on a method and
its details. Table 21 includes values of p obtained using different approaches with the original
one in bold. Other determinations were performed with no phase shift but a limited phase
interval and also using epochs from all phases (ϕ ∈ [0, 1]) with (∆ϕ ̸= 0) and without (∆ϕ = 0)
independently determined phase shifts. We can see that the phase cut is necessary in the
case of U Lep, as we obtain a much lower, most probably spurious value while taking into
account all data (see Figures 50 and 51). It is not the case for the second star. We can
see that something unusual is happening near the minima of integrals of both stellar radial
velocity curves (Figures 49 and 54). In the case of U Lep the integral is much steeper than the
corresponding angular diameter in the same phase range. In the case of RX Eri the integral
curve shape also looks very suspicious and does not correspond to the course of the angular
diameter. Similar p values obtained for the whole phase interval for this star may be just a
coincidence.

While dealing with determinations based on the whole phase interval, we notice that their
results do not differ whether we take into account a small phase shift or not. The phase shift
is also responsible for taking into account or rejecting different data points from the interval
close to ϕ ∈ [0.8, 1]. The minimum of the rms of fits for the restricted phase interval is obtained
for a specific set of angular diameters. The relatively large discrepancy of p in the case of
the limited phase interval with no phase shift, observed for U Lep, is due to a selection effect
connected with poor coherence of the radius and the angular diameter phases (Figure 50). A
loop appearing in the corresponding plot is apparent. As Storm et al. (2004) report, such shape
of the relation results from the unaccounted phase shift. The lower the scatter of the relation,
the smaller the influence of selection effects on the slope of the fitted linear.

We may also notice (Figures 49 and 54) that even though the SBCR of Kervella et al.
(2004a) yields values of angular diameters that are closer to those obtained using Graczyk
et al. (2021) (both relations were determined for dwarfs and subgiants), it is the relation of
Kervella et al. (2004b) for Cepheids that gives the value of a p−factor closer to that obtained
using SBCR of Graczyk et al.. These are the relative courses rather than absolute zero points of
angular diameters obtained from the SBCR relations that play a pivotal role in determining the
p−factor. It is because these are the relative changes of θ and R that influence the slope of the
fitted relation (39). Mean radii depend on the absolute values of θ predicted by SBCRs. That
is why the relation of Kervella et al. (2004a) gives ⟨R⟩ closer to that resulting from Graczyk et
al. (2021).

The determined value of p−factor depends on a method so it is not directly comparable
with values of the parameter obtained using other methods. However, we may notice that my
method yields a larger value than derived by Trahin et al. (2018) (p = 1.34 ± 0.07, for the
prototype star RR Lyr), but still in agreement within its uncertainty.
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ϕ ∈ [0, 0.8] ϕ ∈ [0, 1]
star SBCR ∆ϕ ̸= 0 ∆ϕ = 0 ∆ϕ ̸= 0 ∆ϕ = 0

Kervella et al. (2004a) 1.46± 0.06 1.60± 0.06 1.23± 0.04 1.23± 0.04
U Lep Kervella et al. (2004b) 1.45± 0.06 1.47± 0.06 1.17± 0.04 1.18± 0.04

Graczyk et al. (2021) 1.40± 0.06 1.41± 0.05 1.18± 0.04 1.18± 0.04

Kervella et al. (2004a) 1.45± 0.05 1.50± 0.05 1.49± 0.03 1.49± 0.04
RX Eri Kervella et al. (2004b) 1.43± 0.05 1.49± 0.05 1.46± 0.03 1.46± 0.03

Graczyk et al. (2021) 1.41± 0.05 1.47± 0.05 1.46± 0.03 1.46± 0.03

Table 21: Values of p determined using different approaches.

Figure 48: Radial velocity and light curves for U Lep
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Figure 49: Course of the integral of radial velocity and of the angular diameter of U Lep
determined using different SBCRs.

Figure 50: Relation between the integral of radial velocity and angular diameter resulting from
the SBCR relation of Kervella et al. (2004a) for U Lep with the limited phase interval and with
no phase shift applied. A loop resulting from poor coherence between phases of the two time
series, as well as the rejection of points that causes spuriously increased slope of the fitted linear
is apparent.
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Figure 51: Determination of the p−factor and of θ0 (the intersection) using a bisector fit for
U Lep.

Figure 52: Distributions of p for different SBCRs obtained using Monte Carlo simulations for
U Lep.
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Figure 53: Radial velocity and light curves for RX Eri.

4.3.3 Influence of systematic errors

We immediately notice that the zero point vr,0 of the radial velocity curve, recognized as the
systemic velocity, neither affects the determination of p, nor θ0, as it does not influence the values
of the integral used in the bisector fit. Consequently, it also does not affect the determination
of the mean stellar radius.

Regarding systematic errors of photometry, Figures 57 and 58 depict their influence (for
V− and K− bands independently) on determinations of p and ⟨R⟩ for U Lep, respectively.
Determinations of both p and ⟨R⟩ depend more on systematic shifts in K rather than in V .

In the case of the p−factor, the influence of systematic errors of photometry on the determi-
nation is small, with the approximate change of p of 0.3 mag−1 for the V− band and 1 mag−1

for K. The accuracy of the V photometry, tied up to the Tycho-2 catalog is undoubtedly lower
than that of K−band photometry but the systematic uncertainty arising from the standardiza-
tion should not be larger than 0.05 mag (a corresponding shift of p of ∼ 0.015). In the case of
the K−band photometry (tied up to the 2MASS catalog), the estimated systematic error for a
single star is 0.025mag, which corresponds to the shift of p of ∼ 0.025. In total, I estimate the
systematic uncertainty of p arising from the photometric uncertainties at 0.03, which is around
twice smaller than the statistical uncertainty.

In the case of ⟨R⟩, the influence of systematic photometric shifts is: ∼ 0.8R⊙ mag−1 for V
and ∼ 3.3R⊙ mag−1 for K. It corresponds to the estimated systematic uncertainty of the mean
radii of 0.09R⊙, which is the same as the statistical errors.

Even though I depict here only plotted relations between systematic errors of photometry
and the derived parameters p and ⟨R⟩ for U Lep, they look virtually the same for RX Eri.

As the determined slope of the fit is a product of p and ϖ, any systematic parallax shift δϖ
will have the impact on the shift of p−factor that depends on a parallax of a studied object:
δp ∝ −δϖ/ϖ2. Given the systematic uncertainty of parallax of 10µas, this component of the
systematic uncertainty of p− factors is 0.015 and 0.005 in the case of U Lep and RX Eri,
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Figure 54: Course of the integral of radial velocity and of the angular diameter of RX Eri
determined using different SBCRs.

Figure 55: Determination of the p−factor and of θ0 (the intersection) using a bisector fit for
RX Eri.
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Figure 56: Distributions of p for different SBCRs obtained using Monte Carlo simulations for
RX Eri.

respectively. It is significantly smaller than systematic errors arising from photometry.

4.4 Summary
NIR photometry provides excellent opportunities for distance determinations using variable
stars, including RR Lyrae stars. It is less affected by extinction than optical photometry,
amplitudes of pulsations are smaller, and, in the case of the B-W method, surface brightness-
color relations yield angular diameters with better precision.

I have established new PL and PLZ relations for Galactic RR Lyrae stars based on NIR
photometry and GAIA EDR3 parallaxes. The zero point of my relations is in very good agree-
ment with the zero point established by RR Lyrae stars from the LMC and the distance to the
Cloud obtained from eclipsing binaries of Pietrzyński et al. (2019). Three independent checks
have confirmed this fact by fitting relations with period and metallicity slopes of Cusano et al.
(2021) and of Muraveva et al. (2015) (both of which are based on the VMC photometry) to my
data, and by using my fiducial relations to derive a distance based on Szewczyk et al. (2008)
photometry of RR Lyrae stars from the LMC.

Distances obtained using my new relations are smaller by about 0.13− 0.2mag than these
based on Bono et al. (2001), Catelan et al. (2004c), Sollima et al. (2008), Dékány et al. (2013)
utilized by Szewczyk et al. and Karczmarek et al.. A similar discrepancy is observed when using
the zero point established by Benedict et al. (2011) HST parallaxes for 4 Galactic RR Lyrae
stars and the VMC photometry (Muraveva et al., 2015). Distances of the Magellanic Clouds
reported by Szewczyk et al. correspond to a systematic parallax shift of −0.08mas relative
to GAIA EDR3 parallaxes corrected by the Lindegren et al. (2021) corrections used for the
purpose of my calibrations of PL and PLZ relations. It is a shift that is highly unlikely given
the uncertainties of parallax corrections of a few µas. Relative distances of Fornax, Carina, and
the SMC are discrepant with those resulting from the K photometry of the red clump. The
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Figure 57: Influence of systematic errors of V K photometry on the determination of the
p−factor with respect to photometric zero points used in this work.

Figure 58: Influence of systematic errors of V K photometry on the determination of the mean
radius ⟨R⟩ with respect to photometric zero points used in this work.
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observed discrepancies may be due to the peculiar positions of the used RR Lyrae stars in their
host galaxies, and systematic errors of distances based on the red clump.

In general, distances obtained using PL and PLZ relations for JK bands and the WJK index
are in excellent agreement within statistical errors. This is caused by the fact that the adopted
mean metallicities of RR Lyrae variables from the analyzed galaxies are similar to metallicities
of stars from my calibrating sample. Likewise, it is also because of the small metallicity influence
on NIR absolute magnitudes of 0.1mag/dex, similar to that reported before by, e.g. Sollima et
al. (2006), Muraveva et al. (2015), and Cusano et al. (2021). The effect of metallicity introduces
distance modulus shifts usually not larger than 0.02mag, which is comparable to differences
resulting from the utilization of the mixed (RRab+RRc) sample rather than just fundamental
pulsators (RRab) in distance determinations.

The fundamentalization of periods of RRc stars, especially those being members of other
galaxies, is questionable (which is apparent in PL relations for different populations). However,
it causes a small distance bias of around 1%. Using just RRab stars yields just slightly larger
statistical uncertainties of distances as we are dealing with a smaller span of periods in that
case. I estimated the systematic uncertainty of zero point of my PL and PLZ relations of
0.02mag and systematic uncertainties of my distances of 0.04mag.

The Baade-Wesselink method of distance determinations is the most complex one discussed
in this thesis. As an initial application of the IRSB technique for RR Lyrae stars, I have
determined the p−factors of two stars, U Lep and RX Eri. I have used three different surface
brightness-color relations of Kervella et al. (2004a), Graczyk et al. (2021) (for dwarfs and
subgiants), and of Kervella et al. (2004b) (for classical Cepheids); they all yield consistent
values of the p−factor. The factors of the two stars are also in good agreement. I also had the
opportunity to determine the mean radii of the studied stars.

As recognized by other authors before, a phase cut is required near the phase of the minimal
radius most probably due to shock waves that cause a discrepancy between the course of the
integral of the radial velocity curve and of the angular diameter derived from photometry
through SBCR. A slight phase shift between the angular diameter and the integral of radial
velocity curve is generally required, similar as for classical Cepheids.

Systematic photometric uncertainties of around a few hundredths of a magnitude do not
affect the determination of the p−factor (and consequently a distance) much, yielding a bias
smaller than the statistical uncertainty. The method requires a robust analysis of a sample of
RR Lyrae stars to check the dependence of the p−factor on period or metallicity. The analysis
of more objects could also allow for improvements of the method and its better adjustment to
RR Lyrae stars. The dense coverage of radial velocity and light curves and a good precision of
the obtained data are crucial for p−factors and distances derived from this method.

Even though the Baade-Wesselink method for RR Lyrae variables is currently not utilized
to derive distances to nearby galaxies, when properly calibrated, it may potentially be used to
study spatial structures associated with the Population II objects from the nearest neighbors
of the Milky Way and within our Galaxy. The new generation of telescopes (JWST, ELT) will
allow the Baade-Wesselink method for RR Lyrae stars to reach many galaxies in the volume
of the Local Group. The method could also provide corrections to PL and PLZ relations of
RR Lyrae stars from nearby galaxies as it already does for classical Cepheids (Gieren et al.,
2018).
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5 Final conclusions
I have presented three different distance determination methods in my thesis. My calibration
of carbon stars as a distance indicator allows for an effective reduction of effects that make
luminosity functions of these stars asymmetric and can potentially falsify determinations of
distances. The current accuracy of the method is already comparable to that of distances de-
termined from classical Cepheids. A multi-band version of the method could take into account
the extinction that affects our measurements. Further improvements will also include the influ-
ence of metallicity on mean absolute magnitudes of carbon stars. Accurate parallaxes of carbon
stars from GAIA DR4 could allow to study the impact of metallicity on the method. In sum-
mary, carbon stars are very promising distance indicators, which will allow to obtain distances
to Supernova host galaxies independent of classical Cepheids and the TRGB. Determinations
using JAGB stars may contribute to the solution of the Hubble tension and allow for precise
determinations of the Hubble constant, especially in the era of the new generation of telescopes.

I have presented new period-luminosity-metallicity relations for RR Lyrae stars. My cali-
brations show a significant improvement of the accuracy compared to calibrations previously
utilized in distance determinations. The zero point of my relations is based on the parallaxes
of RR Lyrae variables from GAIA EDR3 determined with a state-of-the-art precision. It is also
in agreement with the zero point based on the very accurate distance to the Large Magellanic
Cloud determined from detached eclipsing binaries (Pietrzyński et al., 2019). In the case of
the Magellanic Clouds and the Fornax and Carina galaxies, my calibration yields distances
which are substantially smaller (by about ∼ 0.13-0.2mag, i.e. by 6 − 10%) than those based
on previously used calibrations. The obtained discrepancy with the red clump and TRGB
distance determinations to Fornax, Carina, and the SMC, based on NIR photometry should
be investigated further and can contribute to an improved calibration of these two methods.
PLZ relations for RR Lyrae stars can be used to check intermediate methods that calibrate
Supernovae. The new generation of telescopes will allow to robustly compare the calibration of
PLZ relations for RR Lyrae variables with calibrations of the TRGB, classical Cepheids, and
the JAGB method. My fiducial calibrations can already serve for accurate distance determina-
tions from RR Lyrae stars. A future implementation of parallaxes from the next data release
of GAIA will only improve them.

The IRSB version of the Baade-Wesselink method applied to two RR Lyrae stars is an
introduction to a broader study that will investigate the dependence of p−factors of RR Lyrae
stars on environmental conditions and various parameters of these stars, such as metallicity
and pulsation period. The Baade-Wesselink method for RR Lyrae stars is independent of
PL(Z) relations and is in principle geometrical. With well-calibrated p−factors, it may provide
accurate distance determinations that depend very little on reddening. In my work, I have shown
that p−factors for RR Lyrae stars can be determined with good accuracy. The next data release
of GAIA parallaxes will allow for a true breakthrough in the calibration of the method. Likewise,
the next-generation telescopes will allow to implement the method for distance determinations
to nearby galaxies, where thousands of RR Lyrae stars are already known.

The date of GAIA Data Release 4, including even more precise parallaxes of nearby stars,
has not been announced yet38. The release will be based on data gathered during 66 months (5.5
years) of operation. For comparison, the GAIA (E)DR3 is based on 34 months of observations.

Although the most fundamental purpose of calibrations is associated with the accurate
calibration of H0, distance determinations to nearby galaxies are important for many different
fields of astrophysics. With uniform and high-quality data, the Cerro Armazones Observatory
will provide excellent opportunities to develop the projects described in this dissertation.

38GAIA date release scenario is available at: https://www.cosmos.esa.int/web/gaia/release.
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Appendix: Near-infrared light curves of Galactic RR Lyrae
Mean magnitudes used to establish PL and PLZ relations are denoted with blue horizontal
lines.
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