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Outline

‹ Method of characteristics,
‹ Riemann problem and Godunov solution,
‹ Rankine-Hugoniot shock conditions,
‹ Bondi accretion,
‹ SupernovæIa - deflagration and detonation,
‹ Core-collapse supernovæ- collapse, bounce and shock revival.
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What is a shock?

Shock is a thin („ λ) transition layer in which
‹ bulk flow energy is dissipated as heat,
‹ the entropy of the system is increased.

Shocks can be
‹ collisional, if molecular/Coulomb dissipation

operates,
‹ collisionless, for interaction with

electromagnetic waves, particle/wave
scattering.

Shocks form by
‹ fast flow around an obstacle,
‹ accretion onto compact objects,
‹ explosions (supernova, GRB),
‹ non-linear steeping of waves.
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What is a shock?
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What is a shock?

Upstream (region 1, pre-shock) and downstream (region 2, post-shock)
parts of the system (from wikipedia).
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Shock - a region of discontinuity

Assuming that we have a conserved quantity φ that undergoes an
discontinuity at xsptq, and is governed by

Bφ

Bt
“ ´

B

Bx
f pφq .

Integrating the above in the range of x1 ă xs ă x2:

d
dt

˜

ż xsptq

x1
φdx `

ż x2

xsptq
φdx

¸

“ φ1
dxs
dt
´ φ2

dxs
dt
`

ż xsptq

x1

Bφ

Bt
dx `

ż x2

xsptq

Bφ

Bt
dx

“

ż x2

x1

B

Bx
f pφq dx “ ´f pφq|x2x1 .

with dx1{dt “ dx2{dt “ 0. For the limit x1 Ñ xsptq and x2 Ñ xsptq one
obtains us , the system characteristic speed (shock speed):

us “
f pφ1q ´ f pφ2q

φ1 ´ φ2
.
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Method of characteristics

‹ A shock arises in a system where its characteristics intersect,
‹ To find out the real (single-valued) solution, the admissibility

(entropy) condition is used. For physically real applications this
means that the solution should satisfy the Lax entropy condition

f 1pφ1q ą us ą f 1pφ2q.

where f 1pφ1q and f 1pφ2q represent characteristic speeds at upstream and
downstream conditions (characteristics always enter a shock, but never
leave it).
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The method of characteristics

Consider the following constant coefficient
PDE for a function upx , yq:

aux ` buy “ 0, where a2 ` b2 ‰ 0.

This can be rewritten as a product of a
vector v and operator ∇:

pa, bq ¨∇u “ v ¨∇u “ 0.

Ñ The solution upx , yq is constant in the
direction of v. The lines

bx ´ ay “ c

are called the characteristics of the problem,
’labeled’ by an unique value of c . From the
above

upx , yq “ f pbx ´ ayq.

Characteristic lines bx ´ ay “ c
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The method of characteristics

More formally, in order to reduce the
complexity of the problem (to make ODE
out of PDE), one can change the
coordinates to such that one of the axes is
parallel to v:

pξ, ηq “ pax ` by , bx ´ ayq, so that

ux “ auξ ` buη,
uy “ buξ ´ auη.

One has

aux ` buy ” 0 “ pa2 ` b2quξ Ñ uξ “ 0.

that is

upξ, ηq “ f pηq “ f pbx ´ ayq.

Change of coordinates px , yq Ñ pξ, ηq
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The method of characteristics: Burgers’ equation

Consider a 1D diffusive PDE, which can serve as a very simple model of
shock propagation:

ut ` uux “ νuxx .

A much simplified version of the above is the advection equation

ut ` cux “ 0 Ñ p1, cq ¨∇u “ 0.

This means that the characteristic lines (characteristic speeds) are given
by

dx
dt
“ c Ñ x “ ct ` xp0q

and the solution is upx , tq “ f px ´ ctq, an initially defined shape moving
from left to right on the x´axis.
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Inviscid Burgers’ equation: rarefaction

We now have the simplest nonlinear
equation

ut ` uux “ 0Ñ p1, uq ¨∇u “ 0

(the tangent to characteristics v depends on
u). Suppose the following initial conditions,

up0, xq “

#

1 x ă 0,
2 x ą 0,

Rarefying characteristics.

and the slope of characteristics is

dx
dt
“ upt, xptqq “ up0, xp0qq, which gives xptq “

#

t ` xp0q xp0q ă 0,
2t ` xp0q xp0q ą 0.

The waves originating at xp0q ą 0 move to the right faster than the
waves originating at points xp0q ă 0 Ñ rarefaction region.
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Inviscid Burgers’ equation: rarefaction

The point x “ 0 corresponds to the
discontinuity in the initial conditions (a
bundle of dashed characteristics emanating
from x “ 0). For xp0q “ 0

xptq “ up0, xp0qqt ` xp0q

implies

u “ x{t for t ă x ă 2t.
Rarefying characteristics.

Final solution is

upt, xq “

$

’

&

’

%

1 x ă t,
x{t t ă x ă 2t,
2 x ą 2t.
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Inviscid Burgers’ equation: shock

The opposite initial conditions

up0, xq “

#

2 x ă 0,
1 x ą 0,

give the following characteristic lines

xptq “

#

2t ` xp0q xp0q ă 0,
t ` xp0q xp0q ą 0,

e.g., the slopes are opposite - the waves
originating at xp0q ą 0 move slower than
the waves originating at points xp0q ă 0.

Solution u becomes multi-valued at the
crossing of characteristics Ñ the shock is
formed.

Characteristic lines showing a shock wave
formation.
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Riemann problem and the Godunov scheme

In general, step function initial conditions
constitute the Riemann problem. Consider
the conservative form of the advection
equation

B

Bt
upx , tq `

B

Bt
f px , tq “ 0,

where f px , tq is the flux of field upx , tq (f “ cu, say) - physically, it can
represent a moving shock front. The above is just a conservation
equation for a vector pu, f q:

Btu ` Bx f “ ∇ ¨
ˆ

u
f

˙

“ 0,

that is
ż

∇ ¨
ˆ

u
f

˙

dxdt “
¿
ˆ

u
f

˙

¨ ndl “ 0.
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Riemann problem and the Godunov scheme

In numerical settings, the Gauss integral
formula is written as a line integral,
`

un`1
i ´ uni

˘

dx `
`

fi`1{2 ´ fi´1{2
˘

dt “ 0.

It requires to define the spatial integral
averages of upx , tq (lower and upper side of
a cell): Space-time grid x “ ih, t “ nτ

(dx “ h, dt “ τ).

uni “
1
h

ż i`1{2

i´1{2
upx , tnqdx , un`1

i “
1
h

ż i`1{2

i´1{2
upx , tn`1qdx ,

and time integral averages of the fluxes (left and right side of the cell):

fi´1{2 “
1
τ

ż n`1

n
f pupxi´1{2, tqqdt, fi`1{2 “

1
τ

ż n`1

n
f pupxi`1{2, tqqdt.

so
un`1
i “ uni ´

τ

h
`

fi`1{2 ´ fi´1{2
˘

.
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Riemann problem and the Godunov scheme

To solve

un`1
i “ uni ´

τ

h
`

fi`1{2 ´ fi´1{2
˘

.

one needs the fluxes at each interface sides,
fi´1{2 and fi`1{2. Godunov’s first order
upwind method treats every cell interface as
a Riemann problem with piecewise constant
initial data, e.g., at i ` 1{2

uni`1{2 “

#

uni x ă xi`1{2,

uni`1 x ą xi`1{2,
Ñ used to get the Godunov fluxes fi´1{2 and fi`1{2.

Space-time grid x “ ih, t “ nτ
(dx “ h, dt “ τ).

For f “ cu, the upwind scheme gives

un`1
i “ uni ´

τ

h
`

fi`1{2 ´ fi´1{2
˘

“ uni ´

#

λcfl
`

uni ´ uni´1

˘

c ą 0,
λcfl

`

uni`1 ´ uni
˘

c ă 0,

with λcfl “ cτ{h is the Courant-Friedrichs-Lewy parameter.
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The Mach number

Consider a flow from the jet of the crossection A.
From the Bernoulli and mass conservation,

1
2
u2 ` h “ const., ρuA “ const.

with enthalpy h “
ş

dp{ρ. Changes of A induce
variations in other quantities:

udu `
c2

ρ
dρ “ 0, Ñ

dρ
ρ
“ ´M2 du

u
.

with the sound speed c “
a

dp{dρ and M “ u{c
is the Mach number.

‹ For M ! 1 flow generally incompressible,
‹ M ă 1 - subsonic flow, M ą 1 - supersonic

flow.

The de Laval nozzle -
Change of A makes the
flow supersonic (in
astrophysical situations
acceleration due to e.g.,
gravity):

p1´M2q
du
u
“ ´

dA
A
.
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Bondi accretion

Consider steady, spherically symmetric
accretion of gas onto mass M, assuming

‹ barotropic flow, p “ ppρq,
‹ gas is not self-gravitating, mgas ! M.

Integrating the continuity equation on shells
surrounding the central mass gives (with
velocity u directed inwards), one get the
following:

9M “ ´4πr2ρu
McCray 1979 (at the Cambridge AGN meeting)

For a given radial streamline, the Bernoulli theorem is

1
2
u2 ´

GM
r
`

ż ρ

ρ8

dp
ρ

loomoon

enthalpy h

“ 0,

with ρ8 the density at infinity.
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Bondi accretion

There are particular cases of flows:
‹ Isothermal flow, p “ c2

8ρ, with c8 “ const. being the ”thermal
speed” and

h “ c2
8 lnpρ{ρ8q.

‹ polytropic flow, p “ p8pρ{ρ8qγ with

h “
γc2
8

γ ´ 1

˜

ˆ

ρ

ρ8

˙γ´1

´ 1

¸

,

where c8 “ p8{ρ8.
For the polytropic flow, the ”thermal speed” is related to the ”acoustic
speed” c

c2 “
dp
dρ
“ γc2

8

ˆ

ρ

ρ8

˙γ´1

.

This can be used to define the characteristic length (Bondi radius):

rB “
GM
c2
8

.
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Bondi accretion

In the dimensionless setup one has

x “
r
rB
, ū “

|u|
c8

, ρ̄ “
ρ

ρ8
, 9m “

9M
4πρ8pGMq2{c3

8

.

where 9m is the dimensionless accretion rate 9m (unit of mass flux ρ8c8
across 4πr2

B): The conservation and Bernoulli equations are

x2ρ̄ū “ 9m,
1
2
ū2 ` Hpρ̄q ´

1
x
“ 0.

For isothermal flow (γ “ 1) Hpρ̄q “ ln ρ̄, otherwise
Hpρ̄q “ pρ̄γ´1 ´ 1qγ{pγ ´ 1q. From the above, for isothermal flow:

ˆ

ū ´
1
ū

˙

dū “
ˆ

2
x
´

1
x2

˙

dx .
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Bondi accretion

The solutions of the previous
equation can be categorized
according to a critical value 9mc :

‹ a sonic transition (at the Mach
number ū “ 1) occurs at
x “ 1{2. This gives

ρ̄ “ expp
3
2
q and 9mc “

1
4
expp

3
2
q.

‹ Flows with 9m ă 9mc subsonic
everywhere,

‹ Flows with 9m “ 9mc subsonic
for x ą 1{2, supersonic for
x ă 1{2.

Ñ near accreting body there may be
a shock transition downstream of
the shock.

from Shu (1992)

The maximum accretion rate for
steady spherical isothermal flow is,
from the condition 9m “ 9mc

9M “ 4πρ8 9mc
pGMq2

c3
8

.
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Rankine–Hugoniot conditions

A general 1D set of equations of motion with
viscosity:

Bρ

Bt
`
B

Bx
pρuq “ 0,

B

Bt
pρuq `

B

Bx

ˆ

ρu2 ` p ´
4
3
ρν
Bu
Bx

˙

“ 0,

B

Bt
pρE q `

B

Bx

ˆ

ρu
ˆ

e `
1
2
u2 ` p{ρ´

4
3
ν
Bu
Bx

˙˙

“ 0.

where e is the specific internal energy of the fluid and E is the total
specific energy,

E “ e `
1
2
u2.

The system is described by the state vector pρ, uρ,Eρq.
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Rankine–Hugoniot conditions: steady shock

The jump conditions corresponding to the conservation of mass,
momentum and energy are

us pρ2 ´ ρ1q “ ρ2u2 ´ ρ1u1

us pρ2u2 ´ ρ1u1q “
`

ρ2u2
2 ` p2

˘

´
`

ρ1u2
1 ` p1

˘

us pρ2E2 ´ ρ1E1q “ ρ2u2

ˆ

e2 `
1
2
u2
2 `

p2

ρ2

˙

´ ρ1u1

ˆ

e1 `
1
2
u2
1 `

p1

ρ1

˙

with us , for a polytropic equation of state pp 9 ργq,

us “ u1 `

c

γp1

ρ1
loomoon

sound speed

ˆ

1`
γ ` 1
2γ

ˆ

p2

p1
´ 1

˙˙1{2

.

For a stationary shock us “ 0:

ρ1u1 “ ρ2u2,

ρ1u2
1 ` p1 “ ρ2u2

2 ` p2,

ρ1u1

ˆ

e1 `
u2
1

2
`

p1

ρ1

˙

“ ρ2u2

ˆ

e2 `
u2
2

2
`

p2

ρ2

˙

.

8 / 15



Rankine–Hugoniot conditions: steady shock

Combining the conservation of mass and energy we recover the Bernoulli
theorem,

e1 `
u2

1

2
`

p1

ρ1
“ e2 `

u2
2

2
`

p2

ρ2
.

For a polytropic (p 9 ργ) ideal gas equation of state (p{ρ “ kT {m
written as p “ pγ ´ 1qρe) the solution for density, pressures ratios and
hence temperature ratios, is:

ρ2

ρ1
“

u1

u2
“

pγ ` 1qM2
1

pγ ´ 1qM2
1 ` 2

,
p2

p1
“

2γM2
1 ´ pγ ´ 1q
γ ` 1

,

T2

T1
“
ppγ ´ 1qM2

1 ` 2qp2γM2
1 ´ pγ ´ 1qq

pγ ´ 1q2M2
1

,

where

M1 “
u1

c1
“

ˆ

ρ1u2
1

γp1

˙1{2

is again the Mach number, characterizing the strength of the shock (also,
ratio of the ”ram pressure” to thermal pressure in the pre-shock gas, or
kinetic energy density-thermal energy density ratio).
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Strong and weak shocks

Strong shock is M1 " 1, for
γ “ 5{3 one has

ρ2

ρ1
“

u1

u2
«
γ ` 1
γ ´ 1

“ 4,

p2 «
2γ
γ ` 1

M2
1p1 “

3
4
ρ1u2

1 ,

T2 «
2γpγ ´ 1q
pγ ` 1q2

T1M2
1.

In the frame of the shock,
post-shock kinetic and thermal
energies are

1
2
u2
2 «

1
32

u2
1 ,

3
2
kT2

m
«

9
32

u2
1 .

Ñ half of the pre-shock kinetic
energy converted to thermal energy.

A weak shock has M1 ´ 1 “ ε ! 1:

ρ2

ρ1
“ 1`

4
γ ` 1

ε “ 1`
3
2
ε,

p2

p1
“ 1`

4γ
γ ` 1

ε “ 1`
5
2
ε,

T2

T1
“ 1`

4pγ ´ 1q
γ ` 1

ε “ 1` ε.

A shock converts supersonic gas into
denser, slower, higher pressure
subsonic gas. It increases the
specific entropy of the gas by

s2 ´ s1 “ cp ln
ˆ

T2

T1

˙

´
k
m

ln
ˆ

p2

p1

˙

,

with cp “ γcv . Shock shifts gas to a
higher adiabat.
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Hugoniot curve and Rayleigh line

Jump conditions on the p ´ 1{ρ plane. Rayleigh line

p2 ´ p1 “ u2
s

ˆ

ρ1 ´
ρ2

1

ρ2

˙

has a slope proportional to F 2
m (Fm - flux of mass over the jump region).
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Supernovæ
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Supernovæ classification: spectra

SN Ia - thermonuclear explosions, core-collapse SN - gravity bombs.
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Supernovæ classification: lightcurves

‹ Ia,b,c - source of
emission are photons
from decaying
radioactive elements:
56Ni Ñ56 Co Ñ56 Fe,

‹ II - kinetic energy
reservoir, hydrogen
becomes heated and
ionized, plateau due to
hydrogen recombines,
then radioactive decay
tail,

‹ Related: acceleration of
cosmic rays.
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SN Ia

11 / 15



SN Ia as standard(izable) candles
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SN Ia: astrophysical model

‹ Energy source: thermonuclear
explosion,

‹ kinetic energy of ejecta:
1051 erg ,

‹ more-or-less the same
brightness Mbol „ ´19,

‹ no H, He in spectra Ñ
exploding C+O WD star

Two main scenarios:
‹ Single-degenerate: accretion

onto WD from companion,
Ñ M ą MCh Ñ catastrophical
collapse,

‹ Double-degenerate: merger of
two WDs Ñ collapse of an
unstable object.

Explosion rate „ 10´2{galaxy{yr .
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SN Ia: astrophysical model

Initial condition before the collapse (lasts „ 100 yr):
‹ convective carbon burning - convective energy

transport,
‹ cooling by plasma oscillation neutrino emission.

Explosion trigger:
‹ thermonuclear runaway near the center, in fully

degenerate matter (p “ ppρq) Ñ temperature
increase not cooled by expansion,

‹ thermonuclear flame of ’burning’ C+C (reaction rate
scales as „ T 20).
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SN Ia: explosion regimes

Two branches on the Hugoniot curve:
‹ detonation (p2 ą p2, ρ2 ą ρ1) - supersonic w.r.t fuel,
‹ deflagration (p2 ă p2, ρ2 ă ρ1) - subsonic w.r.t fuel.

Many instabilities: R-T, K-H and those related to the turbulent
combustion front (Landau-Darrieus flame cusp creation).
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SN Ia: deflagration & delayed detonation

Deflagration model work quite well:
‹ explodes without fine-tuning,
‹ based on fundamental

principles,
but has problems:

‹ explosions usually not very
bright,

‹ outer layer composition
inconsistent with bright SN Ia.

Ñ Delayed detonation (mechanism
unknown, still an open question)

Onset of the detonation phase: 0.72 s (top
left), 0.80 s (top right), and 0.90 s (Röpke
and Bruckschen 2008)
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Core-collapse supernovæ
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Core-collapse supernovæ rates

CCSN rate = star-formation rate times the fraction of stars in the in the
proper mass range. In the Local Group of galaxies,

‹ SN every 100 years,
optimistically every 20 yr,

‹ most local events at ă 100kpc.

from Ando et al. (2005)

Evolution of the core-collapse supernova rate with
redshift (from lrr-2011-1)
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Core-collapse supernovæ progenitors

We are interested in massive stars, 7´ 10 Md ď M ď„ 150Md. Their
evolution proceeds differently, according to mass, metalicity, rotation and
the presence of companion:

‹ For masses ă 7 Md, the core is
mostly Carbon-Oxygen Ñ
envelope is ejected Ñ CO WD,

‹ slightly more massive produce
O-Ne-Mg WDs,

‹ M ą 10 Md burning to silicon
and iron Ñ instability.

CCSN red supergiant progenitor
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Core-collapse supernovæ progenitors

Instability in previously stable ”burning” because
there is no gain in energy from combining two Fe
nuclei (Fe are well bound; the boundary between
fusion and fission regimes)
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Onset of the collapse

The core is in hydrostatic equilibrium,

dp
dr
“ ´

GMρ

r2 , with p “ pe ` pi ` prad ,

where pressure comes from
‹ degenerate and relativistic electrons:

pe »
2π
3

µ4
e

c3h3 » 1028 dyne{cm2,

µe » pρ7Yeq
1{3 MeV ,

‹ ions (assuming iron for simplicity):

pi 9 YFeρkT » 1026 dyne{cm2,

‹ radiation:

prad “
a
3
T 4 » 1025 dyne{cm2.

All these numbers assuming
the iron core just before the
collapse:

‹ size „ 1000 km,
‹ temperature

1MeV » 1010 K ,
‹ lepton fraction

Ye » 0.5.
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Onset of the collapse

The maximum mass of a star supported by degenerate relativistic
electrons (Chandrasekhar mass):

MCh » 5.8Y 2
e Md.

General relativity and thermal corrections are of secondary importance;
for Ye “ 0.5 MCh » 1.45 Md. How to destabilize the core?

‹ gain mass by burning Si layers, so M ą MCh Ñ it becomes unstable
w.r.t radial perturbations,

‹ reduce Ye Ñ electron capture.
In the simplest case (electron capture on free protons):

e´ ` p Ñ n ` νe , works when µe ą µn ´ µp pµν “ 0q.

For T “ 0 with non-degenerate neutrons µe “ mn ´mp » 1.2 MeV . In
realistic core-collapse, capture at µe » 10 MeV (neutrinos taking excess
energy).
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Onset of the collapse: photodissociation & capture rates

Electron capture rate is

B

Bt
Ye 9 µ5

e 9 ρ5{3.

(Bethe et al., 1979). In realistic situation,

e´ ` pZ ,Aq Ñ νe ` pZ ´ 1,Aq,

nuclei instead of free protons (blockage due to neutrons filling shells,
Pauli blocking of lower-energy states). In addition, pressure support is
reduced by photodissociation of nuclei (125MeV /nucleon):

γ `56
26 Fe Ø 13α` 4n.

As a result, ν escape freely for densities ă 1012 g{cm3.
‹ rapid deleptonization of the core,
‹ entropy changes are small - the collapse is almost adiabatic.
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Collapse: neutrino trapping

The density is growing, and for ρ ą 3ˆ 1012 g{cm3 neutrino diffusion
time

τdiff " τcol.

is much larger than the timescale for collisions due to scattering on nuclei:

ν ` pZ ,Aq Ø ν ` pZ ,Aq, the mean-free path being

λν » 107
ˆ

1012 g{cm3

ρ

˙ˆ

10 MeV
ε2ν

˙

A
N2 ,

neutrinos are trapped in the collapsing core:
‹ Deleptonization stops: Yl “ Ye ` Yν » 0.32,
‹ β´equilibrium is reintroduced:

e´ ` p Ø n ` νe
µe ` µp “ µn ` µν .
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Nuclear EOS for T “ 0
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E
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´

1
nb

¯

` Tds
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Collapse: core bounce, nuclear EOS for T ‰ 0

Equation of state for T ‰ 0 is
P “ PpE ,T ,Yeq - nuclear statistical
equilibrium.

‹ Strong forces make the EOS
relation stiff at
» 2ˆ 1014 g{cm3 (nuclear
saturation density):

ρnuc “
4Amb

4πR3
nuc

where Rnuc “ A1{3r0,
r0 “ 1.25 fm.

Above ρnuc nuclei are so close to each other, that the repulsion ”hard
core” makes the EOS stiff (wiggle is the transition region).
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Collapse: bounce and shock wave

‹ EOS stiffens due to nuclear
interactions,

‹ sound wave is created Ñ
propagates through the inner
core,

‹ steepening of waves at the
sonic point Ñ shock!

Mass of the inner core, Mic 9 Y 2
l , determined by nuclear physics and

weak interactions (also GR, rotation and thermal corrections). Quite
universally,

Mic » 0.5 Md,

and quite independent of the progenitor details.
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Collapse: bounce and shock wave

From the point of view the dynamics
of collapse, the parameters of the
inner core are of importance:

‹ Mic sets the kinetic energy
transfered to the shock,

‹ Ric and Mic define the angular
momentum reservoir,

‹ no problem from the point of
view of nuclear physics - well
known nuclear forces stabilize
the core,

‹ the collapse doesn’t lead
directly to black hole formation
(no ”prompt” collapse),

‹ MCh ´Mic is the amount of
material that falls back in later
stages of explosion (fallback).
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Collapse: supernova energetics

‹ Binding energy of the neutron star of mass M and radius R:

Egrav „
GM2

R
» 3ˆ 1053 erg .

‹ initial shock energy (v „ 0.05 c):

Esh “
1
2
Micv2 » 1.2ˆ 1051 erg .

‹ Shock ”stalling”: energy lost on dissociation (after accretion of
„ 0.1 Md):

Ediss „ 10pM{Mdq ˆ 1051 erg .

and neutrino loses:
Eν „ 1053 erg{s

‹ Binding energy of the progenitor, for 10 Md star it is
Eprog ,bind » 3ˆ 1051 erg
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Collapse: shock stall

The energy of the bounce is
not sufficient and the shock
is stalled. The energy loses
are:

‹ Dissociation of in-falling
nuclei,
„ 9 MeV /nucleon,

‹ neutrino flux from
behind the shock and as
the protoneutron star
(PNS) cools (99% of
energy)

Supernova energy - kinetic
and internal energy of the
ejecta is „ 1051 erg .

Ñ there must be a mechanism to convert a part of the NS gravitational
energy into explosion
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Shock revival: neutrino heating

In other words ram pressure larger than the pressure after the shock,
pram ą pshock . Additional energy deposit behind the shock is needed.
Failed ideas:

‹ Radiation pressure,
‹ Nuclear burning (e.g., O Ñ Fe),
‹ Changing the nuclear equation of state Ñ bigger bounce,
‹ Progenitor’s models with steeper density profiles.

A possible delayed mechanism may be provided by neutrinos:
‹ cooling rate: Q´ν » 1020 pT {2MeV q6 erg{s{g , dominated by the

URCA processes,

p ` e´ Ñ νe ` n, n ` e` Ñ ν̄e ` p,

‹ heating rate: Q´ν » 1020Lνp100 km{rq2pTν{4MeV q2 erg{s{g , (Tν
does not depend on r) dominated by the inverse URCA processes,

νe ` nÑ p ` e´, ν̄e ` p Ñ n ` e`.
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Shock revival: neutrino heating

Since cooling falls off as T 6, faster
than heating at r´2 there is a gain
region of positive Q`ν ´ Q´ν (gain
region)

‹ net heating adds
„ 1020 erg{s{g Ñ matter gains
sufficient energy to revive the
shock in 100 ms,

‹ revival by pdV work of
expanding matter.

(Ott et al., 2008)

Additional problems: increase the time for which matter is heated up,
increase Lν (convection, asymmetry?), effects of GR and
multi-dimensional (new instabilities).
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Neutrino transport

Proper transport solution - Boltzmann
equations - is computationally very
expensive (6+1D: position, momenta and
energy).

The notion of neutrino energy-depended
(9 T 2

ν ) neutrinosphere,

Rν “ Rpτν “ 2{3q, τν “

ż 8

r

dr
λ
.

Limiting cases:
‹ Diffusion (isotropy, λ ! R),
‹ Free-streaming (radial outflow, λ " R).

Something in-between: leakage scheme
(neutrino trapped above some density).

Neutrino luminosity in time (from
Gil-Botella and Rubbia 2003)
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Standing Accretion Shock Instability

SASI is a low mode (l “ 1) hydrodynamical
instability Blondin et al. 2003, Scheck et al.
2004, Ohnishi et al. 2006, Burrows et al.
2006) that leads to

‹ development of a spiral mode (m “ 1),
‹ accretion and outflows at the same

time,
‹ large scale convection (in nature,

possibly together with neutrino-driven
convection),

‹ big asymmetry Ñ pulsar kicks,
‹ slows down the initial PNS spin.

Reason for the instability -
advective-acoustic cycle: coupling between
acoustic and advected perturbations
through the flow gradients.
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Shallow water simulations of SASI sloshing
mode (Foglizzo et al.)
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Blast wave from supernova explosion

Supernova releases energy E from a point
source into exterior homogeneous gas of
density ρ0

‹ spherical shock wave of speed ush,
‹ Assume energy conservation (radiative

loses ! E ),
‹ Ram pressure ρu2

sh " p0 » 0.
What is the evolution of the shock front in
time? From dimensional analysis,

rsh “ Eαρβ0 t
δ Ñ rrshs “ L “ pML2T´2qαpML´3qβT δ,

which gives α “ 1{5, β “ ´1{5, δ “ 2{5 and rsh “ A
`

Et2{ρ0
˘1{5

,

(A “ const. » 1.17 for γ “ 5{3)
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Blast wave from supernova explosion

The velocity of the shock is then

ush “
drsh
dt

“
2
5
A
`

E{t3ρ0
˘1{5

.

In can be used to estimate the size of the
supernova remnant. For

‹ ρ0 “ 2ˆ 10´24 g{cm3 (106

atoms/m3),
‹ E “ 1051 erg ,
‹ t “ 1 yr : rsh “ 0.3 pc,

ush “ 1.3ˆ 105 km{s,
‹ t “ 100 yr : rsh “ 2 pc,

ush “ 8ˆ 103 km{s,
‹ t “ 10000 yr : rsh “ 13 pc,

ush “ 5ˆ 102 km{s

T “ 1010pE{ρ0qr´3
sh K For

t » 104 yr , T „ 106 K Ñ X-ray
emission.

This self-similar blast wave solution
is called the Taylor-Sedov solution.
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Toy-model shock: two balls illustration

Consider two balls of masses M and m, dropped from
an initial height h (floor and balls elastic). Just as M
touches the floor:

‹ downward velocities of M and m (same
acceleration): vi “ ´

a

2gh,

‹ M bounces from the floor with Vi “
a

2gh,
‹ M and m collide. Using the
‹ conservation of momentum:

MVi `mvi “ MVf `mvf ,
‹ conservation of energy:

1
2MV 2

i `
1
2mv2

i “
1
2MV 2

f `
1
2mv2

f

‹ For m ă 3M, vf is upwards and the rebound
height of m is

hf “ v2
f {2g “ h

ˆ

3M ´m
M `m

˙2

Ñ
M"m

9h
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Further reading...

‹ ”An introduction to astrophysical fluid dynamics”,
Michael J. Thompson,

‹ ”Physics of Astrophysics, Vol. II: Gas Dynamics” ,
Frank H. Shu

‹ ”Thermonuclear supernovae: a multi-scale astrophysical problem
challenging numerical simulations and visualization” ,
F. K. Röpke and R. Bruckschen (2008),

‹ ”Explosion Mechanisms of Core-Collapse Supernovae”,
H-T. Janka (2012).
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