Relativistic stars

Michał Bejger
N. Copernicus Center, Warsaw

Outline

* Newtonian hydrostatic equilibrium,
* HR diagram, stars of different masses,
* White dwarfs: electron degeneracy, maximum mass,
* Neutron stars: pulsars - rotating compact stars,
* Equation of state and structure, neutron drip, deep interior
^ NS structure from TOV, constant density star, mass limit, NS vs WD maximum mass,
* Current affairs: $2 M_{\odot}$ observations,
* Spectral methods for solving PDEs.

Hydrostatic equilibrium of stars

Equilibrium conditions from simple considerations

A cylinder of
\star density $\rho(r)$,

* volume $V=d A d r$,
* mass $d m=\rho V$,

placed in gravitational field of a mass $M(r)$.

Forces acting on the cylinder:

* Gravity:

$$
F_{\text {grav }}=-\frac{G M(r) d m}{r^{2}}=-\frac{G M}{r^{2}} \rho d r d A .
$$

* Pressure P :

$$
F_{\text {press }}=(P(r+d r)-P(r)) d A=d P d A
$$

In equilibrium, $F_{\text {press }}=F_{\text {graV }}$,

$$
d P d A=-\frac{G M}{r^{2}} \rho d r d A
$$

that is

$$
\frac{d P}{d r}=-\frac{G M(r) \rho(r)}{r^{2}}
$$

(+ equation of state $P(\rho, T \ldots))$

Equilibrium conditions from simple considerations

$$
\frac{d P}{d r}=-\frac{G M(r) \rho(r)}{r^{2}}
$$

We could guess the above from the Euler/Navier-Stokes equation i.e., the momentum conservation: the rate of change of total fluid momentum in some volume equals to the sum of forces acting on the volume.

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \nabla \cdot \mathbf{u}=-\nabla P+\rho \mathbf{f}
$$

Which stars are relativistic?

Initial mass function of stars

Number of stars within mass range ($m, m+d m$) proportional to $m^{-\alpha}$:

E.g., Salpeter (1955) IMF:
$\xi(m) \Delta m=\xi_{0}\left(\frac{m}{M_{\text {sun }}}\right)^{-2.35}\left(\frac{\Delta m}{M_{\text {sun }}}\right)$
Hertzsprung-Russell diagram:

Life of stars with different initial masses

(massive enough stars produce neutron stars and black holes at the end of their lifes)

White dwarfs

Dim and hot stars, e.g., Sirius B,

* mass $1 M_{\odot}$,
\star luminosity $0.03 L_{\odot}$,
\star temperature 25000 K .
Power emitted, from
Stefan-Boltzmann law ($\propto \sigma T^{4}$) estimates the radius,
$\simeq R_{\oplus} \rightarrow \rho \sim 3 \times 10^{6} \mathrm{~g} / \mathrm{cm}^{3}$
From the hydrostatic equilibrium,

$$
\frac{d P}{d r}=-\frac{4}{3} \pi G \rho^{2} r
$$

$\int_{P_{c}}^{0} d P=-\int_{0}^{R} \frac{4}{3} \pi G \rho^{2} r d r=\frac{4}{3} \frac{R^{2}}{2} \pi G \rho^{2}$
$\rightarrow P_{c}=\frac{2}{3} \pi G \rho^{2} R^{2} \simeq 10^{23}$ dyne $/ \mathrm{cm}^{2}$

Such high pressure cannot come from thermal movement of particles, it is an effect of electron degeneracy.

* Pauli exclusion principle,
\star Heinsenberg principle

$$
\Delta p \Delta x \geqslant \hbar / 2
$$

For average density n_{e}, the separation $\Delta x \simeq n_{e}^{-1 / 3}$, and momentum $p \sim \Delta p \simeq \hbar n_{e}^{1 / 3}$.

Pressure (of non-relativistic electrons):

$$
P \sim n_{e} p v \sim n_{e} \frac{p^{2}}{m_{e}} \sim n_{e}^{5 / 3}
$$

Relativitic electrons:

$$
P \sim n_{e} p c \sim n_{e}^{4 / 3}
$$

White dwarfs

Regular gas: many unfilled energy levels. Particles free to move about and change energy levels.

Degenerate gas: all lower energy levels filled with two particles each (opposite spins).

Non-relativistic electrons, $P_{c} \simeq P_{e}$:

$$
P \sim \rho^{2} R^{2} \sim \rho^{5 / 3} \quad \rightarrow \quad R^{2} \sim \rho^{-1 / 3} \sim \frac{R}{M^{1 / 3}} \rightarrow R \propto M^{-1 / 3}
$$

Relativistic electrons, $P_{c} \simeq P_{e, \text { rel }}$
$P \sim \rho^{4 / 3} \quad \rightarrow \quad R^{2} \sim \rho^{-2 / 3} \sim \frac{R^{2}}{M^{2 / 3}} \rightarrow M \propto$ const. (the Chandrasekhar mass)

Relativistic stars

Core-collapse supernova

Star with $M>8-10 M_{\odot}$ on ZAMS produce interesting objects, NSs and BHs.

Supernova explodes because there is no gain in energy from combining two Fe nuclei (Fe are well bound; the boundary between fussion and fission regimes)

Neutron stars: orders of magnitude

$$
\begin{aligned}
& \star \text { mass } 1-2 M_{\odot} \\
& \star N \simeq 10^{57} \text { baryons, } \\
& \star \text { radius } \simeq 10 \mathrm{~km} \\
& \star \text { mean density } \sim 10^{14} \mathrm{~g} / \mathrm{cm}^{3}, \\
& \star \text { magnetic field } \\
& 10^{8} \mathrm{G}<B<10^{15} \mathrm{G}
\end{aligned}
$$

\star rotation $\sim 1000 / s$,
\star compactness $r_{g} / R \simeq 0.25$

$$
\left(r_{g}=2 G M / c^{2}\right)
$$

\star Pressure by degenerate nucleons (mostly neutrons)!

There are stars that are dense and compact $(M / R \lesssim 1)$, effects of their gravity on spacetime not-negligible.

Neutron stars as pulsars

Pulsar $=$ a magnetized, rotating neutron star. First approximation: rotating, radiating EM dipole. From observed P and \dot{P}, estimates of the magnetic field B and characteristic age τ :

Pulsar „lighthouse" model

Hydrogen atom: (a) $B \ll 10^{9} \mathrm{G}$, (b) $B \sim 10^{10} \mathrm{G}$, (c) $B \sim 10^{12} \mathrm{G}$

NS population

The interior

(by F. Weber)

Neutron star structure

Outer layers

\star Atmosphere: Thickness $\simeq m m$ for $T \simeq 10^{5} \mathrm{~K}, \simeq \mathrm{~cm}$ for $T>10^{6} \mathrm{~K}$

* Outer crust: Thickness $\simeq 100 \mathrm{~m}$, pressure due to strongly degenerated electrons, non-relativistic for $\leqslant 10^{8} \mathrm{~g} / \mathrm{cm}^{3}(\gamma \simeq 5 / 3)$, ultra-relativistic for $>10^{8} \mathrm{~g} / \mathrm{cm}^{3}$ $(\gamma \simeq 4 / 3)$,
Atomic nuclei are becoming neutron-rich with density, neutron drip point $4.3 \times 10^{11} \mathrm{~g} / \mathrm{cm}^{3}$,
Total mass $\simeq 10^{-5} M_{\odot}$

Neutron star structure

Inner layers

* Inner crust: Free neutron gas, electrons + neutron-rich nuclei with possibly non-spherical shapes. Near $\sim 10^{14} \mathrm{~g} / \mathrm{cm}^{3}$ strong interactions stiffen the matter. Neutrons superfluid. Mass $1-2 \% M_{\odot}$,
* Outer core: $\rho>10^{14} \mathrm{~g} / \mathrm{cm}^{3}$ nuclei 'dissolve', all constituents are strongly degenerated, nucleons superfluid (protons in addition superconductive),
* Inner core:
$\rho>\rho_{\text {nuc }}=2.8 \times 10^{14} \mathrm{~g} / \mathrm{cm}^{3}$, possible new states of matter, new phases (de-confined quark matter, strange baryons, condensates, ???...)

Structure of the crust

Neutron star crust structure ($T \sim 10^{8} \mathrm{~K}$).

Stiff vs soft: adiabatic index $\Gamma=(n+1) / n$

$$
\begin{aligned}
\Gamma= & \mathrm{d} \ln P / \mathrm{d} \ln n_{\mathrm{b}}=(n+1) / n \\
& \text { pressure } P=\kappa n_{b}^{\Gamma} \\
& \text { baryon density } n_{b}, \\
& \text { energy density } \\
& \mathcal{E}=P /(\Gamma-1)+n_{\mathrm{b}} m_{b} c^{2},
\end{aligned}
$$

...from the first law of thermodynamics, $d\left(\frac{\mathcal{E}}{n_{b}}\right)=-P d\left(\frac{1}{n_{b}}\right)+T d s$
Γ measures the "stiffness" of the equation of state

Cold "catalized" matter

Minimising the chemical potential $\mu_{\mathrm{b}}(P)=\partial \mathcal{E} / \partial n_{\mathrm{b}}$, at a given pressure P, with respect to independent other variables.

This is the ground state of matter at P : cold \& catalized

"Funny phases"

While looking for the minimum of energy, the shape of nuclei has to be treated as a thermodynamical variable. It corresponds to \mathcal{E} at given n_{b} (possible occurrence: near the crust-core interface, $1-2 \times 10^{14} \mathrm{~g} / \mathrm{cm}^{3}$)

Shaded areas: nuclear matter, white: free neutron gas
In jargon, "pasta phases":
cylinders - spaghetti, plates - lasagna, bubbles- Swiss cheese...

Another possiblity of pasta phases: deep core.

How to obtain the dense matter equation of state

* Brueckner-Bethe-Goldstone theory, Green functions theory:
Perturbative approach: $\hat{H}=\hat{H}_{k i n}+\hat{H}_{\text {int }}=\hat{H}_{0}+\hat{H}_{1}$
* Variational methods:

Minimisation of the expectation value of the system Hamiltionian in the trial functions space,

* Relativistic mean field theory: Interaction between nucleons described by fields, coupling of scalar and vector fields (representing bosons carrying interactions).
* Efective energy density functionals: Minimisation of the energy density w.r.t. one-particle number density.

Exemplary equation of state: crust + core

* Ground state of matter for the outer part and the atmosphere, Fe body-centered-cubic crystal, at $P=0$, density $\rho=7.86 \mathrm{~g} / \mathrm{cm}^{3}$.
* Surface temperature for adult neutron stars $\sim 10^{6} \mathrm{~K}$, for young ones (< one year) > $10^{7} \mathrm{~K}$, $\sim 10^{12} \mathrm{~K}$ at birth.

The dense matter equation of state

The dense matter equation of state: sample composition

Relativistic mean field model with hyperons (BM165)

Properties of nuclear matter: liquid drop model

Assymetry: $\delta=\left(n_{n}-n_{p}\right) / n_{\mathrm{b}}$

Energy per nucleon:
$E\left(n_{\mathrm{b}}, \delta\right) \simeq E_{0}+S_{0} \delta^{2}+\frac{K_{0}}{9}\left(\frac{n_{\mathrm{b}}-n_{0}}{n_{\mathrm{o}}}\right)^{2}$

Binding energy at the saturation density: $B_{0}=-E_{0}$
Symmetry energy:
$S_{0}=\frac{1}{2}\left(\frac{\partial^{2} E}{\partial \delta^{2}}\right)_{n_{\mathrm{b}}=n_{0}, \delta=0}$
Compresibility:

$$
K_{0}=9\left(n_{\mathrm{b}}^{2} \frac{\partial^{2} E}{\partial n_{\mathrm{b}}^{2}}\right)_{n_{\mathrm{b}}=n_{\mathrm{o}}, \delta=0}
$$

Experimentally:

$$
\begin{aligned}
& n_{0}=0.16 \pm 0.01 \mathrm{fm}^{-3} \\
& B_{0}=16.0 \pm 1.0 \mathrm{MeV} \\
& S_{0}=32 \pm 6 \mathrm{MeV} \\
& K_{0} \simeq 230 \mathrm{MeV}
\end{aligned}
$$

Approximate evaluation of the neutron drip point

Let us neglect Coulomb and surface effects etc., the energy per nucleon in a nucleus, without the rest mass part $(\delta=(N-Z) / A)$:
$E_{\mathcal{N}}(A, Z) / A \simeq E_{0}+S_{0} \delta^{2}$.
Nucleon chemical potentials:
$\mu_{n}^{\prime}=\partial E_{\mathcal{N}} / \partial N=E_{0}+\left(2 \delta+\delta^{2}\right) S_{0}, \quad \mu_{p}^{\prime}=\partial E_{\mathcal{N}} / \partial Z=E_{0}+\left(-2 \delta+\delta^{2}\right) S_{0}$.
δ value corresponding to the neutron drip density ρ_{ND} can be obtained from $\mu_{n}^{\prime}=0$:

$$
\delta_{\mathrm{ND}}=\sqrt{1-\left(E_{0} / S_{0}\right)}-1
$$

For $E_{0}=-16 \mathrm{MeV}$ i $S_{0}=32 \mathrm{MeV} \rightarrow \delta_{\mathrm{ND}}=0.225$. On the other hand, from β equilibrium: $\mu_{n}=\mu_{p}+\mu_{e}$:

$$
\mu_{e}=\mu_{n}-\mu_{p} \simeq 4 S_{0} \delta
$$

Electron chemical potential equals $\mu_{e}=0.516\left(\rho_{6} Z / A\right)^{1 / 3} \mathrm{MeV}$, and we get

$$
\rho_{\mathrm{ND}} \simeq 2.2 \times 10^{11} \mathrm{~g} / \mathrm{cm}^{3},
$$

which is actually quite close to the true value $\left(\rho_{\mathrm{ND}}=4.3 \times 10^{11} \mathrm{~g} / \mathrm{cm}^{3}\right) \ldots$

Density profiles above the neutron drip point

Quark matter

* Asymtotically for large densities, quarks are not bound in hadrons, but constitute weakly-interacting Fermi gas,
* "Deconfinement" of quarks: predicted, but not really well-described by current theories.

Simplest MIT "bag" model:

* massless and non-interacting quarks in a bag of QCD vacuum,
* For u, d and s quarks in equillibrium w.r.t. weak and electromagnetic interactions: $n_{e}=0, n_{u}=n_{d}=n_{s}=n_{b}$,
\star Energy density: $\mathcal{E}=\rho c^{2}=b n_{b}^{4 / 3}+\mathcal{B}$,
\star Pressure: $P=n_{b}^{2} \frac{d}{d n_{b}}\left(\frac{\mathcal{E}}{n_{b}}\right)=\frac{1}{3} n_{b}^{4 / 3}-\mathcal{B}$
\star Linear EOS dependence: $P \propto a c^{2}\left(\rho-\rho_{s}\right)$

TOV: Tolman-Oppenheimer-Volkoff equation

Assuming spherical \& stationary metric; inside the star:

$$
\begin{aligned}
d s^{2} & =-e^{2 \nu(r)} c^{2} d t^{2}+e^{2 \lambda(r)} d r^{2} \\
& +r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right),
\end{aligned}
$$

TOV equations are the solution of

$$
\begin{gathered}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu} \\
\frac{d P}{d r}=-\frac{G\left(\rho+P / c^{2}\right)\left(m+4 \pi r^{3} P / c^{2}\right)}{r^{2}\left(1-2 G m / r c^{2}\right)} \\
\frac{d m}{d r}=4 \pi r^{2} \rho \\
\frac{d \nu(r)}{d r}=-\frac{1}{P(r)+\rho(r) c^{2}} \frac{d P(r)}{d r}, \\
e^{-2 \lambda(r)}=1-\frac{2 G m(r)}{r c^{2}},
\end{gathered}
$$

$$
+ \text { equation of state } P(\rho)
$$

History

* Tolman: analysis of spherically-symmetric metrics
* Oppenheimer, Volkoff: solution for a degenerate gas of neutrons,
$M_{\text {max }} \simeq 0.7 M_{\odot}$

Mass-radius diagram: the effect of the softening by phase transition

Constant density solution (\sim quark star)

In case of incompressible matter star ($\rho=$ const.), there is an analytic solution:

$$
M(r)=\frac{4}{3} \pi \rho r^{3}
$$

Hydrostatic equilibrium can be integrated 'by hand':

$$
\begin{gathered}
\frac{p(r)}{\rho}=\frac{\sqrt{1-2 G M r^{2} / R^{3} c^{2}}-\sqrt{1-2 G M / R c^{2}}}{3 \sqrt{1-2 G M / R c^{2}}-\sqrt{1-2 G M r^{2} / R^{3} c^{2}}} \\
p_{c}=p(0) \rightarrow \infty \quad \text { gives a limit on the compactness } \quad \frac{2 G M}{R c^{2}}<\frac{8}{9}
\end{gathered}
$$

Blue: self-bound quark matter

Analytic solution: $\rho=$ const. matter

Astrophysical estimators of the EOS

Volume element in spherically symmetric spacetime is

$$
d V=\frac{4 \pi r^{2} d r}{\sqrt{1-2 G M(r) / r c^{2}}}
$$

so gravitational and baryon mass are

$$
M=M(R)=\int_{0}^{R} \frac{4 \pi \rho(r) r^{2} d r}{\sqrt{1-2 G M(r) / r c^{2}}} \quad \text { and } \quad M_{b}=\int_{0}^{R} \frac{4 \pi n_{b}(r) r^{2} d r}{\sqrt{1-2 G M(r) / r c^{2}}}
$$

Some observables modified by gravity:

* gravitational mass M,
\star surface redshift $z=1 / \sqrt{1-2 G M / R c^{2}}-1$,
\star radius R (radiation radius $R_{\infty}=R / \sqrt{1-2 G M / R c^{2}}$),
\star surface temperature T (redshifted temperature $\left.T_{r}=T \sqrt{1-2 G M / R c^{2}}\right)$
* moment of inertia $/ \sim M R^{2}$,
\star binding energy $B E=M_{b}-M$

Neutron stars vs white dwarfs

$\simeq 1.4 M_{\odot}$ is the Chandrasekhar mass: the maximum mass for an equation of state (pressure-density relation) of degenerate electrons with $P=\kappa \rho^{\Gamma}, \Gamma \in(4 / 3,5 / 3)$

Stability of configurations

* for $M=M_{\max }$, the star becomes unstable w.r.t. radial oscillations, further extrema correspond to the lost of stability w.r.t. higher harmonics.
\star critical points on the $M(R)$ relation (extrema possible due to e.g., phase transitions).

Binding energy for polytropes

The potential energy is $U=-\int_{0}^{s} \frac{G m d m}{r}=$
$-\frac{1}{2} \int_{0}^{s} \frac{G d m^{2}}{r}=-G M^{2} / 2 R-\frac{1}{2} \int_{0}^{s} \frac{G m^{2} d r}{r^{2}}$
$\frac{1}{2} \int_{0}^{s} \frac{G m^{2} d r}{r^{2}}=-\frac{1}{2} \int_{0}^{s} \frac{m d P}{\rho}=-\frac{n+1}{2} \int_{0}^{s} m d\left(\frac{P}{\rho}\right)$
$=\frac{n+1}{2} \int_{0}^{s}(P / \rho) d m=\frac{n+1}{2} \int_{0}^{s} 4 \pi r^{2} P d r$
$=-\frac{n+1}{6} \int_{0}^{s} 4 \pi r^{3} d P=\frac{n+1}{6} \int_{0}^{s} \frac{G m d m}{r}$
$\star P=\kappa \rho^{(n+1) / n}$
$\star d P / d r=-G m \rho / r^{2}$
$\star d m / d r=4 \pi \rho r^{2}$
$\star 2 T=k U$, for $U \propto r^{k}$
$U=-G M^{2} / 2 R+\frac{n+1}{6} U \rightarrow U=-\frac{3}{5-n} G M^{2} / R$
Total energy
$E=T+U=1 / 2 U=-\left(\frac{3}{10-2 n}\right) G M^{2} / R$.

Binding energy for 'realistic' NSs

$B E=N m_{b}-M, B E / M \simeq 0.6 \beta /(1-0.5 \beta)$, where $\beta=G M / R c^{2}$.

NS mass measurements

0.0
0.5

$$
\begin{array}{ccc}
1.0 & 1.5 & 2.0 \\
\text { Neutron star mass }\left(M_{\odot}\right)
\end{array}
$$

2.5
3.0
(by J. Lattimer)

(from Demorest et al., 2010)
Masses are measured mostly in binary systems:

$$
f\left(m_{1}, m_{2}\right)=\frac{4 \pi^{2}}{G} \frac{(a \sin i)^{3}}{P_{b}^{2}}=\frac{\left(m_{2} \sin i\right)^{3}}{\left(m_{1}+m_{2}\right)^{2}}
$$

$$
\begin{aligned}
& \star \text { J1614-2230: } 1.97 \pm 0.04 M_{\odot} \\
& \star \text { J J1903+0327: } 1.67 \pm 0.01 M_{\odot} \quad 27 / 34
\end{aligned}
$$

NSs in relativistic binaries

Relativistic binaries: GR effects!

Post-Keplerian parameters

\star Periastron advance:

$$
\dot{\omega}=3\left(\frac{P_{b}}{2 \pi}\right)^{-5 / 3}\left(T_{\odot} M\right)^{2 / 3}\left(1-e^{2}\right)^{-1}
$$

\star Orbit decay:

$$
\begin{aligned}
& \dot{P}_{b}=-\frac{192 \pi m_{p} m_{c}}{5 M^{1 / 3}}\left(\frac{P_{b}}{2 \pi}\right)^{-5 / 3} \times \\
& \left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right)\left(1-e^{2}\right)^{-7 / 2} T_{\odot}^{5 / 3}
\end{aligned}
$$

\star Shapiro delay:
$r=T_{\odot} m_{c}$,
$s=\frac{a_{p} \sin i}{c m_{c}}\left(\frac{P_{b}}{2 \pi}\right)^{-2 / 3} T_{\odot}^{-1 / 3} M^{2 / 3}$
\star Gravitational redshift:

$$
\gamma=e\left(\frac{P_{b}}{2 \pi}\right)^{1 / 3} T_{\odot}^{2 / 3} M^{-4 / 3} m_{c}\left(M+m_{c}\right)
$$

where $T_{\odot}=G M_{\odot} / c^{3}, M=m_{p}+m_{c}$.

Keplerian parameters: eccentricity e, semimajoraxis a, inclination i, longitude of the ascending node Ω, argument of periapsis ω, mean anomaly M_{o}.

NSs in relativistic binaries

Relativistic binaries: GR effects!

Post-Keplerian parameters

\star Periastron advance:

$$
\dot{\omega}=3\left(\frac{P_{b}}{2 \pi}\right)^{-5 / 3}\left(T_{\odot} M\right)^{2 / 3}\left(1-e^{2}\right)^{-1}
$$

\star Orbit decay:

$$
\begin{aligned}
& \dot{P}_{b}=-\frac{192 \pi m_{p} m_{c}}{5 M^{1 / 3}}\left(\frac{P_{b}}{2 \pi}\right)^{-5 / 3} \times \\
& \left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right)\left(1-e^{2}\right)^{-7 / 2} T_{\odot}^{5 / 3}
\end{aligned}
$$

\star Shapiro delay:

$$
\begin{aligned}
& r=T_{\odot} m_{c}, \\
& s=\frac{a_{p} \sin i}{c m_{c}}\left(\frac{P_{b}}{2 \pi}\right)^{-2 / 3} T_{\odot}^{-1 / 3} M^{2 / 3}
\end{aligned}
$$

\star Gravitational redshift:

$$
\gamma=e\left(\frac{P_{b}}{2 \pi}\right)^{1 / 3} T_{\odot}^{2 / 3} M^{-4 / 3} m_{c}\left(M+m_{c}\right)
$$

where $T_{\odot}=G M_{\odot} / c^{3}, M=m_{p}+m_{c}$.

PSR J0737-3039 (M. Kramer)

PSR J1614-2230

Binary system with a white dwarf ($m_{c}=0.5 M_{\odot}$)
Almost edge-on, $\sin i \simeq 1$
Shapiro delay parameters:
$r=T_{\odot} m_{c}$,
$s=\frac{a_{\boldsymbol{p}} \sin i}{c m_{\boldsymbol{c}}}\left(\frac{P_{\boldsymbol{b}}}{2 \pi}\right)^{-2 / 3} T_{\odot}^{-1 / 3} M^{2 / 3}$
$\rightarrow M=1.97 \pm 0.04 M_{\odot}$

$M(R)$ diagram with $2 M_{\odot}$ measurement

$M(R)$ diagram with $2 M_{\odot}$ measurement

Possible solution of "the hyperon puzzle": LOFT or similar satellite (with 5% accuracy in radius measurement)

Various ways to solve a PDE

Various ways to solve a PDE

Consider the PDE with some boundary conditions

$$
\begin{aligned}
& L u(x)=s(x), \quad x \in U, \quad \text { (the equation) } \\
& B u(y)=0, \quad y \in \partial U, \quad \text { (boundary conditions) }
\end{aligned}
$$

with L and B linear differential operators. We search for a numerical solution $u^{(N)}(x)$, that minimizes the residual,

$$
R \equiv L u^{(N)}(x)-s(x)
$$

Various ways to solve a PDE

In general, the solution $u^{(N)}$ is expressed in terms of some functions,

$$
u^{(N)}(x)=\sum_{k=0}^{N} \tilde{u}_{k} \phi_{k}(x),
$$

Numerical methods can be classified according to the expansion functions ϕ_{k} :
^ Finite differences: overlapping local polynomials of low order,

* Finite elements: local smooth functions (locally non-zero polynomials of fixed degree)
* Spectral methods: global smooth functions (e.g., Fourier series)

$$
u^{(N)}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{N}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right)
$$

Finite differences \& spectral methods

Spectral methods approximate the solution to a differential equation, $u(x)$, by a truncated series

$$
u(x) \simeq u^{(N)}(x)=\sum_{k=0}^{N} \tilde{u}_{k} \phi_{k}(x)
$$

* where $\phi_{k}(x)$ are basis functions (i.e., members of a complete set of orthogonal polynomials)
* \tilde{u}_{k} are the spectral coefficients.

What can we gain with such an approach? For example, analytical expressions for derivatives,

$$
\frac{\partial u^{(N)}(x)}{\partial x}=\sum_{k=0}^{N} \tilde{u}_{k} \frac{\partial \phi_{k}(x)}{\partial x}
$$

Classification of spectral methods

Many ways to evaluate the residual $R=L u^{(N)}(x)-s(x)$, e.g., to chose functions ψ_{k} and calculate scalar products, such that
$\forall k \in\{0,1, \ldots, N\}\left(\psi_{k}, R\right)=0$

* Galerkin: $\psi_{k}=\phi_{k}$, ϕ_{k} satisfy the boundary conditions,
\star Tau/Lanczos: ψ_{k} are most of ϕ_{k}, ϕ_{k} do not satisfy the boundary conditions, additional conditions must be added to the system,
* Pseudospectral/collocation: $\psi_{k}=\delta\left(x-x_{k}\right)$, test functions are Dirac deltas in special (collocation) points x_{k}, boundary conditions enforced by additional equations.

The choice of orthogonal polynomials

* For periodic problems, Fourier expansion (\sin , \cos) is the most natural and recommended \rightarrow azimuthal \& poloidal directions,
夫 Non-periodic problems: good choice are the Chebyshev polynomials.
Chebyshev polynomials, defined on the usual numerically-evaluated interval $[-1,1]$:

$$
T_{n}(\cos \theta)=\cos (n \theta)
$$

and satify the following Sturm-Liouville problem

$$
\sqrt{1-x^{2}} \frac{d}{d x}\left(\sqrt{1-x^{2}} \frac{d T_{n}(x)}{d x}\right)=-n^{2} T_{n}(x) .
$$

First few polynomials are:

$$
\begin{aligned}
& T_{0}(x)=1, T_{1}(x)=x, T_{2}(x)=2 x^{2}-1 \\
& T_{3}(x)=4 x^{3}-3 x, T_{4}(x)=8 x^{4}-8 x^{2}+1
\end{aligned}
$$

The choice of orthogonal polynomials: Chebyshev

Useful recurence relation:

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \quad \text { and } \quad T_{n}(-1)=(-1)^{n}, \quad T_{n}(1)=1 .
$$

Recurrence relation for derivatives:

$$
T_{n}^{\prime}(x)=2 n T_{n-1}(x)+\frac{n}{n-2} T_{n-2}^{\prime}(x), \quad n>2 .
$$

A simple example

Consider a 1D ODE (elliptic equation):

$$
\frac{d^{2} u}{d x^{2}}-4 \frac{d u}{d x}+4 u=\exp (x)-4 e /\left(1+e^{2}\right), \quad x \in[-1,1],
$$

with the following boundary conditions:

$$
u(-1)=u(1)=0
$$

The exact solution is

$$
u(x)=\exp (x)-\frac{\sinh 1}{\sinh 2} \exp (2 x)-e / 1\left(1+e^{2}\right) .
$$

A simple example: matrix representation of the operator

For a particular representation with the Chebyshev polynomials,

$$
u^{(N)}(x)=\sum_{k=0}^{N} \tilde{u}_{k} T_{k},
$$

the operator L acting on the series $u^{(N)}$ is

$$
L u^{(N)}=\sum_{k=0}^{N} \tilde{I}_{k} T_{k} \quad \text { with } \quad \tilde{I}_{k}=\sum_{j=0}^{N} L_{k j} \tilde{u}_{j}
$$

The operator $L=\frac{d^{2}}{d x^{2}}-4 \frac{d}{d x}+4 /$ can be viewed as a matrix, acting on the function coefficient vector (all methods of linear algebra apply).

A simple example: matrix representation of the operator

$$
\begin{aligned}
& L=\frac{d^{2}}{d x^{2}}-4 \frac{d}{d x}+4 I \text { for } N=4, \\
& \qquad L_{k j}=\left(\begin{array}{ccccc}
4 & -4 & 4 & -12 & 32 \\
0 & 4 & -16 & 24 & -32 \\
0 & 0 & 4 & -24 & 48 \\
0 & 0 & 0 & 4 & -32 \\
0 & 0 & 0 & 0 & 4
\end{array}\right)
\end{aligned}
$$

because in the Chebyshev representation,

$$
\frac{d}{d x}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 3 & 0 \\
0 & 0 & 4 & 0 & 8 \\
0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 8 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \frac{d^{2}}{d x^{2}}=\left(\begin{array}{ccccc}
0 & 0 & 4 & 0 & 32 \\
0 & 0 & 0 & 24 & 0 \\
0 & 0 & 0 & 0 & 48 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Also, higher order derivatives just by multiplying matrices:

$$
\left[\frac{d}{d x}\right]^{2}=\left[\frac{d^{2}}{d x^{2}}\right]
$$

Solution by mean of tau method

* Test functions (to evaluate the residual $R=L u^{(N)}-s$) are T_{k}; they provide $N+1$ equations:

$$
\left(T_{k}, R\right)=0 \rightarrow \sum_{k=0}^{N} \sum_{j=0}^{N} L_{k j} \tilde{u}_{j} T_{k}=\sum_{k=0}^{N} \tilde{s}_{k} T_{k}
$$

where \tilde{s}_{k} are the coefficients of the source (i.e., the right hand side).

* The boundary conditions:

$$
\begin{aligned}
& u(-1)=0 \rightarrow \sum_{j=0}^{N}(-1)^{j} \tilde{u}_{j}=0, \\
& u(1)=0 \rightarrow \sum_{j=0}^{N} \tilde{u}_{j}=0 .
\end{aligned}
$$

We have $N+3$ equations; discard two of the highest order coefficients \tilde{u}_{k} and replace them with the boundary conditions equations.

Solution for $N=4$

Solving for unknown \tilde{u}_{k} :

$$
L u^{(4)}=\left(\begin{array}{ccccc}
4 & -4 & 4 & -12 & 32 \\
0 & 4 & -16 & 24 & -32 \\
0 & 0 & 4 & -24 & 48 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
\tilde{u}_{0} \\
\tilde{u}_{1} \\
\tilde{u}_{2} \\
\tilde{u}_{3} \\
\tilde{u}_{4}
\end{array}\right)=\left(\begin{array}{c}
-0.03 \\
1.13 \\
0.27 \\
0 \\
0
\end{array}\right)
$$

(in red, the imposed boundary conditions). The solution is

$$
\left(\begin{array}{c}
\tilde{u}_{0} \\
\tilde{u}_{1} \\
\tilde{u}_{2} \\
\tilde{u}_{3} \\
\tilde{u}_{4}
\end{array}\right) \simeq\left(\begin{array}{c}
0.146 \\
0.079 \\
-0.122 \\
-0.079 \\
-0.024
\end{array}\right)
$$

Solution for $N=4$

Solution for $N=8$

The evanescent error

* For suffiently smooth solutions, the interpolation/truncation error falls faster than any power of $1 / N$ (in practice, this means exponential decay).
* For finite difference of order k, error decays as $1 / N^{k}$.

Further reading...

* P. Haensel, A. Y. Potekhin, D. G. Yakovlev, „Neutron stars 1: equation of state and structure",
* T. W. Baumgarte, S. L. Shapiro, „Numerical Relativity: Solving Einstein's Equations on the Computer",
* S. L. Shapiro, S. A. Teukolsky, „Black Holes, White Dwarfs and Neutron Stars",
* Spectral methods library LORENE (Langage Objet pour la RElativité NumériquE): http://www.lorene.obspm.fr
夫 LORENE school on spectral methods:
http://www.lorene.obspm.fr/school

