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Newtonian hydrostatic equilibrium,

HR diagram, stars of different masses,

White dwarfs: electron degeneracy, maximum mass,
Neutron stars: pulsars - rotating compact stars,

Equation of state and structure, neutron drip, deep interior

NS structure from TOV, constant density star, mass limit, NS vs
WD maximum mass,

* Current affairs: 2 Mg observations,

* Spectral methods for solving PDEs.
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Hydrostatic equilibrium of stars
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Equilibrium conditions from simple considerations

A cylinder of
* density p(r),
* volume V = dAdr,

* mass dm = pV,

\[\dA

placed in gravitational field
of a mass M(r).

Forces acting on the cylinder:
* Gravity:

GM(r)dm GM
Fgrav = - rzi = *7pdfdA

* Pressure P:

Fpress = (P(r + dr) — P(r))dA = dPdA.

In equilibrium, Fpress = Fgrav,
dPdA = —G—gwpdrdA
r
that is
dp _ _ GM(r)p(r)
dr r2
(+ equation of state P(p, T...))
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Equilibrium conditions from simple considerations

dP GM(r)p(r)

dr r?
We could guess the above from the Euler/Navier-Stokes equation i.e., the

momentum conservation: the rate of change of total fluid momentum in

some volume equals to the sum of forces acting on the volume.

%-I—UV-UZ—VP—pr
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Which stars are relativistic?
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Initial mass function of stars

Number of stars within mass

range (m, m + dm) proportional Hertzsprung—Russell diagram:
to m™%:
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Life of stars with different

initial masses
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White dwarfs

Dim and hot stars, e.g., Sirius B,
* mass 1 Mg,
* |uminosity 0.03 Lg,
* temperature 25000 K.

Power emitted, from
Stefan-Boltzmann law (oco T#)
estimates the radius,

~ Rg — p~3x10°% g/cm?

From the hydrostatic equilibrium,

dP 4 5
dar = 3o
0 R 2
4 4R
p=—_| 2 2rdr = — — 2
fpcd Jo 371'Gp rdr 372 wGp

2
— P, gﬂGp2R2 ~ 10?3 dyne/cm?

Such high pressure cannot come
from thermal movement of particles,
it is an effect of electron degeneracy.

* Pauli exclusion principle,

* Heinsenberg principle
ApAx = h/2

For average density ne, the
separation Ax ~ n§1/3, and

momentum p ~ Ap ~ hniﬂ.

Pressure (of non-relativistic
electrons):

p>
P~ nepv ~ ne— ~ n2/3

e
Relativitic electrons:

4/3

P ~ nepc ~ ng
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White dwarfs
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Relativistic stars

Stellar evolution

low- and medium-mass stars
(including the Sun)
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neutron
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black

not to scale
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Core-collapse supernova

Star with M > 8 — 10 Mg on ZAMS produce interesting objects, NSs
and BHs.
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Supernova explodes because there is no
gain in energy from combining two Fe
nuclei (Fe are well bound; the boundary
between fussion and fission regimes)
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Neutron stars: orders of magnitude

mass 1 — 2Mp,
N =~ 1057 baryons,
radius ~ 10 km,

mean density ~ 10'* g/cm3,

L S S

magnetic field

108 G < B < 10*° G,

* rotation ~ 1000/s,

* compactness rg/R ~ 0.25
(rg = 2GM/c?),

* Pressure by degenerate

Isolated Neutron Star RX J186635-3764  HST + WFPC2 nucleons (mostly neutrons)!
PR

and NASA

There are stars that are dense and compact (M/R < 1), effects of their
gravity on spacetime not-negligible.
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Neutron stars as pulsars

Pulsar = a magnetized, rotating neutron star. First approximation:
rotating, radiating EM dipole. From observed P and P, estimates of the
magnetic field B and characteristic age 7:

B~ ( 3¢ >1/2 VPP, 1= P/2P)

8m2R6

binaries o
highenergy | _
magnetars
1071 other

19 A g

A
1020} 54“‘ ¢ f‘ A‘
VS

21 At

7, Series of consecutive pulses of PSR
10 B1919+21 (P = 13373 s)

7/34



Pulsar , lighthouse” model
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NS population

1527 solitary pulsars .

Supernova
Remnant

Crab nebula, M1 (supernova of 1054CE)
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The interior

quark hybrid star~

hyperon
star

neutron star with
pion condensate

strange quark
matter

Fe

108 g.'l:m3
1017 giem3
1014 gJ‘cm3

L 3

nucleon star

[/
strange star Yciq,

R-10 km
M-14Mg

(by F. Weber)
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Neutron star structure

Outer layers
outer envelopes (e Z)

(0.3-0.5) km

*= Atmosphere: Thickness ~ mm for

= T ~10° K, ~ cm for T > 10° K
o .
oo (I\QJ » QOuter crust: Thickness ~ 100 m,
@ 4’1?]

pressure due to strongly degenerated
electrons, non-relativistic for

< 10% g/cm? (y =~ 5/3),
ultra-relativistic for > 10% g/cm?®

(v =4/3),

Atomic nuclei are becoming
neutron-rich with density, neutron drip
point 4.3 x 10* g/cm?®,

Total mass ~ 10~° Mg
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Neutron star structure

outer envelopes (e Z)
(0.3-0.5) km

Inner layers

* Inner crust: Free neutron gas,

electrons + neutron-rich nuclei with
possibly non-spherical shapes. Near
~ 10 g/cm?® strong interactions
stiffen the matter. Neutrons
superfluid. Mass 1 — 2% Mg,

Outer core: p > 10'* g/cm® nuclei
'dissolve’, all constituents are strongly
degenerated, nucleons superfluid
(protons in addition superconductive),

Inner core:

0> pruc = 2.8 x 10 g/cm?®, possible
new states of matter, new phases
(de-confined quark matter, strange
baryons, condensates, 777...)
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Structure of the crust

3 % w0 S PR electrons, ions
® @ %, LA T’ l‘ __O_S_ P _H<E R g . atoms, molecules
o‘é_c < /,/” OCEAN N\\\\ ~ (gas/liquid)
! o T "2 slegons and
=
" ~3 oV TER CRYyU S 7 (Coulomb liquid)
_a..¥ 400 © == - _ ~=—_ electrons and
o ° o o= (Coulomb crystal)
" ER C oulomb crysta
® '-'0'3 iN N Ry ST electrons,
48 neutrons (superfluid),
L eutron—rich nuclei
M AN T L g (?) Coulomb crystal
« electrons, i
JAF OUTER CoORp neutrons (superfluid),
A exotic nuclei
= (liquid crystal)

Neutron star crust structure (T ~ 108 K).
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Stiff vs soft: adiabatic index ' = (n+1)/n

r=dlnP/dInn, = (n+1)/n

S
pressure P = kny,

baryon density np,
energy density
E=P/(T—1)+n,mpc?,

...from the first law of
thermodynamics,

d(£)=—Pd(L)~+Tds

np

10° 1r;" 10“z 10 10" 10
plo.cm™l I measures the "stiffness” of
the equation of state
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Cold "catalized” matter

Minimising the chemical
potential uy(P) = 0E/dny,
at a given pressure P, with
respect to independent other
variables.

This is the ground state of
matter at P: cold &
catalized
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“Funny phases”

While looking for the minimum of energy, the shape of nuclei has to be
treated as a thermodynamical variable. It corresponds to £ at given ny,
(possible occurrence: near the crust-core interface, 1 — 2 x 10'* g/cm?)

Shaded areas: nuclear
matter, white: free neutron

) N
\ gas
g \ : ) "
L \ » In jargon, “pasta phases”:
N\ N\ " % : cylinders - spaghetti,
a

plates - lasagna,
bubbles- Swiss cheese...

Another possiblity of pasta
phases: deep core.
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How to obtain the dense matter equation of state

* Brueckner-Bethe-Goldstone theory,
! Green functions theory:
APR
______________ Al g Perturbative approach:
______ - 3 H Hkm + Hlnt = HO + Hl

* Variational methods:
Minimisation of the expectation value
of the system Hamiltionian in the
trial functions space,

86

e/ em?)

* Relativistic mean field theory:
Interaction between nucleons
described by fields, coupling of scalar
and vector fields (representing bosons
carrying interactions).

log, P [dyn

* Efective energy density functionals:

i 3 Minimisation of the energy density

14.5 15 155 w.r.t. one-particle number density.
loggo [g/em?]
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Exemplary equation of state:

log P (dyn em™)
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* Ground state of matter

for the outer part and
the atmosphere, Fe
body-centered-cubic
crystal, at P =0,
density p = 7.86 g/cm?>.

Surface temperature for
adult neutron stars

~ 10° K, for young ones
(< one year) > 107 K,
~ 10%2 K at birth.
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The dense matter equation of state
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The dense matter equation of state: sample composition

log(Y,)

0 0.2 0.4 0.6 0.8 1
n [fm3]

Relativistic mean field model with hyperons (BM165)
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Properties of nuclear matter: liquid drop model

Assymetry: § = (n, — np)/m,

Ve
50 - 7 B
40 F
30 Vs
= 20 E /// //7
WSl // 1
= d=1 S
M 00 /
g
D = ~ |
P % ]
10 - ‘51(14’ 5 =
F e—"5=0
-20
...... . -
0.1 0.2 0.3 0.4
ny [fm"’]

Energy per nucleon:
E(my,6) ~ Eo+ 500>+

Np—no

2
=

Binding energy at the saturation density:
By = —Eo

Symmetry energy:

So=3 (%%
n,=np,0=0
Compresibility:

2 *E

KO =9 (nb 6n12) ) np=ng,0=0

Experimentally:

ng = 0.16 + 0.01 fm—3
Bp = 16.0 £ 1.0 MeV
So = 32+ 6 MeV

Ko ~ 230 MeV
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Approximate evaluation of the neutron drip point

Let us neglect Coulomb and surface effects etc., the energy per nucleon in a
nucleus, without the rest mass part (6 = (N — Z)/A):

Ex(A,Z)/A ~ Ey + So 6.

Nucleon chemical potentials:

(i = OEn/ON = Eo + (206 + 62) So , iy = OEn/0Z = Eo + (—26 + 6%) So .

0 value corresponding to the neutron drip density pnp can be obtained from

pn = 0
OND = A/1 — (E()/SO) — 1.
For Eg = —16 MeV i Sop = 32 MeV — dnp = 0.225. On the other hand, from
B equilibrium: pn = pp + pe:
e = fin — Hp ~ 4S50 0.

13 MeV, and we get

Electron chemical potential equals pe = 0.516 (psZ/A)
pND ~ 2.2 x 10™ g/cmg,

which is actually quite close to the true value (pxp = 4.3 x 10** g/cm?)...
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Density profiles above the neutron drip point
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Quark matter

* Asymtotically for large densities, quarks are not bound in hadrons,
but constitute weakly-interacting Fermi gas,

* "Deconfinement” of quarks: predicted, but not really well-described
by current theories.

Simplest MIT "bag”’ model:

massless and non-interacting quarks in a bag of QCD vacuum,

*

*

For u, d and s quarks in equillibrium w.r.t. weak and
electromagnetic interactions: n. =0, n, = ng = ns = np,

. 4/3
Energy density: & = pc? = bnb/ + B,

.p_2d (£ _ 1,43
Pressure: P = Ny dng (”b) = 3n, B

*

*

*

Linear EQS dependence: P oc ac?(p — ps)
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TOV: Tolman-Oppenheimer-Volkoff equation

Assuming spherical & stationary
metric; inside the star:

ds? =~ 2de? + 2 dr?
+ r*(d6” + sin® 0d ),
TOV equations are the solution of

87 G

1
Rp.u - ERg;LU = 7Tpu
aP G(p+P/c?)(m+4nr*P/c?)
dr r2 (1-2Gm/rc?)
dm 2
ar 4mrop
dv(r) 1 dP(r)
dr — P(r)+p(r)c2 dr ’
e_2>\(r) —1_ 2Gm2(r)7
rc

+ equation of state P(p)

* Tolman: analysis of
spherically-symmetric metrics

* Oppenheimer, Volkoff: solution for a
degenerate gas of neutrons,

Mmax ~ 0.7 Mg
22 ‘
—
2
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16 \
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14 \\
- \
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= \
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Mass-radius diagram: the effect of the

softening by phase transition
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Constant density solution (~ quark star)

MMg]

Blue: self-bound quark matter

In case of incompressible matter star (p = const.), there is an analytic solution:

M(r)

4
3 p

Hydrostatic equilibrium can be integrated 'by hand’:
p(r)  A/1—2GMr?/R3c? — \/1 —2GM/Rc?

P 3y/1—2GM/Rc2 — /1 — 2GMr?/R3c?

pc = p(0) > oo gives a limit on the compactness

R[km]

2GM - §
Rc? 9
25 T
E’ 2 ""‘&p

0 2 a 6 8 10 12
R[km]

Analytic solution: p = const. matter
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Astrophysical estimators of the EOS

Volume element in spherically symmetric spacetime is
Arr?dr
1—2GM(r)/rc?
so gravitational and baryon mass are

R 2 2
M = M(R) = Amp(r)redr and My — Amnp(r)redr

/1 —=2GM(r)/rc? 0o A/1—2GM(r)/rc?
Some observables modified by gravity:

* gravitational mass M,

* surface redshift z = 1/4/1 —2GM/Rc? — 1,
* radius R (radiation radius Ry, = R/+/1 — 2GM/Rc?),

* surface temperature T (redshifted temperature
T, =T\/1— 2GM/RC2

* moment of inertia | ~ MRZ,

* binding energy BE = M, — M

dVv =
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Neutron stars vs white dwarfs
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~ 1.4 Mg, is the Chandrasekhar mass: the maximum mass for an
equation of state (pressure-density relation) of degenerate electrons with

P =rp", T e (4/3,5/3)
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Stability of configurations

* for M = M., the star becomes unstable w.r.t. radial oscillations,
further extrema correspond to the lost of stability w.r.t. higher
harmonics.

* critical points on the M(R) relation (extrema possible due to e.g.,
phase transitions).
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Binding energy for polytropes

The potential energy is U = — S% = x P = gplrtl)/n
S S
2 0 Gdrm M2/2R Gn:2dr * dP/dr = —Gmp/r?
* dm/dr = 4rpr?
s Gm2dr _ _1(SmdP _ _ n+1 (S P _ k
L = _Lffme _ _n Somd<p> « 2T = kU, for Uocr

=%1 So P/p)dm = 2L {0 Amr? Pdr
E— ”‘gl S; 47rr3dP n+1 S Gmdm

U=-GM?/2R+ "2U — U =

Total energy
E=T+U=120=—(5%;) GM?*/R
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Binding energy for 'realistic’ NSs

WFF MS1 PCL2

[ OWFF2ommene G e PS 1

[ WFF3-----ENG ]
0.20 - Ap4 - R il &
[ AP3 —w=-=GS1 1

MSO — ——-652 7]

BE/M

0.10 0.15 0.20 0.25 0.30 0.35
GM/Rc?

BE = Nmy — M, BE/M ~ 0.63/(1 — 0.583), where 3 = GM/Rc2.
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NS mass measurements

J1903+0327
2 SQM1 ;"
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NSs in relativistic binaries

Relativistic binaries: GR effects!

Post-Keplerian parameters

* Periastron agva3nce:
=3 (;;;;) (ToM)?3(1 — )1
* Orbit decay:

p. _ _192wmpme (P 75/3><
- 5M1/3

2
(1+ Be?+ et (1-e*)772 T(‘;/3

* Shapiro delay:

r=Tome,
A —2/3
__apsini (Py —1/3 ) 42/3
S = “eme (E) To ™M

* Gravitationall/gedshift:
s

where T = GMg/c®, M = mp + m..

Celestial body,

Y
Reference
direction

Longitude of ascending node

Plg
Ne ofrefe,,ence
Inclination
2]

X Ascending node
O(\o\t

Keplerian parameters: eccentricity e,
semimajoraxis a, inclination 1/,
longitude of the ascending node €,
argument of periapsis w, mean

anomaly M,.
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NSs in relativistic binaries

Relativistic binaries: GR effects! R

. L N L ‘.\ .
Post-Keplerian parameters ° oA 3 By R
N

* Periastron advance:
. Py =5 2/3 2\—1
w=3(3; (ToM)*>(1 - &%)
* Orbit decay:
: 1927rmyme [ P\ ~5/3
Py = ——guih (ﬁ) x
- 5/3
(1+ 3+ 3e*) (1-¢°) e T®/

* Shapiro delay:

R
s = 2o ( % ) 7—@—1/3 M2/ ass A (g,

* Gravitatli;onall/gedshift: PSR J0737-3039 (M. Kramer)
v = e(ﬁ) Té/3M*4/3mC(M+mC)

where T = GMg/c®, M = mp + m..
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PSR J1614-2230

Al e

o0 o1 02 03 04 05

Orbital phase (turns)

Binary system with a white dwarf
(mc =0.5 M@)

Almost edge-on, sinj ~1

Shapiro delay parameters:

r= Teomg,
» —2/3
_ apsini (P —1/3p12/3
s = '::m,_. <ﬂ> T@ M /

— M =1.97 + 0.04 Mg,
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M(R) diagram with 2 Mg measurement
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M(R) diagram with 2 My measurement

Possible solution of "the hyperon puzzle”: LOFT or similar satellite (with
5% accuracy in radius measurement)

\ \ \
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Various ways to solve a PDE
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Various ways to solve a PDE

Consider the PDE with some boundary conditions

Lu(x) = s(x), x € U, (the equation)
Bu(y) =0, y € 0U, (boundary conditions),

with L and B linear differential operators. We search for a numerical
solution u(N)(x), that minimizes the residual,

R = Lu™(x) — s(x).
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Various ways to solve a PDE

In general, the solution uN) s expressed in terms of some functions,

N
uM(x) = Z ki (x),

Numerical methods can be classified according to the expansion functions
Pr:
* Finite differences: overlapping local polynomials of low order,

* Finite elements: local smooth functions (locally non-zero
polynomials of fixed degree)

* Spectral methods: global smooth functions (e.g., Fourier series)

N
uM(x) = %O + > (ak cos (kx) + by sin (kx))
k=1
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Finite differences & spectral methods

Spectral methods approximate the solution to a differential equation,
u(x), by a truncated series

N

u(x) = u™(x) = 3 ldi(x),

k=0
* where ¢k (x) are basis functions (i.e., members of a complete set of

orthogonal polynomials)

* @iy are the spectral coefficients.

What can we gain with such an approach? For example, analytical
expressions for derivatives,

Ok (x)
ox

Uy
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Classification of spectral methods

Many ways to evaluate the residual R = Lu™)(x) — s(x), e.g., to chose
functions 1, and calculate scalar products, such that
Vke{0,1,...,N} (¢, R)=0

* Galerkin: v, = ¢,
¢k satisfy the boundary conditions,

* Tau/Lanczos: ), are most of ¢,
¢k do not satisfy the boundary conditions, additional conditions
must be added to the system,

* Pseudospectral/collocation: v, = 6(x — xk),
test functions are Dirac deltas in special (collocation) points x,
boundary conditions enforced by additional equations.
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The choice of orthogonal polynomials

* For periodic problems, Fourier expansion (sin, cos) is the most
natural and recommended — azimuthal & poloidal directions,

* Non-periodic problems: good choice are the Chebyshev polynomials.

Chebyshev polynomials, defined on the usual numerically-evaluated
interval [—1,1]:

Tn(cos @) = cos(nb),

and satify the following Sturm-Liouville problem

V1-— X2i V1—x2 dTn(x) _ —n?Tp(x).
dx dx
First few polynomials are:
To(x) =1, Ti(x) = x, Ta(x) = 2x* — 1
Ts(x) = 4x® — 3x, Ta(x) = 8x* — 8x% + 1.
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The choice of orthogonal polynomials: Chebyshev

Useful recurence relation:

Tor1(x) = 2xTp(x) — Th_1(x)

Recurrence relation for derivatives:

1.0

0.5}

T (x)

0.5

-1.0L

T/(x) =2nTy_1(x) +

and T,(-1) = (-1)",

n

n—2

Tr/1—2(X)7

n> 2.

To(1) = 1.

<
]

[ I ]
Lo | = [}
Llolyl

‘><—'——>-<

n=>5

n=3

\
E-\‘\_

|
=
(=]
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A simple example

Consider a 1D ODE (elliptic equation):

d?u du 2
ﬁ_4a+4u_exp(x)—4e/(l+e )7 XE[_171],

with the following boundary conditions:

The exact solution is

sinh 1
sinh 2

u(x) = exp(x) — exp(2x) — e/1(1 + €?).
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A simple example: matrix representation of the operator

For a particular representation with the Chebyshev polynomials,
N
(N) Z Uk Tk,

the operator L acting on the series uV) is

N N
LU(N) = Z Nk Tk with 7k = Z ijflj
k=0 j=0

The operator L = p —4 dX + 4/ can be viewed as a matrix, acting on
the function coefficient vector (all methods of linear algebra apply).
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A simple example: matrix representation of the operator

d? d
L= 25 —45 +4l for N =4,

4 —4 4 —12 32

0 4 -16 24 -32

Lg=1|0 0 4 24 48

0 O 0 4 32

0 O 0 0 4

because in the Chebyshev representation,

01 0 30 0 0 4 0 32
d 0 0 4 0 8 2 0 00 24 O
d—=00060 andﬁ=000048
X 0000 8 X 000 0 O
0 00 0O 0 00 0 O

Also, higher order derivatives just by multiplying matrices:

4] - ]
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Solution by mean of tau method

* Test functions (to evaluate the residual R = Lu(N) — 5) are Ty; they
provide NV + 1 equations:

(Tk, _O_)ZZLkJUJTk_ZSka’
k=0,j=0
where 3, are the coefficients of the source (i.e., the right hand side).

* The boundary conditions:

N
u(=1) =0 — Y (-1); =0,
I\;/=0
u(1)=0— > ;=0
j=0

We have N + 3 equations; discard two of the highest order coefficients i,
and replace them with the boundary conditions equations.
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Solution for N = 4

Solving for unknown i:

4 —4 4  —12 32\ (i —0.03
0 4 -16 24 -32||mn 1.13

L =10 0o 4 —24 48 in|=1 027
1 -1 1 -1 1 s 0
1 1 1 1 1 Ua 0

(in red, the imposed boundary conditions). The solution is

tg 0.146
I 0.079
Uy | ~ | —0.122
i3 —0.079
Uy —0.024
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Solution for N = 4

N=4

0,5 .

— Exact solution

— Numerical solution (Tau) i
0,4
0.3+ |
0,21+ -
0,1 —

. ! . | !
0-1 -0,5 0 0,5 1
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Solution for N = 8

N=8
0,5 T
— Exact solution
04l° Numerical solution (Tau) i
0,31~ n
0,21~ n
0.1+ |
. \ . \ \ &
-1 -0,5 0 0,5 1
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The evanescent error

10° T T I
02 — Tau _
— Coloc
- — Galerkin| |
5 10
3
5
= o
T 10 _
= ' —
10" -
g8 - —
10—|47 —
16 | L | L | | |
107 5 10 15 20 25

* For suffiently smooth solutions, the interpolation/truncation error falls

30

faster than any power of 1/N (in practice, this means exponential decay).

* For finite difference of order k, error decays as 1/N".
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Further reading...

*

P. Haensel, A. Y. Potekhin, D. G. Yakovlev, ,Neutron stars 1:
equation of state and structure”,

T. W. Baumgarte, S. L. Shapiro, ,,Numerical Relativity: Solving
Einstein's Equations on the Computer”,

S. L. Shapiro, S. A. Teukolsky, ,Black Holes, White Dwarfs and
Neutron Stars”,

Spectral methods library LORENE (Langage Objet pour la RElativité
NumeériquE): http://www.lorene.obspm.fr

LORENE school on spectral methods:
http://www.lorene.obspm.fr/school
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