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Newtonian star. Equation of motion in the rotating frame

Consider a rigidly rotating body. The relation between the inertial
(nonrotating, laboratory) frame and the rotating frame is

Dr  dr
E = E + Qxr
D?r dr 2 d°r dr
Dz = (dt+Q><> r:@+2QXI+Qx(er),
assuming that dQQ/dt = 0. The equation of motion in the inertial frame is
Du
T —VP —pVi,

where u is the fluid velocity (fluid element’s rate of change of position r
in time). In the rotating frame:

ﬂz—EVPszZJ—Xqu—Qx(qu).
dt p —_ —

Coriolis Centrifugal acc.
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Equilibrium equations of a slowly rotating body

Assumptions:

* rotation induces a weak distortion of the shape from the spherically
symmetry,

* the body is axisymmetric about the rotation axis.

In the frame rotating with the body, in equilibrium u = 0 and 0/dt = 0.
If Q@ = Qe, (z direction is along the rotational axis), then

Q xr=CQrsinfey,, and
1
—Q x (Q xr) = Q?rsin® fe, + Qrsinf cosfey = V (2Q2r2 sin? 9) ,

i.e., centrifugal force can be expressed as the gradient of potential. The
equation of motion is then

VP =—pVo, with & =1 — %9%2 sin? 0.

— the surfaces of constant P and p coincide with surfaces of constant ®.
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The Roche model

On the surface, ® = 1) — 20?r? sin® @ is constant (P = 0). Assume that
@ = —GM/r at the surface and outside the star.

This corresponds to a centrally-condensed star (all mass at r = 0). For a
stellar surface described by r = R(1 + €(8)), the potential

GM 1
d)surace = T 5G4 . N *Qsz 1 25in?
f RO+ ) 2 (1 +€(F))*sin“ 6
is constant (does not depend of #). Neglecting high-order terms of Q2
and €2, -
102R3
e(d) = s ahr Sh 0 + const.

describes the ratio of centrifugal (2*R) to gravitational (GM/R?)
acceleration.
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The Roche model

The shape of such star can be evaluated as follows. The relative
difference between equatorial and polar radii (shape distortion) is

R(1+e(m/2)) — R(1+¢€(0)) 1Q2R3
R T2 GM

The above is a good toy-model for estimating the shape (but note the
assumption of ¥ = —GM/r).

Proper treatment leading to a figure of equilibrium of a slowly rotating
star is the Chandrasekhar-Milne expansion.
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Newtonian figures of equilibrium: Maclaurin spheroid

Great deal of classical research - equilibria of rotating bodies with uniform
density: Laplace, Jacobi, Liouville, Riemann, Poincaré, Kelvin, Jeans...

A=A =A

Moment of inertia along z axis
| = %I\/IAz, M = %ﬂ'pAzA?,

Equation of state: p = const.

Poisson equation: V2® = 47Gp

Kinetic energy T = %IQz, potential energy W = %pg¢d3x
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Newtonian figures of equilibrium: Jacobi ellipsoid

ANGULAR MOMENTUM

Transition from a Maclaurin spheroid to a

lower E = T + W state:

* Secular instability (occurs at the

5 O
Y ¥ dissipation timescale,

b Chandrasekhar-Friedman-Schutz
instability, CFS): e = 0.812760,

, ; ; T/|W| = 0.1375,

’ ! . * Dynamical instability (dynamical

AZ timescale, Maclaurin spheroids

AL unstable): e = 0.952887,

T/|W| = 0.2738
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Rotating stars in general
relativity

8/31



Geometry of spacetime
Consider a stationary and axisymmetric metric g,g,
gaﬁdxo‘dxﬁ = —e?dt’+e 2" B%r?sin? 0(d ¢ — wdt)2+e2“ (dr2 + r2d92) ,

with v, B, w and u being metric functions of r and 6. This is a general
form of a metric assuming:

* the spacetime has a timelike Killing vector field £,

* a second Killing vector field x* corresponding to axial symmetry
(symmetries - Noether theorem),

* the spacetime is asymptotically flat - at spatial infinity:
§al® =1, xaX" =0, &Xx*=0.
* Quasi-isotropic coordinates, where

§al” = &tty  XaX" = 8oy EaX” = 8o

and e2* called the conformal factor that characterizes the 2-surface
(r,0) geometry.
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Conformal geometry. Frame-dragging

Conformal geometry - angle preserving

transformations on a space (Escher’s

"Angels and daemons’.)

Two main effects of rotation:

* The shape of the star is
flattened by centrifugal forces
(second order in the rotation
rate),

* Local inertial frames are
dragged by the rotation of the
source of the gravitational field.

Second effect is purely relativistic
(also called frame-dragging).
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Conformal geometry. Frame-dragging

Radial infall in rotating spacetime metric -

not radial anymore.

Two main effects of rotation:

* The shape of the star is
flattened by centrifugal forces
(second order in the rotation
rate),

* Local inertial frames are
dragged by the rotation of the
source of the gravitational field.

Second effect is purely relativistic
(also called frame-dragging).
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ZAMO & frame-dragging

For the metric
ds? = —e®dt? + e 2 B%r?sin? 0 (d¢p — wdt)? + e (dr* + r*do?) ,

How to know the spacetime is dragged with the body? ZAMO
(Zero-Angular-Momentum-Observer, see Bardeen 1972) with worldlines
normal to t = const. is an analogue of the Eulerian observer:

* w is the angular velocity of the local ZAMO w.r.t to an observer at
rest at infinity,

* e~ is the time dilation factor between the proper time of the local
ZAMO and coordinate time t (proper time at infinity) along a radial
coordinate line,

* Brsinfe™" is the proper circumferential radius of a circle around the
axis of symmetry.
Frame-dragging is related to the existence of an ergosphere (g > 0;
spacetime dragging so strong, particles can have negative energies w.r.t
infinity).
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Frame-dragging experiment: Gravity Probe B

Guide Star

IM Pegasi
(HR 8703)

-

642 kilometers
/ Frame-dragging Precession (400, miles)

39 milliarcseconds/year
(0.000011 degrees/year)

Geodetic Precession
6,606 milliarcseconds/year
(0.0018 degrees/year)

Q- ;i/\l:l (va)+§;l; B‘f(m-R)—m}

Geodetic Precession . Frame-dragging Precession




The rotating fluid

The asymptotic behaviour of the metric functions v and w is

V~*M+Q3P2(cost9) and (,u~g
roor

r3’
with M, J and @ are the gravitational mass, angular momentum and
quadrupole moment of the star. For a perfect fluid energy-momentum

tensor,
T%% = (p+ P)u*u’ + Pg®”,

one can write the fluid 4-velocity u® as

e—l/
o — « + Q « ,
ut = s (€ + )
where v is the fluid 3-velocity w.r.t a local ZAMO,
v=(Q—-w)Brsinfe ? and Q= d¢/dt=u®/u,

with Q, the angular velocity of the fluid in the coordinate frame (as seen
from infinity).
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Slow rotation approximation (Hartle 1967)

Assumptions: slow rigid rotation, treated as a perturbation of a
spherically-symmetric model (up to quadrupole / = 2). Spin frequency
Q « Qumax (angular rotation frequency Q measured by the observer at
spatial infinity)

A general, axisymmetric stationary spacetime, the metric is
ds? = e?/(r9) 22— @2M(r0) g2 _g27(r0) r? (d6® + sin 20(dp — L(r,0)dt)? )

How to guess the form of L:

* From the form of metric, time reversal corresponds to Q — —Q:
L is a function of odd powers of Q,

* Let w be the frequency of local inertial (zero angular momentum)
observers (ZAMO), w o Q,

L(r,0) = w(r,0) + O(Q3)
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Slow rotation approximation (Hartle 1967)

From the dimensional analysis:
w o GJ/c?r3,

where J is the total angular momentum of the star.

Frame-dragging of the inertial observers is:

2GJ

O(R) = Q- m5a

Slow rotation approximation can be also used to provide the moment of
inertia of the star for the TOV (nonrotating) solution. By retaining first
order terms in Q in )

Rt —
¢ 2

Rg, = 8n T}

one gets the following equation

1d(,do\ _4d
ﬂc/r(’fw>+wrc/r—°
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Slow rotation approximation (Hartle 1967)

li do.) s _4dj _0
JAdr Idr rdr

where the function j(r) may be already defined using the Schwarzschild
metric,

) e~ Wt = e /T —2Gm(r)/rc2 r<R
r =
/ 1 r=R

By differentiating the above equation and using the TOV equations we

get
dj G _\ 2
Pl —4?7&'!’6 (P + pc )/ 1—2Gm(r)/rc?
also:
doy 7‘[ 43 3d _ d
rjdr r drw r
and
do  3GJ 2 (R Ld
_ 2 3 . 3
w OCGJ/C r-, ? oC W thatis J o E 4r EWdr
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Slow rotation approximation (Hartle 1967)

For the slow-rotation we may accept the relation between J and Q,
J =19, with | the moment of inertia. The Newtonian moment of inertia

is "
INewt. = 8£ J‘ pl’4df-
3 0

By collecting the previous equations we finally get the slow-rotation
moment of inertia:

S8 (" e @
Q 3 Jo \/1=2Gm(r)/rc2 Q

(integrating outwards the relation for J; the prefactor comes from the
Newtonian limit for 2Gm/rc? « 1 and P « pc?).

I = e Mridr
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Thermodynamics of simple

fluids



First law of thermodynamics

In the comoving (Lorentz) frame, convenient when using baryon number
density np, the first law of thermodynamics is:

P ni
L) = Tds — P
d(nb> ds d( ) Z;u/( )
n
from the total ener er bar on— Ts——+ ,( '> ,
< gy P y s Z/i b )

where p is the mass-energy density, P is the fluid pressure, T
temperature, s the entropy per baryon, and pu; the chemical potentials of

species i:
([ op/ny o (p/np
P= (al/nb>s,n,~ — onp s,n;

s N

_ (9/ns ~_(9p/nb _(9p
T( Js )n,-,nb and Ml(an"/nb s,nbi ani s,np
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Chemical potential

Chemical potential u; reflects the change in the energy density p due to
the change in the number density n; (with s and np, constant). Chemical
equilibrium means that

with ds = 0 in equilibrium (2nd law) and assuming no work is done on
the system.

For one component system and T = 0 (~ barotropic neutron star),
chemical potential can be defined as
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Enthalpy, Gibbs energy and Gibbs-Duhem relation

Lets define an auxiliary function, pseudo-enthalpy, log-enthalpy-

HE) = [ 2 ey = (1)),

o Pp)+p o

where P
P _ —_0) — 2
h(P) = o, and  po = p(P =0) = moc”.

The Gibbs free energy per baryon is

g=nL;—Ts+— Z/’(‘l ( )a

derivative of it compared with the 1st law, for T = 0 gives the
Gibbs-Duhem relation

dP
dP = Z nidp; or, for one component fluid il P.

10/31



Gibbs-Duhem relation in EQOS treatment

The Gibbs-Duhem relation is used to construct strictly
thermodynamically consistent equation of state.

* The problem: EOSs usually provided as tables - simple
interpolation between table points introduces numerical errors and
thermodynamical inconsistency.

* The solution (Swesty 1996):
* Calculate log-enthalpy H(P) = In ( £+pP ) and dP/dH = p + P,

moc2ny,

* Interpolate values of P(H) and dP/dH(H) (e.g., with the Hermite
polynomials)

The last step is to recover p and np:

p:d—H—P, and np=(p+P)e "

Resulting EOS (p — P — n,, relation) fulfills the laws of thermodynamics.
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Numerical general relativity
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Numerical general relativity: 3+1 formalism

Hypersurfaces of constant time X;,
each with its own coordinate system.
3-metric induced on X;:

h = g + n®n, where n in normal to

1+35t zt-

X

t

xi = const.

Evolution is described by auxiliary parameters:

Time “lapse” N, n = NVt and space “shift” 5 = —h - &.

The general metric:
g dxtdx? = —(N? — B3;8")dt? — 28;dt dx’ + hjjdx’ dx/
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341 formalism: equations to solve

The normal vector n is a unit timelike vector; let us consider the family of
observers whose 4-velocity is n - these are the Eulerian (ZAMO)
observers.

The stress-energy-momentum tensor T, TH” = (p + P)utu” + Pg*” can
be decomposed in terms of physical quantities measured by ZAMO.

T=S+n®p+pROn+En®n,

where
E = Tuz/n“n”, pi = _h;tTHVnyv 5’J = hfih—’y TMV

are the energy density E, the momentum density vector p and the stress
tensor S.
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341 formalism: equations to solve

By projecting the Einstein equation twice onto ¥, twice along n, and
once on ¥; and n one gets, respectively the evolution equation:

oK;

ot
—2Kiy K[ + KKj + 47{(S — E)h; — 25;}) ,

— LnKij = —DiD;N + N (*R;

and the conservation (constraints) equations:
3R+ K? — KK = 167E, D;K' — D'K = 8rp',
also called the Hamiltonian constraint and the momentum constraint.

These equations are complimented by the relation between the induced
metric and the curvature:

ahij inj i Qi ij

— +D'p + D'p' =2NKY

ot
where D; is the covariant derivative on h, 3R,-j the Ricci tensor, Kj; the
extrinsic curvature of ¥;, Kup = %,C,,hag, L, Lie derivative along n.
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341 formalism: equations to solve

This set of conservation (constraints) and evolution equations

3R+ K? — KK =167E, D;KY —D'K = 8rp',

a:t"f — LnKj = —DiD;N + N (3R;
—2Ki K} + KKjj + 4m{(S — E)h; — 25;}) ,
% + DB+ DI = 2NKY
is quite similar to Maxwell equations:
gg z'g } constraints va Eligjgt?_ 72 0 } evolution
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Axisymmetric stationary rotating configuration

Conformally flat metric h = Wn, where 7 is flat 3-metric. With a
particular choice of the conformal factors:

4
Bapdx“dx® = —N?dt> + A*B*r?sin® 0(dp + N?dt)® + B—(dr + r’d¢?)

where
v(r, 0) :=1In(N), a(r, 0) :=In(A), B(r, 0):=In(B)
G(r, 0) := NA’B, ((r, 0):=v+2a—p
\ _ Blrsing ON? _ B?sinf ON?
YTU2N ar TP 2N
Set of equations (2D and 3D Poisson equations) to be solved is as follows:
A4
FACYZE 5 [4m(E + S) + 2(ki + k2)] —ovd(v +2a+ p) ,
AsN? = 167rﬂ '{d) — rsin 98N¢6(6a +38—v), where N¢ = N®rsin@
B* rsinf
- NA® 0 -
NG = 87r?rsin 0(S; +Sg), where G = Grsin6
A
B = [87r5¢ F3(K + kz)} — (0)?

where Az, As and As are the scalar Laplacians in 2D and 3D, and the ¢
component of 3D vector Laplacian (Bonazzola et al. 1993) 13/31



Axisymmetric stationary rotating configuration

20

1 Ideal fluid in rigid rotation:

* 4-velocity u := u€ + u®y,

* angular velocity Q := d¢/dt = u®/ut
in the coordinate frame (as seen from
infinity),

10

z [km]
0

-10

* Lorentz factor
M= —nu=Nut =(1-v?)"12
‘ ) * physical velocity of the fluid in the ¢
5 : L direction:
—20 —10 0 10 20 Py .
x [km] vV = W(Q—N%:u
(w.r.t the local ZAMO).

—20
T
1

1 x
T x

13/31



Axisymmetric stationary rotating configuration

Using the equations of motion - conservation of energy-momentum and
baryon number density

VATan =0, Vu(npu")=0
for a perfect fluid one obtains the relativistic Euler equation:
(p+ P)u"V, uq + (05 + u'u,) VP = 0.
Using the Gibbs-Duhem relation at T = 0 from previous considerations:

p+P

dP = npdu, where = dp/dny, =

and dividing the Euler equation by n, we get
hutV ue + (0K + vtu,)V,h =0, or u#*V,(huy) + Voh =0.

Using u*u, = —1 we recover the vorticity 2-form (measure of local
spinning motion of a fluid):

0 (V,u(hue) — Vo (hu,)) = 0
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Bernoulli theorem and first integral of motion

From
u'V,(huy) + Voh =0,

by contracting with the ¢ Killing vector, one obtains

UV, (hua &) = 0. (the scalar hu¢ is constant along a given fluid line)

This is the Bernoulli theorem. The stationarity of the flow is related to
the first integral of motion. In case of a rigidly rotating star:

H(r, 6)+v(r, 8) —InT(r, ) = H(0, 0) + (0, 0) = const.

where v = In(N) has a meaning of gravitational potential far from the
star. For comparison, in Newtonian case one has, along a fluid line

V2
H+¢—7:const.

13/31



Global quantities

Using the property of asymptotic flatness:
* Total mass-energy (gravitational potential v(r, 0)|,—+5 — 0, leading term
v(r, ) ~—=M/r):
ey 3 NA o3
M = (2Tuw—Tguv)n"€ Vhdx® = B E+5 + NN pe | r sm@drded(b
e

* Number of particles inside the star:
A6
Ap = —J nun, vV hdx® = Jgrm,r2 sin Odrdfd ¢
pxs

* Total angular momentum: Leading term in frame-dragging
N(ry O)|rosioo ~ —2J/r%):

J:= —J Tuwn"x Y/ hdx? —f—pd)r sin Odrdfd ¢
pars

* Circumferential radius:

Req = Az(req, 7/2)B(req, 7/2)req
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Results related to fast rotation
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Constraints from rotation on the M(R) diagram

* S: static configurations (TOV),

* K: "Keplerian” (mass-shedding)
configuration -
maximally-rotating, rigid stars
at a given mass,

* in cyan: the instability line (star
loses stability w.r.t.
axisymmetric oscillations)

oM
= >0,
( &f >J=const‘

01|D..‘|“-\---‘-" afJ:const.

12 14 16 18
R, [km]

M [M,]

where £ = p. or P..

15/31



Constraints from rotation on the M(R) diagram

Vi
4
%
&

/ L7
Q
\\i

L]

1 \
728 G o 1 W\
IR RS e
I.EEE-=-\“:~
NS

1

7

BGN1H1

.Keplerian” rotation defined
as

frot = leq.»
where

* foq. is the orbital
frequency of a particle
on a circular orbit at the
star's equator,

* f.o is star's rotational
(spin) frequency.
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Constraints from rotation on the M(R) diagram

- ] * Constant angular

24 - momentum J lines,

* Constant spin frequency
f = Q/2r lines - related
phenomenon: spin-up
near the instability.

Increase of the maximum
mass:
* Neutron stars ~ 15%,
* Quark stars ~ 30%.

R, [km]
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Possible (7) sub-millisecond rotation

8 10 12 14 16
Radius (km)

Mo Y2 ( Rop \ 32 .
* Ppmin ~ (0.74 £+ 0.03) (m) (10"(’"1) ms, (Koranda, Stergioulas &

Friedman 1997)

12 p 3/2
* Pmin ~ 0.96 (M—Afp%) (#ﬁ’;’) ms, (Lattimer & Prakash 2004)

1/2 -3/2
* fmax (M) ~ 1.08 (M—Ag) / (f&’,’;{'ﬂ) kHz, (Haensel et al., 2008)
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Possible (7) sub-millisecond rotation

Spin frequency of 1122 Hz inferred from bursts of XTE
J1739-285 (not confirmed):

2.5 - 1000Hz 25" 1200Hz

For f > 1000 Hz spin
frequency:

* stellar mass M

well-constrained,

mass-EOS-f dependence
- masses separation for
different models,

Maximal frequency
strangely resembles
Newtonian orbital
frequency:

GM 1/2
Qk = 2’/Tfk = (R3>

eq.
(dashed lines)
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Possible phase transitions in
rotating stars

17/31



Maxwell & Gibbs phase transitions

4x10% ————————————————— .
I il * Maxwell construction -

coexistence of two phases
(density jump, e.g., when high
surface tension),

3x10%

* Gibbs construction -

@ .
& mixed-phase.
19
w 2x10% 1250 . .
o
Al
10% 1200 |-
=
5
2
i 1 ¢
ol v v v e 1150 -
5x10 1018 1.5x1018 2x1015
p [gem=]
1100 —
P S S RN S S ST NS R |
5x10% 10% 1.5x10% 2x10%

P [erg em=2]
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Phase transition in a rotating star

2+ Q ‘
> M

'b.crit

b.nucl

C

M i

B B B

s B
* Increase of the central density
C* during evolutionary processes
(accretion or slowing down)
* Formation of the metastable
core in the center of the star -
radius ry, over-compression

* Central pressure reaches P
and the configuration becomes

unstable
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Phase transition in a rotating star

,Strong” and ,weak” phase
transitions, in case of the
,density jump" phase
transition, A = ps/pn:

* weak A < Agir 1=
3 (1+ Po/pne?),
* strong A > At

1.45

1.6

15
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Back-bending in heavy nuclei and in neutron stars

160 10
__ 120 105
=
1k}
= i
‘-‘-_._ L)
o 807 £ 100+
4 =
= =
o
40 26
0 T T T T 90 T T T
0 004 008 012 016 02 1326 1350 1376 1400 1425
(heo)? (MeV?) Q (rad/s)

Observed for nuclei in terrestrial experiments, proposed for neutron stars
(Glendening, Weber & Pei 1997)
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Back-bending in heavy nuclei and in neutron stars

0.8

r ] 0.9 T T
C MSt 1 C Mst ]
L 2 Bl E i

wor| 15 o8l .

(1) L 4 @b L .

=

o [ 1% C ]

- 08 12 e ]
[0 IR I Covalin il N

0.5
580 600 620 640 660

0.6
580 600 620 640 660

f [Hz] f [Hz]

r Y MM PARRE RARES m

. {— 12} .
._‘D.Q_— MUn —_"E -( MUn ]
o | 15 L |
@ i Jw ([ ]
G 0.8 [ g L |
—_ L -2 i ]
- 3 HeEL i ]
I {1~ o8} >

0.7 |- — L ]
b g T el 1 o bl o g o (oo 2

500 600 700
f [Hz]

500 600 700
f [Hz]
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Softening of the EOS — back-bending of the star

T : T 1.5 T T T T
16 \
L8
AT _1.55 J
—_ @ k.
i, 2 ‘
) =) 18
= -
05 - B
1.45
1 1.42
0 2 1a 1 8 0 1 1 1 1
Ry [km] 0 200 400 600 800 1000
f [Hz]

In this example, all configurations are stable
* Red lines: constant Q,
* Blue lines: constant J (real indication of stability!),

* Green lines: occurrence of back-bending.
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Mini-collapse resulting from instability

1 [eMe/c)

On the J(f) plane, in case of sufficiently-strong phase transition:

T T T T

* Star looses its angular
momentum J

* Onset of back-bending
phenomenon (minimum of f)

* The instability point is reached

oJ
(af>MB -0

o 200 400{ (8 ]600 800 1000 (turning point method, stability theory by
Z

Friedman, Ipser & Sorkin in the 80s)
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Mini-collapse resulting from instability: EOS

36 T T
A
1.5 g
355 -
% ey
§ N
g 36— uze 1+ i
3 g p 185
& =
gl L
345 -
0.5 B
34 |
\ L 0 1 1 Il Il
-1 05 0 0 200 400 600 800 1000
log(n) [fm=%] f [Hz]

EOS must be sufficiently soft and then,
sufficiently stiff to stabilize the star

Test EOS with a softening (smaller
adiabatic index ): mixed-phase region
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Energy release

Energy released (the difference in mass-energy), released due to the
phase transition (AE = (M¢c — Mcx)c?):

A
8- A
t’/"
P b
e
e _
_ 6 P i RS
a ¢ = 3
5] e i #L 2
g o ] o =
= i & —
— 4 ' +* 2 g
mf.' ""' strong 2 & —H2 ! o
s s of
~ o
zfF o’
4 -1
e - ®
o i Y 1
Ead _.--.-" weak 0.2
o S it 1 I 0 : t } 0
0 0.05 0.1 0.15 0.2 0.1 02 0.3
&P P

Moreover, it does not depend on the spin frequency!
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Formation of millisecond pulsars

in binaries
high energy | -
magnetars

10 - other

asat s
AN, 4 >
42

N -
S

Q Sa
ot =

"Recycling” old pulsars to large
frequencies by disk accretion. Open
questions:

* Star-disk interaction via the
magnetic torque,

* Magnetic field decay 10** G —
10° G,

* Influence of B vs GW emission.

ZAMS ® -
150 16
Roche-lobe overflow @@
13.0 16
common envelope
+ spiral-in
4.86
helium star
supernova
neutran star ° .
13 16
IMXB
13 1.59
o e
millisecond pulsar Lo 0e
(PSR 1855+09)

[3

orh

1500 days

1930 days

0.75 days

1.00 days

2.08 days
ecc=0.24

1.41 days

12.3 days

white dwarf

(Tauris and van der Heuvel, 2003)

0.0 Myr

13.9 Myr

13.9 Myr

15.0 Myr

15.0 Myr

2.24 Gyr

2.64 Gyr
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Formation of millisecond pulsars

"Recycling” process (~ 0.5 Gyr) for
pulsars with measured masses:

_ TRANSITION

RECION BOUNDARY
LaveR

MAGNETOSPHERIC
FLOW

(Ghosh & Lamb 1979)

‘o s
ouTER

|-l rRAKSTION —
2Z0NE

300 = M [10-] B, [102] 7[Gyr]

00 —

T T T
BM165

317 Hz

1. 1.65 163 55
2. 162 1.0 3.6
3. 1.50 06 1.9

4. 3.48

* M,,; at the onset of accretion,

* accretion with B results in
much higher accreted masses,

* test for SN core-collapse
physics - extreme cases:

J1614-2230 (1.97 + 0.04 Mp),
J075141807 (1.26 + 0.14 M),
(both ~ 3 ms and ~ 10% G.)
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Innermost stable circular orbit

For a general 3+1 version of the metric (axisymmetric, stationary,
asymptotically flat, and free of meridional currents) in a particular choice
of gauge and coordinates (maximal-slicing quasi-isotropic coordinates)

ds? = —N2dt? + A%(dr® + r*d6?) + B?r?sin® 6(d¢p — N?dt)?,
with A and B conformal factors (A = B in spherical symmetry). A test
orbiting particle has two constants of motion of interest, energy p; = —E

and angular momentum pg = /. Using equation on p,, one can define an
effective radial potential

V2 — N2 (1 + B’;) +ONPEl — NOP2,
where the relation between the coordinate radius and the circumferential
radius in the equatorial plane is
reire = Br,
and the physical velocity in the disk is (Bardeen 1970)

V= (- 7).
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Innermost stable circular orbit

With such defined effective potential
2
B2,2

V2 — N2 <1 + > +ONPEl — NOP2,

the conditions for circular orbits are
E*=V? and V,=0.

Condition for the innermost stable circular
orbit (ISCO) is

V., =0

)
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Thin-disk accretion without the magnetic field

Accretion proceeds from the
Innermost Stable Circular Orbit
(ISCO).

* Evolution of total stellar angular
momentum J = /) reads

dd_l\jB = x/lisco, x € (0,1)
(x; = 1 - Beckwith, Hawley & )
Krolik 2008, Shafee et al., Schwarzschild: )
2008) risco = 3rs = 6GM/C .

— lhe stellar baryon mass changes Slow rotation:

3/2
in time as risco = 3fs (1 — e (3) )
t
AMy(t) = J My (t")dt'.
tin
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Thin-disk accretion: magnetic field included

How to determine the radius ro from which the accretion effectively takes place:
* the magnetospheric radius
fm = (GM)_1/7 M_2/7M4/7:

* the corotation radius

_ GM 1/3
re = OJE ’

* Torque models: Kluzniak &
Rapapport (2007), Wang (1995),
Aarons (1993), Ghosh & Lamb
(1979). KR2007 solution for rg: *

Toroidal component of the

2 dl r\ 72 3 magnetic field:
(2s), - (%) ( 3‘1> Bo = B (1 = Q/ws).

o

* Magpnetic field decay?®:
— Stellar angular momentum J

evolution equation (i, magnetic B =By/(1+ AM/mg)

dipole):
ipole) with mg = 107° — 107 M,
dJ 2 3
o = o)~ 4 (3 —2 'g) 2van den Heuvel & Bitzaraki (1995),
B 9r5 Mg "o Taam & van den Heuvel (1986) 27/31



Accretion with B and central compression

Are dense matter phase transitions actually possible in accreting systems?

9.4l *- mass-shedding
---- instability
I statlcp 1600f ... mass-shedding
-- B =107G 1400 " instability .
— =1 — spinup (;=1) .."
2.0 =05 1200 - - spin-down .7 |\
- . 1000 :
= 18 — ) RAS
= 165 = 800 - \
= \
1.6 1.60 600} \
155 100 \
1.4 1.50 Y
200 |
14 1.45] !
1.40 0.4 0.6 .
Lo - n, [fm™%)

70.4 0.5 0.6 0.7 0.8‘ 0.9 1.0 1.1 1.2

n, [fm™® . .
e Spin-up versus spin-down and the
Spin-up with and without magnetic central density change.

torque interacting with the disk.
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M(R) from pulse profiles

For sources that show pulsed radiation from
the surface:

* Model the emitting area (spot size, o]
emission spectrum, beaming...), ]

* Use relativistic ray-tracing in order to E
construct the light-curve, -

* Light-deflection oc GM/Rc?,
* Rotational "Doppler” ocRQ/c.

199884 3-4 keV 10
199884 9-20 keV 10—
o 02 04 08 [ 1

* Compare with the real light-curve — "fit”
the parameters of the model. .

1
8.8
0.6

0.4

0
Intensity

- 7
:;‘L)/v \

6 8 10 12 14 16
Equatorial Radius (k)

Bursts from the source SAX J18089 /31

(Leahy et at., 2009)



An example: case of EXO 0748-676

"Rétaltional

EN z £X0 0748676 1
25 Broadening Redshift <« 0008 ;—“- z ':? Early Burst Phases ]|
2f
= & ool
2“ Eddington XMM-Newton /RGS
< 15 pmit = 6868
12}
2 o
= 1F L oo0s
Surface 2 oo
05 [ Emission 5000‘ ]
0.000 P 5
o " I >
0 0 5 10 15 20 Wvelength (A)
Radius (km) Cottam, Paerels, Mendez (2002)
(Ozel 2006) * z=0.35 > M/Mg = 1.5R/10 km
* the Eddington flux during photospheric radius (Cottam et al., 2002),
expansion bursts, * M =2.10 + 0.28M¢, and
* the ratio F.oo/ T2 of the surface emission - R =13.8 + 1.8 km (1o, Ozel 2006),
asymptotes to a constant during the cooling * data more consistent with
after the thermonuclear burst, M = 1.35Mg (Pearson et al. 2006),
* the redshift of absorbtion lines during the * 7 = 0.35 not confirmed with new
burst,

data (Cottam et al., 2008).
* line broadening due to rotation.
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Further reading...

*

E. Gourgoulhon, "An introduction to the theory of rotating
relativistic stars’, arXiv:1003.5015

*

N. Stergioulas, "Rotating stars in relativity”,
http://relativity.livingreviews.org/Articles/lrr-2003-3

Spectral methods library LORENE (Langage Objet pour la RElativité
NumériquE): http://www.lorene.obspm.fr

LORENE school on spectral methods:
http://www.lorene.obspm.fr/school

*

*
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