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Newtonian star. Equation of motion in the rotating frame

Consider a rigidly rotating body. The relation between the inertial
(nonrotating, laboratory) frame and the rotating frame is

Dr
Dt

“
dr
dt
` Ωˆ r

D2r
Dt2 “

ˆ

dr
dt
` Ωˆ

˙2

r “
d2r
dt2 ` 2Ωˆ

dr
dt
` Ωˆ pΩˆ rq ,

assuming that dΩ{dt “ 0. The equation of motion in the inertial frame is

ρ
Du
Dt

“ ´∇P ´ ρ∇ψ,

where u is the fluid velocity (fluid element’s rate of change of position r
in time). In the rotating frame:

du
dt
“ ´

1
ρ
∇P ´∇ψ ´ 2Ωˆ u

loomoon

Coriolis

´Ωˆ pΩˆ uq
loooooomoooooon

Centrifugal acc.

.
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Equilibrium equations of a slowly rotating body

Assumptions:
‹ rotation induces a weak distortion of the shape from the spherically

symmetry,
‹ the body is axisymmetric about the rotation axis.

In the frame rotating with the body, in equilibrium u “ 0 and B{Bt “ 0.
If Ω “ Ωez (z direction is along the rotational axis), then

Ωˆ r “ Ωr sin θeφ, and

´Ωˆ pΩˆ rq “ Ω2r sin2 θer ` Ω2r sin θ cos θeθ “ ∇
ˆ

1
2

Ω2r2 sin2 θ

˙

,

i.e., centrifugal force can be expressed as the gradient of potential. The
equation of motion is then

∇P “ ´ρ∇Φ, with Φ “ ψ ´
1
2

Ω2r2 sin2 θ.

Ñ the surfaces of constant P and ρ coincide with surfaces of constant Φ.
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The Roche model

On the surface, Φ “ ψ ´ 1
2Ω2r2 sin2 θ is constant (P “ 0). Assume that

ψ “ ´GM{r at the surface and outside the star.

This corresponds to a centrally-condensed star (all mass at r “ 0). For a
stellar surface described by r “ Rp1` εpθqq, the potential

Φsurface “ ´
GM

Rp1` εpθqq
´

1
2

Ω2R2p1` εpθqq2 sin2 θ

is constant (does not depend of θ). Neglecting high-order terms of Ω2

and ε2,

εpθq “
1
2

Ω2R3

GM
sin2 θ ` const.

describes the ratio of centrifugal (Ω2R) to gravitational (GM{R2)
acceleration.
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The Roche model

The shape of such star can be evaluated as follows. The relative
difference between equatorial and polar radii (shape distortion) is

Rp1` εpπ{2qq ´ Rp1` εp0qq
R

“
1
2

Ω2R3

GM
.

The above is a good toy-model for estimating the shape (but note the
assumption of ψ “ ´GM{r).
Proper treatment leading to a figure of equilibrium of a slowly rotating
star is the Chandrasekhar-Milne expansion.
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Newtonian figures of equilibrium: Maclaurin spheroid

Great deal of classical research - equilibria of rotating bodies with uniform
density: Laplace, Jacobi, Liouville, Riemann, Poincaré, Kelvin, Jeans...

A1 “ A2 “ A
Moment of inertia along z axis
I “ 2

5MA2, M “ 4
3πρA

2A3

Equation of state: ρ “ const.

Poisson equation: ∇2Φ “ 4πGρ

Kinetic energy T “ 1
2 IΩ2, potential energy W “ 1

2ρ
ş

Φd3x
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Newtonian figures of equilibrium: Jacobi ellipsoid

eccentricity e “
c

1´ A2
3

A2
1

Transition from a Maclaurin spheroid to a
lower E “ T `W state:

‹ Secular instability (occurs at the
dissipation timescale,
Chandrasekhar-Friedman-Schutz
instability, CFS): e “ 0.812760,
T {|W | “ 0.1375,

‹ Dynamical instability (dynamical
timescale, Maclaurin spheroids
unstable): e “ 0.952887,
T {|W | “ 0.2738

7 / 31



Rotating stars in general
relativity
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Geometry of spacetime

Consider a stationary and axisymmetric metric gαβ ,

gαβdxαdxβ “ ´e2νdt2`e´2νB2r2 sin2 θpdφ´ ωdtq2`e2µ `dr2 ` r2dθ2˘ ,

with ν, B, ω and µ being metric functions of r and θ. This is a general
form of a metric assuming:
‹ the spacetime has a timelike Killing vector field ξα,
‹ a second Killing vector field χα corresponding to axial symmetry

(symmetries - Noether theorem),
‹ the spacetime is asymptotically flat - at spatial infinity:

ξαξ
α “ ´1, χαχ

α “ 8, ξαχ
α “ 0.

‹ Quasi-isotropic coordinates, where

ξαξ
α “ gtt , χαχ

α “ gφφ, ξαχ
α “ gtφ.

and e2µ called the conformal factor that characterizes the 2-surface
pr , θq geometry.
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Conformal geometry. Frame-dragging

Conformal geometry - angle preserving
transformations on a space (Escher’s
”Angels and daemons”.)

Two main effects of rotation:
‹ The shape of the star is

flattened by centrifugal forces
(second order in the rotation
rate),

‹ Local inertial frames are
dragged by the rotation of the
source of the gravitational field.

Second effect is purely relativistic
(also called frame-dragging).
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Conformal geometry. Frame-dragging

Radial infall in rotating spacetime metric -
not radial anymore.

Two main effects of rotation:
‹ The shape of the star is

flattened by centrifugal forces
(second order in the rotation
rate),

‹ Local inertial frames are
dragged by the rotation of the
source of the gravitational field.

Second effect is purely relativistic
(also called frame-dragging).
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ZAMO & frame-dragging

For the metric

ds2 “ ´e2νdt2 ` e´2νB2r2 sin2 θ pdφ´ ωdtq2 ` e2µ `dr2 ` r2dθ2˘ ,

How to know the spacetime is dragged with the body? ZAMO
(Zero-Angular-Momentum-Observer, see Bardeen 1972) with worldlines
normal to t “ const. is an analogue of the Eulerian observer:
‹ ω is the angular velocity of the local ZAMO w.r.t to an observer at

rest at infinity,
‹ e´ν is the time dilation factor between the proper time of the local

ZAMO and coordinate time t (proper time at infinity) along a radial
coordinate line,

‹ Br sin θe´ν is the proper circumferential radius of a circle around the
axis of symmetry.

Frame-dragging is related to the existence of an ergosphere (gtt ą 0;
spacetime dragging so strong, particles can have negative energies w.r.t
infinity).

8 / 31



Frame-dragging experiment: Gravity Probe B
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The rotating fluid

The asymptotic behaviour of the metric functions ν and ω is

ν „ ´
M
r
`

Q
r3 P2pcos θq and ω „

2J
r3 ,

with M, J and Q are the gravitational mass, angular momentum and
quadrupole moment of the star. For a perfect fluid energy-momentum
tensor,

Tαβ “ pρ` Pquαuβ ` Pgαβ ,

one can write the fluid 4-velocity uα as

uα “
e´ν

?
1´ v2

pξα ` Ωχαq ,

where v is the fluid 3-velocity w.r.t a local ZAMO,

v “ pΩ´ ωqBr sin θe´2ν and Ω “ dφ{dt “ uφ{ut ,

with Ω, the angular velocity of the fluid in the coordinate frame (as seen
from infinity).
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Slow rotation approximation (Hartle 1967)

Assumptions: slow rigid rotation, treated as a perturbation of a
spherically-symmetric model (up to quadrupole l “ 2). Spin frequency
Ω ! Ωmax (angular rotation frequency Ω measured by the observer at
spatial infinity)

A general, axisymmetric stationary spacetime, the metric is

ds2 “ e2νpr ,θqc2dt2´e2λpr ,θqdr2´e2γpr ,θqr2 `dθ2 ` sin2 θpdφ´ Lpr , θqdtq2
˘

How to guess the form of L:
‹ From the form of metric, time reversal corresponds to Ω Ñ ´Ω:

L is a function of odd powers of Ω,
‹ Let ω be the frequency of local inertial (zero angular momentum)

observers (ZAMO), ω 9 Ω,

Lpr , θq “ ωpr , θq `OpΩ3q
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Slow rotation approximation (Hartle 1967)

From the dimensional analysis:

ω 9 GJ{c2r3,

where J is the total angular momentum of the star.

Frame-dragging of the inertial observers is:

ω̄pRq “ Ω´
2GJ
R3c2

Slow rotation approximation can be also used to provide the moment of
inertia of the star for the TOV (nonrotating) solution. By retaining first
order terms in Ω in

Rt
φ ´

1
2
Rg t

φ “ 8πT t
φ

one gets the following equation

1
j4

d
dr

ˆ

r4j
d ω̄
dr

˙

` ω̄
4
r

dj
dr
“ 0
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Slow rotation approximation (Hartle 1967)

1
j4

d
dr

ˆ

r4j
d ω̄
dr

˙

` ω̄
4
r

dj
dr
“ 0

where the function jprq may be already defined using the Schwarzschild
metric,

jprq “

#

e´pν`λq “ e´λ
a

1´ 2Gmprq{rc2 r ă R
1 r ě R

By differentiating the above equation and using the TOV equations we
get

dj
dr
“ ´4

G
c4πre´λ

`

P ` ρc2˘ {
a

1´ 2Gmprq{rc2

also:
ˆ

r4j
d ω̄
dr

˙

R
“ ´

ż R

0
4r3 dj

dr
ω̄dr

and

ω̄ 9GJ{c2r3,
d ω̄
dr

9
3GJ
c2r4 that is J 9

c2

3G

ż R

0
4r3 dj

dr
ω̄dr .
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Slow rotation approximation (Hartle 1967)

For the slow-rotation we may accept the relation between J and Ω,
J “ IΩ, with I the moment of inertia. The Newtonian moment of inertia
is

INewt. “
8π
3

ż R

0
ρr4dr .

By collecting the previous equations we finally get the slow-rotation
moment of inertia:

I “
J
Ω
“

8π
3

ż R

0

P ` ρc2
a

1´ 2Gmprq{rc2

ω̄

Ω
e´λr4dr

(integrating outwards the relation for J; the prefactor comes from the
Newtonian limit for 2Gm{rc2 ! 1 and P ! ρc2).
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Thermodynamics of simple
fluids
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First law of thermodynamics

In the comoving (Lorentz) frame, convenient when using baryon number
density nb, the first law of thermodynamics is:

d
ˆ

ρ

nb

˙

“ Tds ´ Pd
ˆ

1
nb

˙

`
ÿ

i

µid
ˆ

ni

nb

˙

,

˜

from the total energy per baryon
ρ

nb
“ Ts ´

P
nb
`
ÿ

i

µi

ˆ

ni

nb

˙

¸

,

where ρ is the mass-energy density, P is the fluid pressure, T
temperature, s the entropy per baryon, and µi the chemical potentials of
species i :

P “ ´
ˆ

Bρ{nb

B1{nb

˙

s,ni

“ n2
b

ˆ

Bρ{nb

Bnb

˙

s,ni

T “

ˆ

Bρ{nb

Bs

˙

ni ,nb

and µi “

ˆ

Bρ{nb

Bni{nb

˙

s,nb

“

ˆ

Bρ

Bni

˙

s,nb
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Chemical potential

Chemical potential µi reflects the change in the energy density ρ due to
the change in the number density ni (with s and nb constant). Chemical
equilibrium means that

ÿ

i

µid
ˆ

ni

nb

˙

“ 0,

with ds “ 0 in equilibrium (2nd law) and assuming no work is done on
the system.
For one component system and T “ 0 („ barotropic neutron star),
chemical potential can be defined as

µ “
ρ` P

nb
.
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Enthalpy, Gibbs energy and Gibbs-Duhem relation

Lets define an auxiliary function, pseudo-enthalpy, log-enthalpy:

HpPq “
ż P

0

dp
ρppq ` p

“ ln phpPqq “ ln
ˆ

µ

µ0

˙

,

where
hpPq “

ρ` P
m0c2nb

and µ0 “ µpP “ 0q “ m0c2.

The Gibbs free energy per baryon is

g “
ρ

nb
´ Ts `

P
nb
“
ÿ

i

µid
ˆ

ni

nb

˙

,

derivative of it compared with the 1st law, for T “ 0 gives the
Gibbs-Duhem relation

dP “
ÿ

i

nidµi or, for one component fluid
dP
dH

“ ρ` P.
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Gibbs-Duhem relation in EOS treatment

The Gibbs-Duhem relation is used to construct strictly
thermodynamically consistent equation of state.
‹ The problem: EOSs usually provided as tables - simple

interpolation between table points introduces numerical errors and
thermodynamical inconsistency.

‹ The solution (Swesty 1996):

‹ Calculate log-enthalpy HpPq “ ln
´

ρ`P
m0c2nb

¯

and dP{dH “ ρ` P,
‹ Interpolate values of PpHq and dP{dHpHq (e.g., with the Hermite

polynomials)

The last step is to recover ρ and nb:

ρ “
dP
dH

´ P, and nb “ pρ` Pq e´H .

Resulting EOS (ρ´ P ´ nb relation) fulfills the laws of thermodynamics.
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Numerical general relativity
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Numerical general relativity: 3+1 formalism

Hypersurfaces of constant time Σt ,
each with its own coordinate system.
3-metric induced on Σt :
h “ g` nb n, where n in normal to
Σt .

Evolution is described by auxiliary parameters:

Time “lapse” N, n “ N∇t and space “shift” β “ ´h ¨ ξ.

The general metric:
gµνdxµdxν “ ´pN2 ´ βiβ

i qdt2 ´ 2βidt dx i ` hijdx i dx j
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3+1 formalism: equations to solve

The normal vector n is a unit timelike vector; let us consider the family of
observers whose 4-velocity is n - these are the Eulerian (ZAMO)
observers.
The stress-energy-momentum tensor T, Tµν “ pρ` Pquµuν ` Pgµν can
be decomposed in terms of physical quantities measured by ZAMO.

T “ S` nb p` pb n` Enb n,

where
E “ Tµνnµnν , pi “ ´hµi Tµνnν , Sij “ hµi hνj Tµν

are the energy density E , the momentum density vector p and the stress
tensor S.
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3+1 formalism: equations to solve

By projecting the Einstein equation twice onto Σt , twice along n, and
once on Σt and n one gets, respectively the evolution equation:

BKij

Bt
´ LNKij “ ´DiDjN ` N

`3Rij

´2KikK k
j ` KKij ` 4πtpS ´ E qhij ´ 2Siju

˘

,

and the conservation (constraints) equations:

3R ` K 2 ´ KijK ij “ 16πE , DjK ij ´ D iK “ 8πpi ,

also called the Hamiltonian constraint and the momentum constraint.

These equations are complimented by the relation between the induced
metric and the curvature:

Bhij

Bt
` D iβj ` D jβi “ 2NK ij

where Di is the covariant derivative on h, 3Rij the Ricci tensor, Kij the
extrinsic curvature of Σt , Kαβ “ 1

2Lnhαβ , Ln Lie derivative along n.
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3+1 formalism: equations to solve

This set of conservation (constraints) and evolution equations

3R ` K 2 ´ KijK ij “ 16πE , DjK ij ´ D iK “ 8πpi ,

BKij

Bt
´ LNKij “ ´DiDjN ` N

`3Rij

´2KikK k
j ` KKij ` 4πtpS ´ E qhij ´ 2Siju

˘

,

Bhij

Bt
` D iβj ` D jβi “ 2NK ij

is quite similar to Maxwell equations:

∇E “ ρ
∇B “ 0

*

constraints
∇ˆ E` BtB “ 0

∇ˆ B´ BtE` J “ 0

*

evolution
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Axisymmetric stationary rotating configuration

Conformally flat metric h “ Ψη, where η is flat 3-metric. With a
particular choice of the conformal factors:

gαβdxαdxβ
“ ´N2dt2

` A4B2r2 sin2 θpdφ` Nφdtq2 `
A4

B2 pdr2
` r2dφ2

q

where
νpr , θq :“ lnpNq, αpr , θq :“ lnpAq, βpr , θq :“ lnpBq

Gpr , θq :“ NA2B, ζpr , θq :“ ν ` 2α´ β

k1 “
B2r sin θ

2N
BNφ

Br
, k2 “

B2 sin θ
2N

BNφ

Bθ
Set of equations (2D and 3D Poisson equations) to be solved is as follows:

∆3ν “
A4

B2

“

4πpE ` Sq ` 2pk2
1 ` k2

2 q
‰

´ BνBpν ` 2α` βq ,

∆̃3Ñφ
“ 16π

N
B4

Jφ
r sin θ

´ r sin θBNφ
Bp6α` 3β ´ νq, where Ñφ “ Nφr sin θ

∆2G̃ “ 8π
NA6

B
r sin θpS r

r ` Sθ
θ q, where G̃ “ Gr sin θ

∆2ζ “
A4

B2

”

8πSφ
φ ` 3pk2

1 ` k2
2 q

ı

´ pBαq2

where ∆2, ∆3 and ∆̃3 are the scalar Laplacians in 2D and 3D, and the φ
component of 3D vector Laplacian (Bonazzola et al. 1993) 13 / 31



Axisymmetric stationary rotating configuration

Ideal fluid in rigid rotation:

‹ 4-velocity u :“ utξ ` uφχ,
‹ angular velocity Ω :“ dφ{dt “ uφ{ut

in the coordinate frame (as seen from
infinity),

‹ Lorentz factor
Γ :“ ´nu “ Nut “ p1´ v2q´1{2,

‹ physical velocity of the fluid in the φ
direction:
v “ A2Br sin θ

N pΩ´ Nφq “ u 1
Γ
χ
|χ|

(w.r.t the local ZAMO).

13 / 31



Axisymmetric stationary rotating configuration

Using the equations of motion - conservation of energy-momentum and
baryon number density

∇µTαµ “ 0, ∇µpnbuµq “ 0

for a perfect fluid one obtains the relativistic Euler equation:

pρ` Pquµ∇µuα ` pδµα ` uµuαq∇µP “ 0.

Using the Gibbs-Duhem relation at T “ 0 from previous considerations:

dP “ nbdµ, where µ “ dρ{dnb “
ρ` P

nb

and dividing the Euler equation by nb we get

huµ∇µuα ` pδµα ` uµuαq∇µh “ 0, or uµ∇µphuαq `∇αh “ 0.

Using uµuµ “ ´1 we recover the vorticity 2-form (measure of local
spinning motion of a fluid):

uµ p∇µphuαq ´∇αphuµqq “ 0
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Bernoulli theorem and first integral of motion

From
uµ∇µphuαq `∇αh “ 0,

by contracting with the ξ Killing vector, one obtains

uµ∇µphuαξαq “ 0. (the scalar huξ is constant along a given fluid line)

This is the Bernoulli theorem. The stationarity of the flow is related to
the first integral of motion. In case of a rigidly rotating star:

Hpr , θq ` νpr , θq ´ ln Γpr , θq “ Hp0, 0q ` νp0, 0q “ const.

where ν “ lnpNq has a meaning of gravitational potential far from the
star. For comparison, in Newtonian case one has, along a fluid line

H ` Φ´
v2

2
“ const.

13 / 31



Global quantities
Using the property of asymptotic flatness:
‹ Total mass-energy (gravitational potential νpr , θq|rÑ`8 Ñ 0, leading term
νpr , θq „ ´M{r):

M :“

ż

Σt

p2Tµν´Tgµνqnµξν
?

hdx3
“

ż

NA6

B

ˆ

E ` S i
i `

2
N

Nφpφ

˙

r2 sin θdrdθdφ

‹ Number of particles inside the star:

AB :“ ´

ż

Σt

nunb

?
hdx3

“

ż

A6

B
Γnbr2 sin θdrdθdφ

‹ Total angular momentum: Leading term in frame-dragging
Nφ
pr , θq|rÑ`8 „ ´2J{r3):

J :“ ´

ż

Σt

Tµνnµχν
?

hdx3
“

ż

A6

B
pφr2 sin θdrdθdφ

‹ Circumferential radius:

Req “ A2
preq, π{2qBpreq, π{2qreq
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Results related to fast rotation
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Constraints from rotation on the MpRq diagram

‹ S: static configurations (TOV),
‹ K: ”Keplerian” (mass-shedding)

configuration -
maximally-rotating, rigid stars
at a given mass,

‹ in cyan: the instability line (star
loses stability w.r.t.
axisymmetric oscillations)

ˆ

BM
Bξ

˙

J“const.
ą 0,

ˆ

BMb

Bξ

˙

J“const.
ą 0

where ξ “ ρc or Pc .
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Constraints from rotation on the MpRq diagram

„Keplerian” rotation defined
as

frot “ feq.,

where
‹ feq. is the orbital

frequency of a particle
on a circular orbit at the
star’s equator,

‹ frot is star’s rotational
(spin) frequency.
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Constraints from rotation on the MpRq diagram

‹ Constant angular
momentum J lines,

‹ Constant spin frequency
f “ Ω{2π lines - related
phenomenon: spin-up
near the instability.

Increase of the maximum
mass:
‹ Neutron stars » 15%,
‹ Quark stars „ 30%.
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Possible (?) sub-millisecond rotation

‹ Pmin » p0.74˘ 0.03q
ˆ

Md
Msph.

˙1{2 ´ Rsph
10km

¯3{2
ms, (Koranda, Stergioulas &

Friedman 1997)

‹ Pmin » 0.96
ˆ

Md
Msph.

˙1{2 ´Rsph.
10km

¯3{2
ms, (Lattimer & Prakash 2004)

‹ fmax pMq » 1.08
´

M
Md

¯1{2 ´Rsph.
10km

¯´3{2
kHz, (Haensel et al., 2008)
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Possible (?) sub-millisecond rotation

Spin frequency of 1122 Hz inferred from bursts of XTE
J1739-285 (not confirmed): For f ą 1000 Hz spin

frequency:

‹ stellar mass M
well-constrained,

‹ mass-EOS-f dependence
- masses separation for
different models,

‹ Maximal frequency
strangely resembles
Newtonian orbital
frequency:

Ωk “ 2πfk “
ˆ

GM
R3

eq.

˙1{2

(dashed lines)
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Possible phase transitions in
rotating stars
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Maxwell & Gibbs phase transitions

‹ Maxwell construction -
coexistence of two phases
(density jump, e.g., when high
surface tension),

‹ Gibbs construction -
mixed-phase.
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Phase transition in a rotating star

‹ Increase of the central density
during evolutionary processes
(accretion or slowing down)

‹ Formation of the metastable
core in the center of the star -
radius rN , over-compression

‹ Central pressure reaches Pcrit
and the configuration becomes
unstable
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Phase transition in a rotating star

„Strong” and „weak” phase
transitions, in case of the
„density jump” phase
transition, λ “ ρS{ρN :

‹ weak λ ă λcrit :“
3
2

`

1` P0{ρNc2
˘

,
‹ strong λ ą λcrit .
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Back-bending in heavy nuclei and in neutron stars

Observed for nuclei in terrestrial experiments, proposed for neutron stars
(Glendening, Weber & Pei 1997)
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Back-bending in heavy nuclei and in neutron stars
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Softening of the EOS Ñ back-bending of the star

Back-bending for weak phase transitions

In this example, all configurations are stable

‹ Red lines: constant Ω,

‹ Blue lines: constant J (real indication of stability!),

‹ Green lines: occurrence of back-bending.
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Mini-collapse resulting from instability

On the Jpf q plane, in case of sufficiently-strong phase transition:

‹ Star looses its angular
momentum J

‹ Onset of back-bending
phenomenon (minimum of f )

‹ The instability point is reached
ˆ

BJ
Bf

˙

MB

“ 0

(turning point method, stability theory by

Friedman, Ipser & Sorkin in the 80s)
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Mini-collapse resulting from instability: EOS

Test EOS with a softening (smaller
adiabatic index γ): mixed-phase region

EOS must be sufficiently soft and then,
sufficiently stiff to stabilize the star
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Energy release

Energy released (the difference in mass-energy), released due to the
phase transition (∆E “ pMC ´MC˚qc2):

Moreover, it does not depend on the spin frequency!
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Formation of millisecond pulsars

10-2 10-1 100 101

P [s]

10-21

10-20

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

Ṗ
[s

s−
1
]

B>B
crit =4.4 ·10 13 G

Graveyard

10
4  yr

10
6  yr

10
8  yr

10 12 G

10 11 G

10 10 G
10 9 G

in binaries

high energy
magnetars

other

”Recycling” old pulsars to large
frequencies by disk accretion. Open
questions:
‹ Star-disk interaction via the

magnetic torque,

‹ Magnetic field decay 1012 G Ñ
108 G,

‹ Influence of ~B vs GW emission.

(Tauris and van der Heuvel, 2003)
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Formation of millisecond pulsars

(Ghosh & Lamb 1979)

”Recycling” process („ 0.5 Gyr) for
pulsars with measured masses:
‹ Mini at the onset of accretion,
‹ accretion with ~B results in

much higher accreted masses,
‹ test for SN core-collapse

physics - extreme cases:
J1614-2230 (1.97˘ 0.04 Md),
J0751+1807 (1.26˘ 0.14 Md),
(both » 3 ms and » 108 G.)
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Innermost stable circular orbit

For a general 3+1 version of the metric (axisymmetric, stationary,
asymptotically flat, and free of meridional currents) in a particular choice
of gauge and coordinates (maximal-slicing quasi-isotropic coordinates)

ds2 “ ´N2dt2 ` A2pdr2 ` r2dθ2q ` B2r2 sin2 θpdφ´ Nφdtq2,

with A and B conformal factors (A ” B in spherical symmetry). A test
orbiting particle has two constants of motion of interest, energy pt “ ´E
and angular momentum pφ “ l . Using equation on pr , one can define an
effective radial potential

V 2 “ N2
ˆ

1`
l2

B2r2

˙

` 2NφEl ´ Nφ2
l2,

where the relation between the coordinate radius and the circumferential
radius in the equatorial plane is

rcirc “ Br ,

and the physical velocity in the disk is (Bardeen 1970)

v “
rcirc
N

`

Ω´ Nφ
˘

.
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Innermost stable circular orbit

With such defined effective potential

V 2 “ N2
ˆ

1`
l2

B2r2

˙

` 2NφEl ´ Nφ2
l2,

the conditions for circular orbits are

E 2 “ V 2 and V,r “ 0.

Condition for the innermost stable circular
orbit (ISCO) is

V,rr “ 0
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Thin-disk accretion without the magnetic field

Accretion proceeds from the
Innermost Stable Circular Orbit
(ISCO).

‹ Evolution of total stellar angular
momentum J “ IΩ reads

dJ
dMB

“ xl lISCO , xl P p0, 1q

(xl « 1 - Beckwith, Hawley &
Krolik 2008, Shafee et al.,
2008)

Ñ Ihe stellar baryon mass changes
in time as

∆Mbptq “
ż t

tin

9Mbpt 1qdt 1.

Schwarzschild:
rISCO “ 3rs = 6GM{c2.

Slow rotation:
rISCO “ 3rs

´

1´ J
M2

` 2
3

˘3{2
¯
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Thin-disk accretion: magnetic field included

How to determine the radius r0 from which the accretion effectively takes place:

‹ the magnetospheric radius

rm ” pGMq´1{7 9M´2{7µ4{7,

‹ the corotation radius

rc ”
ˆ

GM
ω2

s

˙1{3
,

‹ Torque models: Kluźniak &
Rapapport (2007), Wang (1995),
Aarons (1993), Ghosh & Lamb
(1979). KR2007 solution for r0:
ˆ

2
Ωr

dl
dr

˙

r0
“

ˆ

rm
r0

˙7{2
˜
d

r3c
r30
´ 1

¸

Ñ Stellar angular momentum J
evolution equation (µ, magnetic
dipole):

dJ
dMB

“ lpr0q´
µ2

9r30 9MB

˜

3´ 2

d

r3c
r30

¸

‹ Toroidal component of the
magnetic field:
Bφ “ Bz p1´ Ω{ωsq,

‹ Magnetic field decaya:

B “ B0{p1`∆M{mBq

with mB “ 10´5
´ 10´4 Md.

avan den Heuvel & Bitzaraki (1995),
Taam & van den Heuvel (1986) 27 / 31



Accretion with ~B and central compression

Are dense matter phase transitions actually possible in accreting systems?
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MpRq from pulse profiles

For sources that show pulsed radiation from
the surface:
‹ Model the emitting area (spot size,

emission spectrum, beaming...),

‹ Use relativistic ray-tracing in order to
construct the light-curve,

‹ Light-deflection 9GM{Rc2,
‹ Rotational ”Doppler” 9RΩ{c.

‹ Compare with the real light-curve Ñ ”fit”
the parameters of the model.

(Leahy et at., 2009)
Bursts from the source SAX J180829 / 31



An example: case of EXO 0748-676

(Özel 2006)

‹ the Eddington flux during photospheric radius
expansion bursts,

‹ the ratio Fcool {T 4
c of the surface emission -

asymptotes to a constant during the cooling
after the thermonuclear burst,

‹ the redshift of absorbtion lines during the
burst,

‹ line broadening due to rotation.

Cottam, Paerels, Mendez (2002)

‹ z “ 0.35Ñ M{Md “ 1.5R{10 km
(Cottam et al., 2002),

‹ M “ 2.10˘ 0.28Md and
R “ 13.8˘ 1.8 km (1σ, Özel 2006),

‹ data more consistent with
M “ 1.35Md (Pearson et al. 2006),

‹ z “ 0.35 not confirmed with new
data (Cottam et al., 2008).
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Further reading...

‹ E. Gourgoulhon, ”An introduction to the theory of rotating
relativistic stars”, arXiv:1003.5015

‹ N. Stergioulas, ”Rotating stars in relativity”,
http://relativity.livingreviews.org/Articles/lrr-2003-3

‹ Spectral methods library LORENE (Langage Objet pour la RElativité
NumériquE): http://www.lorene.obspm.fr

‹ LORENE school on spectral methods:
http://www.lorene.obspm.fr/school

31 / 31


