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Outline

? Derivation of the equations:
? from the Boltzmann equation,
? by other methods,

? Regimes of applicability,
? some remarks about the advection equation.
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What is a fluid?
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The difference between fluid, and other phases, gas and solid:
? fluid flows,
? not resists deformation (not elastic), though may be viscous,
? forms free surface (gases don’t)
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Fluid description

? system composed of many bodies, that can be described as a
continuum,

mean free path λ� fluid element size � system size

In generalλ = (nσ)−1

? Forces between particles are short-range (saturation, screening).

Some examples:

λ
Air 10−5 cm

water 10−9 cm
space 1015 cm
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Euler and Lagrange viewpoints

Eulerian approach: An observer
looks at fluid motion from a specific
location in space through which the

fluid flows as time passes.

Lagrangian approach: An observer
looks at fluid motion following an
individual fluid parcel as it moves
through space and time.
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Vector operators:

Some definitions
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Vector operators: gradient

Gradient represents a rate of change of a scalar field (derivative) in
space. It is a ”vector” (technically a differential form):

∇f =
∂f
∂x1

e1 + · · ·+ ∂f
∂xn

en
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Vector operators: divergence

Divergence is the volume density of the outward flux from an
infinitesimal volume around a given point. The result is a scalar:

For F = F iei, ∇ · F = ∇iF i =
∂F i

∂x i
=
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z
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Vector operators: curl

Curl describes the infinitesimal rotation of a 3-dimensional vector field.
The result is a vector:

∇× F = e iε
ijk∂jFk(

∂Fz
∂y
− ∂Fy

∂z

)
i +

(
∂Fx
∂z
− ∂Fz

∂x

)
j +

(
∂Fy
∂x
− ∂Fx

∂y

)
k
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Material/substantial derivative

Fluid properties are generally functions of position and time. We will
denote
? ∂/∂t the rate of change w.r.t. time at some fixed position.
? D/Dt the rate of change w.r.t. time while traveling with a fluid

element.
D
Dt is called a material/substantial derivative. For some quantity f
(vector field, scalar field etc.), it equals

Df
Dt

=
∂f
∂t

+ u · ∇f ,

Why like that? Imagine we follow a change in f over a short time δt.
Fluid element moved from r at t to r + uδt at t + δt

Df
Dt

= lim
δt→0

f (r + uδt, t + δt)− f (r, t)

δt
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Continuity equation

Mass conservation: the rate of change of fluid mass inside a volume

equals to the net rate of fluid flow into the volume. Often expressed as

∂ρ

∂t
+∇ · (ρu) = 0
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Continuity equation

Consider volume V enclosed by a surface S ,
with n normal vector. Total mass of fluid in
V is∫
V
ρdV and

d
dt

∫
V
ρdV = −

∫
S

(ρu)·ndS

(mass flux across S).
d
dt

∫
V
ρdV =

V fixed

∫
V

∂ρ

∂t
dV =

Stokes
−
∫
V
∇ · (ρu)dV

True for all V → the continuity equation:

∂ρ

∂t
+∇ · (ρu) = 0 also written as

Dρ
Dt

+ ρ∇ · u = 0
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Continuity equation

Example: advection equation from continuity equation.

Advection operator u · ∇ = ui
∂

∂x i

We obtain the advection equation

∂ρ

∂t
+ u · ∇(ρ) = 0

from the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0

by assuming ∇ · u = 0 (u solenoidal, incompressible, divergence-free
vector; u ≡ ∇× A)
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Momentum equation (equation of motion)

Momentum conservation: the rate of change of total fluid momentum in

some volume equals to the sum of forces acting on the volume. For an

inviscid fluid, it’s called the Euler equation:

∂u
∂t

+ u∇ · u = −∇P + ρf
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Momentum equation (equation of motion)

Consider volume V moving with the fluid
(no flow through the boundary S). Fluid
momentum is∫
V
ρudV . Its rate of change,

d
dt

∫
V
ρudV

equals to the force acting on V .
Two types of forces - body and surface:∫

V
ρfdV︸ ︷︷ ︸

body force, e.g ., gravity

and −
∫
S
PndS︸ ︷︷ ︸

surface force

(inviscid fluid, force normal to S)

d
dt

∫
V
ρudV =

ρdV cons.

∫
V
ρ
Du
Dt

dV =

∫
V
ρfdV −

∫
S
PndS

=
Stokes

∫
V
ρfdV −

∫
V
∇PdV
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Momentum equation (equation of motion)

Consider volume V moving with the fluid
(no flow through the boundary S). Fluid
momentum is∫
V
ρudV . Its rate of change,

d
dt

∫
V
ρudV

equals to the force acting on V .
d
dt

∫
V
ρudV =

ρdV cons.

∫
V
ρ
Du
Dt

dV =

∫
V
ρfdV −

∫
S
PndS

=
Stokes

∫
V
ρfdV −

∫
V
∇PdV

We recover the Euler equation:

ρ
Du
Dt

= ρ

(
∂u
∂t

+ u∇ · u
)

= −∇P + ρf
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Momentum equation (equation of motion)

In case of viscosity, momentum equation is called the Navier-Stokes
equation. Consider the i−th component of the surface force;

−
∫
S
PnidS becomes

∫
S
σijnjdS

with the stress tensor σij . For simple liquids and gases, with µ called the
dynamical viscosity, and the second viscosity −2/3µ:

σij = −Pδij + 2µ

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
︸ ︷︷ ︸
Strain rate tensor

−1
3

(∇ · u) δij

 ,

∫
S
σijnjdS =

∫
V

∂

∂xj
σijdV (Stokes again)

Assuming µ = const., we finally arrive at

ρ
Du
Dt

= −∇P + ρf + µ

(
∇2u +

1
3
∇(∇ · u)

)
.
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Conserved quantities: energy

Energy conservation: the rate of change of the total energy equals the

rate at which work and other sources of energy act at the fluid element:

ρ

(
D
Dt

(
1
2
u2
)
+

DU
Dt

)
= −∇·(Pu)+ρu·f+ρε−∇·F.
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Conserved quantities: energy

Let’s multiply the momentum equation by u:

ρu · Du
Dt

= ρ
D
Dt

(
1
2
u2
)

= −u · ∇P + ρu · f

Rate of change of the kinetic energy equals the rate at which work is
done by forces acting at the fluid element.
Similarly, equation for the total energy, kinetic u2/2 + internal U is

d
dt

∫
V

(
1
2
u2 + U

)
dV =

∫
V
ρu · fdV −

∫
S
u · (Pn)dS

+

∫
V
ρεdV︸ ︷︷ ︸

generated at rate ε

−
∫
S
F · ndS .︸ ︷︷ ︸

heat flux across S
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Conserved quantities: energy

Let’s multiply the momentum equation by u:

ρu · Du
Dt

= ρ
D
Dt

(
1
2
u2
)

= −u · ∇P + ρu · f

Rate of change of the kinetic energy equals the rate at which work is
done by forces acting at the fluid element.
Similarly, equation for the total energy, kinetic u2/2 + internal U is

ρ

(
D
Dt

(
1
2
u2
)

+
DU
Dt

)
= −∇ · (Pu) + ρu · f + ρε−∇ · F.

Equation for internal energy U only (subtracting the kinetic part):

DU
Dt

=
p
ρ2

Dρ
Dt

+ ε− 1
ρ
∇ · F.

Since V = ρ−1, we recover the first law of thermodynamics:

dU = −PdV + δQ.︸︷︷︸
added heat
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Virial theorem

Velocity is the rate of change of position following the fluid: u =
Dr
Dt
.

Euler equation for gravitational field: ρ
D2r
Dt2

= −∇P+ρf =
f=−∇ψ

−∇P−ρ∇ψ

Let’s multiply by r and integrate over a volume V :∫
V

r · D
2r

Dt2
ρdV = −

∫
V

r · ∇PdV −
∫
V

r · ∇ψρdV .

LHS:
∫
V

r · D
2r

Dt2
ρdV =

d
dt

∫
V

r · Dr
Dt
ρdV −

∫
V

(
Dr
Dt

)2

ρdV

=
1
2
d2

dt2

∫
V
|r|2ρdV − 2T .

Total kinetic energy T =
1
2

∫
V
ρu2dV
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Virial theorem

Pressure term:

−
∫
V

r·∇PdV = −
∫
V
∇·(rP)dV+

∇·r=3︷ ︸︸ ︷∫
V
P∇ · rdV = −

∫
S
Pr · ndS︸ ︷︷ ︸

=0

+3
∫
V
PdV

Also, define total gravitational energy:−
∫
V

r·∇ψρdV =
1
2

∫
V
ψρ(r)dV = Ψ,

and moment of inertia: I =

∫
V
ρr2dV ,

to arrive at the scalar form of the virial theorem:

1
2
d2I
dt2

= 2T + 3
∫
V
PdV + Ψ.
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Distribution function

Particle’s distribution function is a function of positions, velocities and
time, f (x , y , z , vx , vy , vz , t), which gives the number of particles per unit
volume in single-particle phase space.

Number density n(x , y , z , t) =

∫
f dvx dvy dvz

Total number of particles N(t) =

∫
n dx dy dz .

Normal distribution: f (x , µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2

Maxwell-Boltzmann velocity probability distribution:

f =
( m
2πkT

)3/2
exp

(
−
m(v2

x + v2
y + v2

z )

2kT

)
describes particle speeds in idealized gases where the particles move
freely inside a stationary container without interacting with one another,
except for very brief collisions in which they exchange energy and
momentum with each other.
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Boltzmann’s Equation - Derivation

For an ensemble of non-interacting point-like particles in momentum
phase-space; Liouville′s theorem states that the distribution function f is
conserved along the trajectories in phase space of positions q and
momenta p:

df
dt

=
∂f
∂t

+
∂f
∂qi

∂qi
∂t

+
∂f
∂pi

∂pi
∂t

=
∂f
∂t

+
∂f
∂qi

q̇i +
∂f
∂pi

ṗi = 0

ṗi = F i is the “external” force, e.g., gravity, depending only on
macroscopic quantities.

Collision integral. In case of collisions, phase space evolves:

df
dt

=
∂f
∂t

+
∂f
∂qi

q̇i +
∂f
∂pi

ṗi =

(
∂f
∂t

)
col.
6= 0
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Boltzmann’s equation: collision integral

The form of the collision integral can be approximated by assuming:
? Only short-range two-particle interactions should be important,
? Collisions are elastic,
? Collision time should be negligible.
? No correlations between the incoming and outgoing particles.

This is Stosszahlansatz, (molecular chaos) assumption.

(
∂f
∂t

)
col.

=

∫∫
g
dσ
dΩ

(g ,Ω)[f (p′A, t)f (p′B , t)−f (pA, t)f (pB , t)] dΩ d3pA,

where g = |pB − pA| = |p′B − p′A| and dσ/dΩ is the differential
cross-section.
In case of conserved quantities (mass, momentum, energy) the collision
integral doesn’t provide a contribution to averaged quantities.
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Momenta of the distribution function

Density ρ =
∫

mfd3p

Momentum ρu =

∫
mvfd3p

Internal energy ρε =
∫

m
2
(v − u)2fd3p

(v = p/m, u is mean flow)
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Continuity equation

We start with
df
dt

=
∂f
∂t

+
∂f
∂qi

q̇i +
∂f
∂pi

ṗi =

(
∂f
∂t

)
col.

Let’s multiply by a particle mass m and integrate in momentum space:
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Continuity equation

We start with
df
dt

=
∂f
∂t

+
∂f
∂qi

q̇i +
∂f
∂pi

ṗi =

(
∂f
∂t

)
col.

Let’s multiply by a particle mass m and integrate in momentum space:∫
m
∂f
∂t

d3p +

∫
mvi

∂f
∂qi

d3p +

∫
m
∂f
∂pi

ṗid3p =

∫
m
(
∂f
∂t

)
col.

d3p︸ ︷︷ ︸
=0, local mass cons.

with ṗi = Fi ,
∂ρ

∂t
+

∂

∂qi

∫
mfv id3p −m

∫
S
n · FfdS︸ ︷︷ ︸

f→0 for V→∞

= 0

We recover the continuity equation for a mean fluid velocity, ui = 〈v i 〉 of
a fluid element:

∂ρ

∂t
+
∂(ρ〈v i 〉)
∂qi

= 0
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Momentum equation

Let’s multiply the Boltzmann equation by mv:∫
mv j

∂f
∂t

d3p+

∫
mv jv i

∂f
∂qi

d3p+

∫
mv jF i ∂f

∂pi
d3p =

∫
mv j

(
∂f
∂t

)
col.

d3p︸ ︷︷ ︸
=0, local mom. cons.

∂(ρ〈v j〉)
∂t

+
∂(ρ〈v iv j〉)

∂qi
+ F i

∫
V
pj
∂f
∂pi

d3p = 0∫
V
pj
∂f
∂pi

d3p =

∫
V

∂pj f
∂pi

d3p −
∫
V

∂pj

∂pi
fd3p = −

∫
S
fpinidS︸ ︷︷ ︸

=0

−ρδji

So we obtain,
∂(ρ〈v j〉)
∂t

+
∂(ρ〈v iv j〉)

∂qi
− ρF iδji = 0
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Momentum equation

∂(ρ〈v j〉)
∂t

+
∂(ρ〈v iv j〉)

∂qi
− ρF iδji = 0

By subtracting the continuity equation multiplied by 〈v j〉,

∂(ρ〈v j〉)
∂t

+
∂(ρ〈v iv j〉)

∂qi
− ρF j −

(
〈v j〉∂ρ

∂t
+ 〈v j〉∂(ρ〈v i 〉)

∂qi

)
= 0

we obtain Navier-Stokes equation:

∂(〈v j〉)
∂t

+ 〈v i 〉∂(〈v j〉)
∂qi

= F j +
1
ρ

∂σij

∂qi
,

with the stress tensor

σij = −ρ〈v iv j〉+ ρ〈v i 〉〈v j〉.

In case of collisions,

σij = −Pδji + viscous stress tensor

16 / 32



Closure relations

Since hydrodynamic equations are under-determined, one needs to close
the set of equations with the stress tensor, a function of ρ, P and ε:

? Euler equations correspond to Maxwell distribution, σij = −Pδij
(neglect viscous stresses and heat conduction),

? Chapman–Enskog theory: deviation from the Maxwell–Boltzmann
distribution in the equilibrium is small, and the first order corrections
are

σij = 2µ
(
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3
(∇ · u) δij

)
,

and the heat conduction term in the energy equation,

F = κ∇T

with shear viscosity µ ∝
√
mkT and thermal conductivity κ = 5

2cVµ.
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Dissipation in astrophysics

An estimate for the effects of viscosity, heat conduction and other effects
is provided by some dimensionless numbers:
? Knudsen number (are we in the fluid regime?):

Kn =
mean free path

size of the system
=
λ

l

? The Reynolds number (→ dimensionless Navier-Stokes):

Re =
inertial forces
viscous forces

=
ρul
µ

=
ul
ν

? Péclet number (how the heat is transported):

Pe =
advective transport rate
diffusive transport rate

=
ul
α

? Prandtl number (momentum-to-thermal diffusivity):

Pr =
viscous diffusion rate
thermal diffusion rate

=
ν

α

(kinematic viscosity ν = µ/rho, thermal diffusivity α = k/(ρcP)
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Viscous transport in disks

Viscosity in action - what makes the
accretion so efficient?
α-viscosity prescription:
? ν ∝ αcsH,
? stress tensor in the disk, torque

Trφ ∝ ρνr ∂Ω
∂r ∝ −αP (at least

for Shakura-Sunyaev disks).

Perhaps magnetic field plays a role?
Magnetorotational instability
(Balbus-Hawley)
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Simplifying approximations

We have several simple flows at our disposals:
? Incompressible: ∇ · u = 0, equivalent to ρ = const.
? Anelastic: ∇ · (ρu) = 0, equivalent to ∂ρ/∂t = 0 (see continuity

equation)
? Barotropic: P = P(ρ) instead of P = P(ρ,T . . . ), which is called

baroclinic. It can result from the equation of state (degeneracy, e.g.
for white dwarfs and neutron stars) or may be incidental, e.g. when
convection establishes s = const. throughout a star.

? Adiabatic: heat transfer is neglected. Simplified energy relation
dρs/dt = 0
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Inviscid and adiabatic flow

When neglecting viscosity and heat conduction, the momentum and
energy equations are simplified. The Navier-Stokes equation reduces to
the Euler equation:

ρ
Du
Dt

= −∇P + ρf+µ

(
∇2u +

1
3
∇(∇ · u)

)

ρ

(
D
Dt

(
1
2
u2
)

+
DU
Dt

)
= −∇ · (Pu) + ρu · f+ρε−∇ · F

The energy equation can be rewritten as a conservation of entropy:

Dρs
Dt

+∇ · (ρsu) = 0.
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Laminar and Turbulent Flows

? Flow in which the kinetic energy
decays due to the action of
viscosity is called laminar flow.

? Large Re > 100-1000 →
turbulent flows (often seen in
astrophysical settings).

? Problem: Resolution of
turbulent flows down to the
length scale where viscosity
becomes important is not
feasible (MRI etc.)
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Plasma hydrodynamics

? Astrophysical fluids are quite often charged (ionized), so the
neutrality condition is sometimes not satisfied,

? There is a limit for the mean free path λ: Coulomb scattering,
Debye length (screening),

λD =

√
kB/e2

ne/Te +
∑

i Z
2
i ni/Ti

for l ≥ λD fluid may be considered neutral,
? If macroscopic process slower than the plasma frequency timescale

(Langmuir waves, electron density fluctuations),

ωpe =

√
4πnee2

me

? Effect of macroscopic magnetic fields (magnetospheres of pulsars)
changes the mean free path (preferred directions, magnetic field
gyration).
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Magnetohydrodynamics

In case of magnetic fields, even when the fluid is electrically neutral:

∂ρ

∂t
+∇· (ρu) = 0,

∂u
∂t

+ u∇·u = −∇(P +
1
8π

B2) + ρf +
1
4π

j× B︸ ︷︷ ︸
Lorentz force

Maxwell equations: ∇ · B = 0, ∇ · E = ρe ,

∇× E = −∂B
∂t
, ∇× B = 4πj +

1
c2
∂E
∂t

+ Equation for fluid energy evolution.

Ideal MHD approximation (primes denote the fluid co-moving quantities):

? j′ = σE′ ' σ(E + u× B)

? ∂E
∂t ' 0→ j = 1

4π∇× B

? Magnetic induction equation: ∂B
∂t = ∇× (u× B) + η∇2B, with

magnetic diffusivity η.
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Partial differential equations
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Types of equations

For linear equations in two dimensions (x and t, say), one may classify
the general one

a
∂2F
∂x2 + 2b

∂2F
∂x∂t

+ c
∂2F
∂t2

+ d
∂F
∂x

+ e
∂F
∂t

+ fF + g = 0

For example:

b2 < ac Elliptic Laplace equation ∂2F
∂x2 + ∂2F

∂t2 = 0

b2 > ac Hyperbolic Wave equation ∂2F
∂x2 − 1

c2
∂2F
∂t2 = 0

b2 = ac Parabolic Diffusion ∂2F
∂x2 − ∂F

∂t = 0
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Naming conventions

Differences between elliptic and hyperbolic/parabolic equations:
? elliptic equations have boundary conditions which are specified

around a closed boundary,
? derivatives are with respect to spatial variables (e.g., Laplace or

Poisson),
? for hyperbolic - boundary conditions for time variable are initial

conditions.

26 / 32



Hyperbolic equation - wave equation

Consider a following equation,
∂2y
∂t2
− c2 ∂

2y
∂x2 = 0.

It can be rewritten as
(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
y = 0,

or re-casted as a system of two first-order equations,

∂z
∂t

+ c
∂z
∂x

= 0

∂y
∂t
− c

∂y
∂x

= z

This are examples of advection equations,

∂u
∂t

+ c
∂u
∂x

= 0

with boundary conditions u(x , t) = u0(x) for t = t0.
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Advection equation: simple attempt

Let’s try a centred difference for the space derivative (subscript j) and
Euler’s method for the time derivative (superscript n):

∂u
∂t

= −c ∂u
∂x

→
un+1
j − unj
δt

= −c
unj+1 − unj−1

2δx

As expected, time part is 1-st order accurate:

un+1
j − unj ≈ δt

∂u
∂t

∣∣∣∣n
j

+
1
2
δt2

∂2u
∂t2

∣∣∣∣n
j

+ . . .

Space part is 2-nd order:

unj+1 − unj−1 ≈ 2δx
∂u
∂t

∣∣∣∣n
j

+
1
3
δx3 ∂

3u
∂t3

∣∣∣∣n
j

+ . . .
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Advection equation: simple attempt

Substituting the Taylor expansions in the approximation:

δt
∂u
∂t

∣∣∣∣n
j

+
1
2
δt2

∂2u
∂t2

∣∣∣∣n
j

+ · · · ≈ cδt
2δx

(
2δx

∂u
∂t

∣∣∣∣n
j

+
1
3
δx3 ∂

3u
∂t3

∣∣∣∣n
j

+ . . .

- the truncation errors are 2nd order in time and 3rd order in space.

How about the stability in time? Test solution, plane wave
vnj = vn exp(ikxj) (von Neumann stability condition):

vn+1 exp(ikxj) = vn exp(ikxj)−
cδt
2δx

vn (exp(ikxj+1)− exp(ikxj−1)) ,

For small deviation, vn → vn + δvn,

δvn+1 =

(
1− i

cδt
δx

sin(kδx)

)
︸ ︷︷ ︸

growth factor S

δvn

S = 1− iα, so square of norm |S |2 = 1 + α2 ≤ 1 for all wave vectors k
→ Problem.
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Advection equation: Lax method

Minor improvement:

∂u
∂t

= −c ∂u
∂x

→
un+1
j − (unj+1 − unj−1)/2

δt
= −c

unj+1 − unj−1

2δx
Let’s check the stability, again using the von Neumann condition:

δvn+1 =

(
cos(kδx)− i

cδt
δx

sin(kδx)

)
︸ ︷︷ ︸

growth factor S

δvn,

so the growth factor

|S |2 = cos2(kδx) +

(
cδt
δx

)2

sin2(kδx) = 1− sin2(kδx)

(
1−

(
cδt
δx

)2
)
.

This means stability for all k as long as

δx
δt
≥ c

Courant–Friedrichs–Lewy condition: the information propagation speed
on the grid must be greater than all the physical speeds of the problem.
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Advection equation: two more examples

Other schemes that result in the CFL condition:

? Upwind differencing (with backwards Euler in time):

un+1
j − unj
δt

= −c
unj − unj−1

δx

? Staggered leapfrog (centered differences in both space and time):

un+1
j − un−1

j

δt
= −c

unj+1 − unj−1

δx

second order in time and space, but prone to the mesh drift
instability; grid points of odd j + n and even j + n decoupled
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Advection equation: two more examples

Mesh drift instability
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Advection equation with Lax-Wendroff

Consider again an advection equation, with a following two-step method:

First step is Lax method for un+1/2
j+1/2 :

un+1/2
j+1/2 − (unj+1 − unj )/2

δt/2
= −c

unj+1 − unj
δx

Second step, the quantities at tn+1 are calculated using the centered
expression:

un+1
j − unj
δt

= −c
un+1/2
j+1/2 − un+1/2

j−1/2

δx

(values un+1/2
j+1/2 , u

n+1/2
j−1/2 auxiliary; no mesh drift instability)
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Further reading...

? „An introduction to astrophysical fluid dynamics”,
Michael J. Thompson

? „An Introduction to Astrophysical Hydrodynamics” ,
Steven N. Shore

? Amusing weblog: fuckyeahfluiddynamics.tumblr.com

32 / 32


