Introduction: equations of hydrodynamics

Michał Bejger
N. Copernicus Center, Warsaw

Outline

\star Derivation of the equations:

* from the Boltzmann equation,
* by other methods,
* Regimes of applicability,
\star some remarks about the advection equation.

What is a fluid?

The difference between fluid, and other phases, gas and solid:

* fluid flows,
\star not resists deformation (not elastic), though may be viscous,
\star forms free surface (gases don't)

Solid
Holds Shape
Fixed Volume

Liquid
Shape of Container Free Surface
Fixed Volume

Gas
Shape of Container
Volume of Container

Fluid description

* system composed of many bodies, that can be described as a continuum,
mean free path $\lambda \ll$ fluid element size \ll system size

$$
\text { In general } \lambda=(n \sigma)^{-1}
$$

\star Forces between particles are short-range (saturation, screening).

Some examples:

	λ
Air	$10^{-5} \mathrm{~cm}$
water	$10^{-9} \mathrm{~cm}$
space	$10^{15} \mathrm{~cm}$

Euler and Lagrange viewpoints

Eulerian approach: An observer looks at fluid motion from a specific location in space through which the fluid flows as time passes.

Lagrangian approach: An observer looks at fluid motion following an individual fluid parcel as it moves through space and time.

Vector operators:

Some definitions

Vector operators: gradient

Gradient represents a rate of change of a scalar field (derivative) in space. It is a "vector" (technically a differential form):

$$
\nabla f=\frac{\partial f}{\partial x_{1}} \mathbf{e}_{1}+\cdots+\frac{\partial f}{\partial x_{n}} \mathbf{e}_{n}
$$

Vector operators: divergence

Divergence is the volume density of the outward flux from an infinitesimal volume around a given point. The result is a scalar:

For $\mathbf{F}=F^{i} \mathbf{e}_{\mathbf{i}}, \quad \nabla \cdot \mathbf{F}=\nabla_{i} F^{i}=\frac{\partial F^{i}}{\partial x^{i}}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}+\frac{\partial F_{z}}{\partial z}$

Vector operators: curl

Curl describes the infinitesimal rotation of a 3-dimensional vector field. The result is a vector:

$$
\begin{gathered}
\nabla \times \mathbf{F}=\boldsymbol{e}_{i} \epsilon^{i j k} \partial_{j} F_{k} \\
\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right) \mathbf{i}+\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right) \mathbf{j}+\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right) \mathbf{k}
\end{gathered}
$$

Material/substantial derivative

Fluid properties are generally functions of position and time. We will denote
$\star \partial / \partial t$ the rate of change w.r.t. time at some fixed position.
$\star \mathrm{D} / \mathrm{D} t$ the rate of change w.r.t. time while traveling with a fluid element.
$\frac{\mathrm{D}}{\mathrm{Dt}}$ is called a material/substantial derivative. For some quantity f (vector field, scalar field etc.), it equals

$$
\frac{\mathrm{D} f}{\mathrm{D} t}=\frac{\partial f}{\partial t}+\mathbf{u} \cdot \nabla f
$$

Why like that? Imagine we follow a change in f over a short time δt. Fluid element moved from \mathbf{r} at t to $\mathbf{r}+\mathbf{u} \delta t$ at $t+\delta t$

$$
\frac{\mathrm{D} f}{\mathrm{D} t}=\lim _{\delta t \rightarrow 0} \frac{f(\mathbf{r}+\mathbf{u} \delta t, t+\delta t)-f(\mathbf{r}, t)}{\delta t}
$$

Continuity equation

Mass conservation: the rate of change of fluid mass inside a volume equals to the net rate of fluid flow into the volume. Often expressed as

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0
$$

Continuity equation

Consider volume V enclosed by a surface S, with \mathbf{n} normal vector. Total mass of fluid in V is
$\int_{V} \rho d V$ and $\frac{d}{d t} \int_{V} \rho d V=-\int_{S}(\rho \mathbf{u}) \cdot \mathbf{n} d S$
(mass flux across S).

$$
\frac{d}{d t} \int_{V} \rho d V V_{V \text { fixed }}^{\overline{\bar{f}}} \int_{V} \frac{\partial \rho}{\partial t} d V \underset{\text { Stokes }}{\overline{=}}-\int_{V} \nabla \cdot(\rho \mathbf{u}) d V
$$

True for all $V \rightarrow$ the continuity equation:

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0 \quad \text { also written as } \quad \frac{\mathrm{D} \rho}{\mathrm{D} t}+\rho \nabla \cdot \mathbf{u}=0
$$

Continuity equation

Example: advection equation from continuity equation.

$$
\text { Advection operator } \mathbf{u} \cdot \nabla=u_{i} \frac{\partial}{\partial x^{i}}
$$

We obtain the advection equation

$$
\frac{\partial \rho}{\partial t}+\mathbf{u} \cdot \nabla(\rho)=0
$$

from the continuity equation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0
$$

by assuming $\nabla \cdot \mathbf{u}=0$ (u solenoidal, incompressible, divergence-free vector; $\mathbf{u} \equiv \nabla \times \mathbf{A}$)

Momentum equation (equation of motion)

Momentum conservation: the rate of change of total fluid momentum in some volume equals to the sum of forces acting on the volume. For an inviscid fluid, it's called the Euler equation:

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \nabla \cdot \mathbf{u}=-\nabla P+\rho \mathbf{f}
$$

Momentum equation (equation of motion)

Consider volume V moving with the fluid (no flow through the boundary S). Fluid momentum is
$\int_{V} \rho \mathbf{u} d V$. Its rate of change, $\frac{d}{d t} \int_{V} \rho \mathbf{u} d V$ equals to the force acting on V.

Two types of forces - body and surface:

$$
\begin{aligned}
& \frac{d}{d t} \int_{V} \rho \mathbf{u} d V \underset{\rho d V}{ } \\
&= \\
& \text { cons. } \int_{V} \rho \frac{D \mathbf{u}}{D t} d V=\int_{V} \rho \mathbf{f} d V-\int_{S} P \mathbf{n} d S \\
&=\int_{V} \rho \mathbf{f} d V-\int_{V} \nabla P d V
\end{aligned}
$$

Momentum equation (equation of motion)

Consider volume V moving with the fluid (no flow through the boundary S). Fluid momentum is
$\int_{V} \rho \mathbf{u} d V$. Its rate of change, $\frac{d}{d t} \int_{V} \rho \mathbf{u} d V$ equals to the force acting on V.

$$
\begin{aligned}
& \frac{d}{d t} \int_{V} \rho \mathbf{u} d V \underset{\rho d V}{=}={ }_{\text {cons. }} \int_{V} \rho \frac{D \mathbf{u}}{D t} d V=\int_{V} \rho \mathbf{f} d V-\int_{S} P \mathbf{n} d S \\
& s=\overline{=} \int_{V} \rho \mathbf{f} d V-\int_{V} \nabla P d V
\end{aligned}
$$

We recover the Euler equation:

$$
\rho \frac{D \mathbf{u}}{D t}=\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \nabla \cdot \mathbf{u}\right)=-\nabla P+\rho \mathbf{f}
$$

Momentum equation (equation of motion)

In case of viscosity, momentum equation is called the Navier-Stokes equation. Consider the i-th component of the surface force;

$$
-\int_{S} P n^{i} d S \text { becomes } \int_{S} \sigma_{i j} n^{j} d S
$$

with the stress tensor $\sigma_{i j}$. For simple liquids and gases, with μ called the dynamical viscosity, and the second viscosity $-2 / 3 \mu$:

$$
\begin{gathered}
\sigma_{i j}=-P \delta_{i j}+2 \mu(\underbrace{\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)}_{\text {Strain rate tensor }}-\frac{1}{3}(\nabla \cdot \mathbf{u}) \delta_{i j}) \\
\int_{S} \sigma_{i j} n^{j} d S=\int_{V} \frac{\partial}{\partial x_{j}} \sigma_{i j} d V \quad \text { (Stokes again) }
\end{gathered}
$$

Assuming $\mu=$ const., we finally arrive at

$$
\rho \frac{D \mathbf{u}}{D t}=-\nabla P+\rho \mathbf{f}+\mu\left(\nabla^{2} \mathbf{u}+\frac{1}{3} \nabla(\nabla \cdot \mathbf{u})\right)
$$

Conserved quantities: energy

Energy conservation: the rate of change of the total energy equals the rate at which work and other sources of energy act at the fluid element:
$\rho\left(\frac{D}{D t}\left(\frac{1}{2} \mathbf{u}^{2}\right)+\frac{D U}{D t}\right)=-\nabla \cdot(P \mathbf{u})+\rho \mathbf{u} \cdot \mathbf{f}+\rho \epsilon-\nabla \cdot \mathbf{F}$.

Conserved quantities: energy

Let's multiply the momentum equation by \mathbf{u} :

$$
\rho \mathbf{u} \cdot \frac{D \mathbf{u}}{D t}=\rho \frac{D}{D t}\left(\frac{1}{2} \mathbf{u}^{2}\right)=-\mathbf{u} \cdot \nabla P+\rho \mathbf{u} \cdot \mathbf{f}
$$

Rate of change of the kinetic energy equals the rate at which work is done by forces acting at the fluid element.
Similarly, equation for the total energy, kinetic $\mathbf{u}^{2} / 2+$ internal U is

$$
\begin{gathered}
\frac{d}{d t} \int_{V}\left(\frac{1}{2} \mathbf{u}^{2}+U\right) d V=\int_{V} \rho \mathbf{u} \cdot \mathbf{f} d V-\int_{S} \mathbf{u} \cdot(P \mathbf{n}) d S \\
+\underbrace{\int_{V} \rho \epsilon d V}_{\text {generated at rate } \epsilon}-\underbrace{\int_{S} \mathbf{F} \cdot \mathbf{n} d S}_{\text {heat flux across } S}
\end{gathered}
$$

Conserved quantities: energy

Let's multiply the momentum equation by \mathbf{u} :

$$
\rho \mathbf{u} \cdot \frac{D \mathbf{u}}{D t}=\rho \frac{D}{D t}\left(\frac{1}{2} \mathbf{u}^{2}\right)=-\mathbf{u} \cdot \nabla P+\rho \mathbf{u} \cdot \mathbf{f}
$$

Rate of change of the kinetic energy equals the rate at which work is done by forces acting at the fluid element.
Similarly, equation for the total energy, kinetic $\mathbf{u}^{2} / 2+$ internal U is

$$
\rho\left(\frac{D}{D t}\left(\frac{1}{2} \mathbf{u}^{2}\right)+\frac{D U}{D t}\right)=-\nabla \cdot(P \mathbf{u})+\rho \mathbf{u} \cdot \mathbf{f}+\rho \epsilon-\nabla \cdot \mathbf{F} .
$$

Equation for internal energy U only (subtracting the kinetic part):

$$
\frac{D U}{D t}=\frac{p}{\rho^{2}} \frac{D \rho}{D t}+\epsilon-\frac{1}{\rho} \nabla \cdot \mathbf{F} .
$$

Since $V=\rho^{-1}$, we recover the first law of thermodynamics:

$$
d U=-P d V+\underbrace{\delta Q .}_{\text {added heat }}
$$

Virial theorem

Velocity is the rate of change of position following the fluid: $\mathbf{u}=\frac{D \mathbf{r}}{D t}$.
Euler equation for gravitational field: $\quad \rho \frac{D^{2} \mathbf{r}}{D t^{2}}=-\nabla P+\rho \mathbf{f} \underset{\mathbf{f}=-\nabla \psi}{=}-\nabla P-\rho \nabla \psi$
Let's multiply by \mathbf{r} and integrate over a volume V :

$$
\begin{aligned}
& \int_{V} \mathbf{r} \cdot \frac{D^{2} \mathbf{r}}{D t^{2}} \rho d V=-\int_{V} \mathbf{r} \cdot \nabla P d V-\int_{V} \mathbf{r} \cdot \nabla \psi \rho d V . \\
& \text { LHS: } \int_{V} \mathbf{r} \cdot \frac{D^{2} \mathbf{r}}{D t^{2}} \rho d V=\frac{d}{d t} \int_{V} \mathbf{r} \cdot \frac{D \mathbf{r}}{D t} \rho d V-\int_{V}\left(\frac{D \mathbf{r}}{D t}\right)^{2} \rho d V \\
& =\frac{1}{2} \frac{d^{2}}{d t^{2}} \int_{V}|\mathbf{r}|^{2} \rho d V-2 \mathcal{T} \text {. } \\
& \text { Total kinetic energy } \mathcal{T}=\frac{1}{2} \int_{V} \rho \mathbf{u}^{2} d V
\end{aligned}
$$

Virial theorem

Pressure term:
$-\int_{V} \mathbf{r} \cdot \nabla P d V=-\int_{V} \nabla \cdot(\mathbf{r} P) d V+\overbrace{\int_{V} P \nabla \cdot \mathbf{r} d V}^{\nabla \cdot \mathbf{r}=3}=-\underbrace{\int_{S} P \mathbf{r} \cdot \mathbf{n} d S}_{=0}+3 \int_{V} P d V$
Also, define total gravitational energy: $-\int_{V} \mathbf{r} \cdot \nabla \psi \rho d V=\frac{1}{2} \int_{V} \psi \rho(\mathbf{r}) d V=\psi$,

$$
\text { and moment of inertia: } \mathcal{I}=\int_{V} \rho \mathbf{r}^{2} d V,
$$

to arrive at the scalar form of the virial theorem:

$$
\frac{1}{2} \frac{d^{2} \mathcal{I}}{d t^{2}}=2 \mathcal{T}+3 \int_{V} P d V+\Psi
$$

Distribution function

Particle's distribution function is a function of positions, velocities and time, $f\left(x, y, z, v_{x}, v_{y}, v_{z}, t\right)$, which gives the number of particles per unit volume in single-particle phase space.

Number density $n(x, y, z, t)=\int f d v_{x} d v_{y} d v_{z}$
Total number of particles $N(t)=\int n d x d y d z$.
Normal distribution: $f(x, \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
Maxwell-Boltzmann velocity probability distribution:

$$
f=\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left(-\frac{m\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right)}{2 k T}\right)
$$

describes particle speeds in idealized gases where the particles move freely inside a stationary container without interacting with one another, except for very brief collisions in which they exchange energy and momentum with each other.

Boltzmann's Equation - Derivation

For an ensemble of non-interacting point-like particles in momentum phase-space; Liouville's theorem states that the distribution function f is conserved along the trajectories in phase space of positions q and momenta p :

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial q_{i}} \frac{\partial q_{i}}{\partial t}+\frac{\partial f}{\partial p_{i}} \frac{\partial p_{i}}{\partial t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial q_{i}} \dot{q}_{i}+\frac{\partial f}{\partial p_{i}} \dot{p}_{i}=0
$$

$\dot{p}^{i}=F^{i}$ is the "external" force, e.g., gravity, depending only on macroscopic quantities.

Collision integral. In case of collisions, phase space evolves:

$$
\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial q_{i}} \dot{q}_{i}+\frac{\partial f}{\partial p_{i}} \dot{p}_{i}=\left(\frac{\partial f}{\partial t}\right)_{\text {col. }} \neq 0
$$

Boltzmann's equation: collision integral

The form of the collision integral can be approximated by assuming:

* Only short-range two-particle interactions should be important,
* Collisions are elastic,
\star Collision time should be negligible.
* No correlations between the incoming and outgoing particles.

This is Stosszahlansatz, (molecular chaos) assumption.
$\left(\frac{\partial f}{\partial t}\right)_{\text {col. }}=\iint g \frac{d \sigma}{d \Omega}(g, \Omega)\left[f\left(\mathbf{p}_{A}^{\prime}, t\right) f\left(\mathbf{p}_{B}^{\prime}, t\right)-f\left(\mathbf{p}_{A}, t\right) f\left(\mathbf{p}_{B}, t\right)\right] d \Omega d^{3} \mathbf{p}_{A}$,
where $g=\left|\mathbf{p}_{B}-\mathbf{p}_{A}\right|=\left|\mathbf{p}_{B}^{\prime}-\mathbf{p}_{A}^{\prime}\right|$ and $d \sigma / d \Omega$ is the differential cross-section.
In case of conserved quantities (mass, momentum, energy) the collision integral doesn't provide a contribution to averaged quantities.

Momenta of the distribution function

$$
\begin{aligned}
\text { Density } \rho & =\int m f d^{3} p \\
\text { Momentum } \rho \mathbf{u} & =\int m \mathbf{v} f d^{3} p \\
\text { Internal energy } \rho \epsilon & =\int \frac{m}{2}(\mathbf{v}-\mathbf{u})^{2} f d^{3} p
\end{aligned}
$$

$(\mathbf{v}=\mathbf{p} / m, \mathbf{u}$ is mean flow $)$

Continuity equation

We start with $\frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial q_{i}} \dot{q}_{i}+\frac{\partial f}{\partial p_{i}} \dot{p}_{i}=\left(\frac{\partial f}{\partial t}\right)_{\text {col }}$
Let's multiply by a particle mass m and integrate in momentum space:

Continuity equation

$$
\text { We start with } \frac{d f}{d t}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial q_{i}} \dot{q}_{i}+\frac{\partial f}{\partial p_{i}} \dot{p}_{i}=\left(\frac{\partial f}{\partial t}\right)_{c o l}
$$

Let's multiply by a particle mass m and integrate in momentum space:

$$
\int m \frac{\partial f}{\partial t} d^{3} p+\int m v_{i} \frac{\partial f}{\partial q_{i}} d^{3} p+\int m \frac{\partial f}{\partial p_{i}} \dot{p}_{i} d^{3} p=\underbrace{\int m\left(\frac{\partial f}{\partial t}\right)_{\text {col. }} d^{3} p}_{=0, \text { local mass cons. }}
$$

$$
\text { with } \dot{p}_{i}=F_{i}, \quad \frac{\partial \rho}{\partial t}+\frac{\partial}{\partial q_{i}} \int m f v^{i} d^{3} p-\underbrace{m \int_{S} \mathbf{n} \cdot \mathbf{F} f d S}_{f \rightarrow 0 \text { for } v \rightarrow \infty}=0
$$

We recover the continuity equation for a mean fluid velocity, $u^{i}=\left\langle v^{i}\right\rangle$ of a fluid element:

$$
\frac{\partial \rho}{\partial t}+\frac{\partial\left(\rho\left\langle v^{i}\right\rangle\right)}{\partial q_{i}}=0
$$

Momentum equation

Let's multiply the Boltzmann equation by mv:

$$
\int m v^{j} \frac{\partial f}{\partial t} d^{3} p+\int m v^{j} v^{i} \frac{\partial f}{\partial q_{i}} d^{3} p+\int m v^{j} F^{i} \frac{\partial f}{\partial p_{i}} d^{3} p=\underbrace{\int m v^{j}\left(\frac{\partial f}{\partial t}\right)_{\text {col. }} d^{3} p}_{=0, \text { local mom. cons. }}
$$

$$
\begin{gathered}
\frac{\partial\left(\rho\left\langle v^{j}\right\rangle\right)}{\partial t}+\frac{\partial\left(\rho\left\langle v^{i} v^{j}\right\rangle\right)}{\partial q_{i}}+F^{i} \int_{V} p^{j} \frac{\partial f}{\partial p_{i}} d^{3} p=0 \\
\int_{V} p^{j} \frac{\partial f}{\partial p_{i}} d^{3} p=\int_{V} \frac{\partial p^{j} f}{\partial p_{i}} d^{3} p-\int_{V} \frac{\partial p^{j}}{\partial p_{i}} f d^{3} p=-\underbrace{\int_{S} f p^{i} n_{i} d S}_{=0}-\rho \delta_{i}^{j}
\end{gathered}
$$

So we obtain, $\quad \frac{\partial\left(\rho\left\langle v^{j}\right\rangle\right)}{\partial t}+\frac{\partial\left(\rho\left\langle v^{i} v^{j}\right\rangle\right)}{\partial q_{i}}-\rho F^{i} \delta_{i}^{j}=0$

Momentum equation

$$
\frac{\partial\left(\rho\left\langle v^{j}\right\rangle\right)}{\partial t}+\frac{\partial\left(\rho\left\langle v^{i} v^{j}\right\rangle\right)}{\partial q_{i}}-\rho F^{i} \delta_{i}^{j}=0
$$

By subtracting the continuity equation multiplied by $\left\langle v^{j}\right\rangle$,

$$
\frac{\partial\left(\rho\left\langle v^{j}\right\rangle\right)}{\partial t}+\frac{\partial\left(\rho\left\langle v^{i} v^{j}\right\rangle\right)}{\partial q_{i}}-\rho F^{j}-\left(\left\langle v^{j}\right\rangle \frac{\partial \rho}{\partial t}+\left\langle v^{j}\right\rangle \frac{\partial\left(\rho\left\langle v^{i}\right\rangle\right)}{\partial q_{i}}\right)=0
$$

we obtain Navier-Stokes equation:

$$
\frac{\partial\left(\left\langle v^{j}\right\rangle\right)}{\partial t}+\left\langle v^{i}\right\rangle \frac{\partial\left(\left\langle v^{j}\right\rangle\right)}{\partial q_{i}}=F^{j}+\frac{1}{\rho} \frac{\partial \sigma^{i j}}{\partial q_{i}},
$$

with the stress tensor

$$
\sigma^{i j}=-\rho\left\langle v^{i} v^{j}\right\rangle+\rho\left\langle v^{i}\right\rangle\left\langle v^{j}\right\rangle .
$$

In case of collisions,

$$
\sigma^{i j}=-P \delta_{i}^{j}+\text { viscous stress tensor }
$$

Closure relations

Since hydrodynamic equations are under-determined, one needs to close the set of equations with the stress tensor, a function of ρ, P and ϵ :
\star Euler equations correspond to Maxwell distribution, $\sigma_{i j}=-P \delta_{i j}$ (neglect viscous stresses and heat conduction),

* Chapman-Enskog theory: deviation from the Maxwell-Boltzmann distribution in the equilibrium is small, and the first order corrections are

$$
\sigma_{i j}=2 \mu\left(\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)-\frac{1}{3}(\nabla \cdot \mathbf{u}) \delta_{i j}\right),
$$

and the heat conduction term in the energy equation,

$$
\mathbf{F}=\kappa \nabla T
$$

with shear viscosity $\mu \propto \sqrt{m k T}$ and thermal conductivity $\kappa=\frac{5}{2} c_{V} \mu$.

Dissipation in astrophysics

An estimate for the effects of viscosity, heat conduction and other effects is provided by some dimensionless numbers:

* Knudsen number (are we in the fluid regime?):

$$
K n=\frac{\text { mean free path }}{\text { size of the system }}=\frac{\lambda}{l}
$$

\star The Reynolds number (\rightarrow dimensionless Navier-Stokes):

$$
R e=\frac{\text { inertial forces }}{\text { viscous forces }}=\frac{\rho u l}{\mu}=\frac{u l}{\nu}
$$

* Péclet number (how the heat is transported):

$$
P e=\frac{\text { advective transport rate }}{\text { diffusive transport rate }}=\frac{u l}{\alpha}
$$

* Prandtl number (momentum-to-thermal diffusivity):

$$
\operatorname{Pr}=\frac{\text { viscous diffusion rate }}{\text { thermal diffusion rate }}=\frac{\nu}{\alpha}
$$

(kinematic viscosity $\nu=\mu / r h o$, thermal diffusivity $\alpha=k /\left(\rho c_{P}\right)$

Viscous transport in disks

Viscosity in action - what makes the accretion so efficient?
α-viscosity prescription:
$\star \nu \propto \alpha c_{s} H$,
\star stress tensor in the disk, torque $T_{r \phi} \propto \rho \nu r \frac{\partial \Omega}{\partial r} \propto-\alpha P$ (at least for Shakura-Sunyaev disks).

Perhaps magnetic field plays a role? Magnetorotational instability (Balbus-Hawley)

Simplifying approximations

We have several simple flows at our disposals:
\star Incompressible: $\nabla \cdot \mathbf{u}=0$, equivalent to $\rho=$ const.
\star Anelastic: $\nabla \cdot(\rho \mathbf{u})=0$, equivalent to $\partial \rho / \partial t=0$ (see continuity equation)
\star Barotropic: $P=P(\rho)$ instead of $P=P(\rho, T \ldots)$, which is called baroclinic. It can result from the equation of state (degeneracy, e.g. for white dwarfs and neutron stars) or may be incidental, e.g. when convection establishes $s=$ const. throughout a star.
\star Adiabatic: heat transfer is neglected. Simplified energy relation $d \rho s / d t=0$

Inviscid and adiabatic flow

When neglecting viscosity and heat conduction, the momentum and energy equations are simplified. The Navier-Stokes equation reduces to the Euler equation:

$$
\begin{gathered}
\rho \frac{D \mathbf{u}}{D t}=-\nabla P+\rho \mathbf{f}+\mu\left(\nabla^{2} \mathbf{u}+\frac{1}{3} \nabla(\nabla \cdot \mathbf{u})\right) \\
\rho\left(\frac{D}{D t}\left(\frac{1}{2} \mathbf{u}^{2}\right)+\frac{D U}{D t}\right)=-\nabla \cdot(P \mathbf{u})+\rho \mathbf{u} \cdot \mathbf{f}+\rho \epsilon-\nabla \cdot \mathbf{F}
\end{gathered}
$$

The energy equation can be rewritten as a conservation of entropy:

$$
\frac{D \rho s}{D t}+\nabla \cdot(\rho s \mathbf{u})=0
$$

Laminar and Turbulent Flows

\star Flow in which the kinetic energy decays due to the action of viscosity is called laminar flow.
\star Large $\operatorname{Re}>100-1000 \rightarrow$ turbulent flows (often seen in astrophysical settings).

* Problem: Resolution of turbulent flows down to the length scale where viscosity becomes important is not feasible (MRI etc.)

Plasma hydrodynamics

* Astrophysical fluids are quite often charged (ionized), so the neutrality condition is sometimes not satisfied,
\star There is a limit for the mean free path λ : Coulomb scattering, Debye length (screening),

$$
\lambda_{D}=\sqrt{\frac{k_{B} / e^{2}}{n_{e} / T_{e}+\sum_{i} Z_{i}^{2} n_{i} / T_{i}}}
$$

for $I \geq \lambda_{D}$ fluid may be considered neutral,

* If macroscopic process slower than the plasma frequency timescale (Langmuir waves, electron density fluctuations),

$$
\omega_{p e}=\sqrt{\frac{4 \pi n_{e} e^{2}}{m_{e}}}
$$

* Effect of macroscopic magnetic fields (magnetospheres of pulsars) changes the mean free path (preferred directions, magnetic field gyration).

Magnetohydrodynamics

In case of magnetic fields, even when the fluid is electrically neutral:
$\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0, \quad \frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \nabla \cdot \mathbf{u}=-\nabla\left(P+\frac{1}{8 \pi} \mathbf{B}^{2}\right)+\rho \mathbf{f}+\underbrace{\frac{1}{4 \pi} \mathbf{j} \times \mathbf{B}}_{\text {Lorentz force }}$
Maxwell equations: $\nabla \cdot \mathbf{B}=0, \quad \nabla \cdot \mathbf{E}=\rho_{e}$,

$$
\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{B}=4 \pi \mathbf{j}+\frac{1}{c^{2}} \frac{\partial \mathbf{E}}{\partial t}
$$

+ Equation for fluid energy evolution.
Ideal MHD approximation (primes denote the fluid co-moving quantities):
$\star \mathbf{j}^{\prime}=\sigma \mathbf{E}^{\prime} \simeq \sigma(\mathbf{E}+\mathbf{u} \times \mathbf{B})$
$\star \frac{\partial \mathbf{E}}{\partial t} \simeq 0 \rightarrow \mathbf{j}=\frac{1}{4 \pi} \nabla \times \mathbf{B}$
\star Magnetic induction equation: $\frac{\partial \mathbf{B}}{\partial t}=\nabla \times(\mathbf{u} \times \mathbf{B})+\eta \nabla^{2} \mathbf{B}$, with magnetic diffusivity η.

Partial differential equations

Types of equations

For linear equations in two dimensions (x and t, say), one may classify the general one

$$
a \frac{\partial^{2} F}{\partial x^{2}}+2 b \frac{\partial^{2} F}{\partial x \partial t}+c \frac{\partial^{2} F}{\partial t^{2}}+d \frac{\partial F}{\partial x}+e \frac{\partial F}{\partial t}+f F+g=0
$$

For example:

$$
b^{2}<a c \quad \text { Elliptic } \quad \text { Laplace equation } \frac{\partial^{2} F}{\partial x^{2}}+\frac{\partial^{2} F}{\partial t^{2}}=0
$$

$b^{2}>a c$ Hyperbolic Wave equation $\frac{\partial^{2} F}{\partial x^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} F}{\partial t^{2}}=0$

$$
b^{2}=a c \quad \text { Parabolic } \quad \text { Diffusion } \frac{\partial^{2} F}{\partial x^{2}}-\frac{\partial F}{\partial t}=0
$$

Naming conventions

Differences between elliptic and hyperbolic/parabolic equations:

* elliptic equations have boundary conditions which are specified around a closed boundary,
* derivatives are with respect to spatial variables (e.g., Laplace or Poisson),
\star for hyperbolic - boundary conditions for time variable are initial conditions.

Hyperbolic equation - wave equation

$$
\text { Consider a following equation, } \frac{\partial^{2} y}{\partial t^{2}}-c^{2} \frac{\partial^{2} y}{\partial x^{2}}=0
$$

$$
\text { It can be rewritten as }\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right) y=0
$$

or re-casted as a system of two first-order equations,

$$
\begin{aligned}
& \frac{\partial z}{\partial t}+c \frac{\partial z}{\partial x}=0 \\
& \frac{\partial y}{\partial t}-c \frac{\partial y}{\partial x}=z
\end{aligned}
$$

This are examples of advection equations,

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0
$$

with boundary conditions $u(x, t)=u_{0}(x)$ for $t=t_{0}$.

Advection equation: simple attempt

Let's try a centred difference for the space derivative (subscript j) and Euler's method for the time derivative (superscript n):

$$
\frac{\partial u}{\partial t}=-c \frac{\partial u}{\partial x} \quad \rightarrow \quad \frac{u_{j}^{n+1}-u_{j}^{n}}{\delta t}=-c \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \delta x}
$$

As expected, time part is 1 -st order accurate:

$$
u_{j}^{n+1}-\left.u_{j}^{n} \approx \delta t \frac{\partial u}{\partial t}\right|_{j} ^{n}+\left.\frac{1}{2} \delta t^{2} \frac{\partial^{2} u}{\partial t^{2}}\right|_{j} ^{n}+\ldots
$$

Space part is 2-nd order:

$$
u_{j+1}^{n}-\left.u_{j-1}^{n} \approx 2 \delta x \frac{\partial u}{\partial t}\right|_{j} ^{n}+\left.\frac{1}{3} \delta x^{3} \frac{\partial^{3} u}{\partial t^{3}}\right|_{j} ^{n}+\ldots
$$

Advection equation: simple attempt

Substituting the Taylor expansions in the approximation:

$$
\left.\delta t \frac{\partial u}{\partial t}\right|_{j} ^{n}+\left.\frac{1}{2} \delta t^{2} \frac{\partial^{2} u}{\partial t^{2}}\right|_{j} ^{n}+\cdots \approx \frac{c \delta t}{2 \delta x}\left(\left.2 \delta x \frac{\partial u}{\partial t}\right|_{j} ^{n}+\left.\frac{1}{3} \delta x^{3} \frac{\partial^{3} u}{\partial t^{3}}\right|_{j} ^{n}+\ldots\right.
$$

- the truncation errors are 2nd order in time and 3rd order in space.

How about the stability in time? Test solution, plane wave $v_{j}^{n}=v^{n} \exp \left(i k x_{j}\right)$ (von Neumann stability condition):

$$
v^{n+1} \exp \left(i k x_{j}\right)=v^{n} \exp \left(i k x_{j}\right)-\frac{c \delta t}{2 \delta x} v^{n}\left(\exp \left(i k x_{j+1}\right)-\exp \left(i k x_{j-1}\right)\right)
$$

For small deviation, $v^{n} \rightarrow v^{n}+\delta v^{n}$,

$$
\delta v^{n+1}=\underbrace{\left(1-i \frac{c \delta t}{\delta x} \sin (k \delta x)\right)}_{\text {growth factor } s} \delta v^{n}
$$

$S=1-i \alpha$, so square of norm $|S|^{2}=1+\alpha^{2} \leq 1$ for all wave vectors k \rightarrow Problem.

Advection equation: Lax method

Minor improvement:

$$
\frac{\partial u}{\partial t}=-c \frac{\partial u}{\partial x} \rightarrow \frac{u_{j}^{n+1}-\left(u_{j+1}^{n}-u_{j-1}^{n}\right) / 2}{\delta t}=-c \frac{u_{j+1}^{n}-u_{j-1}^{n}}{2 \delta x}
$$

Let's check the stability, again using the von Neumann condition:

$$
\delta v^{n+1}=\underbrace{\left(\cos (k \delta x)-i \frac{c \delta t}{\delta x} \sin (k \delta x)\right)}_{\text {growth factor } S} \delta v^{n}
$$

so the growth factor

$$
|S|^{2}=\cos ^{2}(k \delta x)+\left(\frac{c \delta t}{\delta x}\right)^{2} \sin ^{2}(k \delta x)=1-\sin ^{2}(k \delta x)\left(1-\left(\frac{c \delta t}{\delta x}\right)^{2}\right)
$$

This means stability for all k as long as

$$
\frac{\delta x}{\delta t} \geq c
$$

Courant-Friedrichs-Lewy condition: the information propagation speed on the grid must be greater than all the physical speeds of the problem.

Advection equation: two more examples

Other schemes that result in the CFL condition:

* Upwind differencing (with backwards Euler in time):

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{\delta t}=-c \frac{u_{j}^{n}-u_{j-1}^{n}}{\delta x}
$$

* Staggered leapfrog (centered differences in both space and time):

$$
\frac{u_{j}^{n+1}-u_{j}^{n-1}}{\delta t}=-c \frac{u_{j+1}^{n}-u_{j-1}^{n}}{\delta x}
$$

second order in time and space, but prone to the mesh drift instability; grid points of odd $j+n$ and even $j+n$ decoupled

Advection equation: two more examples

Mesh drift instability

Advection equation with Lax-Wendroff

Consider again an advection equation, with a following two-step method:
First step is Lax method for $u_{j+1 / 2}^{n+1 / 2}$:

$$
\frac{u_{j+1 / 2}^{n+1 / 2}-\left(u_{j+1}^{n}-u_{j}^{n}\right) / 2}{\delta t / 2}=-c \frac{u_{j+1}^{n}-u_{j}^{n}}{\delta x}
$$

Second step, the quantities at t_{n+1} are calculated using the centered expression:

$$
\frac{u_{j}^{n+1}-u_{j}^{n}}{\delta t}=-c \frac{u_{j+1 / 2}^{n+1 / 2}-u_{j-1 / 2}^{n+1 / 2}}{\delta x}
$$

(values $u_{j+1 / 2}^{n+1 / 2}, u_{j-1 / 2}^{n+1 / 2}$ auxiliary; no mesh drift instability)

Further reading...

* „An introduction to astrophysical fluid dynamics", Michael J. Thompson
* „An Introduction to Astrophysical Hydrodynamics", Steven N. Shore
* Amusing weblog: fuckyeahfluiddynamics.tumblr.com

