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Outline

* Derivation of the equations:

* from the Boltzmann equation,
* by other methods,

* Regimes of applicability,

* some remarks about the advection equation.
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What is a fluid?



The difference between fluid, and other phases, gas and solid:

* fluid flows,

* not resists deformation (not elastic), though may be viscous,

* forms free surface (gases don't)

Solid
Holds Shape

Fixed Volume

Liquid
Shape of Container

Free Surface
Fixed Volume

Gas

Shape of Container

Volume of Container
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Fluid description

* system composed of many bodies, that can be described as a

continuum,
mean free path A\ < fluid element size < system size

In general A = (no)~!

* Forces between particles are short-range (saturation, screening).

Some examples:
A
Air 1075 cm
water 1079 cm
space  10%® cm
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Euler and Lagrange viewpoints

Lagrangian approach: An observer
looks at fluid motion following an
individual fluid parcel as it moves
through space and time.

Eulerian approach: An observer
looks at fluid motion from a specific
location in space through which the

fluid flows as time passes.
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Vector operators:

Some definitions
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Vector operators: gradient

technically a differential form):

(

Gradient represents a rate of change of a scalar field (derivative) in
It is a "vector”

space.
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Vector operators: divergence

Divergence is the volume density of the outward flux from an
infinitesimal volume around a given point. The result is a scalar:
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Vector operators: curl

Curl describes the infinitesimal rotation of a 3-dimensional vector field.
The result is a vector:

V xF= e'GUkaij
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Material /substantial derivative

Fluid properties are generally functions of position and time. We will
denote

* J/0t the rate of change w.r.t. time at some fixed position.

* D/Dt the rate of change w.r.t. time while traveling with a fluid
element.

% is called a material/substantial derivative. For some quantity f

(vector field, scalar field etc.), it equals

Df  of
Ditia—’_u.v,:’

Why like that? Imagine we follow a change in f over a short time §t.
Fluid element moved from r at t to r + udt at t + 0t

Df . f(r+udt, t+dt) — f(r, t)
— = |im
Dt st—0 ot
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Continuity equation

Mass conservation: the rate of change of fluid mass inside a volume

equals to the net rate of fluid flow into the volume. Often expressed as

dp
E—I—V-(pu)—o
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Continuity equation

Consider volume V enclosed by a surface S,
with n normal vector. Total mass of fluid in
Vs

/pdV and i/pdV:—/(,ou)-ndS
v dt Jy s

(mass flux across S).

d B Jdp B
E /V pdV V fixed % Edv St;«es N /\/ L (pu)dV

True for all V — the continuity equation:

)
875 + V- (pu) =0 also written as

Dp

.u=0
Dt+pV u
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Continuity equation

Example: advection equation from continuity equation.

. 0
Advection operator u -V = u;—
ox’

We obtain the advection equation

dp B
E—FU'V(,O)—O

from the continuity equation

op B
E+V~(pu)f0

by assuming V - u = 0 (u solenoidal, incompressible, divergence-free
vector; u =V x A)
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Momentum equation (equation of motion)

Momentum conservation: the rate of change of total fluid momentum in
some volume equals to the sum of forces acting on the volume. For an

inviscid fluid, it's called the Euler equation:

%—l—uv-u:—VP—l—pf
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Momentum equation (equation of motion)
Consider volume V' moving with the fluid

(no flow through the boundary S). Fluid
momentum is

/pudV. Its rate of change, i/pudV
v dt Jv

equals to the force acting on V.
Two types of forces - body and surface:

/ pfdV and —/ PndS (inviscid fluid, force normal to S)
v s

body force, e.g., gravity surface force

d Du
dv = —dV = fdvV — [ Pnd.
dt APU pdV cons. AP Dt /Vp /5 nds

- /pde—/ VPdV
Stokes [\, v

8/32



Momentum equation (equation of motion)

Consider volume V' moving with the fluid
(no flow through the boundary S). Fluid
momentum is

/pudV. Its rate of change, i/pudV
v dt Jy

equals to the force acting on V.

d Du
dv = —dV = fdvV — [ Pnd.
dt/ pu pdV cons. //P Dt /VP /5 ndS

- /pde—/ VPdV
Stokes [/ v

We recover the Euler equation:

Du Ju
P = <at+uV u)VP+pf
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Momentum equation (equation of motion)

In case of viscosity, momentum equation is called the Navier-Stokes
equation. Consider the i—th component of the surface force;

f/ Pn'dS becomes /U,-jnde
s S

with the stress tensor o;. For simple liquids and gases, with p called the
dynamical viscosity, and the second viscosity —2 /3

1 /0u; Oy 1
j=—Poj+2ul| 3 : L) —=(V-u)d;
ojj 0jj + 2 2(8xj+8x,-) 3(V u)dij | »

Strain rate tensor

i 0
/Uij”jds = / ——o;jdV  (Stokes again)
S % an
Assuming u = const., we finally arrive at

Du

1
_— = = 2 — .
on VP+pf+u(Vu+3V(V u))
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Conserved quantities: energy

Energy conservation: the rate of change of the total energy equals the

rate at which work and other sources of energy act at the fluid element:

D (1,\ DU
P (E (§u ) + E) = —V:(Pu)+pu-f+pe—V-F.
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Conserved quantities: energy

Let's multiply the momentum equation by u:

D D /1
pu-ﬁl;:pﬁ <2u2>——u-VP+pu-f

Rate of change of the kinetic energy equals the rate at which work is
done by forces acting at the fluid element.
Similarly, equation for the total energy, kinetic u?/2 + internal U is

i/ <1u2+U) dV:/pu-def/u'(Pn)dS
dt v 2 \V4 S
+ /pedV — /F~nd5.
N S

generated at rate €  heat flux across S
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Conserved quantities: energy

Let's multiply the momentum equation by u:
Du D /1,
- —_— = _— — = — . P . f
pu D th<2u> u-VP+ pu

Rate of change of the kinetic energy equals the rate at which work is
done by forces acting at the fluid element.
Similarly, equation for the total energy, kinetic u?/2 + internal U is

p(D (1u2)+DU) =—V-(Pu)+pu-f+pc—V-F.

Dt \2 Dt
Equation for internal energy U only (subtracting the kinetic part):
DU p Dp 1
—_— == —=V-F.
Dt p? Dt te p
Since V = p~!, we recover the first law of thermodynamics:

dU =—-PdV + §Q.
~—~
added heat
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Virial theorem

D
Velocity is the rate of change of position following the fluid: u = EZ
Euler equation for gravitational field Der V P+pf VP—pV)
| VI | | : —_ = — = —_ —
uler equ g P o e p

Let's multiply by r and integrate over a volume V:

D?r
v v \%

d Dr Dr\?

1d2/ ,
=_-— r|“pdV — 2T.

17
Total kinetic energy 7 = 3 / pu?dV
Jv
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Virial theorem

Pressure term:

V=3
—_—N—
—/ rr-VPdV = —/ V-(rP)dV—i—/ PV -rdV = —/ Pr - ndS —|—3/ PdV
v % % s %
S

=0

. 1
Also, define total gravitational energy: —/ r-VippdV = 5/ Yp(r)dV =,
v v

and moment of inertia: Z = / pr?dv,
v

to arrive at the scalar form of the virial theorem:

1d°T

,7:27+3/ PdV + V.
2 dt? v
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Distribution function

Particle's distribution function is a function of positions, velocities and
time, f(x,y,z, v, vy, vz, t), which gives the number of particles per unit
volume in single-particle phase space.

Number density n(x,y,z,t) = /f dvy dvy, dv,

Total number of particles N(t) = /ndx dy dz.

L 1 ew?
Normal distribution: f(x, u,0) = e 27

oV 2w

Maxwell-Boltzmann velocity probability distribution:

o e 3

27kT 2kT

describes particle speeds in idealized gases where the particles move
freely inside a stationary container without interacting with one another,
except for very brief collisions in which they exchange energy and

momentum with each other.
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Boltzmann's Equation - Derivation

For an ensemble of non-interacting point-like particles in momentum
phase-space; Liouville’s theorem states that the distribution function f is
conserved along the trajectories in phase space of positions g and
momenta p:

ﬂ_g+6f8q;+8f8p,_8f+6f__|_8f.._0
dt ~ ot oq ot " op ot ot og " P

api

p' = F' is the “external” force, e.g., gravity, depending only on
macroscopic quantities.

Collision integral. In case of collisions, phase space evolves:

df _Of LOf L Of . (0F)
dt ot 6,-q’ ap,'pl_

ot

12/32



Boltzmann's equation: collision integral

The form of the collision integral can be approximated by assuming:
* Only short-range two-particle interactions should be important,
* Collisions are elastic,

* Collision time should be negligible.
* No correlations between the incoming and outgoing particles.

This is Stosszahlansatz, (molecular chaos) assumption.

(55) =[] eate DI (0. 0 Flpa.)F(ps. 0] s

where g = |pg — pal = |P'g — P’ 4] and do/d is the differential
cross-section.

In case of conserved quantities (mass, momentum, energy) the collision
integral doesn't provide a contribution to averaged quantities.
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Momenta of the distribution function

Density p = /mfd3p

Momentum pu = /mvfd3p

Internal energy pe = /g(v —u)’fd’p

(v =p/m, u is mean flow)
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Continuity equation

Westartwithd—f—aff_paif'._kaif'.f of
dt ~ ot " oq o " \ot),

Let's multiply by a particle mass m and integrate in momentum space:
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Continuity equation

We stare with 9 _ 8f+8f_+8f_ of
rt with — = — + —¢; =
d ot 0q " T ot T ot

Let's multiply by a particle mass m and integrate in momentum space:

of of of . 5 of 3
/’”Ed /’"V’aq,- ”*/’"ap;p’d ”‘/m<8t>w,_d ’

=0, local mass cons.

with p; = F;, % + 8aq- /mfv"d3pf m/sn -FfdS =0

f—0 for V—oo

We recover the continuity equation for a mean fluid velocity, u’ = (v/) of

a fluid element: )
9p , 9(p(v"))

E—‘r 3(],‘ =0
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Momentum equation

Let's multiply the Boltzmann equation by mv:
/mvj%dg’p—i—/ mvjvigc); p—l—/ mijiaa—;d3p: /mvj (gi)cm. d®p

=0, local mom. cons.
Ap(v))  Ap(v'vi /
ot aq, v ap,

/p][“)fd3p: 3P’fd3p_/ ap/fd3p:_/fp/nld5_p5,ll
v v Opi s
—_——

opi v Opi
=0

Aolv)) | W) i

So we obtain, o 94, !
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Momentum equation

Ap(v/)) | d(p({v'v))) i
ot + 9a —pF'él =0

By subtracting the continuity equation multiplied by (v/),

Aplv)) | Aev'V) i ((Mg'z n <Vj>8(p<V’>)> o

ot dq; dqi
we obtain Navier-Stokes equation:

V) o oUv) L 100
ot ) dq; _F+paq;’

with the stress tensor
ol = —p(vIvi) + p(vi) (V).
In case of collisions,
ol = —P(S{-‘ + viscous stress tensor

16 /32



Closure relations

Since hydrodynamic equations are under-determined, one needs to close
the set of equations with the stress tensor, a function of p, P and e:

* Euler equations correspond to Maxwell distribution, o;; = —PJj;
(neglect viscous stresses and heat conduction),

* Chapman—Enskog theory: deviation from the Maxwell-Boltzmann
distribution in the equilibrium is small, and the first order corrections

are
- 1 Bu,- an 1
O',J2,u<2 <6Xj +8X,‘> —3(Vu)§u>a

and the heat conduction term in the energy equation,

F=xkVT

with shear viscosity p o< vV mkT and thermal conductivity k = gcv,u.
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Dissipation in astrophysics

An estimate for the effects of viscosity, heat conduction and other effects

is provided by some dimensionless numbers:
* Knudsen number (are we in the fluid regime?):

mean free path A

size of the system  /

* The Reynolds number (— dimensionless Navier-Stokes):

inertial forces  pul _ ul

viscous forces  p v
* Péclet number (how the heat is transported):

p advective transport rate /
e = - - = —
diffusive transport rate

«
* Prandtl number (momentum-to-thermal diffusivity):

viscous diffusion rate

v
r = - - —_ —
thermal diffusion rate «

(kinematic viscosity v = p/rho, thermal diffusivity « = k/(pcp)
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Viscous transport in disks
AnguarMomem/}
Viscosity in action - what makes the

accretion so efficient? ==

a-viscosity prescription: g;:ffﬁ:i; 7)>
* v acsH, ' ‘ | /

* stress tensor in the disk, torque
Trp x pw% x —aP (at least
for Shakura-Sunyaev disks).

Perhaps magnetic field plays a role?
Magnetorotational instability
(Balbus-Hawley)
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Simplifying approximations

We have several simple flows at our disposals:
* Incompressible: V - u = 0, equivalent to p = const.
* Anelastic: V - (pu) = 0, equivalent to dp/0t = 0 (see continuity
equation)
* Barotropic: P = P(p) instead of P = P(p, T ...), which is called

baroclinic. It can result from the equation of state (degeneracy, e.g.

for white dwarfs and neutron stars) or may be incidental, e.g. when
convection establishes s = const. throughout a star.

* Adiabatic: heat transfer is neglected. Simplified energy relation
dps/dt =0
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Inviscid and adiabatic flow

When neglecting viscosity and heat conduction, the momentum and
energy equations are simplified. The Navier-Stokes equation reduces to
the Euler equation:

Du 1
e — VP 4+ of 2 s .
P o \Y% +p+u(Vu+3V(V u))
D /1, DU
“Z (= ZZ )= _v. (P ftpe—V-F
p(Dt(2u)+Dt) V- (Pu) +pu-f+pe—V
The energy equation can be rewritten as a conservation of entropy:
D
Di:+V~(psu):0.
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Laminar and Turbulent Flows

—l —l
e >
< >
»
Lamina\r%b —

* Flow in which the kinetic energy —
decays due to the action of g MRS, A
viscosity is called laminar flow. e o

o g ) e D

* Large Re > 100-1000 — Turbulent &7 - «

turbulent flows (often seen in
astrophysical settings).

* Problem: Resolution of
turbulent flows down to the
length scale where viscosity

becomes important is not
feasible (MRI etc.)




Plasma hydrodynamics

* Astrophysical fluids are quite often charged (ionized), so the
neutrality condition is sometimes not satisfied,

* There is a limit for the mean free path A: Coulomb scattering,
Debye length (screening),

A — kB/e2
PN ne/Te+ >, 220 T

for I > Ap fluid may be considered neutral,

* If macroscopic process slower than the plasma frequency timescale
(Langmuir waves, electron density fluctuations),

47nee?

Wpe =

Me

* Effect of macroscopic magnetic fields (magnetospheres of pulsars)
changes the mean free path (preferred directions, magnetic field
gyration).
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Magnetohydrodynamics

In case of magnetic fields, even when the fluid is electrically neutral:

Op B Ou B 1 _, 1,
a—l—V-(pu)-O, E+uV-u——V(P+8WB)+pf+ 47TJXB
—_———

Lorentz force

Maxwell equations: V -B =0, V- E = pe,
0B 1 OE

E=_"2 B—4rj+ — &
VX ot’ VX 7UJrc28t

+ Equation for fluid energy evolution.

Ideal MHD approximation (primes denote the fluid co-moving quantities):

*x j=0cF ~o(E+uxB)
OE H

* 5 =0—-j=7-VxB

* Magnetic induction equation: 28 =V x (u x B) + nV2B, with
magnetic diffusivity 7.
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Partial differential equations
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Types of equations

For linear equations in two dimensions (x and t, say), one may classify
the general one
0’F 0’F 0*F OF

oF

For example:

2 ot i 02F | 0°F
b* < ac Elliptic Laplace equation 57 + 5z =0
2 ; i O2F 1 92F _
b* > ac Hyperbolic Wave equation 57 — 55z =0
. . . 2
b? = ac  Parabolic Diffusion £ — 2£ — ¢
Ox ot
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Naming conventions

Differences between elliptic and hyperbolic/parabolic equations:

« elliptic equations have boundary conditions which are specified
around a closed boundary,

* derivatives are with respect to spatial variables (e.g., Laplace or
Poisson),

« for hyperbolic - boundary conditions for time variable are initial
conditions.
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Hyperbolic equation - wave equation

23}’

0?
Consider a following equation, a—y o2

It can be rewritten as ( > < >y =0,

or re-casted as a system of two first-order equations,

oz + c% =0
ot ox
5‘y é)y
el -7
ot ax
This are examples of advection equations,
8u 8u
=0
“ox

with boundary conditions u(x, t) = ug(x) for t = to.

=0.
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Advection equation: simple attempt

Let’s try a centred difference for the space derivative (subscript j) and
Euler's method for the time derivative (superscript n):

1
Ou _ _C@ N uj’* —uf _ _CUJPJrl — Ul
ot Ox ot 20x

As expected, time part is 1-st order accurate:

oul”™ 1 22ul"
n+1 n . = T2 Y M
u; quétat.+26t 8t2-+“'
J J
Space part is 2-nd order:

oul" 1. 5 ul”
UJ""+1 - UJ{L]_ ~ 20x E . + §6X ﬁ .
J J
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Advection equation: simple attempt

Substituting the Taylor expansions in the approximation:

" cot ou
P 2
T 20x (‘5 |,

n

oul”
ot a5

n

0%u
o2

1.5 0%

+(5t
J

- the truncation errors are 2nd order in time and 3rd order in space.

How about the stability in time? Test solution, plane wave
v/ = v"exp(ikx;) (von Neumann stability condition):

L exp(ikxj) = v" exp(ikx;) —

For small deviation, v — v 4+ §v",

Syt = (1 — i% sin(kéx)) sv"

X

growth factor S

S =1—ia, so square of norm |S|? = 1+ a2 < 1 for all wave vectors k

— Problem.

cot , . .
5% (exp(ikxjt1) — exp(ikxj_1)) ,
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Advection equation: Lax method

Minor improvement:

n+1 n n n n
Ou _ _C@ N “j+ — (Ul — 4 4)/2 I S
ot Ox ot 20x

Let's check the stability, again using the von Neumann condition:

Syt = (cos(kdx) — i%;t sin(k5x)> ov",

X

growth factor S

so the growth factor
2 2
2 2 cot .2 1 an2 . cit
|S|© = cos“(kdx) + <5x> sin“(kdx) = 1 — sin”(kdx) (1 (5)() ) .

This means stability for all k as long as

ot —
Courant—Friedrichs—Lewy condition: the information propagation speed
on the grid must be greater than all the physical speeds of the problem.
20/32



Advection equation: two more examples

Other schemes that result in the CFL condition:

* Upwind differencing (with backwards Euler in time):

n+l _  n n__ ,n
uj u ul —ui
= —C
ot ox

* Staggered leapfrog (centered differences in both space and time):

n+1_ n—1 n _,n
Yj Yoo i T

ot Ox

second order in time and space, but prone to the mesh drift
instability; grid points of odd j 4+ n and even j 4+ n decoupled
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Advection equation: two more examples

Mesh drift instability
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Advection equation with Lax-Wendroff

Consider again an advection equation, with a following two-step method:

. . n+1/2.
First step is Lax method for Uiir)a:
n+1/2
Yis1/2 — (ufyr —uf)/2 _ _CUJ"7+1 -
ot/2 dx
Second step, the quantities at t,,; are calculated using the centered
expression:
+1 n+1/2 . n+1/2
UJ{I B qu’ _ _Cuj+1/2 Y12
ot Ox
(values ufjll//zz, qu'j'll//zz auxiliary; no mesh drift instability)
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Further reading...

* ,,An introduction to astrophysical fluid dynamics”,
Michael J. Thompson

* ,,An Introduction to Astrophysical Hydrodynamics”,
Steven N. Shore

* Amusing weblog: fuckyeahfluiddynamics.tumblr.com
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