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Outline

? Equivalence principle,
? Free-fall and geodesic equations,
? Measurements in curved space,
? Einstein equations.
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Why general relativity?
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Maxwell’s equations (1863) describe electromagnetism and optical
phenomena within the theory of waves:

? A special medium, „luminiferous ether”, needed for the EM waves to
propagate (like water for water waves); Ether almost doesn’t interact
with matter, but is supposedly carried along with astronomical
objects,

? Light propagates with a finite speed, but is not invariant in all
frames,

? Especially, Maxwell’s equations are not invariant under Galilean
transformations:

x ′ = x − vt
y ′ = y
z ′ = z
t ′ = t

? To make electromagnetism compatible with classical mechanics, light
has speed c = 3× 108 m/s only in frames where source is at rest.
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? Rømer determination of the finite value of the speed of light,
? Star light aberration: a small shift in apparent positions of distant

stars due to the finite speed of light,
? Fizeau-Foucault (1850): velocity of light in air and liquids
? Michelson-Morley (1887): to detect the motion of the Earth through

ether
? Lorentz-Fitzgerald contraction hypothesis (1894): speeding bodies

get compressed in the direction of motion by a factor

γ =
1√

1− v2/c2

3 / 20



Lorentz transformation, as opposed to simpler-looking Galilean
transformation, mixes space and time. Example boost in x-direction

t ′ = γ
(
t − vx

c2

)
x ′ = γ (x − vt)

y ′ = y
z ′ = z


ct ′

x ′

y ′

z ′

 =


γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z


with β = v/c .
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Einstein: an idea of fixing the Maxwell equations by accepting that
? the laws of physics are invariant (i.e., act identically) in all inertial

systems (non-accelerating frames of reference),
→ no experiment can measure absolute velocity,

? the speed of light in a vacuum is the same for all observers.

By accepting this, one gets
? length contraction ∆l ′ = ∆l/γ,
? time dilation ∆t ′ = ∆tγ,
? relativistic mass mγ,
? mass–energy equivalence E = mc2,
? universal speed limit,
? relativity of simultaneity.
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Gravity and acceleration

What is the difference between Newtonian and Einsteinian theory?

? Newton viewpoint: mass tells gravity how to exert a force, force
tells mass how to accelerate

F = −GMgmg

r2 , F = mia

a = −GMg

r2
mg

mi

? is gravitational mass mg equal to inertial mass mi?
? Instantaneous action at a distance,
? Einstein viewpoint: Mass (energy) tells spacetime how to curve,

curved spacetime tells mass (energy) how to move (J. Wheeler) -
geometry is related to mass distribution.
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Equivalence principle

Weak equivalence principle: testing the
equivalence of gravitational mass and inertial mass
Eötvös parameter η for two different test bodies A
and B (aluminum and gold, for example):

η(A,B) = 2

(
mg
mi

)
A
−
(
mg
mi

)
B(

mg
mi

)
A

+
(
mg
mi

)
B

From the times of Galileo (no difference „by eye”)
till present (Eöt-Wash group) η < 10−13
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Equivalence principle

Strong equivalence principle:
? The outcome of any local (gravitational or not) experiment in a

freely falling laboratory is independent of the velocity of the
laboratory and its location in spacetime,

? the laws of gravitation are independent of velocity and location,
? Locally, the effects of gravitation (motion in a curved space) are the

same as that of an accelerated observer in flat space,
? Falsifiability: testing GR in the Solar System and near black holes -

different regimes should give consistent answers (also recently
discovered triple system with 2WD and NS, PSR J0337+1715)
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Equivalence principle

Gravitation is a form of acceleration; locally, the effects of gravitation
(motion in a curved space) are the same as that of an accelerated
observer in flat space.
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Special relativity in Minkowski spacetime

How we evaluate the distance in space in the usual 3D geometry? Let’s
consider spherical coordinates,

x1 = r sin θ cosφ
x2 = r sin θ sinφ
x3 = r cos θ

and call such an object, g =

1 0 0
0 r2 0
0 0 r2 sin2 θ


the metric tensor. An infinitesimal distance between (r , θ, φ) and
(r + dr , θ + dθ, φ+ dφ) is then,

ds2 = gαβdxαdxβ = dr2 + r2dθ2 + r2 sin2 θdφ2.
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Special relativity in Minkowski spacetime

Let’s consider now a 4D space, with a following coordinate system:

x0 = ct (= t for c=1)
x1 = x
x2 = y
x3 = z

and introduce the following metric tensor

η =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


that can be used to calculate the distances in an usual way

ds2 = ηαβdxαdxβ = −dt2 + dx2 + dy2 + dz2.

Mind the signature (-+++)! Such a manifold - set of points in a
topological space - is called pseudo-Riemannian manifold: the metric
tensor is not positive-definite.
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Special relativity in Minkowski spacetime

timelike ds2 < 0; spacelike ds2 > 0; null ds2 = 0.
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Special relativity in Minkowski spacetime

In this space we can measure proper time (length of the spacetime curve)
by integrating over the spacetime interval:

τ =

∫ √
−ds2 =

∫ √
−ηµν

dxµ

dλ
dxν

dλ
dλ,

define 4-vectors, e.g., the 4-velocity

uµ =
dxµ

dτ
, (normalized: ηµνuµuν = −1),

and 4-momentum for a particle of mass m:

pµ = muµ.

? The particle energy E is the timelike component, p0 (for a particle
at rest E = p0 = mc2),

? In a moving frame (x-direction, say) from the Lorentz
transformation,

pµ = (mγ, vmγ, 0, 0), where γ = 1/
√

1− v2,

For small v , p0 = mc2 + mv2/2 and p1 = mv .
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What if the space is not flat?
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How to quantify the curvature

Imagine a curved surface: at a given point, principal curvatures denoted
κ1 and κ2, are the maximum and minimum values of the curvature.

http://brickisland.net/cs177
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How to quantify the curvature

? Gauss curvature K = κ1κ2,
? intrinsic to the surface.

? Mean curvature (Sophie
Germain), H = κ1+κ2

2 ,
? requires an idea of embedding

space exterior to the surface.

http://brickisland.net/cs177
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The space may not be flat in general...

but we can assume that in a vicinity of a point, the manifold in question
is locally Rn (choosing the coordinates to be locally emulating the
Minkowski space).
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The space may not be flat in general...

In all physical cases the manifold is
equipped with the tangent space at
every point. But how to compare
vectors at different points?

Parallel transport of a vector along a
closed curve in a curved space (a
vector is moved along a curve
staying parallel to itself and
maintaining its magnitude).
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Covariant and contravariant, forms and vectors

Vector v, expressed in two
coordinate bases ei and e′i , where

ei =
∂

∂x i
, e′i =

∂

∂x ′i

is v = v iei = v ′ie′i
Expressing the new components of v
with old ones. Contravariant
transformation:

v ′i =
∂x ′i

∂x j
v j

Basis vectors transform
coviariantly:

e′i =
∂x j

∂x ′i
ej

1-form, co-vector ω (member of a
space dual to the vector space),

ω = ωidx i = ω′idx
′i .

transforms its components
covariantly:

ω′i =
∂x j

∂x ′i
ωj

whereas the dual basis differentials
dx i transform contravariantly:

dx ′i =
∂x ′i

∂x j
dx j
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Covariant and contravariant, forms and vectors
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Covariant and contravariant, forms and vectors

Vectors and 1-forms are related to each other; 1-form is a linear
transformation from the vector space of v to real numbers

ωµvµ → R

(example: uµuµ = −1 in SR).
The transformation rules generalize for higher rank tensors:

Aµ
′

ν′ρ′ =
∂xµ′

∂xµ
∂xν

∂xν′
∂xρ

∂xρ′
Aµνρ

Metric can be used to transform a vector to a form (and vice versa), by
lowering/raising an index:

Aµ = gµνAν , Aµ = gµνAν , gµνgγν = δγµ

(Metric tensor gµν is itself a 2-form: gµνdxµdxν → spacetime distance.)
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Comparing vectors in curved spaces

Why all this? We want derivatives that transform like tensors.
Unfortunately, simple ∂/∂xµ

∂φ

∂xµ′ =
∂xµ

∂xµ′

∂φ

∂xµ

works only for scalar fields, e.g., gradient of φ is a proper (0,1) tensor
(1-form).
For general vectors we obtain, recalling that

V µ′
=
∂xµ

′

∂xµ
V µ,

∂V ν′

∂xµ′ =

(
∂xµ

∂xµ′

∂

∂xµ

)(
∂xν

′

∂xν
V ν

)
=

∂xµ

∂xµ′

∂xν
′

∂xν

(
∂V ν

∂xµ

)
+

∂xµ

∂xµ′

∂2xν
′

∂xµ∂xν
V µ.︸ ︷︷ ︸

not transforming correctly

→ one cannot use ∂/∂xµ to compare vector field at neighboring points.
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Comparing vectors in curved spaces

Consider an infinitesimal change of a vector v along a line parametrized
by λ in a space with a coordinate basis e:

dv
dλ

=
d(vαeα)

dλ
=

dvα

dλ
eα + vα

deα
dλ

.

How the vectors from the coordinate basis change with λ?

deα
dλ

=
deα
dxβ

dxβ

dλ
with

deα
dxβ

= Γγαβ︸︷︷︸
Christoffel

eγ

so we can write a total derivative

dv
dλ

=

(
dvα

dλ
+ Γαγβv

γ dx
β

dλ

)
eα or

Dvα

dλ
=

dvα

dλ
+ Γαγβv

γ dx
β

dλ
.

In a curved space, the changes are because of
? physical changes of a vector field between points,
? curvilinear coordinates.
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Comparing vectors in curved spaces

Γαγβ (Christoffel symbols, Levi-Civita, affine connection coefficients)
describe the effects of parallel transport in curved spaces; they are
functions of the metric

Γαγδ =
1
2
gαβ

(
∂gβγ
∂xδ

+
∂gβδ
∂xγ

− ∂gγδ
∂xβ

)
=

1
2
gαβ(gβγ,δ + gβδ,γ − gγδ,β)

Symmetric in lower indices, Γαγδ = Γαδγ .

10 / 20



Comparing vectors in curved spaces

The total derivative, similar like in hydrodynamics, is

Dvα

Dλ
=

dvα

dλ
+ Γαγβv

γ dx
β

dλ
or in vector notation

Dv
Dλ

= ∇uv

with uα = dxα/dλ, the 4-velocity/tangent vector to the curve.

Often called the covariant derivative:

vα;β = vα,β + Γαγβv
γ or

Dvα

Dλ
= vα;βu

β

Covariant derivative acting on the metric return 0 (metric compatibility):

gαβ;γ = 0, gαβ;γ = 0.
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Free fall and the geodesic equation

Geodesic, the straightest line in a curved space. A line is ”straight”, if it
parallel transports its own tangent vector, which means

∇uu = 0

From this and previous considerations we obtain the geodesic equation:

d2xα

dλ2 + Γαµν
dxµ

dλ
dxν

dλ
= 0

which is the force-free equation of motion of a particle in a curved
space.
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Free fall and the geodesic equation

Let’s assume that we are in free falling coordinate system χα:

d2χα

dλ2 = 0.

and make a coordinate transformation to arbitrary coordinates xα,

χα = χα(xγ) → dχα

dλ
=
∂χα

∂xγ
dxγ

dλ
,

so we have

d
dλ

(
dχα

dλ

)
=

d
dλ

(
∂χα

∂xγ
dxγ

dλ

)
=

d2xγ

dλ2
∂χα

∂xγ
+

∂2χα

∂xβ∂xγ
dxβ

dλ
dxγ

dλ
= 0.

Multiply the above by ∂xσ/∂χα, recalling that

∂χα

∂xγ
∂xσ

∂χα
=
∂xσ

∂xγ
= δσγ (Kronecker delta).
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Free fall and the geodesic equation

From

d
dλ

(
∂χα

∂xγ
dxγ

dλ

)
=

d2xγ

dλ2
∂χα

∂xγ
+

∂2χα

∂xβ∂xγ
dxβ

dλ
dxγ

dλ
= 0.

/
· ∂x

σ

∂χα

we have
d2xγ

dλ2 δ
σ
γ +

∂xσ

∂χα
∂2χα

∂xβ∂xγ
dxβ

dλ
dxγ

dλ
= 0,

that is
d2xσ

dλ2 +

(
∂xσ

∂χα
∂2χα

∂xβ∂xγ

)
︸ ︷︷ ︸

Christoffel

dxβ

dλ
dxγ

dλ
= 0.

We end up with the geodesic equation:

d2xσ

dλ2 + Γσβγ
dxβ

dλ
dxγ

dλ
= 0.
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Geodesic equation from the action principle

One can get the geodesic equation from the Lagrangian and the action
principle. The spacetime distance is

dτ2 = − 1
c2 ds

2 = − 1
c2 gαβdx

αdxβ ,

The proper time between two events along an arbitrary timelike curve is
(setting c = 1):

τ =

∫ B

A
dτ =

∫ B

A

dτ
dλ

dλ =

∫ B

A

(
−gµν

dxµ

dλ
dxν

dλ

)1/2

dλ

Let’s call this function the Lagrangian,

L(xα, ẋα, λ) =

√
−gµν

dxµ

dλ
dxν

dλ
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Geodesic equation from the action principle

define the action,

S =

∫ B

A
L(xα, ẋα, λ)dλ (δS = 0)

and extract the Euler-Lagrange equations out of it:

∂L
∂xα

=
d
dλ

(
∂L
∂ẋα

)

∂L
∂xα

= −1
2
dλ
dτ

∂gµν
∂xα

ẋµẋν and
∂L
∂ẋα

= −dλ
dτ

gµαẋµ = −gµα
dxµ

dτ
.

Rearanging and multiplying by dλ/dτ we have (just a sketch of how to
go):

1
2
∂gµν
∂xα

dxµ

dτ
dxµ

dτ
=

d
dτ

(
gµα

dxµ

dτ

)
→ ∂gµν

∂dτ
=
∂gµν
∂xα

dxα

dτ
→

→ multiply by gδµ → d2xµ

dτ2 + Γµαβ
dxα

dτ
dxβ

dτ
= 0
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Lie derivative
Consider two vector fields, v and u.
Lie derivative measures the change
of one vector field v along a flow of
another, u:

Lu(v) = lim
ε→0

1
ε
{v(q)− Φε(v(p))}

? v(q) - actual value of v(q) at q,
? Φε(v(p)) - value transported by
ε along the flow of u,
Φε(v(p)) = ~qq′/λ

Luvα = uµ
∂vα

∂xµ
− vµ

∂uα

∂xµ
.

from E. Gourgoulhon ”3+1 form. and bases”

Also called the commutator (Lie
bracket):

Lu(v) = [u, v]

? Doesn’t require the connection,
? generalizes to higher rank tensors.
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Symmetries and Killing fields

Noether’s theorem: symmetry of the system’s Lagrangian (action)
corresponds to a conservation law, for example,
? Lagrangian is symmetric w.r.t. rotations → angular momentum is

conserved,
? symmetry w.r.t. time → conservation of energy.

On a pseudo-Riemannian manifold, Killing vector field preserves the
metric:

Lξg = 0.

Also,
∇µξν +∇νξµ = 0 (Killing equation)

Flow generated by a Killing field generates a continuous isometry.
Physical examples are
? ξ = ∂

∂t in case of stationary systems,

? η = ∂
∂φ in case of axisymmetric systems.
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Geometry of curved space

”Mass tells space-time how to curve,
and space-time tells mass how to
move”
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Riemann curvature tensor

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v ]w measures a failure of
derivatives to commute. In coordinates:

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

? Constructed from gµν and its first and second derivatives,
? Imagine transporting a vector V around a closed loop by dxσ, dxµ

and then dxν ; the vector will change its components w.r.t. the
original ones by ∆V i .

The Riemann tensor is roughly

Rρσµν = ∆V i/(dxσdxµdxν)

15 / 20



Riemann curvature tensor

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v ]w measures a failure of
derivatives to commute. In coordinates:

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

? Constructed from gµν and its first and second derivatives,
? Measures the intrinsic curvature → Gauss curvature, ”rotation” of

parallel-transported vectors (R ≡ 0 ⇐⇒ space is flat),
? Measures the tidal forces acting on a body moving on the geodesic
→ relative acceleration between nearby bodies (geodesic deviation),

? in 3+1 spacetime, Rρσµν has 256 components, only 20 independent
(because of the following symmetries):

Rρσµν = −Rρσνµ = −Rσρµν ,
Rρσµν = Rµνρσ,

Rρσµν + Rρµνµ + Rρνσµ = 0.

Useful Bianchi identity: ∇γRρσµν +∇µRρσνγ +∇νRρσγµ = 0.
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Ricci tensor and Ricci scalar

? Ricci tensor is a contraction of the Riemann tensor:

Rµν = Rρµρν
If the Riemann tensor collects all the information about the
curvature, Rµν is kind of average curvature. It quantifies the
amount by which a test volume differs from one in flat space,

In the vicinity of a given point, gµν = ηµν +O(x2).

The difference in volume element: dV =
(
1−1

6
Rµνxµxν+O(x3)

)
dVflat

? Ricci scalar (scalar curvature) is contracted Ricci tensor:

R = Rµµ
used e.g., to compare areas of circles with those from flat space in n
dimensions:

dS
dSflat

= 1− R
6n

r2 +O(r4)

in 2D, R = 2K (twice the Gaussian curvature).

Useful Bianchi identity: ∇µRαµ =
1
2
∇αR
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Energy-momentum tensor

The energy-momentum tensor (sometimes called the stress-energy
tensor) gathers information about the matter. Most often used is the
perfect fluid version,

Tµν = (ρ+ p)uµuν + pgµν ,

→ neglect viscosity and elastic effects. Fluid which is isotropic in its rest
frame (gµνuµuν = −1)

T ν
µ =


−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


The conservation laws of Tµν are analogs of conservation laws for energy
and momenta from hydrodynamics, using the covariant derivative:

∇µTµν = 0.
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Maxwell equations in curved spacetime

Electromagnetic field energy-momentum tensor:

Tµν =

(
FµαgαβF νβ −

1
4
gµνFδγF δγ

)
that uses an antisymmetric tensor Fµν :

Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0


and the 4-current Jµ = (ρ, J).

In the usual flat spacetime (Minkowski):

∇ · E = 4πρ,
∇× B− ∂tE = 4πJ,
∇× E− ∂tB = 0,

∇ · B = 0.

∂µF νµ = 4πJν ,
∂[µFνλ] =

∂µFνλ + ∂νFλµ + ∂λFµν = 0.
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Maxwell equations in curved spacetime

Electromagnetic field energy-momentum tensor:

Tµν =

(
FµαgαβF νβ −

1
4
gµνFδγF δγ

)
that uses an antisymmetric tensor Fµν :

Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0


and the 4-current Jµ = (ρ, J).

In the general curved space:

∇ · E = 4πρ,
∇× B− ∂tE = 4πJ,
∇× E− ∂tB = 0,

∇ · B = 0.

Covariant derivative instead of
partial derivative, ∂µ → ∇µ:

∇µF νµ = 4πJν ,
∇[µFνλ] = 0.
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Einstein equations

Using the just defined tensors, we arrive at

Gµν = Rµν −
1
2
Rgµν =

8πG
c4 Tµν

(10 equations in 3+1 dimensions).

Why like that? The equations should conserve energy & momentum. We
would like to have

∇µTµν = 0. It implies ∇µGµν = 0.

Fortunately, from the contracted Bianchi identity,

∇µRαµ =
1
2
∇αR → ∇µ

(
Rµν −

1
2
Rgµν

)
= 0.
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Einstein equations

Using the just defined tensors, we arrive at

Gµν = Rµν −
1
2
Rgµν =

8πG
c4 Tµν

(10 equations in 3+1 dimensions).
Let’s raise one index and contract both sides (setting 8πG/c4 = 1):

Rµν −
1
2
Rgµν = Tµ

ν → Rµµ −
1
2
Rgµµ = Tµ

µ →
gµ
µ=4

R − 2R = Tµ
µ .

This allows us to write the Einstein equations in an equivalent
(trace-reversed) form:

R = −Tµ
µ → Rµν = Tµν −

1
2
Tα
α gµν
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Einstein equations

What does it mean? Recall that the rate of change of a comoving test
volume V in spacetime is proportional to the Ricci tensor:

D2V
Dλ2 ∝ −Rµνu

µuν

In the comoving (locally Minkowski) frame gµν = ηµν , the only non-zero
component is Rtt , because uµ = (1, 0, 0, 0) there. Thus

D2V
Dλ2 ∝ −Rtt .

On the other hand,

Rtt = Ttt −
1
2
Tα
α =

1
2

(Ttt + Trr + Tθθ + Tφφ)

(Tαα are momentum flows in α direction, e.g., pressure for perfect fluid).
The rate at which a free-falling test volume evolves in time is
proportional to its energy density Ttt and sum of momenta flows in all
other directions, Trr + Tθθ + Tφφ.
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Further reading...

? Lecture notes of Sean Carroll
(http://preposterousuniverse.com/grnotes)

? Textbooks: Misner-Thorne-Wheeler, Wald,
? SageManifolds examples:

http://sagemanifolds.obspm.fr/examples.html
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