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Outline

* Equivalence principle,
« Free-fall and geodesic equations,
* Measurements in curved space,

* Einstein equations.

2/20



Why general relativity?
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Maxwell’s equations (1863) describe electromagnetism and optical
phenomena within the theory of waves:

* A special medium, ,,luminiferous ether”, needed for the EM waves to
propagate (like water for water waves); Ether almost doesn't interact
with matter, but is supposedly carried along with astronomical
objects,

* Light propagates with a finite speed, but is not invariant in all
frames,

« Especially, Maxwell's equations are not invariant under Galilean
transformations:
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* To make electromagnetism compatible with classical mechanics, light
has speed ¢ = 3 x 108 m/s only in frames where source is at rest.
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* Rgmer determination of the finite value of the speed of light,

* Star light aberration: a small shift in apparent positions of distant
stars due to the finite speed of light,

* Fizeau-Foucault (1850): velocity of light in air and liquids

* Michelson-Morley (1887): to detect the motion of the Earth through
ether

* Lorentz-Fitzgerald contraction hypothesis (1894): speeding bodies
get compressed in the direction of motion by a factor

1

7= V1—v2/c?

3/20



Lorentz transformation, as opposed to simpler-looking Galilean
transformation, mixes space and time. Example boost in x-direction

, VX

‘o= o(t-5)

"= y(x—wvt)
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Z = z
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y'| | o 0 10 y
z 0 0 01 z

with 8 =v/c.
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Einstein: an idea of fixing the Maxwell equations by accepting that

* the laws of physics are invariant (i.e., act identically) in all inertial
systems (non-accelerating frames of reference),
— no experiment can measure absolute velocity,

* the speed of light in a vacuum is the same for all observers.

By accepting this, one gets
* length contraction Al = Al/~,
* time dilation At = Aty,
* relativistic mass my,
* mass—energy equivalence E = mc?,
* universal speed limit,

* relativity of simultaneity.
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Gravity and acceleration

What is the difference between Newtonian and Einsteinian theory?

* Newton viewpoint: mass tells gravity how to exert a force, force
tells mass how to accelerate

GM
F=—226T6  F_ma
r
G GMg mg
2 m;

* is gravitational mass m, equal to inertial mass m;?
* |nstantaneous action at a distance,

* Einstein viewpoint: Mass (energy) tells spacetime how to curve,
curved spacetime tells mass (energy) how to move (J. Wheeler) -
geometry is related to mass distribution.
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Equivalence principle

Weak equivalence principle: testing the
equivalence of gravitational mass and inertial mass
E6tvos parameter i for two different test bodies A
and B (aluminum and gold, for example):

()= (5.
() ().

From the times of Galileo (no difference ,,by eye”)
till present (E6t-Wash group) n < 1013

n(A,B) =2
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Equivalence principle

Strong equivalence principle:

* The outcome of any local (gravitational or not) experiment in a
freely falling laboratory is independent of the velocity of the
laboratory and its location in spacetime,

* the laws of gravitation are independent of velocity and location,

* Locally, the effects of gravitation (motion in a curved space) are the
same as that of an accelerated observer in flat space,

* Falsifiability: testing GR in the Solar System and near black holes -
different regimes should give consistent answers (also recently
discovered triple system with 2WD and NS, PSR J0337+1715)
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Equivalence principle
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Gravitation is a form of acceleration; locally, the effects of gravitation
(motion in a curved space) are the same as that of an accelerated
observer in flat space.
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Special relativity in Minkowski spacetime

How we evaluate the distance in space in the usual 3D geometry? Let's
consider spherical coordinates,

= rsinfcos
2 = rsinfsing
3 = rcosh
1 0 0
and call such an object, g = [0 r? 0
0 0 r?sin’f

the metric tensor. An infinitesimal distance between (r, 8, ¢) and
(r+dr,0+db, ¢ + do) is then,

ds? = gaﬁdxadxﬁ = dr? + r?do? + r? sin? 9d¢2
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Special relativity in Minkowski spacetime

Let's consider now a 4D space, with a following coordinate system:

x% = ct (=t for c=1)
xt = x
X2 =y
X} = z

and introduce the following metric tensor

1.0 0 0
o 100
=10 010

0 00 1

that can be used to calculate the distances in an usual way
ds® = nangadXB = —dt® + dx* + dy? + dz°.

Mind the signature (-++4)! Such a manifold - set of points in a
topological space - is called pseudo-Riemannian manifold: the metric

tensor is not positive-definite.
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Special relativity in Minkowski spacetime

timelike

null

\ X

spacelike

timelike ds? < 0; spacelike ds? > 0; null ds® = 0.
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Special relativity in Minkowski spacetime

In this space we can measure proper time (length of the spacetime curve)
by integrating over the spacetime interval:

dx# dxV
= [ V—ds? = N ————d
’ / / T dx
define 4-vectors, e.g., the 4-velocity
(normalized:  n,, u*u” = —1),
and 4-momentum for a particle of mass m:
pH = mut.
* The particle energy E is the timelike component, p° (for a particle
at rest £ = p® = mc?),

* In a moving frame (x-direction, say) from the Lorentz
transformation,

p" = (mvy,vm~,0,0), where v = 1/v/1 — v2,

For small v, p® = mc? + mv?/2 and p' = mv.
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What it the space is not flat?
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How to quantify the curvature

Imagine a curved surface: at a given point, principal curvatures denoted
k1 and Ky, are the maximum and minimum values of the curvature.

http:/ /brickisland.net/cs177
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How to quantify the curvature

* Mean curvature (Sophie
Germain), H = falrz,

* requires an idea of embedding
space exterior to the surface.

* Gauss curvature K = k1Ko,
* intrinsic to the surface.

http:/ /brickisland.net/cs177
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The space may not be flat in general...

but we can assume that in a vicinity of a point, the manifold in question
is locally R" (choosing the coordinates to be locally emulating the
Minkowski space).
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The space may not be flat in general...

In all physical cases the manifold is
equipped with the tangent space at
every point. But how to compare
vectors at different points?

S

Parallel transport of a vector along a
closed curve in a curved space (a
vector is moved along a curve
staying parallel to itself and
maintaining its magnitude).
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Covariant and contravariant, forms and vectors

Vector v, expressed in two

coordinate bases e; and e/, where
1-form, co-vector w (member of a

o , B space dual to the vector space),

ST X 8T ox

w = widx" = whdx".

. ; i
isv=v'e,=Vv'e] _
transforms its components

Expressing the new components of v covariantly:
with old ones. Contravariant )
transformation: ,  Ox
. ax/i . X
"2\ L. .
OxJ whereas the dual basis differentials

_ dx’ transform contravariantly:
Basis vectors transform

coviariantly: e
dX/’ = — dXJ
O OxJ

e, = Wej
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Covariant and contravariant, forms and vectors
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Covariant and contravariant, forms and vectors
Vectors and 1-forms are related to each other; 1-form is a linear
transformation from the vector space of v to real numbers

wuvt = R
(example: u,u* = —1 in SR).
The transformation rules generalize for higher rank tensors:
, B OV P
A OxI" Ox” OxP |

! A T ——
Ve OxH Oxv' Oxr'~ VP

Metric can be used to transform a vector to a form (and vice versa), by
lowering/raising an index:

Au = g,uuAV; Al = gMVAm g/wgwj = 52

(Metric tensor gy, is itself a 2-form: g, dx*dx” — spacetime distance.)
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Comparing vectors in curved spaces

Why all this? We want derivatives that transform like tensors.
Unfortunately, simple 9/dx*

o ox' d¢

AxH T OxH OxH

works only for scalar fields, e.g., gradient of ¢ is a proper (0,1) tensor
(1-form).

For general vectors we obtain, recalling that

rOxt Vi

ooxk

OV (x9N [Ox7 ) oxt ox OV L axt x|,
oxr' \ OxI Oxm Oxv —Oxr oxv \ Oxk Oxt' Ixroxv
— —

not transforming correctly

v

— one cannot use 9/dx" to compare vector field at neighboring points.
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Comparing vectors in curved spaces

Consider an infinitesimal change of a vector v along a line parametrized
by A in a space with a coordinate basis e:

dv _ d(v¥e,)  dv® N o deq
ax dx eV an

How the vectors from the coordinate basis change with \?

de _deadx” L. odea o,
d\ dxB d\ dxb B
Christoffel
so we can write a total derivative
ﬂ dV +r diﬂ or Dva7ﬁ+ravdiﬁ
dX dX dx ) ¢ dx — dx T dx

In a curved space, the changes are because of
* physical changes of a vector field between points,

* curvilinear coordinates.
10/20



Comparing vectors in curved spaces

S5 (Christoffel symbols, Levi-Civita, affine connection coefficients)
describe the effects of parallel transport in curved spaces; they are
functions of the metric

1 0gsy  Ogss 08
re .— = af Y _ Y
0T o8 (8x5 o T oo

1 (87
=58 B(gsy6 + 85 — 816,)

Symmetric in lower indices, [*y5 = %5,.
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Comparing vectors in curved spaces

The total derivative, similar like in hydrodynamics, is

% = ﬁ +re v”diﬁ or in vector notation & = Vuv
DX — dx P d) Dx M

with u® = dx®/d\, the 4-velocity/tangent vector to the curve.

Often called the covariant derivative:

vig = vy +T55v7 or = V3 u?

Covariant derivative acting on the metric return 0 (metric compatibility):

8apiy =0, g;%ﬁ =
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Free fall and the geodesic equation

Geodesic, the straightest line in a curved space. A line is "straight”, if it
parallel transports its own tangent vector, which means

Vau=0

From this and previous considerations we obtain the geodesic equation:

d?x~ dx* dx”

—— 41, ————=0

d\? modX\ dA
which is the force-free equation of motion of a particle in a curved
space.
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Free fall and the geodesic equation

Let's assume that we are in free falling coordinate system x©:

d2Xa
e =0

and make a coordinate transformation to arbitrary coordinates x¢,

dx®  Ox® dx”
o ol Y _ A
A A S

so we have
d (| d (0 o P dddo
dA\ d)x )] dx\oxy d\ ) dX2 Ox7  OxBIxY dh d\

Multiply the above by 9x7/dx®, recalling that

ox® 0x?  0Ox° "
D7 O oxT o7 (Kronecker delta).

0.
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Free fall and the geodesic equation

From

d <8Xa dX’Y) _d?x7 O™ 0?x®  dx? dx?

dx \ 9x7 dX

we have
d2X'>'60+ Ox° 62Xa diﬁﬂ _
dX\2 77 T 9x@ OxBOxY d\ dA

0,

that is

d’x° Ox7 0%\ '\ dx? dx¥
d)\2 Ox® OxPIxY

Christoffel

We end up with the geodesic equation:

Px o A
d )2 Brdan dyx

= AN x0T oxPoxy dx dx

dx dh

/

L ox7
ox®
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Geodesic equation from the action principle

One can get the geodesic equation from the Lagrangian and the action
principle. The spacetime distance is

1 1
2 _ 2 _ B
dr ——C2ds = C2ga,3dxadx ,

The proper time between two events along an arbitrary timelike curve is
(setting ¢ = 1):

B B B vy 1/2
dr dx* dx
/A A dX A AN dA
Let’s call this function the Lagrangian,

B dxH dxv
B g\ dn

L(x¥ % N) =
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Geodesic equation from the action principle

define the action,
B
s :/ L(x®, 5 NdA (55 = 0)
A

and extract the Euler-Lagrange equations out of it:
oL _d (o
oxe  d\ \ 0x

oL 1d\oguy ., ., oL dx . dx*
b = adr o X M G = e = g
Rearanging and multiplying by d\/d7 we have (just a sketch of how to
go):
10gu, dx* dx*  d dxt 0guy  0guy dx®
20x dr dr _ dr (g““dT> adr  ox dr

: d?x+ dx® dxP
—  multiply by g°* — g + gﬁ?? =
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Lie derivative

Consider two vector fields, v and u.
Lie derivative measures the change

of one vector field v along a flow of
another, u:

£o(v) = lim = {v(q) — D.(v(p))}

e—0 €

* v(q) - actual value of v(q) at q,

* . (v(p)) - value transported by
€ along the flow of u,

Oc(v(p)) = qq'/A
ov®
OxH

OxH

Lyv® = u#

* Doesn't require the connection,

* generalizes to higher rank tensors.

v(q)

q':q)[_(,, )

eu(p)

Y
 J

P AV(p) p'

v(p)
from E. Gourgoulhon "341 form. and bases’

Also called the commutator (Lie
bracket):

Lu(v) = [u,v]
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Symmetries and Killing fields

Noether’s theorem: symmetry of the system's Lagrangian (action)
corresponds to a conservation law, for example,

* Lagrangian is symmetric w.r.t. rotations — angular momentum is
conserved,
* symmetry w.r.t. time — conservation of energy.

On a pseudo-Riemannian manifold, Killing vector field preserves the
metric:
Egg =0.
Also,
Vi +V,6, =0 (Killing equation)

Flow generated by a Killing field generates a continuous isometry.
Physical examples are

* &= % in case of stationary systems,

* n= % in case of axisymmetric systems.
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Geometry of curved space

e

"Mass tells space-time how to curve,
and space-time tells mass how to
move’
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Riemann curvature tensor

R(u,v)w =V,V,w —V,V,w — V[, ,jw measures a failure of

derivatives to commute. In coordinates:

A A

REw = 0ul e — Ol g + TP 0T e — TP s

* Constructed from g, and its first and second derivatives,

* Imagine transporting a vector V around a closed loop by dx?, dx*
and then dx”; the vector will change its components w.r.t. the
original ones by AV'.

The Riemann tensor is roughly

RP . = AV'/(dx®dx*dx")

ouv
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Riemann curvature tensor

R(u,v)w =V,V,w —V,V,w — V[, ,jw measures a failure of
derivatives to commute. In coordinates:

Rg,uu = aurpuo - al/rp,ucr + rpy)\r)\zxo - rpu/\r/\;w

* Constructed from g, and its first and second derivatives,

* Measures the intrinsic curvature — Gauss curvature, "rotation” of
parallel-transported vectors (R =0 <= space is flat),

* Measures the tidal forces acting on a body moving on the geodesic
— relative acceleration between nearby bodies (geodesic deviation),

* in 3+1 spacetime, RY,,, has 256 components, only 20 independent
(because of the following symmetries):

Rpa;u/ = _Rpau;t = _Ra'pul/;
Rprf/tl/ - R/u/poa
Roouw + Ropwp + Rovo = 0.

Useful Bianchi identity: V., R,o. + V, Roory + VuRp6y = 0.
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Ricci tensor and Ricci scalar

* Ricci tensor is a contraction of the Riemann tensor:
Rl”’ - Rﬁpu

If the Riemann tensor collects all the information about the
curvature, R, is kind of average curvature. It quantifies the
amount by which a test volume differs from one in flat space,

In the vicinity of a given point, g, = 1, + O(x?).

1
The difference in volume element: dV = (1—6RWX“X"+(9(X3)) dViae

* Ricci scalar (scalar curvature) is contracted Ricci tensor:

R =Rl
used e.g., to compare areas of circles with those from flat space in n
dimensions: S R
2 4
=1——r"+0(r
a5~ 60" PO

in 2D, R = 2K (twice the Gaussian curvature).

1
Useful Bianchi identity: V*R,, = EVQR
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Energy-momentum tensor

The energy-momentum tensor (sometimes called the stress-energy
tensor) gathers information about the matter. Most often used is the
perfect fluid version,

Tuu = (,0+ p)uHuV + PEuv >

— neglect viscosity and elastic effects. Fluid which is isotropic in its rest

frame (g utu” = —1)
~p 0 0 0
, o poo
=10 0 p 0
0 00 p

The conservation laws of T, are analogs of conservation laws for energy
and momenta from hydrodynamics, using the covariant derivative:

V*T,, = 0.
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Maxwell equations in curved spacetime

Electromagnetic field energy-momentum tensor:
1% « 14 1 v
THY — (Fu gasF B _ Zgu F(;VFM)

that uses an antisymmetric tensor F,,:

0 -E -E -E
E. 0 B, -B,
E, -B, 0 B
E. B, -B. 0
and the 4-current J* = (p, J).

In the usual flat spacetime (Minkowski):

V-E = 47Tp, au,_—uu — 471'_/”7
VxB-8E = 4r)
VXxE-OB = 0 W =
XET G N ’ a/LFJJ)\ + ayF)\/L + a)\F/Lu = 0
v-B = 0.
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Maxwell equations in curved spacetime

Electromagnetic field energy-momentum tensor:
1
TH — (Fuagaﬁ FV,B _ Zguu F57 F(Sfy)

that uses an antisymmetric tensor F,,:

0 -E -E, —E
F _|& o B -8
w=1E —-B, 0 B,
E. B, —B, 0

and the 4-current J* = (p, J).

In the general curved space:

Covariant derivative instead of

V-E = A4mp, partial derivative, 9, — V ;:
Vxch‘)tE = 47TJ, V#FV” — 47TJV,
V x E— 8tB = 0, V[;LFI/)\] = 0.

vV-B = 0.
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Einstein equations

Using the just defined tensors, we arrive at

1 8rG
G;w - R;w - ERgpw - 7 T,Lw

(10 equations in 3+1 dimensions).

Why like that? The equations should conserve energy & momentum. We
would like to have

V#Tu =0. ltimplies V"G, =0.
Fortunately, from the contracted Bianchi identity,

1 1
V"Ra“ - EVQR — V“ <RH’/ — 2RgHV) = 0
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Einstein equations

Using the just defined tensors, we arrive at

1 87 G
G;w - R;w - 5 By = 7Tuu

(10 equations in 3+1 dimensions).
Let’s raise one index and contract both sides (setting 87G/c* = 1):

1 1
wo_ — TH wo_ — TH _ _ TR
Ri—Rel =T/ — Ri-ZRei=Ti = R-2R=T}

This allows us to write the Einstein equations in an equivalent
(trace-reversed) form:

1 (o3
R=-Tf = Ru=Tuw— ;T80
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Einstein equations

What does it mean? Recall that the rate of change of a comoving test
volume V in spacetime is proportional to the Ricci tensor:

D%V

D < =Ry utu”

In the comoving (locally Minkowski) frame g,,,, = 7,,,,, the only non-zero
component is Ry, because u* = (1,0,0,0) there. Thus

D?V
Dz * R
On the other hand,
1. 1
Ree = Ty — ETQ =3 (Tee + Tor + Too + Tpg)

(Tao are momentum flows in « direction, e.g., pressure for perfect fluid).

The rate at which a free-falling test volume evolves in time is
proportional to its energy density Ty and sum of momenta flows in all
other directions, T, + Tog + Tpy.
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Further reading...

* Lecture notes of Sean Carroll
(http://preposterousuniverse.com/grnotes)

* Textbooks: Misner-Thorne-Wheeler, Wald,

* SageManifolds examples:
http://sagemanifolds.obspm.fr/examples.html
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