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The importance of instabilities in (astro)physics

« Instabilities involve energy exchange (“energy
release”) - they feed off of free energy in the
system,

* Instabilities are necessary to "makes great things
happen’- they facilitate the mechanisms that
initiate sometimes violent energy exchange
processes.
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From stability to instability

Transition from linear regime to
turbulence in case of flow:

* Laminar flow: symmetric,
steady, simple etc.,

* The development of
instability: the flow loses
symmetry and becomes
unsteady,

* Turbulent flow: multi-scale,
non-periodic, unpredictable

Usually, laminar flow has the
same symmetry as the problem,
but is not often observed.
Instead, real solutions are less
symmetric.
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Definition of stability: evolution and perturbations

* Evolution equation of a state vector ¢

d¢

P_f

= f(on),

where r denotes the parameter(s) of the problem.

* Assume that state ¢ is composed of a basic state ¢ and a
perturbation ¢':

$
p=d+¢, and o _ f(o,r),
dt
* Perturbation evolution equation:
/
4 —fo o~ f(o

* To quantify the perturbations, one defines the norm - a scalar
"perturbation amplitude”, for example

[0 = /| @ @rav o ] (0) = suplo’
\ 14
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Definitions of stability

* Lyapunov stability definition: base solution ® is stable if

Ve > 0 there exists §(e) > 0 such that
it /][ (£ = 0) < 6, thenl|¢']| (£ > 0) <,

* Asymptotic stability: base solution ® is asymptotically stable if it is
stable in the sense of Lyapunov, and

tim (¢ = 0.

* Unconditional stability: base solution ¢ is unconditionally stable if it
is stable, and

V¢l e =0) = Jim ¢ =0

* Single initial condition is sufficient to prove the instability,

* To prove stability, one has to prove it for all possible initial
conditions.
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Dependence on the control parameter r

A
I |
8 l No relaxation to basic !
state for at least one IC|
I |
+
~— |
< |
= |
Relaxgtion to basic | s
statti for all ICs | p;:;n;‘gjeatler
| l >
unconditional | conditional | unconditional
stability | stability | instability

rg < re here, but it could be also that r, = o0 or ry = r.
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Linearization of equations

For a given perturbation equation,

d¢/ _

o —f(®+d.r) — f(o,n)

Taylor expansion of the r.h.s in the vicinity of the base state, neglecting
the higher order terms:

(& +0) = F(®) + S + (o)
One can define the linearized evolution equations
do’ df

=L¢' where L(®,r)=—(,r)

dt dé

is the linearized Jacobian operator.

Linear stability: base solution @ is linearly stable if the solutions of the
evolution equations linear near ® are stable.
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Linear stability analysis

In order to check the linear stability, one usually decomposes the solution
on a basis of fundamental solutions:

¢'(t) = Y, G(IC)d" (1)

where ¢ are members of the complete set of linearly independent
solutions, and coefficients ¢; depend on initial conditions (IC). Obviously,
system is

* linearly unstable if at least one fundamental solution ¢” is unstable,

* linearly stable if all fundamental solutions ¢ are stable.

General method of solution for steady flows (time-independent L) is
called the method of normal modes.
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Method of normal modes

Consider a system of N 1st-order ordinary differential equations with
constant coefficients:
do’

=L¢
dt ¢ b
where state ¢ is an N-dim vector, and L is linear and time-independent.

For such system one has eigenvectors i) and eigenvalues s,
Ly = syp  (direction of ¢ unchanged by L)
For homogeneus system, there are non-trivial solutions if
det(L—sI) =0 — Ly = siqy

(characteristic equations for N roots for s — N eigenvalue-eigenvector
pairs)
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Decomposition into modes

For N distinct eigenvalues, one has N linearly independent eigenvectors
that form an eigenvector basis. The perturbation ¢’ expressed with such
basis

N
= Z qjd)j (gj - modal amplitudes)

For d¢'/dt = L¢' one has
N

Zw,dqj il‘w] . jdgj Jotd oy
T SHILL I S
p =1

i=1

N independent equations for modal amplitudes g;.
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Modal solution to the initial value problem

Lets assume a form of modal amplitudes in order to solve the modal
amplitude equations:
—L =4dgq;, with g;(t) =e""qg;(0).

where ¢;(0) are the intial values of the amplitude coefficients. This gives
us the solution

N i .
¢ (t) = Y, e Wiq;(0)
j=1
The solution is generally composed of
et (coss{t + isin s,’t)
——

envelope

oscillations

* Linear instability if at least one eigenvalue with s, > 0 (unlimited
growth of a fundamental solution),
* Linear stability if all eigenvalues have s, < 0.
Linear stability analysis: checking the real parts of eigenvalues computed
from L.
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Normal modes example

Consider 1D reaction-diffusion equation, describing an unconfined flow

o _
ot

(32 ¢)/

re’ + e

and try to solve it with

d? :

L=rl+ el The solution is 1 (k, x) = e**.
Eigenfunctions are Fourier modes with a real wavenumber k, k € N. The
dispersion relation s = s(k, r) is found by replacing the eigenfunctions in
Lyp = sip:

s=r—Kk?

The solution is expressed with modal decomposition of g;(t) = esitqj(O)
(here, inverse Fourier transform) as

o0 0

q(k, t)z/;(k,x)dx:f q(k, t)e™dk

—00

oo = |

—00
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Stability plot: growth rate

Growth rate s, vs the wavenumber k for selected values of r:
2

ST’,mam ) k"nax
I ~a

ol AN

curves from s, = r — k? for selected r,

magenta region: unstable waveband for r = 1,

green dot: maximum growth rate s, and most amplified k
red dot: instability appears for critical r¢, kc.

* o % %
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Stability plot: neutral curve

Neutral curve s, = 0 separates regions with positive growth rate from
regions of negative growth rate in the r — k plane

3 T T
stable region
21 5.<0
l L
% 0y unstable region
Ol s >0
2
-3

* neutral curve from the dispersion relation s, = r — k?
g rneut(k) = k2,
* red dot: critical rc, k., defined by ming(rpeut(k)),

* black arrow: unstable waveband for r = 1. 4/20



Nonlinear development of instabilities

* Linear theory is not the whole story... Linear stage lasts only for so
long, but is then followed by nonlinear physics,

* Long-term nonlinear fate of an instability may depend on many

factors.
Saturation/relaxation Development of System disruption:
to a new equilibrium:  turbulence: * No lower-energy

* Nno new energy is * free energy is equilibrium
supplied, supplied available,

* new equilibrium continuously, * System runs away
has lower energy * leads to marginal until catastrophic
and lower stability, disruption,
symmetry, * examples: MRI, * example:

* examples: kink convection Rayleigh-Taylor
instability. instability instability.
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Examples of instabilities in astrophysics

* Large-scale fluid instabilities (macroscopic):
* hydrodynamic (gravitational, Rayleigh-Taylor, Kelvin-Helmholtz,
convective),
* ideal-MHD (kink/sausage/spaghetti, MRI, Parker instability),
* resistive-MHD (tearing instability).
* Small-scale (2-fluid and microscopic):

* electromagnetic kinetic (Weibel)
* Pressure-anisotropy-driven (firehose/mirror).
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Jeans instability

Jeans instability causes the collapse of a gas cloud due to the lack of
pressure support or high-enough mass - it's the departure from the
hydrostatic equilibrium described by

dp  GMp

dr 2

For a spherical distribution of mass (radius R, mass M):

R N
ts = — (soundwave crossing timescale, for sound speed ¢;),
Cs

1
tr = —— (free-fall timescale).

VGp

The condition for collapse is
tr < ts (free-fall takes less time than sound to cross the region)

This results in characteristic Jeans radius R; and Jeans mass M;:

Cs 4 5
Ry = My = (2Z) pR2.
J 2 /7Gp7 J <3)pJ
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Convective instability: the Schwarzschild criterion

Consider a .1D .ﬂUId at rest, with . 240z Po -+ Op
p(z) stratification and under gravity g
g = —ge:. .Wh.at happens when > Po
fluid piece is displaced from z to
?

z —I—.(?z.. We assume pressure po+0p [ po+0p v
equilibrium and no heat exchange o = P

0 0

(adiabatic process, p oc p7)

By linearizing the equations we have for density perturbation §p:

5p= DO 5p = P05, dp

YPo po  dz

The fluid element sinks and returns to its original place if

dp po . dp dp l1dp 1dp
po+5p>po+5zdz Vpo(s dz>6zdz pdz>pdz
1 dlnp

<
H'y dinp

otherwise the system is convectively unstable.

8/20



Convective instability: the Schwarzschild criterion

The energy source for this instability is the potential energy of the
initially unstable stratification. Convective instability, if

v dinp

1 dl
> 2np

The density must increase sufficiently fast with depth to stabilize the
convection. For stable situation, equation of motion for the parcel is

P e 0z

buoyancy force

d?s 0
z (p+6zp)g—(p+5p)g— N6z
NI
—_—

weight

with the Brunt-Véisdld (buoyancy) frequency:

N2 g 1dlnp dinp =Lf dinp 1
v dz dz p \dnp ~«/°

System is unstable if

N? < 0.
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Convective instability: the Schwarzschild criterion

For an uniform chemical composition and perfect gas pVoc T,

InT 1
dln 1

Inp=Inp+InT + const. the instability criterion is >1- -
dinp ~

sometimes written as

dinT 1
= -1_=
V > V4 (dlnp)s 5

This is the Schwarzschild criterion for convective instability.
If there is a vertical gradient of chemical composition,

dlnu g6
= h N? = 2= Vag — V+V
w no’ then p( d M)

with H, = p|dp/dz|~! the pressure scale height, and § = (dIn p/dIn T,
V >V + Vu

is called the Ledoux criterion for convective instability.
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Convective instability: effects of dissipation

Convective instability is a dynamical process - it does not require
dissipation to run; Dissipation changes the instability criterion to

C
tvtd,

N? < —

where C > 0 is a constant (depending on geometry) and t, and ty4 are
viscosity and heat diffusion timescales.
Inside stars,

* tg < t,, the diffusion damps oscillations in stable regions,

* Prandl number Pr = v/k = 107° — 1075,

‘Warmer saltier water]

(&
Example: double-diffusive convection (fluid N =
with two different density gradients which
have different rates of diffusion e.g., heated »

water with salinity gradient). 4 & e AN
o ,L——smk‘mg salt finger|

NS Cooler fresher water
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Convective instability: the Boussinesq approximation

In order to model convection, a following approximation is used:
* Variables, such as pressure fluctuation p’ change about their means,
* Velocity u is considered a fluctuation,

* Density fluctuations are ignored in the continuity equation (anelastic
approximation: dp/dt = 0, filtering the high-frequency sound waves),

* differences in inertia are negligible,

in order to get the following set of equations:

Ju s 5
E—&—u Vu-—pr hog+z/V u,
V.-u=0,

&T’

+u-VT — Be, -u = radiative exchange term,

with 8 = (T/H,)(V — Vaq) is called the superadiabatic lapse rate.

Good approximation when H,, H, » | (small changes in p and p,
sometimes not true for stellar convection).
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The Kelvin-Helmholtz instability

This instability occurs at the u; z
interface between two fluids moving Lo T o
w.r.t each other with velocities u; T <
and u, (shear instability). g s

Consider a small perturbation {(x) of the interface (the dashed line):
¢ = Aexp(ikx — iwt)

For incompressible, irrotational perturbations, the small perturbation u’ is
expressed by a scalar potential ¢:

v =Ve, Vp=0.
Since the velocity potentials obey the Laplace equation,

¢1 = Grexp(ikx — iwt — kz), ¢o = Crexp(ikx — iwt + kz).
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The Kelvin-Helmholtz instability

The vertical components of the velocity on either side must match the
substantial derivative of the interface x-displacement ((x, t):

G0 ¢ A s A

2z "ot "M oz T o ek
at the interface z = 0. This means
—kCy = —iwA + ikAUl, kG = —iwA + ikAu,. (#1)

Another condition is that the normal stress across the interface must be
continuous (continuity of pressure). The momentum equation is

¢ 1
v<6t>+v< )——pr—geZ.

09 g p
o +u >, gz + const.

To linear order
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The Kelvin-Helmholtz instability

The continuity of pressure is then

061 N (M 0
—p1<at+ulax+g€“>——pz<at o +&¢)-

At the interface (z = 0),
1 (kG — iwCy + gA) = pa (ikGoup — iwCy + gA). (#2)
Combining (#1) and (#2) we have, for A # 0:

p1 (w — kuy)® + p1gk = —py (w — kup)® + pagk, that is

(w— kD)2 - (p2 — p1)gk _ p1p2(ur — up)?k?
Pt p2 (p1 + p2)?

with T = (p1u1 + patn) /(p1 + p2) a density-weighted average speed.
The configuration is unstable if

(w — ki)> < 0.
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The Kelvin-Helmholtz instability




The Rayleigh-Taylor instability

Rayleigh-Taylor instability can be

regarded as a special case of N oo o
Kelvin-Helmholtz instability for T, o
up = up. If py > p», the instability g
develops (g an effective gravity -
accelerated shocks etc.)

The condition is

2o (P2 —pr)gk
p1tp2
For p; = 0, the dispersion relation is w? = gk, like for surface gravity

waves.

The energy source for this instability is the potential energy stored in the
initial configuration (e.g., denser fluid on top).
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The Rayleigh-Taylor instability
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Rotational instability

Consider an instability associated with a 0
rotation inside a star, neglecting gravity and

viscosity. In cylindrical coordinates, for a

distance @ from the axis, the equilibrium

between pressure forces and centrifugal  + oo

forces is

1d
2P 0?0
pdw

For a displacement of a fluid element from @ to @ + dw,
* The specific angular momentum w2 is conserved (no viscosity),
* The pressure force at @ + 6w is (@ + 6w)Q%(w + dw).

The net force per unit mass felt by the fluid element displaced to w + dw
is, to first order in O(dw)

@2 Q(w)
(w + 0w) <(w o)
1 d

=———— (w492) dww = N3dw
w? dw 11/20

> — (w+ dw) (Qw + dw))



Rotational instability

The equation of motion of the fluid element is

d?6w

d2 +NQ(SW—0

(instability for Ns22 < 0). From the previous slide, to be stable, the
rotational profile must satisfy

1 d

3 dw

(=) >

(Sometimes called the Rayleigh discriminant). In realistic situations,
strong differential rotation is needed to trigger this dynamical instability -
often, other instabilities start earlier.
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Critical Richardson and Reynolds numbers

The Kelvin-Helmholtz instability shows how stable stratification halts the
onset of instability. For the velocity varying with z, the stabilizing effect
is measured by the Richardson number:

Ri — potential energy o gh N?

kinetic energy w2 (du/dz)?

In case of no dissipation, the sufficient condition for instability is
Ri < 1/4.

The onset of turbulence (transition from a laminar flow) can be
determined by the critical Reynolds number:

Re = Lu/v

with L and u characteristic length scale and speed of the flow and v
kinematic viscosity. In absence of other forces (e.g., buoyancy) critical
Re ~ 1000.
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What is turbulence?

* loosely, random motion of fluid with
many nonlinear interacting modes
involved.

* chaotic property changes,

* low momentum diffusion, high
momentum convection,

* rapid variation of p and v in space and
time.
In astrophysics, plasma is usually turbulent:
* magnetic dynamo action,

* density structures in the interstellar
medium,

star formation,
scintillation of radio sources,
cosmic ray acceleration and scattering

L S

solar corona...
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Kolomogorov phenomenology

The onset of turbulence - transition from the laminar regime in which the
kinetic energy dies out due to the action of fluid viscosity.

* the flow develops smaller and smaller scales of motion until the
molecular viscosity starts operating.

* energy is supplied at large scales, gets redistributed over fluctuations
of different scales and removed (dissipated as heat) at small scales
by viscosity.

In steady state rate of energy supply = rate of energy transfer = rate of
energy dissipation. Kinetic energy spectrum is

k k, k

where wavenumbers k is called outer (forcing) scale, and k,, is called
inner (viscous) scale.
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Kolomogorov spectrum

Assume that the turbulent flow is in statistical equilibrium (averages of
physical quantities independent of time; Kolomogorov theory is mean
field theory)

* energy supplied at rate € on length scale Ir = kf_1 (outer scale),
* energy per unit mass is 1/2u?.

From dimensional analysis
[e] =L2T73, [v]=12T1

The viscous characteristic length scale /, = k! should depend on ¢ and
v - one has, on dimensional grounds

1/4

I, ~ (V3 /e)

I, is sometimes called the Kolomogorov microscale length; related are the
timescale 7, = (v/€)'/? and velocity scale u, = (ve)/*.
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Kolomogorov spectrum

The kinetic energy per unit mass on scale /s depends on /¢ and . Again
using dimensional analysis,

u? ~ (elf)?3
The relation between /, and /¢ is then
[, ~ (Re)_3/4/f. where Re = lrus/v.

The interval between ks and k, is called the inertial range. The kinetic

energy spectrum E; (t) is defined using the average kinetic energy per
unit mass,

1 0]
—~®)y = J Edk.
2 0

Because of viscosity, the integral has a cut-off at kK = k,. With
[E ] = L3 T2, in the inertial range the energy density scales as k—>/3:

Ex = CePk™53,

This is the Kolomogorov scaling for a homogeneous turbulence.
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Accretion disk "problem’

Imagine matter in-falling under the
influence of gravity:

* Conservation of angular /_\
momentum, Black Hole \

* In-falling matter has often too
much angular momentum —
accretion disk is formed:

* Proto-planetary disks,

* AGNs,

* LMXBs & HMXBs, Roche
lobe overflow.

* The problem: how to
transport the angular
momentum out so that the
matter can fall in?
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Accretion disk "problem’

The simplest assumption - Keplerian
Newtonian accretion disk,

which gives
s <0 y ‘
dr '

Evolution equation for the specific
angular momentum / oc r2Q,

9 1d [, dQ
p<at+uv>/—rdr<rpl/dr>
—_——

torque
From dimensional analysis of the above, the accretion time is,
pl / r?

—CpVl > T L —= = —
T prai— %9 v
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Accretion disk "problem’

Source of the viscosity? First guess: standard molecular viscosity,
resulting from thermal collisions between individual gas particles:

v o arA, with ar = (kT/m)l/2 the typical thermal velocity,

and A denoting the mean free path. For 'typical’ (average) values for
accretion disks,

* outer radius R ~ 1019 ¢m,
* temperature T ~ 10*K,

* density n ~ 1016 cm™3
k2 T2
A= 7 ~107%em, ar ~10°cms, v ~10° cm® s
ne

This gives the accretion rate 7

R2
T=—~10Y s =3 x10° yr,
14
which is much too long to explain the observed accretion rates in X-ray

binaries and proto-stellar disks.
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Shakura-Sunyaev « disk

* A proposition that shear-driven hydrodynamic turbulence could lead
to an enhanced viscosity,

* The effective viscosity is parametrized:
v = aHcg,

with H the thickness of the disk and ¢, the sound speed. The
corresponding stress tensor component is

T, = ap.

* « € (0.01,1) to match observations.
* Alas,

* Turbulence from the shear flow, shear instabilities,
barotropic/baroclinic instabilities, sound waves, shocks, finite
amplitude instabilities are all not sufficient.

* An alternative is MHD turbulence: the magneto-rotational instability
(MRI), discovered in the late 50s (Velikov, Chandrasekhar), used for
accretion disks by Balbus & Hawley (1991).
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Schematic explanation of MRI

* Imagine two masses on nearby
Keplerian orbits connected with
the spring,

* The inner mass is moving faster
than the outer mass,

* Due to the interaction through
the spring, the inner mass is
pulled backwards, the outer
mass pulled forwards,

* As a result, the angular
momentum is transported
outwards,

* For nearby masses, MRI
destabilizes the circular motion.
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More detailed explanation of MRI

Imagine a fluid element on the orbit with angular velocity Q at rg. It is
influenced by

* centrifugal force rQ?(r),
* centripetal force —GM/r?.

For a small departure dr from rg, in the rotating frame (one needs to
take the Coriolis force, —2Q x u and the centrifugal force, rQ? into
account), the net force is
2 2 dQ? 2
r(Q§ — Q?(ro +6r)) ~ —r5r7 +O(dr).

This leads to the equations of motion in the x and y directions,

#?x dy 492 a2y dx
TX 50, Y LALS 20
2 gt = g The gp Ty T

with £, and f, the (possible) external forces per unit mass.

=1,
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More detailed explanation of MRI: Rayleigh criterion

In absence of external forces, the solutions depend on time as exp(iwt),
where w satisfies the following dispersion relation:

dQ?
w? = 493 +r— =K.

dr

(k2 is called the epicyclic frequency). It may equivalently be written as

2 o 1d(r'Q?)
3 dr
which shows that it is proportional to the radial derivative of the specific
angular momentum r2Q. For stability
d(r’Q)
dr

>0 (specific angular momentum increases outwards).

This is the Rayleigh criterion for stability.
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More detailed explanation of MRI: 'spring’ force

In case of external restoring forces, f, = —Kx, f, = —Ky, the dispersion
relation for solutions x, yoc exp(iwt) is

2
w4(2K+n2)w2+K<K+rdj> =0.

Setting w? = 0 shows that MRI is unstable when

2

K —_ .
+r ar <0

The Keplerian disk (with a weak magnetic field, small K) is unstable
w.r.t the MRI instability. For K = 0,

_GM dQ?

2 2
The growth rate of the fastest growing mode is
ol = 5 | 2
~2|dInr|’
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Key features of MRI

* From normal mode analysis:
linearly unstable in ideal MHD,

* |ocal behavior (insensitive to
global boundary conditions),

* Triggered by weak magnetic
field,

* Unstable in a regime that is
Rayleigh-stable,

* Grows on a dynamical
timescale.
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The Plateau-Rayleigh instability

Instability of a laminar stream (jet), decrease of the total
surface are under surface tension, — decomposition into
droplets. For a cylinder of radius R and length L » R,
what is the critical radius of spherical droplets, r?
Surface-to-volume ratios for cylinder and sphere are

(.5 ().

r 3 9
for V = t, — == > =R,
or const., =5 or 5
where [ is the length of cylinder with volume V = 4/37r3.
Relation to astrophysics?

* Systems with surface tension, like nuclear pasta in the
interiors of neutron stars,

* High-dimensional black strings/holes,
* Astrophysical jets?
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Kink instabilities

* A class of MHD instabilities
that can develop in a plasma
column carrying a strong axial
current,

* Z-pinch - cylindrical plasma
confinement that uses plasma
electric current to compress it
(Lorentz force).

Instability for [T 2

&

T — —

The Astophysical Journal Sept. 2005 ® American Astronomical Soc.

FiG. |.—Left: TRACE 195 A images of the confined filament eruption on

2002 May 27. Righr: Magnetic field lines outlining the core of the kink-unstable

flux rope (with start points in the bottom plane at circles of radius b/3) at

= 0,24, and 37. The central part of the box (a volume of size 4") is shown,
and the magnetogram, B.(x, y, 0, 1), is included

from Torok & Kliem (2004)
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Instabilities of rotating neutron stars

* Secular instability: acts on slow (dissipative) scale. Dissipation can
be viscosity or gravitational waves. For Newtonian Maclaurin
spheroids (p = const.) required kinetic-to-potential energy ratio is
T/|W| = 0.1375,

* Dynamical instability: acts on dynamical timescale (for NS
~ 1 ms), required kinetic-to-potential energy ratio is T/|W| > 0.26
(may require exotic EOS and/or differential rotation),

which eventually leads to non-axisymmetric motion:
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Neutron stars’ oscillations

* f-mode (fundamental mode): Freq. 1.5 — 3 kHz, damping time
~ 1 s, no nodes inside the star,

* g-modes (gravity modes): restoring force is buoyancy - present if
temperature or stratification gradients, tangential displacement
bigger than radial ones. Freq. < 1 kHz, damping times long,
seconds or days,

* p-modes (pressure modes): restoring force is pressure, there may
be many of them with node structure in the star, mostly radial
movement. Freq. 4 — 7 kHz, damping time ~ 1 s,

*» w-modes (spacetime modes): related to relativistic structure of
the star (e.g., ergosphere). Freq. > 5 kHz, fast damping,

* r-modes (Rossby, rotational modes): restoring force is the
Coriolis force - present in rotating stars. Freq. similar to spin
frequency, damping related to composition.
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Oscillation modes

Oscillation usually described as an Lagrangian displacement vector £ on
the (r,0, ¢) sphere. It's a sum of toroidal and spheroidal (axial and
polar) components.

In case of a non-rotating star:

£(r,0,0,t) = A(r)Y/["(0, p)e’".

* f, g and p modes are purely spheroidal - described by a (/, m) pair,
* mode frequency w degenerated w.r.t m,

In case of a rotating star:

£(r,0,¢,t) = A(r,0)e™melt,

* some non-zero toroidal components,

* Degeneracy in m removed by mode splitting.
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Rossby modes

Rossby, (r-)modes of a p = const. star:
* non-rotating star - purely toroidal with
w =0,
* rotating star - £ acquires spheroidal
components,

Mode frequency in a rotating frame is, to
O(Q) order

2mQ

Wy = 77—

I(I+1)
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Chandrasekhar-Friedman-Schutz (CFS) instability

For non-axisymmetric modes,  a sttonay reference frame
w.r.t distant observer:

* if the mode rotates
forward (with the star),
it radiates angular
momentum J > 0,

To an astronomer
on Earth, the
r-mode appears
to be moving
clockwise

On a merry-go-round
the child appears to his
parents to be moving
backwards (clockwise).
He is actually running
anticlockwise

* if it rotates backward, it
radiates J < 0.

b Rotating reference frame
Because the rotation drags
the mode, a backward mode
with J < 0 may rotate
forward w.r.t distant
observer, radiate positive J
— decrease J further —
instability

On the rotating
neutron star,

the -mode's
anticlockwise
motion is actually
increasing
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CFS instability and r-modes

In the frame co-rotating with the star, the general perturbation is
&(r,0,0,t) = A(r,0) exp(im¢ + iwt)

In the inertial (observer) frame

¢ =¢+Qt, so &(r,0,¢' t) = A(r,0)exp(imd’ + i(w— mQ)t).

The mode frequency observed from far is
wi = w, — mS2.

In case of the lowest, most promising / = m = 2 r-mode, the observed
frequency is
2mSQ 4
B
il = |~ m2] = 39
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Realistic star: damping timescales

In the simplest case of 'normal’ npe matter:

* bulk viscosity: matter locally off-g-equilibrium, energy loses due to
modified URCA process,

n+n—-p+n+e +10,

Works at high temperatures T > 10° K, viscosity coefficient oc T,
* shear viscosity: particles’ Coulomb interactions (scattering)
dissipates energy into heat. Works at low temperatures, coefficient
o« T2
* Gravitational wave damping: From the multipole formula (see
e.g., Kokkotas & Stergioulas 1999), energy and energy loses are

dE 1 2E
W2

P wrand  Tew = Im(w) _ dE/dt

E o Q°
x5 dt !

All together, one has the damping timescale

1 1 1 1

T ) Ts Tew
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R-mode instability window

1.00

CFS instability overcomes
0.95 dissipative effects

-> exponentially growing

amplitude of the modes

# 0.90

O\Q

0.85 Shear viscosity

Bulk
viscosity

0.80
9 10

8
log,(7)

It could be the reason we do not observe very fastly spinning neutron

stars...
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Further reading...

* "An introduction to astrophysical fluid dynamics”,
Michael J. Thompson

* "The future of plasma astrophysics”,
http://userpages.irap.omp.eu/
~frincon/houches/program.html

* "Magnetorotational instability”, Steven A. Balbus,

http://www.scholarpedia.org/article/
Magnetorotational_instability
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