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Outline

‹ De�nition of stability; linear stability analysis & normal modes,

‹ Hydrodynamical instabilities in astrophysics,

‹ Turbulence,

‹ magneto-rotational instability,

‹ Rossby modes of neutron stars.
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The importance of instabilities in (astro)physics

‹ Instabilities involve energy exchange (�energy
release�) - they feed o� of free energy in the
system,

‹ Instabilities are necessary to �makes great things
happen�- they facilitate the mechanisms that
initiate sometimes violent energy exchange
processes.
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From stability to instability

Transition from linear regime to
turbulence in case of �ow:

‹ Laminar �ow: symmetric,
steady, simple etc.,

‹ The development of
instability: the �ow loses
symmetry and becomes
unsteady,

‹ Turbulent �ow: multi-scale,
non-periodic, unpredictable

Usually, laminar �ow has the
same symmetry as the problem,
but is not often observed.
Instead, real solutions are less
symmetric.
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De�nition of stability: evolution and perturbations

‹ Evolution equation of a state vector φ

dφ

dt
“ f pφ, rq,

where r denotes the parameter(s) of the problem.

‹ Assume that state φ is composed of a basic state Φ and a
perturbation φ1:

φ “ Φ` φ1, and
dΦ

dt
“ f pΦ, rq,

‹ Perturbation evolution equation:

dφ1

dt
“ f pΦ` φ1, rq ´ f pΦ, rq

‹ To quantify the perturbations, one de�nes the norm - a scalar
�perturbation amplitude�, for example

∥∥φ1∥∥ ptq “d

ż

V

pφ1 ¨ φ1q dV or
∥∥φ1∥∥ ptq “ sup

V

|φ1|
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De�nitions of stability

‹ Lyapunov stability de�nition: base solution Φ is stable if

@ε ą 0 there exists δpεq ą 0 such that

if
∥∥φ1∥∥ pt “ 0q ă δ, then

∥∥φ1∥∥ pt ě 0q ă ε,

‹ Asymptotic stability: base solution Φ is asymptotically stable if it is
stable in the sense of Lyapunov, and

lim
tÑ8

∥∥φ1∥∥ “ 0.

‹ Unconditional stability: base solution Φ is unconditionally stable if it
is stable, and

@
∥∥φ1∥∥ pt “ 0q ùñ lim

tÑ8

∥∥φ1∥∥ “ 0.

‹ Single initial condition is su�cient to prove the instability,

‹ To prove stability, one has to prove it for all possible initial
conditions.
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Dependence on the control parameter r

rg ă rc here, but it could be also that rc “ 8 or rg “ rc .
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Linearization of equations

For a given perturbation equation,

dφ1

dt
“ f pΦ` φ1, rq ´ f pΦ, rq

Taylor expansion of the r.h.s in the vicinity of the base state, neglecting
the higher order terms:

f pΦ` φ1q “ f pΦq `
df

dφ
pΦqφ1 `Op

∥∥φ1∥∥2q
One can de�ne the linearized evolution equations

dφ1

dt
“ Lφ1 where LpΦ, rq “

df

dφ
pΦ, rq

is the linearized Jacobian operator.

Linear stability: base solution Φ is linearly stable if the solutions of the
evolution equations linear near Φ are stable.
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Linear stability analysis

In order to check the linear stability, one usually decomposes the solution
on a basis of fundamental solutions:

φ1ptq “
ÿ

cjpIC qφ
1jptq

where φ1j are members of the complete set of linearly independent
solutions, and coe�cients cj depend on initial conditions (IC). Obviously,
system is

‹ linearly unstable if at least one fundamental solution φ1j is unstable,

‹ linearly stable if all fundamental solutions φ1j are stable.

General method of solution for steady �ows (time-independent L) is
called the method of normal modes.
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Method of normal modes

Consider a system of N 1st-order ordinary di�erential equations with
constant coe�cients:

dφ1

dt
“ Lφ1,

where state φ is an N-dim vector, and L is linear and time-independent.

For such system one has eigenvectors ψ and eigenvalues s,

Lψ “ sψ (direction of ψ unchanged by L)

For homogeneus system, there are non-trivial solutions if

detpL´ sIq “ 0 Ñ Lψj “ s jψj

(characteristic equations for N roots for s Ñ N eigenvalue-eigenvector
pairs)
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Decomposition into modes

For N distinct eigenvalues, one has N linearly independent eigenvectors
that form an eigenvector basis. The perturbation φ1 expressed with such
basis

φ1ptq “
N
ÿ

j“1

qjψ
j (qj - modal amplitudes)

For dφ1{dt “ Lφ1 one has

N
ÿ

j“1

ψj dqj

dt
“

N
ÿ

j“1

Lψjqj Ñ

N
ÿ

j“1

ψj dqj

dt
“

N
ÿ

j“1

s jψjqj Ñ

N
ÿ

j“1

ˆ

dqj

dt
´ s jqj

˙

“ 0Ñ
dqj

dt
“ s jqj

N independent equations for modal amplitudes qj .
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Modal solution to the initial value problem

Lets assume a form of modal amplitudes in order to solve the modal
amplitude equations:

dqj

dt
“ s jqj , with qjptq “ es

j tqjp0q.

where qjp0q are the intial values of the amplitude coe�cients. This gives
us the solution

φ1ptq “
N
ÿ

j“1

es
j tψjqjp0q

The solution is generally composed of

es
j
r t

loomoon

envelope

´

cos s ji t ` i sin s ji t
¯

looooooooooomooooooooooon

oscillations

‹ Linear instability if at least one eigenvalue with sr ą 0 (unlimited
growth of a fundamental solution),

‹ Linear stability if all eigenvalues have sr ă 0.

Linear stability analysis: checking the real parts of eigenvalues computed
from L.
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Normal modes example

Consider 1D reaction-di�usion equation, describing an uncon�ned �ow

Bφ1

Bt
“ rφ1 `

B2φ1

Bx2

and try to solve it with

L “ rI`
d2

dx2
. The solution is ψpk, xq “ e ikx .

Eigenfunctions are Fourier modes with a real wavenumber k, k P N. The
dispersion relation s “ spk, rq is found by replacing the eigenfunctions in
Lψ “ sψ:

s “ r ´ k2

The solution is expressed with modal decomposition of qjptq “ es
j tqjp0q

(here, inverse Fourier transform) as

φ1px , tq “

ż 8

´8

qpk, tqψpk, xqdx “

ż 8

´8

qpk, tqe ikxdk
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Stability plot: growth rate

Growth rate sr vs the wavenumber k for selected values of r :

‹ curves from sr “ r ´ k2 for selected r ,
‹ magenta region: unstable waveband for r “ 1,
‹ green dot: maximum growth rate sr and most ampli�ed k

‹ red dot: instability appears for critical rc , kc .
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Stability plot: neutral curve

Neutral curve sr “ 0 separates regions with positive growth rate from
regions of negative growth rate in the r ´ k plane

‹ neutral curve from the dispersion relation sr “ r ´ k2

Ñ rneutpkq “ k2,
‹ red dot: critical rc , kc , de�ned by minkprneutpkqq,
‹ black arrow: unstable waveband for r “ 1.
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Nonlinear development of instabilities

‹ Linear theory is not the whole story... Linear stage lasts only for so
long, but is then followed by nonlinear physics,

‹ Long-term nonlinear fate of an instability may depend on many
factors.

Saturation/relaxation
to a new equilibrium:

‹ no new energy is
supplied,

‹ new equilibrium
has lower energy
and lower
symmetry,

‹ examples: kink
instability.

Development of
turbulence:

‹ free energy is
supplied
continuously,

‹ leads to marginal
stability,

‹ examples: MRI,
convection
instability

System disruption:

‹ No lower-energy
equilibrium
available,

‹ System runs away
until catastrophic
disruption,

‹ example:
Rayleigh-Taylor
instability.
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Examples of instabilities in astrophysics

‹ Large-scale �uid instabilities (macroscopic):
‹ hydrodynamic (gravitational, Rayleigh-Taylor, Kelvin-Helmholtz,
convective),

‹ ideal-MHD (kink/sausage/spaghetti, MRI, Parker instability),
‹ resistive-MHD (tearing instability).

‹ Small-scale (2-�uid and microscopic):
‹ electromagnetic kinetic (Weibel)
‹ Pressure-anisotropy-driven (�rehose/mirror).
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Jeans instability

Jeans instability causes the collapse of a gas cloud due to the lack of
pressure support or high-enough mass - it's the departure from the
hydrostatic equilibrium described by

dp

dr
“ ´

GMρ

r2
.

For a spherical distribution of mass (radius R, mass M):

ts “
R

cs
(soundwave crossing timescale, for sound speed cs),

tf “
1

?
Gρ

(free-fall timescale).

The condition for collapse is

tf ă ts (free-fall takes less time than sound to cross the region)

This results in characteristic Jeans radius RJ and Jeans mass MJ :

RJ “
cs

2
?
Gρ

, MJ “

ˆ

4π

3

˙

ρR2
J .
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Convective instability: the Schwarzschild criterion

Consider a 1D �uid at rest, with
ρpzq strati�cation and under gravity
g “ ´gez . What happens when
�uid piece is displaced from z to
z ` δz? We assume pressure
equilibrium and no heat exchange
(adiabatic process, p 9 ργ)

p0 ` δp

p0
“

ˆ

ρ0 ` δρ

ρ0

˙γ

By linearizing the equations we have for density perturbation δρ:

δρ “
ρ0
γp0

δp “
ρ0
γp0

δz
dp

dz

The �uid element sinks and returns to its original place if

ρ0 ` δρ ą ρ0 ` δz
dρ

dz
Ñ

ρ0
γp0

δz
dp

dz
ą δz

dρ

dz
Ñ

1

γp

dp

dz
ą

1

ρ

dρ

dz

Ñ
1

γ
ă

d ln ρ

d ln p
otherwise the system is convectively unstable.
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Convective instability: the Schwarzschild criterion

The energy source for this instability is the potential energy of the
initially unstable strati�cation. Convective instability, if

1

γ
ą

d ln ρ

d ln p

The density must increase su�ciently fast with depth to stabilize the
convection. For stable situation, equation of motion for the parcel is

ρ
d2δz

dt2
“

ˆ

ρ` δz
Bρ

Bz

˙

g
loooooooomoooooooon

buoyancy force

´pρ` δρq g
loooomoooon

weight

“ N2δz

with the Brunt-Väisälä (buoyancy) frequency:

N2 “ g

ˆ

1

γ

d ln ρ

dz
´

d ln p

dz

˙

“
ρg2

p

ˆ

d ln ρ

d ln p
´

1

γ

˙

.

System is unstable if
N2 ă 0.
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Convective instability: the Schwarzschild criterion

For an uniform chemical composition and perfect gas pV9T ,

ln p “ ln ρ` lnT ` const. the instability criterion is
d lnT

d ln p
ą 1´

1

γ
,

sometimes written as

∇ ą ∇ad “

ˆ

d lnT

d ln p

˙

S

“ 1´
1

γ

This is the Schwarzschild criterion for convective instability.
If there is a vertical gradient of chemical composition,

∇µ “
d lnµ

d ln p
, then N2 “

gδ

Hp

p∇ad ´∇`∇µq

with Hp “ p|dp{dz |´1 the pressure scale height, and δ “ pB ln ρ{B lnT qp,

∇ ą ∇ad `∇µ

is called the Ledoux criterion for convective instability.
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Convective instability: e�ects of dissipation

Convective instability is a dynamical process - it does not require
dissipation to run; Dissipation changes the instability criterion to

N2 ă ´
C

tv td
,

where C ą 0 is a constant (depending on geometry) and tv and td are
viscosity and heat di�usion timescales.
Inside stars,

‹ td ă tv , the di�usion damps oscillations in stable regions,

‹ Prandl number Pr “ ν{κ “ 10´9 ´ 10´6,

Example: double-di�usive convection (�uid
with two di�erent density gradients which
have di�erent rates of di�usion e.g., heated
water with salinity gradient).
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Convective instability: the Boussinesq approximation

In order to model convection, a following approximation is used:

‹ Variables, such as pressure �uctuation p1 change about their means,

‹ Velocity u is considered a �uctuation,

‹ Density �uctuations are ignored in the continuity equation (anelastic
approximation: Bρ{Bt “ 0, �ltering the high-frequency sound waves),

‹ di�erences in inertia are negligible,

in order to get the following set of equations:

Bu

Bt
` u ¨∇u “ ´

1

ρ
∇p1 ´

ρ1

rho
g ` ν∇2u,

∇ ¨ u “ 0,

BT 1

Bt
` u ¨∇T 1 ´ βez ¨ u “ radiative exchange term,

with β “ pT {Hpqp∇´∇adq is called the superadiabatic lapse rate.

Good approximation when Hp, Hρ " l (small changes in p and ρ,
sometimes not true for stellar convection).
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The Kelvin-Helmholtz instability

This instability occurs at the
interface between two �uids moving
w.r.t each other with velocities u1
and u2 (shear instability).

Consider a small perturbation ζpxq of the interface (the dashed line):

ζ “ A exppikx ´ iωtq

For incompressible, irrotational perturbations, the small perturbation u1 is
expressed by a scalar potential φ:

u1 “ ∇φ, ∇2φ “ 0.

Since the velocity potentials obey the Laplace equation,

φ1 “ C1 exppikx ´ iωt ´ kzq, φ2 “ C2 exppikx ´ iωt ` kzq.
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The Kelvin-Helmholtz instability

The vertical components of the velocity on either side must match the
substantial derivative of the interface x-displacement ζpx , tq:

Bφ1
Bz

“
Bζ

Bt
` u1

Bζ

Bx
,

Bφ2
Bz

“
Bζ

Bt
` u2

Bζ

Bx
.

at the interface z “ 0. This means

´kC1 “ ´iωA` ikAu1, kC2 “ ´iωA` ikAu2. p#1q

Another condition is that the normal stress across the interface must be
continuous (continuity of pressure). The momentum equation is

∇
ˆ

Bφ

Bt

˙

`∇
ˆ

1

2
u2
˙

“ ´
1

ρ
∇p ´ gez.

To linear order
Bφ

Bt
` u

Bφ

Bx
“ ´

p

ρ
´ gz ` const.
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The Kelvin-Helmholtz instability

The continuity of pressure is then

´ρ1

ˆ

Bφ1
Bt

` u1
Bφ1
Bx

` gζ

˙

“ ´ρ2

ˆ

Bφ2
Bt

` u2
Bφ2
Bx

` gζ

˙

.

At the interface (z “ 0),

ρ1 pikC1u1 ´ iωC1 ` gAq “ ρ2 pikC2u2 ´ iωC2 ` gAq . p#2q

Combining (#1) and (#2) we have, for A ‰ 0:

ρ1 pω ´ ku1q
2
` ρ1gk “ ´ρ2 pω ´ ku2q

2
` ρ2gk, that is

pω ´ kūq
2
“
pρ2 ´ ρ1qgk

ρ1 ` ρ2
´
ρ1ρ2pu1 ´ u2q

2k2

pρ1 ` ρ2q2
,

with ū “ pρ1u1 ` ρ2u2q {pρ1 ` ρ2q a density-weighted average speed.
The con�guration is unstable if

pω ´ kūq
2
ă 0.
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The Kelvin-Helmholtz instability
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The Rayleigh-Taylor instability

Rayleigh-Taylor instability can be
regarded as a special case of
Kelvin-Helmholtz instability for
u1 “ u2. If ρ1 ą ρ2, the instability
develops (g an e�ective gravity -
accelerated shocks etc.)

The condition is

ω2 “
pρ2 ´ ρ1qgk

ρ1 ` ρ2
.

For ρ1 “ 0, the dispersion relation is ω2 “ gk, like for surface gravity
waves.

The energy source for this instability is the potential energy stored in the
initial con�guration (e.g., denser �uid on top).

10 / 20



The Rayleigh-Taylor instability
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Rotational instability

Consider an instability associated with a
rotation inside a star, neglecting gravity and
viscosity. In cylindrical coordinates, for a
distance $ from the axis, the equilibrium
between pressure forces and centrifugal
forces is

1

ρ

dp

d$
`$Ω2 “ 0.

For a displacement of a �uid element from $ to $ ` δ$,

‹ The speci�c angular momentum $2Ω is conserved (no viscosity),
‹ The pressure force at $ ` δ$ is p$ ` δ$qΩ2p$ ` δ$q.

The net force per unit mass felt by the �uid element displaced to $` δ$
is, to �rst order in Opδ$q

p$ ` δ$q

ˆ

$2Ωp$q

p$ ` δ$q2

˙

´ p$ ` δ$q pΩp$ ` δ$qq

“ ´
1

$3

d

d$

`

$4Ω2
˘

δ$ “ N2
Ωδ$
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Rotational instability

The equation of motion of the �uid element is

d2δ$

dt2
` N2

Ωδ$ “ 0

(instability for N2
Ω ă 0). From the previous slide, to be stable, the

rotational pro�le must satisfy

1

$3

d

d$

`

$4Ω2
˘

ą 0.

(Sometimes called the Rayleigh discriminant). In realistic situations,
strong di�erential rotation is needed to trigger this dynamical instability -
often, other instabilities start earlier.
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Critical Richardson and Reynolds numbers

The Kelvin-Helmholtz instability shows how stable strati�cation halts the
onset of instability. For the velocity varying with z , the stabilizing e�ect
is measured by the Richardson number:

Ri “
potential energy

kinetic energy
9

gh

u2
9

N2

pdu{dzq2

In case of no dissipation, the su�cient condition for instability is
Ri ă 1{4.

The onset of turbulence (transition from a laminar �ow) can be
determined by the critical Reynolds number:

Re “ Lu{ν

with L and u characteristic length scale and speed of the �ow and ν
kinematic viscosity. In absence of other forces (e.g., buoyancy) critical
Re » 1000.
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What is turbulence?

‹ loosely, random motion of �uid with
many nonlinear interacting modes
involved.

‹ chaotic property changes,

‹ low momentum di�usion, high
momentum convection,

‹ rapid variation of p and u in space and
time.

In astrophysics, plasma is usually turbulent:

‹ magnetic dynamo action,

‹ density structures in the interstellar
medium,

‹ star formation,

‹ scintillation of radio sources,

‹ cosmic ray acceleration and scattering

‹ solar corona...
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Kolomogorov phenomenology

The onset of turbulence - transition from the laminar regime in which the
kinetic energy dies out due to the action of �uid viscosity.

‹ the �ow develops smaller and smaller scales of motion until the
molecular viscosity starts operating.

‹ energy is supplied at large scales, gets redistributed over �uctuations
of di�erent scales and removed (dissipated as heat) at small scales
by viscosity.

In steady state rate of energy supply = rate of energy transfer = rate of
energy dissipation. Kinetic energy spectrum is

where wavenumbers kf is called outer (forcing) scale, and kν is called
inner (viscous) scale.
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Kolomogorov spectrum

Assume that the turbulent �ow is in statistical equilibrium (averages of
physical quantities independent of time; Kolomogorov theory is mean
�eld theory)

‹ energy supplied at rate ε on length scale lf “ k´1f (outer scale),

‹ energy per unit mass is 1{2u2f .

From dimensional analysis

rεs “ L2T´3, rνs “ L2T´1

The viscous characteristic length scale lν “ k´1ν should depend on ε and
ν - one has, on dimensional grounds

lν „
`

ν3{ε
˘1{4

lν is sometimes called the Kolomogorov microscale length; related are the
timescale τν “ pν{εq

1{2 and velocity scale uν “ pνεq
1{4.
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Kolomogorov spectrum

The kinetic energy per unit mass on scale lf depends on lf and ε. Again
using dimensional analysis,

u2f „ pεlf q
2{3

The relation between lν and lf is then

lν „ pReq
´3{4lf . where Re “ lf uf {ν.

The interval between kf and kν is called the inertial range. The kinetic
energy spectrum Ekptq is de�ned using the average kinetic energy per
unit mass,

1

2
xu2y “

ż 8

0

Ekdk.

Because of viscosity, the integral has a cut-o� at k “ kν . With
rEk s “ L3T´2, in the inertial range the energy density scales as k´5{3:

Ek “ Cε2{3k´5{3.

This is the Kolomogorov scaling for a homogeneous turbulence.
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Accretion disk 'problem'

Imagine matter in-falling under the
in�uence of gravity:

‹ Conservation of angular
momentum,

‹ In-falling matter has often too
much angular momentum Ñ

accretion disk is formed:

‹ Proto-planetary disks,
‹ AGNs,
‹ LMXBs & HMXBs, Roche
lobe over�ow.

‹ The problem: how to
transport the angular
momentum out so that the
matter can fall in?
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Accretion disk 'problem'

The simplest assumption - Keplerian
Newtonian accretion disk,

Ωprq 9 r´3{2

which gives

dΩ

dr
ă 0.

Evolution equation for the speci�c
angular momentum l 9 r2Ω,

ρ

ˆ

B

Bt
` u ¨∇

˙

l “
1

r

d

dr

ˆ

r3ρν
dΩ

dr

˙

looooooooomooooooooon

torque

.

From dimensional analysis of the above, the accretion time is,

ρl

τ
9 ρνΩ Ñ τ 9

l

νΩ
“

r2

ν
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Accretion disk 'problem'

Source of the viscosity? First guess: standard molecular viscosity,
resulting from thermal collisions between individual gas particles:

ν 9 aTλ, with aT “ pkT {mq
1{2 the typical thermal velocity,

and λ denoting the mean free path. For 'typical' (average) values for
accretion disks,

‹ outer radius R „ 1010 cm,

‹ temperature T „ 104K ,

‹ density n „ 1016 cm´3

λ “
k2T 2

πne4
„ 10´3 cm, aT „ 106 cm s´1, ν „ 103 cm2 s´1.

This gives the accretion rate τ

τ “
R2

ν
„ 1017 s “ 3ˆ 109 yr ,

which is much too long to explain the observed accretion rates in X-ray
binaries and proto-stellar disks.

15 / 20



Shakura-Sunyaev α disk

‹ A proposition that shear-driven hydrodynamic turbulence could lead
to an enhanced viscosity,

‹ The e�ective viscosity is parametrized:

ν “ αHcs ,

with H the thickness of the disk and cs the sound speed. The
corresponding stress tensor component is

Trφ “ αp.

‹ α P p0.01, 1q to match observations.

‹ Alas,
‹ Turbulence from the shear �ow, shear instabilities,
barotropic/baroclinic instabilities, sound waves, shocks, �nite
amplitude instabilities are all not su�cient.

‹ An alternative is MHD turbulence: the magneto-rotational instability
(MRI), discovered in the late 50s (Velikov, Chandrasekhar), used for
accretion disks by Balbus & Hawley (1991).
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Schematic explanation of MRI

‹ Imagine two masses on nearby
Keplerian orbits connected with
the spring,

‹ The inner mass is moving faster
than the outer mass,

‹ Due to the interaction through
the spring, the inner mass is
pulled backwards, the outer
mass pulled forwards,

‹ As a result, the angular
momentum is transported
outwards,

‹ For nearby masses, MRI
destabilizes the circular motion.
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More detailed explanation of MRI

Imagine a �uid element on the orbit with angular velocity Ω at r0. It is
in�uenced by

‹ centrifugal force rΩ2prq,

‹ centripetal force ´GM{r2.

For a small departure δr from r0, in the rotating frame (one needs to
take the Coriolis force, ´2Ωˆ u and the centrifugal force, rΩ2 into
account), the net force is

r
`

Ω2
0 ´ Ω2pr0 ` δrq

˘

» ´rδr
dΩ2

dr
`Opδr2q.

This leads to the equations of motion in the x and y directions,

d2x

dt2
´ 2Ω0

dy

dt
“ ´xr

dΩ2

dr
` fx ,

d2y

dt2
` 2Ω0

dx

dt
“ fy ,

with fx and fy the (possible) external forces per unit mass.
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More detailed explanation of MRI: Rayleigh criterion

In absence of external forces, the solutions depend on time as exppiωtq,
where ω satis�es the following dispersion relation:

ω2 “ 4Ω2
0 ` r

dΩ2

dr
” κ2.

(κ2 is called the epicyclic frequency). It may equivalently be written as

κ2 9
1

r3
dpr4Ω2q

dr
,

which shows that it is proportional to the radial derivative of the speci�c
angular momentum r2Ω. For stability

dpr2Ωq

dr
ą 0 (speci�c angular momentum increases outwards).

This is the Rayleigh criterion for stability.
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More detailed explanation of MRI: 'spring' force

In case of external restoring forces, fx “ ´Kx , fy “ ´Ky , the dispersion
relation for solutions x , y9 exppiωtq is

ω4 ´ p2K ` κ2qω2 ` K

ˆ

K ` r
dΩ2

dr

˙

“ 0.

Setting ω2 “ 0 shows that MRI is unstable when

K ` r
dΩ2

dr
ă 0.

The Keplerian disk (with a weak magnetic �eld, small K ) is unstable
w.r.t the MRI instability. For K “ 0,

Ω2 “
GM

r3
Ñ r

dΩ2

dr
“ ´3Ω2 ă 0.

The growth rate of the fastest growing mode is

|ω| “ 1

2

∣∣∣∣ dΩ

d ln r

∣∣∣∣ .
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Key features of MRI

‹ From normal mode analysis:
linearly unstable in ideal MHD,

‹ local behavior (insensitive to
global boundary conditions),

‹ Triggered by weak magnetic
�eld,

‹ Unstable in a regime that is
Rayleigh-stable,

‹ Grows on a dynamical
timescale.

16 / 20



The Plateau-Rayleigh instability

Instability of a laminar stream (jet), decrease of the total
surface are under surface tension, Ñ decomposition into
droplets. For a cylinder of radius R and length L " R,
what is the critical radius of spherical droplets, r?
Surface-to-volume ratios for cylinder and sphere are

ˆ

A

V

˙

c

“
2

R
,

ˆ

A

V

˙

s

“
3

r
.

for V “ const.,
r

R
ě

3

2
or l ě

9

2
R,

where l is the length of cylinder with volume V “ 4{3πr3.
Relation to astrophysics?

‹ Systems with surface tension, like nuclear pasta in the
interiors of neutron stars,

‹ High-dimensional black strings/holes,

‹ Astrophysical jets?
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Kink instabilities

‹ A class of MHD instabilities
that can develop in a plasma
column carrying a strong axial
current,

‹ Z-pinch - cylindrical plasma
con�nement that uses plasma
electric current to compress it
(Lorentz force).

from Torok & Kliem (2004) 18 / 20



Instabilities of rotating neutron stars

‹ Secular instability: acts on slow (dissipative) scale. Dissipation can
be viscosity or gravitational waves. For Newtonian Maclaurin
spheroids (ρ “ const.) required kinetic-to-potential energy ratio is
T {|W | “ 0.1375,

‹ Dynamical instability: acts on dynamical timescale (for NS
„ 1 ms), required kinetic-to-potential energy ratio is T {|W | ą 0.26
(may require exotic EOS and/or di�erential rotation),

which eventually leads to non-axisymmetric motion:

19 / 20



Neutron stars' oscillations

‹ f-mode (fundamental mode): Freq. 1.5´ 3 kHz , damping time
„ 1 s, no nodes inside the star,

‹ g-modes (gravity modes): restoring force is buoyancy - present if
temperature or strati�cation gradients, tangential displacement
bigger than radial ones. Freq. ă 1 kHz , damping times long,
seconds or days,

‹ p-modes (pressure modes): restoring force is pressure, there may
be many of them with node structure in the star, mostly radial
movement. Freq. 4´ 7 kHz , damping time „ 1 s,

‹ w-modes (spacetime modes): related to relativistic structure of
the star (e.g., ergosphere). Freq. ą 5 kHz , fast damping,

‹ r-modes (Rossby, rotational modes): restoring force is the
Coriolis force - present in rotating stars. Freq. similar to spin
frequency, damping related to composition.
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Oscillation modes

Oscillation usually described as an Lagrangian displacement vector ξ on
the pr , θ, φq sphere. It's a sum of toroidal and spheroidal (axial and
polar) components.

In case of a non-rotating star:

ξpr , θ, φ, tq “ AprqYm
l pθ, φqe

iωt .

‹ f , g and p modes are purely spheroidal - described by a pl ,mq pair,

‹ mode frequency ω degenerated w.r.t m,

In case of a rotating star:

ξpr , θ, φ, tq “ Apr , θqe imφe iωt .

‹ some non-zero toroidal components,

‹ Degeneracy in m removed by mode splitting.
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Rossby modes

Rossby, (r-)modes of a ρ “ const. star:

‹ non-rotating star - purely toroidal with
ω “ 0,

‹ rotating star - ξ acquires spheroidal
components,

Mode frequency in a rotating frame is, to
OpΩq order

ωr “
2mΩ

lpl ` 1q
.

19 / 20



Chandrasekhar-Friedman-Schutz (CFS) instability

For non-axisymmetric modes,
w.r.t distant observer:

‹ if the mode rotates
forward (with the star),
it radiates angular
momentum J ą 0,

‹ if it rotates backward, it
radiates J ă 0.

Because the rotation drags
the mode, a backward mode
with J ă 0 may rotate
forward w.r.t distant
observer, radiate positive J
Ñ decrease J further Ñ
instability

19 / 20



CFS instability and r-modes

In the frame co-rotating with the star, the general perturbation is

ξpr , θ, φ, tq “ Apr , θq exppimφ` iωtq

In the inertial (observer) frame

φ1 “ φ` Ωt, so ξpr , θ, φ1, tq “ Apr , θq exppimφ1 ` ipω ´mΩqtq.

The mode frequency observed from far is

ωi “ ωr ´mΩ.

In case of the lowest, most promising l “ m “ 2 r-mode, the observed
frequency is

|ωi | “
∣∣∣∣ 2mΩ

lpl ` 1q
´mΩ

∣∣∣∣ “ ∣∣∣∣43Ω

∣∣∣∣ .
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Realistic star: damping timescales

In the simplest case of 'normal' npe matter:

‹ bulk viscosity: matter locally o�-β-equilibrium, energy loses due to
modi�ed URCA process,

n ` nÑ p ` n ` e´ ` ν̄e

Works at high temperatures T ą 109 K , viscosity coe�cient 9 T 6,

‹ shear viscosity: particles' Coulomb interactions (scattering)
dissipates energy into heat. Works at low temperatures, coe�cient
9 T´2,

‹ Gravitational wave damping: From the multipole formula (see
e.g., Kokkotas & Stergioulas 1999), energy and energy loses are

E 9 Ω2,
dE

dt
9 ´ ω2l`1

i ωr and τGW “
1

Impωq
“ ´

2E

dE{dt

All together, one has the damping timescale

1

τ
“

1

τb
`

1

τs
`

1

τGW
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R-mode instability window

It could be the reason we do not observe very fastly spinning neutron
stars...
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Further reading...

‹ �An introduction to astrophysical �uid dynamics�,
Michael J. Thompson

‹ �The future of plasma astrophysics�,
http://userpages.irap.omp.eu/

„frincon/houches/program.html

‹ �Magnetorotational instability� , Steven A. Balbus,
http://www.scholarpedia.org/article/

Magnetorotational_instability
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