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Outline

‹ Wave equation in linearized GR,

‹ the quadrupolar nature of gravitational waves,

‹ Detection principle,

‹ Astrophysical sources.
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GR is nonlinear & fully dynamical Ñ not so clear a distinction between
waves and the rest of the metric. Speaking about waves is 'safe' in in
certain limits:

‹ linearized theory,

‹ as small perturbations of a smooth background metric (gravitational
lensing of waves, cosmological perturbations),

‹ in post-Newtonian theory (far-zone, i.e., more than one wave- length
distant from the source).
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Wave equation in linearized GR

Since we anticipate the gravitational-wave component w.r.t the otherwise
stationary (e.g., Minkowski) metric η to be small, gµν “ ηµν ` hµν ,
|hµν | ! 1 let's linearize the Einstein's equations,

Rµν ´
1

2
gµν R “

8π G

c4
Tµν , where R “ gµν Rµν , Rµν “ gρσ Rρµσν

Rνµρσ “ BρΓνµσ ´ BσΓνµρ ` Γνλρ Γλµσ ´ Γνλσ Γλµρ, Rνµρσ “ gνρR
ρ
µρσ,

Γνµρ “
1

2
gνλpgλµ,ρ ` gλρ,µ ´ gµρ,λq.

At linear order in hµν the connection coe�cients are

Γνµρ “
1

2
ηνλphλµ,ρ ` hλρ,µ ´ hµρ,λq

and
Rνµρσ “ BρΓνµσ ´ BσΓνµρ `Oph2q Ñ

Rµνρσ “
1

2
pBρνhµσ ` Bσµhνρ ´ Bρµhνσ ´ Bσνhµρq .
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Wave equation in linearized GR

To simplify previous expressions, the trace-reversed tensor is introduced:

h
µν
“ hµν ´

1

2
ηµνh, where h “ ηαβ h

αβ and h “ ´h.

With these changes, the Einstein equations are

lhνσ ` ηνσ B
ρ Bλhρλ ´ B

ρ Bνhρσ ´ B
ρ Bσhρν `Oph2q “ ´16πG

c4
Tνσ,

where l “ ηρσ B
ρ Bσ is the d'Alambert (wave) operator. In Cartesian

terms

l “ ηρσ B
ρ Bσ “ ´

1

c2
B2t ` B

2
x ` B

2
y ` B

2
z .

Further simpli�cation is the use of gauge freedom; by imposing the
Lorentz (de Donder, harmonic) gauge condition, Bνh

µν
“ 0, one obtains

lhνσ “ ´
16πG

c4
Tνσ.
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Gauge transformation freedom

Consider an in�nitesimal coordinate transformation,

x 1α “ xα ` ξαpxβq, with ξα small in the sense that |Bβξ
α| ! 1.

This imply

Bx 1α

Bxβ
“ δαβ ` Bβξ

α, and
Bxα

Bx 1β
“ δαβ ´ Bβξ

α `OppBξq2q.

Recalling that gµν “ ηµν ` hµν and g 1µνpx
1q “

Bxα

Bx 1µ
Bxβ

Bx 1ν
gαβpxq,

one �nally gets

g 1αβ “ ηαβ ` hαβ ´ Bαξβ ´ Bβξα
looooooooooomooooooooooon

h1αβ

`OphBξ, pBξq2q pξα “ ηαβξ
βq.

Because |Bβξ
α| ! 1 the metric perturbation h1αβ is small, the

approximation is still valid. Applied to metric perturbation h
1

αβ :

h
1

αβ “ hαβ ´ Bαξβ ´ Bβξα ` ηαβBµξ
µ.
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Transverse-traceless gauge

We have limited 10 degrees of freedom of a symmetric 4ˆ 4 tensor hµν
to 6 independent components by imposing the Lorentz gauge. In
vacuum, where the waves propagate, Tµν “ 0,

lhνσ “ 0.

Ñ speed of the wave equals speed of light c. Concerning the remaining
degrees of freedom, in Lorentz gauge one can always consider coordinate
transformations

h1νσ “ hνσ ` ξµν , where ξµν “ ηµν Bρξ
ρ ´ ξµ,ν ´ ξν,µ Ñ lξµν “ 0

lξµν “ 0 means �xing 4 from 6 remaining degrees of freedom, for

example choosing ξ0 such that h “ 0 and ξi such that hit “ 0, Bth
tt “ 0:

htt “ 0, hti “ 0, Bih
ij “ 0, hii “ 0.

This is the de�nition of the transverse-traceless tensor hTTij .
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Transverse-traceless tensor hTTij

For a propagation direction ni , the transversality condition means
ni hTTij “ 0 (in the TT gauge the gravitational wave is described by 2ˆ 2
matrix in the plane orthogonal to the direction of propagation n).
Assuming the plane wave that propagates along the z-axis

hTTij pt, zq “

¨

˚

˚

˝

0 0 0 0
0 h` hˆ 0
0 hˆ ´h` 0
0 0 0 0

˛

‹

‹

‚

cos pωt ´ kzq ,

where h` and hˆ are two independent polarization states (two remaining
degrees of freedom).
h` and hˆ are the helicity states - in the form described by the TT
gauge they change under rotation of φ around n as

hÑ e iS¨nφh where S “ particle spin

hˆ ˘ i h` Ñ e¯2i φ phˆ ˘ i h`q.
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GW interaction with a point particle in the TT gauge

Let's consider a test particle, at rest at τ “ 0. From the geodesic
equation one has

d2x i

dτ2 |τ“0
“ ´

ˆ

Γiρσ
dxρ

dτ

dxσ

dτ

˙

|τ“0

“ ´

ˆ

Γitt
dx t

dτ

dx t

dτ

˙

|τ“0

,

with pdxµ{dτqτ“0 “ pc, 0q and

Γitt “
1

2
ηij pBthtj`Bthjt´Bjhttq, but htt “ 0, htj “ 0 so pΓittqτ“0 “ 0.

If at τ “ 0 dx i{dτ “ 0, also d2x i{dτ2 “ 0 and a particle at rest before
the GW arrives remains at rest. What varies is the proper distance
between the particles. For a plane wave in the z´direction,

ds2 “ ´c2dt2 ` dx2p1` h` cospωt ´ kzqq

` dy2p1´ h` cospωt ´ kzqq ` 2dxdy hˆ cospωt ´ kzq ` dz2.

If particles A and B set down initially along the x-axis, we have

s » L

ˆ

1`
h`

2
cosωt

˙

,

where L is the initial, unperturbed distance between particles A and B.
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Newtonian tidal force & geodetic deviation

For two particles A and B falling in Euclidean space under gravitational
potential Φ. At t “ 0 separation is ξ “ xA ´ xB and
vApt “ 0q “ vBpt “ 0q. The evolution of ξ because of g “ ´∇Φ

d2ξi

dt2
“ ´

ˆ

BΦ

dx i

˙

B

`

ˆ

BΦ

dx i

˙

A

» ´

ˆ

B2Φ

Bx i Bx j

˙

looooomooooon

Tidal gravity tensor E i
j

ξj

In GR for two neigboring geodesics xµpτq and xµpτq ` ξµpτq, the
geodetic equation,

d2xµ

dτ2
` Γµρσpxq

dxρ

dτ

dxσ

dτ
“ 0

By expanding the geodesic equation of particle B around the position of
particle A and subtracting it from the geodesic equation of particle A,
one gets

∇u ∇uξ
µ “ ´Rµνρσ ξ

ρ dx
ν

dτ

dxσ

dτ
,

with uβ “ dxβ{dτ . Nearby time-like geodesics are tidally deviated

proportional to the Riemann tensor.
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GWs in the free-falling frame

By changing the coordinates to a system in which Γµρσpxq “ 0,

d2xµ

dτ2
` Γµρσpxq

dxρ

dτ

dxσ

dτ
“ 0 Ñ

ˆ

d2xµ

dτ2

˙

x

“ 0.

A particle is not experiencing acceleration (free-falling, FF). Let's chose a
coordinate system in which x j “ 0 and x0 “ τ (coordinate time is proper
time), the metric at the origin is Minkowski

ds2 “ ´c2 dt2 ` dx2 `O
ˆ

|x|2

R2

˙

“ ´c2 dt2
`

1` Ritjt x
i x j

˘

´ 2c dt dx i
ˆ

2

3
Rtjik x

j xk
˙

` dx idx j
ˆ

δij ´
1

3
Rijkl x

k x l
˙

where R is the curvature radius R´2 “ |Rµνρσ|. On Earth, the detector
is not in full free fall (acceleration a “ ´g w.r.t a local inertial frame),
but some directions (horizontal movement) may be used.
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GWs in the free-falling frame

Let's investigate the geodesic deviation in this frame:

∇u ∇uξ
α “ uβ∇βpu

λ∇λξ
αq “ uβ uλ pBβλξ

α ` Γαλσ,β ξ
σq,

which simpli�es because Γαλσ “ 0, particles are initially at rest (uβ “ δβ0 ),

with ξ0 “ 0 and Γjtk,t

∇u ∇uξ
j “

d2ξj

dτ2
Ñ

d2ξj

dτ2
“ ´R

j
tkt ξ

k

from the geodesic deviation equation. In linearized theory the Riemann
tensor is invariant under change of coordinates, so in TT gauge

Rµνρσ “
1

2
pBρνhµσ ` Bσµhνρ ´ Bρµhνσ ´ Bσνhµρq Ñ RTT

jtkt “ ´
1

2c2
:hTTjk

Ñ
d2ξj

dt2
“

1

2
:hTTjk ξk

(also, in FF the coordinate distances and proper distances coincide)
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GWs in the free-falling frame

The GW e�ect on a point particle can be described as an e�ect of a
Newtonian force

d2ξj

dt2
“

1

2
:hTTjk ξk Ø Fi “

m

2
:hTTij ξj .

Free-falling approximation to geodesic deviation applies as long as

‹ gµν “ ηµν `Opx2{R2q,

‹ since R´2 “ |Ritjt | „
:h „ h{λ2

GW
, one has x2{R2 » L2 h{λ2

GW
, and

comparing with δL{L „ h Ñ L2{λ2
GW

! 1,

‹ Works for a ground based detector: for L “ 4 km and λGW „ 3000
km,

‹ Space-based detectors: L „ 106 km set to observe GWs with
wavelength comparable or shorter L - di�erent strategy needed (time
of �ight, phase shifts measurements).
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Gravitational-wave detection

GW acting on a ring of free-falling test particles, with x0 and y0 the
unperturbed position at time t “ 0. For ` polarization

hTTij “ h`

ˆ

1 0
0 ´1

˙

sinωt , ξi “ px0 ` δxptq, y0 ` δyptqq

δxptq “
h`

2
x0 sinωt, δyptq “ ´

h`

2
y0 sinωt, and likewise

for ˆ polarization: δxptq “
hˆ

2
y0 sinωt, δyptq “

hˆ

2
x0 sinωt.

left - a wave with ` polarization, right - with ˆ polarization.
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Gravitational-wave detection

Lines of force for both polarizations are as follows:

The simplest detector - test mass m and an apparatus to check the
change of distance L (e.g., a spring with the resonant frequency Ω and
quality factor Q):

:∆Lptq ` 2
Ω

Q
9∆Lptq ` Ω2 ∆Lptq “

L

2

´

F` :h`ptq ` Fˆ :hˆptq
¯

,

where F` and Fˆ depend on the direction of the source.
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Quadrupolar nature of GWs

In electromagnetism, radiation due time changing electric dipole moment
d “ ex:

Luminosity 9 :d

Gravitational-wave emission in the dipole mode would mean the changing
in time mass dipole moment:

d “
ÿ

i

mixi Ñ 9d “
ÿ

i

mi 9xi

loomoon

Momentum

Conservation of momentum means no mass dipole GW radiation.
Likewise, for the current dipole moment

M “
ÿ

i

mixi ˆ 9xi

loooooomoooooon

Angular momentum

the conservation of angular momentum mean no current dipole GW
radiation.
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Estimate of wave amplitude

The wave equation for GWs,

lh
αβ
“

16πG

c4
Tαβ

is an analogue to the Maxwell equation (Gauss law) in the Lorentz gauge,
p1{c2qBtφ`∇ ¨ A “ 0):

∇ ¨ E “ lφ “ 4πρ, where E “ ´∇φ` BtA.

By analogy between solutions

φpt, rq “

ż

ρpt ´ R{c, xq

R
dV , h

αβ
“

4G

c4

ż

Tαβpt ´ R{c, xq

R
dV .

with R “ |r ´ x|. Far from the compact source (r " x), the solution is
described by the far-�eld solution:

h
αβ
pt, rq “

4G

c4r

ż

Tαβpt ´ R{c, xqdV .
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Estimate of wave amplitude

Using the energy-momentum conservation it can be shown that

T
αβ
,β “ 0 Ñ h

ij
« ´

2G

c4r

d2I ij

dt2
,

where I ij “

ż

ρx ix jdV is the moment of inertia tensor (quadrupole tensor).

Consider two equal masses M separated by a on circular orbit in the
x ´ y with angular frequency Ω around their center of mass. Then

I xx “

ż

ρx2dV “ 2M
´a

2
cosΩt

¯2

“
1

4
Ma2 p1` cos 2Ωtq ,

which leads to, and other terms like that,

h
xx
“

2GMa2Ω2

c4r
cos 2Ωt.

Two important conclusions:

‹ Quadrupole radiation: GW at twice the orbital frequency,

‹ Amplitude 9GMa2Ω2{c4r .
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Estimate of wave amplitude

Example - binary system of two
stellar-mass black holes:

‹ M “ 10 Md,

‹ a “ 1 Rd,

‹ r “ 8 kpc (Galactic center)

From the Kepler's third law,

Ω2 “
G pM `Mq

a3
« 8ˆ10´4 rad2{s2

Orbital period 38 min Ñ GW period
19 min. The GW strain amplitude is
h „ 10´21.

Another example: binary neutron
star pair, 10M light years distance
(Virgo cluster), moving at „ 10% of
the speed of light Ñ h » 10´21.
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The quadrupole formula

The �rst term of the perturbation in the multipolar expansion far from
the source is

hαβpt, rq »
4G

c4R

ż

Tαβpt ´ R{c, xqdV .

By imposing the conservation equation for the energy-momentum tensor

BνT
µν “ 0 Ñ

BTij

Bx i
´
BTtj

Bx t
“ 0 and

BTti

Bx i
´
BTtt

Bx t
“ 0

it can be shown that
ż

TαβdV can be expressed in terms of Ttt .
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The quadrupole formula

#1 :
BTij

Bx i
´
BTtj

Bx t
“ 0 { ¨ xk and integrating on all space Ñ

ż

xk
BTij

Bx i
dV “

ż

xk
BTtj

Bx t
dV “

B

Bx t

ż

xkTjtdV .

Integrating the left side by parts: ´

ż

Tijδ
k
i dV “

B

Bx t

ż

xkTjtdV

Symetrization:

ż

TkjdV “ ´
1

2

B

Bx t

ż

pxkTtj ` xjTtkqdV

#2 :
BTti

Bx i
´
BTtt

Bx t
“ 0 { ¨ xjxk and integrating on all space Ñ

B

Bx t

ż

TttxjxkdV “

ż

BTti

Bx i
xjxkdV .

Integrating the right side by parts:
B

Bx t

ż

TttxjxkdV “ ´

ż

pxkTtj ` xjTtkqdV

Finally:

ż

TkjdV “
1

2c2
B2

Bt2

ż

TttxjxkdV .
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The quadrupole formula

For T tt “ µc2,

hij “
2G

c4R

B2

Bt2

ż

µxixjdV , In TT gauge: h
TT

ij “
2G

c4R
Pk
i P l

j
:Ikl ,

where Ikl “

ż

ρpxkxl´
1

3
x2δklqdV , Pk

i “ δki ´n
ink (projection operator).

Similarly one can show from the conservation equation #2 that
ż

TtjdV “
B

Bx t

ż

TttxjdV

and that the power P radiated per solid angle in a direction n is

dP

dΩ
“ R2niΘit , where Θit “

c4

32πG

A

Bth
β

αBih
α

β

E

.

The radiated GW power averaged over polarizations is

P “
G

5c5
;I 2ij .
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The quadrupole formula: estimates

For a source of mass M, dimension L and deviation from sphericity ε,

P “
G

5c5
;I 2ij with I 9 εML2 Ñ ;I „ ω3εML3,

where ω „ 1{τ (source characteristic frequency)

Ñ P „
G

c5
ε2ω6M2L4, with

G

c5
“ 3.6ˆ 1050 erg{s.

Some estimates:

‹ From Misner-Thorne-Wheeler: steel bar of M » 500 tonnes,
L “ 20 m, ω „ 30 rad{s:

GMω{c3 „ 10´32, Lc2{GM „ 1025, P „ 10´27 erg{s „ 10´60 PEM
d

‹ parametrization by Weber: Rs “ 2GM{c2, ω “ pv{cqpc{Lq,

P “
c5

G
ε2
´v

c

¯6
ˆ

Rs

L

˙

for v „ c, L „ Rs P „
c5

G
ε2 „ 1026 PEM

d .
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Detectors
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Ground-based interferometry

As seen by the detector, gravitational wave strain h “ ∆L{L, for L » km,
∆L ă 1018 m (much smaller than the size of a proton).
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Virgo detector (Cascina near Pisa, arm length - 3km)
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Bar detectors

Passing GW resonates with the
characteristic frequency of the bar (narrow
frequency searches, typically „ 500 Hz):

Amplitude of the vibrations is ∆L „ hL,
response quite complicated.
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Space-based interferometry

‹ Local geometry of geodesic deviation is
not enough to analize the free-falling
bodies response to the passing
gravitational wave, L ě λGW .
Proposed space-borne mission eLISA
with L „ 106 km and study GW in the
range 0.1 mHz ă fGW ă 1 Hz ,

‹ Each spacecraft carries a free-falling
test mass,

‹ Direct re�ection from mirrors not
possible due to loses („ 1 photon/day
detection rate) Ñ transponder mode,

‹ Time-delay interferometry, central
spacecraft compares the phases of
lasers from �arm spacecrafts� (absolute
lengths of arms known up to 1 m). Triangular formation with center 20˝

behind the Earth, each spacecraft on

an individual orbit around the Sun.
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Space-based interferometry: time measurements

Let's consider an interferometer with an arm in the x “direction. In a
case for pure ` polarization (TT gauge, wave travels to z´direction),

ds2 “ ´dt2 ` p1` h`qdx
2 ` p1´ h`qdy

2 ` dz2,

the coordinate speed along x-axis is pdx{dtq2 “ 1{p1` h`q. A photon
emitted at time t from x “ 0 reaches the end of arm at x “ L at the
coordinate time

t1 “ t `

ż L

0

a

1` h`ptpxqqdx , (implicit knowledge of tpxq needed).

One must know the time to reach x in order to calculate h`.
In linear approximation, h` small: expansion in powers of h` and
assuming zero-order solution of a photon in �at space-time traveling with
c “ 1, tpxq “ t ` x :

t1 “ t ` L`
1

2

ż L

0

h`pt ` xqdx .
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Space-based interferometry: time measurements

Round-trip time (after re�ection/transmission back) takes

tr “ t ` L`
1

2

˜

ż L

0

h`pt ` xqdx `

ż L

0

h`pt ` x ` Lqdx

¸

.

The variation of tr means changing GW background (L is �xed),

dtr

dt
“ 1`

1

2
ph`pt ` 2Lq ´ h`ptqq ,

depending only on the wave amplitude h`.
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Sources of noise - the detector sensitivity

(1989 LIGO proposal)

GW detector output time series:

sptq “ F`ptq ˝h`ptq`Fˆptq ˝hˆptq`nptq

In Fourier domain, strain amplitude spectral
density is hpf q “

a

Spf q “
a

s̃ ˚pf qs̃ pf q,

where s̃ pf q “
ş8

´8
e´2πiftsptqdt.
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Sources of noise of ground-based detectors

‹ Seismic noise: important below 100 Hz , falls with frequency;
multiple pendula with characteristic freq. „ 1 Hz attenuating the
ground vibrations etc.,

‹ Thermal noise: vibrations of the mirrors and suspension pendulum.
Their characteristic frequencies designed to be either small (ă 1 Hz ,
pendulum) or large (ą 1 kHz , mirrors) and high quality factors to
narrow the resonances. Typically dominant at „ 100 Hz ,

‹ Photon shot noise: due to quantization of laser light, number of
particles that hit the mirror varies δN Ñ random light intensity
variations, and resulting lenght variations is

δLshot „
λ

2π
?
N

To measure freq. f one needs at least 2f measurements/s, so the
relation between the number of photons N and the laser power P is

N “
2fPλ

hc
, for δLshot “ δLGW Ñ P “ 600 kW p!q

Solution: power recycling of laser light by re�ecting it many times in
the arm and coherently adding in phase.
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Types of sources

‹ bursts: short in duration, modulation due to the detector motion is
negligible (SN explosions, collapses, inspiral of NS and stellar mass
BHs etc.); more than one detector (3 for triangulation) needed to
'do astrophysics',

‹ continuous waves: long-lived and steady, motion of the detector
modulates the phase and amplitude (binary systems, rotating NSs);
in principle one detector pin-points the signal on the sky,

‹ stochastic background: cosmic origin of GW noise, an excess of
power in certain range - can be studied only if the detector noise is
well-understood; cross-correlation between detectors needed to
con�rm.
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Advanced Detector Era: 2015-...

Sensitivity goes like 1/r

11 / 24



Initial and advanced detectors' rates
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Binary coalescence time

From the Newtonian point of view, e�ective energy of a system is

E “
1

2
µv2 ´

GMµ

r
“ ´

GMµ

2r
Ñ r “ ´

GMµ

2E
,

where M “ m1 `m2 and µ “ m1m2{pm1 `m2q.

9r “
dr

dE

dE

dt
“ ´

64

5

GM2µ

r3
Ñ rptq “ pr40 ´

256

5
GM2µ∆τcoalq

1{4.

If rptcoalq ! r0 Ñ ∆τcoal “
5c5

256

r40
GM2µ

‹ Virgo/LIGO stellar mass black hole binary: M “ 10 Md ` 10 Md,
r0 » 500 km, fGW „ 40 Hz : ∆τcoal „ 1 s,

‹ eLISA supermassive black hole binary: M “ 106 Md ` 106 Md,
r0 » 108 km, fGW „ 10´5 Hz : ∆τcoal „ 1 yr
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Binary coalescence parameters

In mass quadrupole approximation
(hTTij ),

hGW 9 ω2{3 cos 2Ψ,

where for quasi-circular orbits
(Kepler)

ω2 “
GM

r3

The signal is called the chirp -
amplitude rises with frequency:

h 9
M

5{3
chirpf

2{3
GW

r
where Mchirp “ pm1m2q

3{5{pm1 `m2q
1{5. For r “ 100 Mpc,

fGW » 100 Hz , Mchirp „ 10, h „ 10´21.

13 / 24



Binary system inspiral

Second example: due to the emission of GWs, binary system orbital
period and separation decreases. In Newtonian terms, the orbital energy
change is the power emitted in GWs

dEorb

dt
“ ´P, with Eorb “ ´

Gm1m2

2R
, and ω2 “

GM

R3
,

For adiabatic, quasi-circular orbits ( 9ω{ω ! 1),

9R “ ´
2

3
Rω

ˆ

9ω

ω2

˙

, with
9ω

ω2
“

96

5
ν

ˆ

GMω

c3

˙5{3

,

where ν “ µ{M is the symmetric mass ratio; M “ m1 `m2 and
µ “ m1m2{pm1 `m2q. If GW is purely f “ 2ω,

9fGW “
96

5
π8{3

ˆ

GMchirp

c3

˙5{3

f
11{3
GW Ñ fGW » 130

ˆ

1.21Md
Mchirp

˙5{8 ˆ

1 s

τ

˙3{8

Hz

Coalescence times τ 17 min, 2 s, 1 ms for fGW = 10, 100, 103 Hz.
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Binary system inspiral

One can obtain the relation between radial separation and the GW
frequency,

R » 300

ˆ

M

2.8Md

˙1{3 ˆ

100Hz

fGW

˙2{3

km .

and the number of GW cycles,

NGW “
1

π

ż tf

ti

ωptq dt “
1

π

ż ωf

ωi

ω

9ω
dω.

For ωf " ωi, one gets

NGW » 104
ˆ

Mchirp

1.21Md

˙´5{3 ˆ

fi

10 Hz

˙´5{3

.
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Post-Newtonian expansions

In GR, the two-body problem is not
fully solved (needed for accurate
template banks for �lter-matching
detection statistics). Di�erent
approaches:

‹ numerical relativity,

‹ perturbation-based self-force
approach (extreme ratio
inspirals, m1{m2 ! 1),

‹ post-Newtonian expansion:

‹ 0th order - Newtonian
gravity,

‹ nth PN order - corrections of
order

´

v

c

¯2n

9

ˆ

Gm

rc2

˙n

.

(Blanchet et al., Phys. Rev. D 81, 064004,

2010)

14 / 24



Post-Newtonian expansions

Expansion in small parameter, which can be

´v

c

¯2

„ |hµν | „

ˇ

ˇ

ˇ

ˇ

B0h

Bih

ˇ

ˇ

ˇ

ˇ

2

„

ˇ

ˇ

ˇ

ˇ

T 0i

T 00

ˇ

ˇ

ˇ

ˇ

„

ˇ

ˇ

ˇ

ˇ

T ij

T 00

ˇ

ˇ

ˇ

ˇ

For the parameter 9ω{ω2,

9ω

ω2
“

96

5
ν v5{3ω

7
ÿ

k“0

ωpk{2qPN vk{3ω 9 O
´v

c

¯5

,

ω0PN “ 1 ,

ω0.5PN “ 0 ,

ω1PN “ ´
743

336
´

11

4
ν ,

ω1.5PN “ 4π `

„

´
47

3

S`

M2
´

25

4

δm

M

Σ`
M2



,

ω2PN “
34 103

18 144
`

13 661

2 016
ν `

59

18
ν2 ´

1

48
ν χ1χ2

”

247 ppS1 ¨ pS2q´

721 p ˆ̀¨ pS1qp ˆ̀¨ pS2q

ı

,

etc.
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Post-Newtonian expansions

Post-Newtonian contributions to the number of GW cycles accumulated from

ωin “ π ˆ 10Hz to ω�n “ ωISCO “ 1{p63{2Mq for binaries detectable by LIGO

and VIRGO. We denote κi “ pS i ¨ ˆ̀ and ξ “ Ŝ1 ¨ Ŝ2.

p10` 10qMd p1.4` 1.4qMd

Newtonian 601 16034
1PN `59.3 `441
1.5PN ´51.4` 16.0κ1 χ1 ` 16.0κ2 χ2 ´211` 65.7κ1 χ1 ` 65.7κ2 χ2
2PN `4.1´ 3.3κ1 κ2 χ1 χ2 ` 1.1 ξ χ1 χ2 `9.9´ 8.0κ1 κ2 χ1 χ2 ` 2.8 ξ χ1 χ2
2.5PN ´7.1` 5.5κ1 χ1 ` 5.5κ2 χ2 ´11.7` 9.0κ1 χ1 ` 9.0κ2 χ2
3PN `2.2 `2.6
3.5PN ´0.8 ´0.9

(this and previous slides from A. Buonanno lecture, arxiv:0709.4682)
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Neutron stars in relativistic binaries: PSR J0737-3039

Post-Keplerian parameters

‹ Periastron advance:

9ω “ 3
´

Pb
2π

¯´5{3

pTdMq
2{3
p1´ e

2
q
´1

‹ Orbit decay:

9Pb “ ´
192πmpmc

5M1{3

´

Pb
2π

¯´5{3

ˆ
`

1` 73

24
e
2
` 37

96
e
4
˘

p1´ e
2
q
´7{2

T
5{3

d

‹ Shapiro e�ect:
r “ Tdmc ,

s “
ap sin i

cmc

´

Pb
2π

¯´2{3

T
´1{3

d M
2{3

‹ Gravitational redshift:
γ “

e

´

Pb
2π

¯1{3

T
2{3

d M
´4{3

mcpM `mcq

where Td “ GMd{c
3, M “ mp `mc .

(All measurements compatible with GR so far)

PSR J0737-3039A/B:

‹ Pulsar A: P “ 22.7 ms, pulsar B: P “ 2.77 s,

‹ Orbital period » 2.4 h,

‹ eccentricity » 0.08,

‹ Orbit decay » 7 mm/day.
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Orbital decay 9Pb test for GR with the PSR J0348+0432

The most relativistic NS-white
dwarf binary to date:

PSR J0348+432:

‹ Pulsar mass: 2.01˘ 0.04 Md,
WD mass: 0.172˘ 0.003 Md,

‹ Orbital period Pb » 2.4 h,

‹ 9Pb “ ´2.73ˆ 10´11 s/s

‹ 9Pb{ 9P
GR
b “ 1.05˘ 0.18

Testing scalar-tensor theories of
gravity - dipolar term in 9Pb:
9P
dipolar

b »

´ 4π2G
c3Pb

mpmc

mp`mc
pαp ´ αcq

2

|αp ´ α0| ă 0.005 based on the
comparison with 9P

GR
b

(linear term α0 ă 0.004 from
weak-�eld experiments)
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Other detectors
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Continuous GWs from rotating neutron stars

Time-varying quadrupole

moment needed:

‹ Mountains (supported by elastic
and/or magnetic stresses in the
NS crust and/or core),

‹ Oscillations (r-modes)

‹ Free precession,

‹ Accretion from the companion
(deformations, thermal
gradients, magnetic �elds).

Main characteristics of such

GWs:

‹ periodic, fGW9frot,

‹ long-lived, T ą Tobs.
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Estimated GW amplitude

Using the quadrupole formula, the amplitude is estimated as
follows:

h0 “ 4ˆ10´25
´ ε

10´6

¯

ˆ

I

1045 g cm2

˙ˆ

f

100 Hz

˙2ˆ
100 pc

d

˙

where ε “ pI1 ´ I2q{I , I - moment of inertia.

Theoretical predictions for maximal possible deformations:

‹ �Normal matter�, ε ď 10´6 ´ 10´7

(Ushomirsky, Cutler & Bildsten 2000, Johnson-McDaniel & Owen
2012)

‹ Quark matter, ε ď 10´4 ´ 10´5

(Owen 2005, Johnson-McDaniel & Owen 2012)
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Spin-down limit for known pulsars

Limit on h0, assuming that all rotational energy is lost in GWs

‹ Change of rotational energy: Erot “ If 2, 9Erot9If 9f

‹ GW luminosity: 9EGW9ε
2I 2f 6

9EGW “ 9Erot Ñ hsd “
1

d

d

5GI

2c3
| 9f |

f
“

“ 8ˆ 10´24

g

f

f

e

ˆ

I

1045 g cm2

˙

˜

| 9f |

10´10 Hz{s

¸

ˆ

100 Hz

f

˙ˆ

100 pc

d

˙

.

h0 ď hsd Ñ upper limit on the deformation ε:

εsd “ 2ˆ 10´5

g

f

f

e

ˆ

1045 g cm2

I

˙ˆ

100 Hz

f

˙5
˜

| 9f |

10´10 Hz{s

¸

.
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Targeted searches

Spin-down limit has been beaten for Crab pulsar:

ă 2% of energy loss due to GW emission
ApJ, 713, 671, 2010: LIGO S5 data, Bayesian analysis

and Vela pulsar:

ă 35% of energy loss
due to GW emission;
ellipticity
ε ă 1.2ˆ 10´3

ApJ, 737, 93, 2011: Virgo VSR2 data, Bayesian analysis, matched �ltering
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Indirect spin down limits

‹ For stars with unknown f , but known age τ “ f {p4| 9f |q, h and ε
estimated by assuming all energy lost in GWs:

hisd “ 2ˆ 10´23

d

ˆ

I

1045 g cm2

˙ˆ

1000 yr

τ

˙ˆ

100 pc

d

˙

,

‹ In accreting systems like Sco X-1, f unknown - accretion torque
balanced by the GW emission (Papaloizou & Pringle 1978, Bildsten
1999, Chakrabarty et al., 2003); h related to �ux in X-rays:

hacc « 5ˆ 10´27

d

ˆ

300 Hz

f

˙ˆ

Fx

10´8 erg cm´2 s´1

˙

‹ Signal from hypothetical
population of gravitars. Blandford
limit (uniform distribution in the
galactic disk) - h « 4ˆ 10´24,
independent of ε and f . (more
detailed study by Knispel & Allen
2008).
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GWs from non-axisymmetric collapse

hGW „ 2ˆ 10´17
?
ηe�

ˆ

1 ms

τ

˙1{2ˆ
M

Md

˙1{2ˆ
10 kpc

r

˙ˆ

1 kHz

fGW

˙

,

where τ is the duration. E�ciency in case of core-collapse supernovae is
estimated to be quite low,

ηe� “
∆E

Mc2
„ 10´7 ´ 10´10.

Comparison with other kinds of radiation for SN at 20 kpc:

‹ GW: „ 400
´

1 kHz
fGW

¯2
`

h
10´21

˘2 erg
cm2 s

in ms,

‹ neutrinos: 105 erg
cm2 s

in „ 10 s,

‹ Optical: „ 10´4 erg
cm2 s

in a week.
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Electromagnetic vs gravitational waves: comparison

Electromagnetic waves:

‹ radiation by accelerating
charges (time changing dipole),

‹ incoherent superposition of
emission from electrons, atoms
and molecules,

‹ direct information about
thermodynamics,

‹ wavelenghts small compared to
the source,

‹ strong interaction with matter
(absorption, scattering...)

Gravitational waves:

‹ radiation by accelerating masses
(time changing quadrupole),

‹ coherent superposition of
emission from moving masses,

‹ direct information about the
dynamics,

‹ wavelengths large compared to
the source,

‹ small interaction with matter.
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Further reading...

‹ �Lecture Notes on General Relativity� , Sean Carroll,

‹ �Gravitational waves� , A. Buonanno, arXiv:0709.4682,

‹ �Gravitational waves, sources and detectors� , B. F. Schutz, F. Ricci,
arXiv:1005.4735,

‹ Living Reviews in Relativity: �Gravitational-Wave Data Analysis.

Formalism and Sample Applications: The Gaussian Case�, P.
Jaranowski & A. Królak,
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