Gravitational waves

Michał Bejger N. Copernicus Center, Warsaw

- * Wave equation in linearized GR,
- \star the quadrupolar nature of gravitational waves,
- * Detection principle,
- * Astrophysical sources.

GR is nonlinear & fully dynamical \rightarrow not so clear a distinction between waves and the rest of the metric. Speaking about waves is 'safe' in in certain limits:

- ★ linearized theory,
- * as small perturbations of a smooth background metric (gravitational lensing of waves, cosmological perturbations),
- in post-Newtonian theory (far-zone, i.e., more than one wave- length distant from the source).

Wave equation in linearized GR

Since we anticipate the gravitational-wave component w.r.t the otherwise stationary (e.g., Minkowski) metric η to be small, $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, $|h_{\mu\nu}| \ll 1$ let's linearize the Einstein's equations,

$$\begin{split} R_{\mu\nu} &- \frac{1}{2} g_{\mu\nu} R = \frac{8\pi G}{c^4} T_{\mu\nu}, \quad \text{where} \quad R = g^{\mu\nu} R_{\mu\nu}, \quad R_{\mu\nu} = g^{\rho\sigma} R_{\rho\mu\sigma\nu} \\ R_{\mu\rho\sigma}^{\nu} &= \partial_{\rho} \Gamma_{\mu\sigma}^{\nu} - \partial_{\sigma} \Gamma_{\mu\rho}^{\nu} + \Gamma_{\lambda\rho}^{\nu} \Gamma_{\mu\sigma}^{\lambda} - \Gamma_{\lambda\sigma}^{\nu} \Gamma_{\mu\rho}^{\lambda}, \quad R_{\nu\mu\rho\sigma} = g_{\nu\rho} R_{\mu\rho\sigma}^{\rho}, \\ \Gamma_{\mu\rho}^{\nu} &= \frac{1}{2} g^{\nu\lambda} (g_{\lambda\mu,\rho} + g_{\lambda\rho,\mu} - g_{\mu\rho,\lambda}). \end{split}$$

At linear order in $h_{\mu\nu}$ the connection coefficients are

$$\Gamma^{\nu}_{\mu\rho} = \frac{1}{2} \eta^{\nu\lambda} (\boldsymbol{h}_{\lambda\mu,\rho} + \boldsymbol{h}_{\lambda\rho,\mu} - \boldsymbol{h}_{\mu\rho,\lambda})$$

and

$$\begin{split} R^{\nu}_{\mu\rho\sigma} &= \partial_{\rho} \Gamma^{\nu}_{\mu\sigma} - \partial_{\sigma} \Gamma^{\nu}_{\mu\rho} + \mathcal{O}(h^2) \rightarrow \\ R_{\mu\nu\rho\sigma} &= \frac{1}{2} \left(\partial_{\rho\nu} h_{\mu\sigma} + \partial_{\sigma\mu} h_{\nu\rho} - \partial_{\rho\mu} h_{\nu\sigma} - \partial_{\sigma\nu} h_{\mu\rho} \right). \end{split}$$

Wave equation in linearized GR

To simplify previous expressions, the *trace-reversed* tensor is introduced:

$$\overline{h}^{\mu
u} = h^{\mu
u} - \frac{1}{2}\eta^{\mu
u}h$$
, where $h = \eta_{\alpha\beta} h^{\alpha\beta}$ and $\overline{h} = -h$.

With these changes, the Einstein equations are

$$\Box \overline{h}_{\nu\sigma} + \eta_{\nu\sigma} \,\partial^{\rho} \,\partial^{\lambda} \overline{h}_{\rho\lambda} - \partial^{\rho} \,\partial_{\nu} \overline{h}_{\rho\sigma} - \partial^{\rho} \,\partial_{\sigma} \overline{h}_{\rho\nu} + \mathcal{O}(h^{2}) = -\frac{16\pi G}{c^{4}} \,T_{\nu\sigma},$$

where $\Box = \eta_{\rho\sigma} \partial^{\rho} \partial^{\sigma}$ is the d'Alambert (wave) operator. In Cartesian terms

$$\Box = \eta_{\rho\sigma} \,\partial^{\rho} \,\partial^{\sigma} = -\frac{1}{c^2} \partial_t^2 + \partial_x^2 + \partial_y^2 + \partial_z^2.$$

Further simplification is the use of gauge freedom; by imposing the Lorentz (de Donder, harmonic) gauge condition, $\partial_{\nu} \overline{h}^{\mu\nu} = 0$, one obtains

$$\Box \overline{h}_{\nu\sigma} = -\frac{16\pi G}{c^4} T_{\nu\sigma}.$$

Gauge transformation freedom

Consider an infinitesimal coordinate transformation,

 $x'^\alpha=x^\alpha+\xi^\alpha(x^\beta),\quad \text{with ξ^α small in the sense that $|\partial_\beta\xi^\alpha|\ll 1$.}$ This imply

$$\frac{\partial x'^{\alpha}}{\partial x^{\beta}} = \delta^{\alpha}_{\beta} + \partial_{\beta}\xi^{\alpha}, \quad \text{and} \quad \frac{\partial x^{\alpha}}{\partial x'^{\beta}} = \delta^{\alpha}_{\beta} - \partial_{\beta}\xi^{\alpha} + \mathcal{O}((\partial\xi)^{2}).$$
Recalling that $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ and $g'_{\mu\nu}(x') = \frac{\partial x^{\alpha}}{\partial x'^{\mu}} \frac{\partial x^{\beta}}{\partial x'^{\nu}} g_{\alpha\beta}(x),$
one finally gets

$$g_{\alpha\beta}' = \eta_{\alpha\beta} + \underbrace{h_{\alpha\beta} - \partial_{\alpha}\xi_{\beta} - \partial_{\beta}\xi_{\alpha}}_{h_{\alpha\beta}'} + \mathcal{O}(h\partial\xi, (\partial\xi)^2) \qquad (\xi_{\alpha} = \eta_{\alpha\beta}\xi^{\beta}).$$

Because $|\partial_{\beta}\xi^{\alpha}| \ll 1$ the metric perturbation $h'_{\alpha\beta}$ is small, the approximation is still valid. Applied to metric perturbation $\overline{h}'_{\alpha\beta}$:

$$\overline{h}'_{\alpha\beta} = \overline{h}_{\alpha\beta} - \partial_{\alpha}\xi_{\beta} - \partial_{\beta}\xi_{\alpha} + \eta_{\alpha\beta}\partial_{\mu}\xi^{\mu}.$$

Transverse-traceless gauge

We have limited 10 degrees of freedom of a symmetric 4 × 4 tensor $h_{\mu\nu}$ to 6 independent components by imposing the Lorentz gauge. In vacuum, where the waves propagate, $T_{\mu\nu} = 0$,

$$\Box \overline{h}_{\nu\sigma} = 0.$$

 \rightarrow speed of the wave equals speed of light c. Concerning the remaining degrees of freedom, in Lorentz gauge one can always consider coordinate transformations

$$\overline{h'}_{\nu\sigma} = \overline{h}_{\nu\sigma} + \xi_{\mu\nu}, \quad \text{where} \quad \xi_{\mu\nu} = \eta_{\mu\nu} \,\partial_{\rho}\xi^{\rho} - \xi_{\mu,\nu} - \xi_{\nu,\mu} \rightarrow \Box \xi_{\mu\nu} = 0$$

 $\Box \xi_{\mu\nu} = 0$ means fixing 4 from 6 remaining degrees of freedom, for example choosing ξ^0 such that $\overline{h} = 0$ and ξ^i such that $h^{it} = 0$, $\partial_t h^{tt} = 0$:

$$h^{tt}=0, \quad h^{ti}=0, \quad \partial_i h^{ij}=0, \quad h^{ii}=0.$$

This is the definition of the *transverse-traceless* tensor h_{ii}^{TT} .

Transverse-traceless tensor h_{ii}^{TT}

For a propagation direction n^i , the transversality condition means $n^i h_{ij}^{TT} = 0$ (in the TT gauge the gravitational wave is described by 2 × 2 matrix in the plane orthogonal to the direction of propagation **n**). Assuming the plane wave that propagates along the *z*-axis

$$h_{ij}^{\rm TT}(t,z) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & h_+ & h_\times & 0 \\ 0 & h_\times & -h_+ & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cos(\omega t - kz),$$

where h_+ and h_{\times} are two independent polarization states (two remaining degrees of freedom).

 h_+ and h_\times are the *helicity states* - in the form described by the TT gauge they change under rotation of ϕ around **n** as

$$h \to e^{i\mathbf{S}\cdot\mathbf{n}\phi}h$$
 where $\mathbf{S} = \text{particle spin}$
 $h_{\times} \pm i h_{+} \to e^{\pm 2i\phi} (h_{\times} \pm i h_{+}).$

GW interaction with a point particle in the TT gauge

Let's consider a test particle, at rest at au = 0. From the geodesic equation one has

$$\frac{d^2 x^i}{d\tau^2}_{|_{\tau}=0} = -\left(\Gamma^i_{\rho\sigma} \frac{dx^{\rho}}{d\tau} \frac{dx^{\sigma}}{d\tau}\right)_{|_{\tau=0}} = -\left(\Gamma^i_{tt} \frac{dx^t}{d\tau} \frac{dx^t}{d\tau}\right)_{|_{\tau=0}},$$

with $(dx^{\mu}/d au)_{ au=0}=(c,0)$ and

$$\Gamma_{tt}^{i} = \frac{1}{2} \eta^{ij} \left(\partial_t h_{tj} + \partial_t h_{jt} - \partial_j h_{tt} \right), \quad \text{but} \quad h_{tt} = 0, \ h_{tj} = 0 \text{ so } (\Gamma_{tt}^{i})_{\tau=0} = 0.$$

If at $\tau = 0 \ dx^i/d\tau = 0$, also $d^2x^i/d\tau^2 = 0$ and a particle at rest before the GW arrives remains at rest. What varies is the *proper distance* between the particles. For a plane wave in the *z*-direction,

$$ds^{2} = -c^{2}dt^{2} + dx^{2}(1 + h_{+}\cos(\omega t - kz)) + dy^{2}(1 - h_{+}\cos(\omega t - kz)) + 2dxdy h_{\times}\cos(\omega t - kz) + dz^{2}.$$

If particles A and B set down initially along the x-axis, we have

$$s\simeq L\left(1+rac{h_+}{2}\cos\omega t
ight),$$

where L is the initial, unperturbed distance between particles A and B.

4 / 24

Newtonian tidal force & geodetic deviation

For two particles A and B falling in Euclidean space under gravitational potential Φ . At t = 0 separation is $\xi = \mathbf{x}_A - \mathbf{x}_B$ and $\mathbf{v}_A(t=0) = \mathbf{v}_B(t=0)$. The evolution of ξ because of $\mathbf{g} = -\nabla \Phi$ $\frac{d^2\xi^i}{dt^2} = -\left(\frac{\partial \Phi}{dx^i}\right)_{\rm B} + \left(\frac{\partial \Phi}{dx^i}\right)_{\rm A} \simeq -\underbrace{\left(\frac{\partial^2 \Phi}{\partial x^i \partial x^j}\right)}_{\text{Tidal gravity tensor } \mathcal{E}_j^i} \xi^j$

In GR for two neigboring geodesics $x^{\mu}(\tau)$ and $x^{\mu}(\tau) + \xi^{\mu}(\tau)$, the geodetic equation,

$$\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\rho\sigma}(x) \, \frac{dx^{\rho}}{d\tau} \, \frac{dx^{\sigma}}{d\tau} = 0$$

By expanding the geodesic equation of particle B around the position of particle A and subtracting it from the geodesic equation of particle A, one gets

$$\boldsymbol{\nabla}_{\boldsymbol{u}} \, \boldsymbol{\nabla}_{\boldsymbol{u}} \xi^{\mu} = - R^{\mu}_{\ \nu\rho\sigma} \, \xi^{\rho} \, \frac{dx^{\nu}}{d\tau} \, \frac{dx^{\sigma}}{d\tau} \, ,$$

with $u^{\beta} = dx^{\beta}/d\tau$. Nearby time-like geodesics are tidally *deviated* proportional to the Riemann tensor.

GWs in the free-falling frame

By changing the coordinates to a system in which $\Gamma^{\mu}_{
ho\sigma}(x)=0,$

$$\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\rho\sigma}(x) \, \frac{dx^{\rho}}{d\tau} \, \frac{dx^{\sigma}}{d\tau} = 0 \quad \rightarrow \quad \left(\frac{d^2 x^{\mu}}{d\tau^2}\right)_x = 0.$$

A particle is not experiencing acceleration (free-falling, FF). Let's chose a coordinate system in which $x^j = 0$ and $x^0 = \tau$ (coordinate time is proper time), the metric at the origin is Minkowski

$$ds^{2} = -c^{2} dt^{2} + dx^{2} + \mathcal{O}\left(\frac{|\mathbf{x}|^{2}}{\mathcal{R}^{2}}\right) = -c^{2} dt^{2} \left(1 + R_{itjt} x^{i} x^{j}\right)$$
$$- 2c dt dx^{i} \left(\frac{2}{3}R_{tjik} x^{j} x^{k}\right) + dx^{i} dx^{j} \left(\delta_{ij} - \frac{1}{3}R_{ijkl} x^{k} x^{l}\right)$$

where \mathcal{R} is the curvature radius $\mathcal{R}^{-2} = |R_{\mu\nu\rho\sigma}|$. On Earth, the detector is not in full free fall (acceleration $\mathbf{a} = -\mathbf{g}$ w.r.t a local inertial frame), but some directions (horizontal movement) may be used.

GWs in the free-falling frame

Let's investigate the geodesic deviation in this frame:

$$\boldsymbol{\nabla}_{\boldsymbol{u}} \, \boldsymbol{\nabla}_{\boldsymbol{u}} \xi^{\alpha} = \boldsymbol{u}^{\beta} \, \boldsymbol{\nabla}_{\beta} (\boldsymbol{u}^{\lambda} \, \boldsymbol{\nabla}_{\lambda} \xi^{\alpha}) = \boldsymbol{u}^{\beta} \, \boldsymbol{u}^{\lambda} \, (\partial_{\beta\lambda} \xi^{\alpha} + \boldsymbol{\Gamma}^{\alpha}_{\lambda\sigma,\beta} \, \xi^{\sigma}),$$

which simplifies because $\Gamma^{\alpha}_{\lambda\sigma} = 0$, particles are initially at rest $(u^{\beta} = \delta^{\beta}_{0})$, with $\xi^{0} = 0$ and $\Gamma^{j}_{tk,t}$

$$\boldsymbol{\nabla}_{\boldsymbol{u}} \boldsymbol{\nabla}_{\boldsymbol{u}} \xi^{j} = \frac{d^{2} \xi^{j}}{d \tau^{2}} \quad \rightarrow \quad \frac{d^{2} \xi^{j}}{d \tau^{2}} = -R^{j}_{kkt} \xi^{k}$$

from the geodesic deviation equation. In linearized theory the Riemann tensor is invariant under change of coordinates, so in TT gauge

$$\begin{split} R_{\mu\nu\rho\sigma} &= \frac{1}{2} \left(\partial_{\rho\nu} h_{\mu\sigma} + \partial_{\sigma\mu} h_{\nu\rho} - \partial_{\rho\mu} h_{\nu\sigma} - \partial_{\sigma\nu} h_{\mu\rho} \right) \quad \rightarrow \quad R_{jtkt}^{\mathrm{TT}} = -\frac{1}{2c^2} \, \ddot{h}_{jk}^{\mathrm{TT}} \\ &\rightarrow \frac{d^2 \xi^j}{dt^2} = \frac{1}{2} \, \ddot{h}_{jk}^{\mathrm{TT}} \, \xi^k \end{split}$$

(also, in FF the coordinate distances and proper distances coincide)

GWs in the free-falling frame

The GW effect on a point particle can be described as an effect of a Newtonian force

$$\frac{d^2\xi^j}{dt^2} = \frac{1}{2}\ddot{h}_{jk}^{\rm TT}\xi^k \quad \leftrightarrow \quad F_i = \frac{m}{2}\ddot{h}_{ij}^{\rm TT}\xi^j.$$

Free-falling approximation to geodesic deviation applies as long as

$$\star g_{\mu
u} = \eta_{\mu
u} + \mathcal{O}(x^2/\mathcal{R}^2),$$

- * since $\mathcal{R}^{-2} = |R_{itjt}| \sim \ddot{h} \sim h/\lambda_{GW}^2$, one has $x^2/\mathcal{R}^2 \simeq L^2 h/\lambda_{GW}^2$, and comparing with $\delta L/L \sim h \rightarrow L^2/\lambda_{GW}^2 \ll 1$,
- \star Works for a ground based detector: for L = 4 km and $\lambda_{\rm GW} \sim$ 3000 km,
- * Space-based detectors: $L \sim 10^6$ km set to observe GWs with wavelength comparable or shorter L - different strategy needed (time of flight, phase shifts measurements).

Gravitational-wave detection

GW acting on a ring of free-falling test particles, with x_0 and y_0 the unperturbed position at time t = 0. For + polarization

$$h_{ij}^{\mathrm{TT}} = h_+ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \sin \omega t , \quad \xi_i = (x_0 + \delta x(t), y_0 + \delta y(t))$$

left - a wave with + polarization, right - with \times polarization.

Gravitational-wave detection

Lines of force for both polarizations are as follows:

The simplest detector - test mass m and an apparatus to check the change of distance L (e.g., a spring with the resonant frequency Ω and quality factor Q):

$$\ddot{\Delta L}(t) + 2\frac{\Omega}{Q}\,\dot{\Delta L}(t) + \Omega^2\,\Delta L(t) = \frac{L}{2}\,\left(F_+\,\ddot{h}_+(t) + F_\times\,\ddot{h}_\times(t)\right),$$

where F_+ and F_{\times} depend on the direction of the source.

Quadrupolar nature of GWs

In electromagnetism, radiation due time changing electric dipole moment $\mathbf{d} = e\mathbf{x}$:

Luminosity $\propto \ddot{\mathbf{d}}$

Gravitational-wave emission in the dipole mode would mean the changing in time mass dipole moment:

Conservation of momentum means no mass dipole GW radiation. Likewise, for the current dipole moment

$$\mathcal{M} = \underbrace{\sum_{i} m_{i} \mathbf{x}_{i} \times \dot{\mathbf{x}}_{i}}_{Angular \ momentum}$$

the conservation of angular momentum mean no current dipole GW radiation.

Estimate of wave amplitude

The wave equation for GWs,

$$\Box \overline{h}^{\alpha\beta} = \frac{16\pi G}{c^4} T^{\alpha\beta}$$

is an analogue to the Maxwell equation (Gauss law) in the Lorentz gauge, $(1/c^2)\partial_t \phi + \nabla \cdot \mathbf{A} = 0$):

$$abla \cdot \mathbf{E} = \Box \phi = 4\pi
ho$$
, where $\mathbf{E} = -\nabla \phi + \partial_t \mathbf{A}$.

By analogy between solutions

$$\phi(t,\mathbf{r}) = \int \frac{\rho(t-R/c,\mathbf{x})}{R} dV, \quad \overline{h}^{\alpha\beta} = \frac{4G}{c^4} \int \frac{T^{\alpha\beta}(t-R/c,\mathbf{x})}{R} dV.$$

with $R = |\mathbf{r} - \mathbf{x}|$. Far from the compact source $(r \gg \mathbf{x})$, the solution is described by the *far-field solution*:

$$\overline{h}^{\alpha\beta}(t,\mathbf{r})=\frac{4G}{c^4r}\int T^{\alpha\beta}(t-R/c,\mathbf{x})dV.$$

Estimate of wave amplitude

Using the energy-momentum conservation it can be shown that

$$T^{\alpha\beta}_{,\beta} = 0 \quad \rightarrow \quad \overline{h}^{ij} \approx -\frac{2G}{c^4 r} \frac{d^2 l^{ij}}{dt^2},$$

where $I^{ij} = \int \rho x^i x^j dV$ is the moment of inertia tensor (quadrupole tensor).

Consider two equal masses M separated by a on circular orbit in the x - y with angular frequency Ω around their center of mass. Then

$$I^{xx} = \int \rho x^2 dV = 2M \left(\frac{a}{2}\cos\Omega t\right)^2 = \frac{1}{4}Ma^2 \left(1 + \cos 2\Omega t\right),$$

which leads to, and other terms like that,

$$\overline{h}^{xx} = \frac{2GMa^2\Omega^2}{c^4r}\cos 2\Omega t.$$

Two important conclusions:

- * Quadrupole radiation: GW at twice the orbital frequency,
- * Amplitude $\propto GMa^2\Omega^2/c^4r$.

Estimate of wave amplitude

Example - binary system of two stellar-mass black holes:

* $M = 10 M_{\odot}$,

$$\star$$
 a $= 1~R_{\odot}$,

* $r = 8 \ kpc$ (Galactic center)

From the Kepler's third law,

$$\Omega^2 = \frac{G(M+M)}{a^3} \approx 8 \times 10^{-4} \text{ rad}^2/\text{s}^2$$

Orbital period 38 min \rightarrow GW period 19 min. The GW strain amplitude is $h \sim 10^{-21}$.

Another example: binary neutron star pair, 10M light years distance (Virgo cluster), moving at ~ 10% of the speed of light $\rightarrow h \simeq 10^{-21}$.

The quadrupole formula

The first term of the perturbation in the multipolar expansion far from the source is

$$\overline{h}_{lphaeta}(t,\mathbf{r})\simeq rac{4G}{c^4R}\int T_{lphaeta}(t-R/c,\mathbf{x})dV.$$

By imposing the conservation equation for the energy-momentum tensor

$$\partial_{\nu} T^{\mu\nu} = 0 \quad \rightarrow \quad \frac{\partial T_{ij}}{\partial x^{i}} - \frac{\partial T_{tj}}{\partial x^{t}} = 0 \quad \text{and} \quad \frac{\partial T_{ti}}{\partial x^{i}} - \frac{\partial T_{tt}}{\partial x^{t}} = 0$$

it can be shown that

$$\int T_{\alpha\beta} dV \quad \text{can be expressed in terms of } T_{tt}$$

The quadrupole formula

$$#1: \frac{\partial T_{ij}}{\partial x^{i}} - \frac{\partial T_{tj}}{\partial x^{t}} = 0 \quad / \cdot x^{k} \text{ and integrating on all space } \rightarrow \int x^{k} \frac{\partial T_{ij}}{\partial x^{i}} dV = \int x^{k} \frac{\partial T_{tj}}{\partial x^{t}} dV = \frac{\partial}{\partial x^{t}} \int x^{k} T_{jt} dV.$$

Integrating the left side by parts: $-\int T_{ij} \delta^{k}_{i} dV = \frac{\partial}{\partial x^{t}} \int x^{k} T_{jt} dV$
Symetrization: $\int T_{kj} dV = -\frac{1}{2} \frac{\partial}{\partial x^{t}} \int (x_{k} T_{tj} + x_{j} T_{tk}) dV$

$$#2: \frac{\partial T_{ti}}{\partial x^{i}} - \frac{\partial T_{tt}}{\partial x^{t}} = 0 \quad /\cdot x_{j}x_{k} \quad \text{and integrating on all space} \rightarrow \frac{\partial}{\partial x^{t}} \int T_{tt}x_{j}x_{k}dV = \int \frac{\partial T_{ti}}{\partial x^{i}}x_{j}x_{k}dV.$$

Integrating the right side by parts: $\frac{\partial}{\partial x^t} \int T_{tt} x_j x_k dV = -\int (x_k T_{tj} + x_j T_{tk}) dV$ Finally: $\int T_{kj} dV = \frac{1}{2c^2} \frac{\partial^2}{\partial t^2} \int T_{tt} x_j x_k dV$.

The quadrupole formula

For
$$T^{tt} = \mu c^2$$
,
 $\overline{h}_{ij} = \frac{2G}{c^4 R} \frac{\partial^2}{\partial t^2} \int \mu x_i x_j dV$, In TT gauge: $\overline{h}_{ij}^{TT} = \frac{2G}{c^4 R} \mathcal{P}_i^k \mathcal{P}_j^l \ddot{l}_{kl}$,
where $l_{kl} = \int \rho(x_k x_l - \frac{1}{3} x^2 \delta_{kl}) dV$, $\mathcal{P}_i^k = \delta_i^k - n^i n_k$ (projection operator).
Similarly one can show from the concentration equation #2 that

Similarly one can show from the conservation equation #2 that

$$\int T_{tj} dV = \frac{\partial}{\partial x^t} \int T_{tt} x_j dV$$

and that the power P radiated per solid angle in a direction \mathbf{n} is

$$\frac{dP}{d\Omega} = R^2 n^i \Theta^{it}, \quad \text{where} \quad \Theta^{it} = \frac{c^4}{32\pi G} \left\langle \partial_t \overline{h}_{\alpha}^{\beta} \partial_i \overline{h}_{\beta}^{\alpha} \right\rangle.$$

The radiated GW power averaged over polarizations is

$$P=\frac{G}{5c^5}\ddot{I}_{ij}^2.$$

The quadrupole formula: estimates

For a source of mass M, dimension L and deviation from sphericity ϵ ,

$$\begin{split} P &= \frac{G}{5\,c^5} \vec{l}_{ij}^2 \quad \text{with} \quad I \propto \epsilon M L^2 \quad \rightarrow \quad \vec{l} \sim \omega^3 \epsilon M L^3, \\ \text{where} \quad \omega \sim 1/\tau \quad (\text{source characteristic frequency}) \\ \quad \rightarrow \quad P \sim \frac{G}{c^5} \epsilon^2 \omega^6 M^2 L^4, \quad \text{with} \quad \frac{G}{c^5} = 3.6 \times 10^{50} \ erg/s. \end{split}$$

Some estimates:

* From Misner-Thorne-Wheeler: steel bar of $M \simeq 500$ tonnes, L = 20 m, $\omega \sim 30$ rad/s:

 $GM\omega/c^3 \sim 10^{-32}, \quad Lc^2/GM \sim 10^{25}, \quad P \sim 10^{-27} \text{ erg/s} \sim 10^{-60} P_{\odot}^{EM}$

 \star parametrization by Weber: $\textit{R}_{s}=2\textit{GM}/c^{2},\,\omega=(\textit{v}/c)(c/L),$

$$P = \frac{c^5}{G} \epsilon^2 \left(\frac{v}{c}\right)^6 \left(\frac{R_s}{L}\right) \quad \text{for } v \sim c, \ L \sim R_s \quad P \sim \frac{c^5}{G} \epsilon^2 \sim 10^{26} \ P_{\odot}^{EM}.$$

Detectors

Ground-based interferometry

Interferometer for GWs

- The concept is to compare the time it takes light to travel in two orthogonal directions transverse to the gravitational waves.
- The gravitational wave causes the time difference to vary by stretching one arm and compressing the other.
- The interference pattern is measured (or the fringe is split) to one part in 10¹⁰, in order to obtain the required sensitivity.

As seen by the detector, gravitational wave strain $h = \Delta L/L$, for $L \simeq \text{km}$, $\Delta L < 10^{18}$ m (much smaller than the size of a proton).

Virgo detector (Cascina near Pisa, arm length - 3km)

Bar detectors

Passing GW resonates with the characteristic frequency of the bar (narrow frequency searches, typically \sim 500 Hz):

Amplitude of the vibrations is $\Delta L \sim hL$, response quite complicated.

Space-based interferometry

- * Local geometry of geodesic deviation is not enough to analize the free-falling bodies response to the passing gravitational wave, $L \ge \lambda_{GW}$. Proposed space-borne mission eLISA with $L \sim 10^6 \ km$ and study GW in the range 0.1 mHz < $f_{GW} < 1 \ Hz$,
- * Each spacecraft carries a free-falling test mass,
- ★ Direct reflection from mirrors not possible due to loses (~ 1 photon/day detection rate) → transponder mode,
- Time-delay interferometry, central spacecraft compares the phases of lasers from "arm spacecrafts" (absolute lengths of arms known up to 1 m).

Triangular formation with center 20° behind the Earth, each spacecraft on an individual orbit around the Sun.

Space-based interferometry: time measurements

Let's consider an interferometer with an arm in the x =direction. In a case for pure + polarization (TT gauge, wave travels to z-direction),

$$ds^{2} = -dt^{2} + (1 + h_{+})dx^{2} + (1 - h_{+})dy^{2} + dz^{2},$$

the coordinate speed along x-axis is $(dx/dt)^2 = 1/(1 + h_+)$. A photon emitted at time t from x = 0 reaches the end of arm at x = L at the coordinate time

$$t_1 = t + \int_0^L \sqrt{1 + h_+(t(x))} dx$$
, (implicit knowledge of $t(x)$ needed).

One must know the time to reach x in order to calculate h_+ . In linear approximation, h_+ small: expansion in powers of h_+ and assuming zero-order solution of a photon in flat space-time traveling with c = 1, t(x) = t + x:

$$t_1 = t + L + \frac{1}{2} \int_0^L h_+(t+x) dx.$$

Round-trip time (after reflection/transmission back) takes

$$t_r = t + L + \frac{1}{2} \left(\int_0^L h_+(t+x) dx + \int_0^L h_+(t+x+L) dx \right).$$

The variation of t_r means changing GW background (L is fixed),

$$\frac{dt_{r}}{dt} = 1 + \frac{1}{2} \left(h_{+}(t+2L) - h_{+}(t) \right),$$

depending only on the wave amplitude h_+ .

Sources of noise - the detector sensitivity

(1989 LIGO proposal)

GW detector output time series:

$$s(t) = F^+(t) \circ h_+(t) + F^\times(t) \circ h_\times(t) + n(t)$$

In Fourier domain, strain amplitude spectral density is $h(f) = \sqrt{S(f)} = \sqrt{\tilde{s}^*(f)\tilde{s}(f)}$,

where $\tilde{s}(f) = \int_{-\infty}^{\infty} e^{-2\pi i f t} s(t) dt$.

Sources of noise of ground-based detectors

- * Seismic noise: important below 100 Hz, falls with frequency; multiple pendula with characteristic freq. ~ 1 Hz attenuating the ground vibrations etc.,
- * **Thermal noise**: vibrations of the mirrors and suspension pendulum. Their characteristic frequencies designed to be either small (< 1 Hz, pendulum) or large (> 1 kHz, mirrors) and high quality factors to narrow the resonances. Typically dominant at ~ 100 Hz,
- * **Photon shot noise**: due to quantization of laser light, number of particles that hit the mirror varies $\delta N \rightarrow$ random light intensity variations, and resulting lenght variations is

$$\delta L_{shot} \sim \frac{\lambda}{2\pi\sqrt{N}}$$

To measure freq. f one needs at least 2f measurements/s, so the relation between the number of photons N and the laser power P is

$$N = \frac{2fP\lambda}{hc}$$
, for $\delta L_{shot} = \delta L_{GW} \rightarrow P = 600 \ kW(!)$

Solution: power recycling of laser light by reflecting it many times in the arm and coherently adding in phase.

Types of sources

- **bursts**: short in duration, modulation due to the detector motion is negligible (SN explosions, collapses, inspiral of NS and stellar mass BHs etc.); more than one detector (3 for triangulation) needed to 'do astrophysics',
- continuous waves: long-lived and steady, motion of the detector modulates the phase and amplitude (binary systems, rotating NSs); in principle one detector pin-points the signal on the sky,
- stochastic background: cosmic origin of GW noise, an excess of power in certain range - can be studied only if the detector noise is well-understood; cross-correlation between detectors needed to confirm.

Advanced Detector Era: 2015-...

How many sources can we see?

Sensitivity inversly proportional to the distance (amplitude of the wave measured)

Initial and advanced detectors' rates

- Really need an 'Advanced' detector with about a factor of 10 greater sensitivity, broader bandwidth –
- Since gravitational waves are an amplitude phenomenon, x1000 more volume searched, plus yet greater reach due to bandwidth:

IFO	Source ^a	$\dot{N}_{\rm low} { m yr}^{-1}$	$\dot{N}_{\rm re}~{\rm yr}^{-1}$	$\dot{N}_{\rm high}~{ m yr}^{-1}$	$\dot{N}_{\rm max} { m yr}^{-1}$
	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
Initial	BH–BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$< 0.001^{b}$	0.01 ^c
	IMBH-IMBH		\frown	$10^{-4 d}$	10^{-3e}
	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
Advanced	BH–BH	0.4	20	1000	
	IMRI into IMBH			10 ^b	300 ^c
	IMBH-IMBH			0.1 ^d	1 ^e

At ~40 events per year, the rate is much more attractive!

Binary coalescence time

From the Newtonian point of view, effective energy of a system is

$$E = \frac{1}{2}\mu v^2 - \frac{GM\mu}{r} = -\frac{GM\mu}{2r} \quad \rightarrow \quad r = -\frac{GM\mu}{2E},$$

where $M = m_1 + m_2$ and $\mu = m_1 m_2 / (m_1 + m_2)$.

$$\begin{split} \dot{r} &= \frac{dr}{dE} \frac{dE}{dt} = -\frac{64}{5} \frac{GM^2 \mu}{r^3} \quad \to \quad r(t) = (r_0^4 - \frac{256}{5} GM^2 \mu \Delta \tau_{coal})^{1/4}.\\ \text{If } r(t_{coal}) \ll r_0 \quad \to \quad \Delta \tau_{coal} = \frac{5c^5}{256} \frac{r_0^4}{GM^2 \mu} \end{split}$$

- * Virgo/LIGO stellar mass black hole binary: $M = 10 \ M_{\odot} + 10 \ M_{\odot}$, $r_0 \simeq 500 \ km$, $f_{GW} \sim 40 \ Hz$: $\Delta \tau_{coal} \sim 1 \ s$,
- * eLISA supermassive black hole binary: $M = 10^6 M_{\odot} + 10^6 M_{\odot}$, $r_0 \simeq 10^8 \ km$, $f_{GW} \sim 10^{-5} \ Hz$: $\Delta \tau_{coal} \sim 1 \ yr$

Binary coalescence parameters

In mass quadrupole approximation (h_{ij}^{TT}) ,

$$h_{GW} \propto \omega^{2/3} \cos 2\Psi,$$

where for quasi-circular orbits (Kepler)

$$\omega^2 = \frac{GM}{r^3}$$

The signal is called *the chirp* - amplitude rises with frequency:

$$\begin{split} h \propto & \frac{M_{chirp}^{5/3} f_{GW}^{2/3}}{r} \\ \text{where } & M_{chirp} = (m_1 m_2)^{3/5} / (m_1 + m_2)^{1/5}. \text{ For } r = 100 \text{ Mpc}, \\ f_{GW} \simeq 100 \text{ Hz}, \text{ } & M_{chirp} \sim 10, \text{ } h \sim 10^{-21}. \end{split}$$

Binary system inspiral

Second example: due to the emission of GWs, binary system orbital period and separation decreases. In Newtonian terms, the orbital energy change is the power emitted in GWs

$$rac{dE_{orb}}{dt}=-P, \hspace{0.3cm} \mbox{with} \hspace{0.3cm} E_{orb}=-rac{Gm_1m_2}{2R}, \hspace{0.3cm} \mbox{and} \hspace{0.3cm} \omega^2=rac{GM}{R^3},$$

For adiabatic, quasi-circular orbits ($\dot{\omega}/\omega\ll 1$),

$$\dot{R} = -\frac{2}{3}R\omega\left(\frac{\dot{\omega}}{\omega^2}\right), \quad \text{with} \quad \frac{\dot{\omega}}{\omega^2} = \frac{96}{5}\nu\left(\frac{GM\omega}{c^3}\right)^{5/3},$$

where $\nu = \mu/M$ is the symmetric mass ratio; $M = m_1 + m_2$ and $\mu = m_1 m_2/(m_1 + m_2)$. If GW is purely $f = 2\omega$,

$$\dot{f}_{GW} = \frac{96}{5} \pi^{8/3} \left(\frac{GM_{chirp}}{c^3}\right)^{5/3} f_{GW}^{11/3} \to f_{GW} \simeq 130 \left(\frac{1.21 \, M_{\odot}}{M_{chirp}}\right)^{5/8} \left(\frac{1 \, s}{\tau}\right)^{3/8} \, Hz$$

Coalescence times τ 17 min, 2 s, 1 ms for $f_{GW} = 10,100,10^3$ Hz.

14/24

Binary system inspiral

One can obtain the relation between radial separation and the GW frequency,

$$R \simeq 300 \left(\frac{M}{2.8M_{\odot}}\right)^{1/3} \left(\frac{100 \, Hz}{f_{GW}}\right)^{2/3} \, km \, .$$

and the number of GW cycles,

$$\mathcal{N}_{GW} = \frac{1}{\pi} \int_{t_i}^{t_f} \omega(t) \, dt = \frac{1}{\pi} \int_{\omega_i}^{\omega_f} \frac{\omega}{\dot{\omega}} \, d\omega.$$

For $\omega_{\rm f} \gg \omega_{\rm i}$, one gets

$$\mathcal{N}_{\rm GW}\simeq 10^4~ \left(\frac{M_{chirp}}{1.21M_\odot}\right)^{-5/3}~ \left(\frac{f_i}{10~Hz}\right)^{-5/3}$$

Post-Newtonian expansions

In GR, the two-body problem is not fully solved (needed for accurate template banks for filter-matching detection statistics). Different approaches:

- * numerical relativity,
- ★ perturbation-based self-force approach (extreme ratio inspirals, $m_1/m_2 \ll 1$),
- ★ post-Newtonian expansion:
 - Oth order Newtonian gravity,
 - nth PN order corrections of order

$$\left(\frac{v}{c}\right)^{2n} \propto \left(\frac{Gm}{rc^2}\right)^n.$$

(Blanchet et al., Phys. Rev. D 81, 064004, 2010)

Post-Newtonian expansions

Expansion in small parameter, which can be

$$\left(\frac{v}{c}\right)^2 \sim |h_{\mu\nu}| \sim \left|\frac{\partial_0 h}{\partial_i h}\right|^2 \sim \left|\frac{T^{0i}}{T^{00}}\right| \sim \left|\frac{T^{ij}}{T^{00}}\right|$$

For the parameter $\dot{\omega}/\omega^2$,

$$\frac{\dot{\omega}}{\omega^2} = \frac{96}{5} \nu \, v_{\omega}^{5/3} \, \sum_{k=0}^7 \omega_{(k/2) \mathrm{PN}} \, v_{\omega}^{k/3} \propto \mathcal{O}\left(\frac{v}{c}\right)^5,$$

$$\begin{split} \omega_{0\rm PN} &= 1, \\ \omega_{0.5\rm PN} &= 0, \\ \omega_{1\rm PN} &= -\frac{743}{336} - \frac{11}{4}\nu, \\ \omega_{1.5\rm PN} &= 4\pi + \left[-\frac{47}{3}\frac{S_{\ell}}{M^2} - \frac{25}{4}\frac{\delta m}{M}\frac{\Sigma_{\ell}}{M^2} \right], \\ \omega_{2\rm PN} &= \frac{34\,103}{18\,144} + \frac{13\,661}{2\,016}\nu + \frac{59}{18}\nu^2 - \frac{1}{48}\nu\,\chi_1\chi_2\left[247\,(\hat{\boldsymbol{S}}_1\cdot\hat{\boldsymbol{S}}_2) - 721\,(\hat{\boldsymbol{\ell}}\cdot\hat{\boldsymbol{S}}_1)(\hat{\boldsymbol{\ell}}\cdot\hat{\boldsymbol{S}}_2) \right], \end{split}$$

etc.

Post-Newtonian expansions

Post-Newtonian contributions to the number of GW cycles accumulated from $\omega_{\rm in} = \pi \times 10 \, {\rm Hz}$ to $\omega_{\rm fin} = \omega^{\rm ISCO} = 1/(6^{3/2} M)$ for binaries detectable by LIGO and VIRGO. We denote $\kappa_i = \hat{\boldsymbol{S}}_i \cdot \hat{\boldsymbol{\ell}}$ and $\xi = \hat{\boldsymbol{S}}_1 \cdot \hat{\boldsymbol{S}}_2$.

	$(10 + 10)M_{\odot}$	$(1.4 + 1.4) M_{\odot}$		
Newtonian	601	16034		
1PN	+59.3	+441		
1.5PN	$-51.4 + 16.0 \kappa_1 \chi_1 + 16.0 \kappa_2 \chi_2$	$-211+65.7 \kappa_1 \chi_1+65.7 \kappa_2 \chi_2$		
2PN	$+4.1 - 3.3 \kappa_1 \kappa_2 \chi_1 \chi_2 + 1.1 \xi \chi_1 \chi_2$	$+9.9 - 8.0 \kappa_1 \kappa_2 \chi_1 \chi_2 + 2.8 \xi \chi_1 \chi_2$		
2.5PN	$-7.1 + 5.5 \kappa_1 \chi_1 + 5.5 \kappa_2 \chi_2$	$-11.7 + 9.0 \kappa_1 \chi_1 + 9.0 \kappa_2 \chi_2$		
3PN	+2.2	+2.6		
3.5PN	-0.8	-0.9		

(this and previous slides from A. Buonanno lecture, arxiv 0709 4682)

Neutron stars in relativistic binaries: PSR J0737-3039

Post-Keplerian parameters

- * Periastron advance: $\dot{\omega} = 3 \left(\frac{P_{b}}{2\pi}\right)^{-5/3} (T_{\odot}M)^{2/3} (1 - e^{2})^{-1}$
- ★ Orbit decay:

$$\begin{split} \dot{P}_{b} &= -\frac{192\pi m_{p}m_{c}}{5M^{1/3}} \left(\frac{P_{b}}{2\pi}\right)^{-5/3} \times \\ & \left(1 + \frac{73}{24}e^{2} + \frac{37}{96}e^{4}\right) (1 - e^{2})^{-7/2} T_{\odot}^{5/3} \end{split}$$

★ Shapiro effect:

$$r = T_{\odot} m_c,$$

$$s = \frac{a_P \sin i}{c m_c} \left(\frac{P_b}{2\pi}\right)^{-2/3} T_{\odot}^{-1/3} M^{2/3}$$

★ Gravitational redshift:

$$\gamma = e \left(\frac{P_{b}}{2\pi}\right)^{1/3} T_{\odot}^{2/3} M^{-4/3} m_{c} (M + m_{c})$$

where $T_{\odot}=GM_{\odot}/c^3$, $M=m_{p}+m_{c}$.

(All measurements compatible with GR so far)

PSR J0737-3039A/B:

- ★ Pulsar A: P = 22.7 ms, pulsar B: P = 2.77 s,
- ***** Orbital period \simeq 2.4 h,
- \star eccentricity \simeq 0.08,
- ***** Orbit decay \simeq 7 mm/day.

Orbital decay \dot{P}_b test for GR with the PSR J0348+0432

The most relativistic NS-white dwarf binary to date:

PSR J0348+432:

- ★ Pulsar mass: $2.01 \pm 0.04 \ M_{\odot}$, WD mass: $0.172 \pm 0.003 \ M_{\odot}$,
- * Orbital period $P_b \simeq 2.4$ h,

*
$$\dot{P}_b = -2.73 \times 10^{-11} \text{ s/s}$$

* $\dot{P}_{b}/\dot{P}_{b}^{GR} = 1.05 \pm 0.18$

Testing scalar-tensor theories of gravity - dipolar term in \dot{P}_b : $\dot{P} \frac{dipolar}{b} \approx -\frac{4\pi^2 G}{c^3 P_b} \frac{m_p m_c}{m_p + m_c} (\alpha_p - \alpha_c)^2$ $|\alpha_p - \alpha_0| < 0.005$ based on the comparison with \dot{P}_b^{GR} (linear term $\alpha_0 < 0.004$ from weak-field experiments)

Other detectors

16/24

Continuous GWs from rotating neutron stars

Time-varying quadrupole moment needed:

- Mountains (supported by elastic and/or magnetic stresses in the NS crust and/or core),
- * Oscillations (r-modes)
- * Free precession,
- Accretion from the companion (deformations, thermal gradients, magnetic fields).

Main characteristics of such GWs:

- \star periodic, $f_{
 m GW} \propto f_{
 m rot}$,
- \star long-lived, $T > T_{\rm obs}$.

Estimated GW amplitude

Using the quadrupole formula, the amplitude is estimated as follows:

$$h_0 = 4 \times 10^{-25} \left(\frac{\epsilon}{10^{-6}}\right) \left(\frac{l}{10^{45} \text{ g cm}^2}\right) \left(\frac{f}{100 \text{ Hz}}\right)^2 \left(\frac{100 \text{ pc}}{d}\right)$$

where $\epsilon = (\textit{I}_1 - \textit{I}_2)/\textit{I}$, I - moment of inertia.

Theoretical predictions for maximal possible deformations:

- * "Normal matter", $\epsilon \le 10^{-6} 10^{-7}$ (Ushomirsky, Cutler & Bildsten 2000, Johnson-McDaniel & Owen 2012)
- * Quark matter, $\epsilon \leq 10^{-4} 10^{-5}$ (Owen 2005, Johnson-McDaniel & Owen 2012)

Spin-down limit for known pulsars

Limit on h_0 , assuming that all rotational energy is lost in GWs

- \star Change of rotational energy: $E_{
 m rot} = I f^2, \ \dot{E}_{
 m rot} \propto I f \dot{f}$
- * GW luminosity: $\dot{E}_{\rm GW} \propto \epsilon^2 I^2 f^6$

$$\dot{E}_{\rm GW} = \dot{E}_{\rm rot} \rightarrow h_{\rm sd} = \frac{1}{d} \sqrt{\frac{5GI}{2c^3} \frac{|\dot{f}|}{f}} =$$

$$= 8 \times 10^{-24} \sqrt{\left(\frac{l}{10^{45} \text{ g cm}^2}\right) \left(\frac{|\dot{f}|}{10^{-10} \text{ Hz/s}}\right) \left(\frac{100 \text{ Hz}}{f}\right) \left(\frac{100 \text{ pc}}{d}\right)}.$$

 $h_0 \leqslant h_{\mathrm{sd}} \rightarrow$ upper limit on the deformation ϵ :

$$\epsilon_{\rm sd} = 2 \times 10^{-5} \sqrt{\left(\frac{10^{45} \text{ g cm}^2}{I}\right) \left(\frac{100 \text{ Hz}}{f}\right)^5 \left(\frac{|\dot{f}|}{10^{-10} \text{ Hz/s}}\right)}$$

Targeted searches

Epoch	$h_0^{95\%}$		Ellipticity		$h_0^{95\%}/h_0^{ m sd}$	
	Uniform	Restricted ^a	Uniform	Restricteda	Uniform	Restricteda
			Crab pulsar			
Model (1)b	2.6×10^{-25}	2.0×10^{-25}	1.4×10^{-4}	1.1×10^{-4}	0.18	0.14
Model (2) ^c	2.4×10^{-25}	1.9×10^{-25}	1.3×10^{-4}	9.9×10^{-5}	0.17	0.13
1.	4.9×10^{-25}	3.9×10^{-25}	2.6×10^{-4}	2.1×10^{-4}	0.34	0.27
2.	2.4×10^{-25}	1.9×10^{-25}	1.3×10^{-4}	$1.0 imes 10^{-4}$	0.15	0.13

Spin-down limit has been beaten for Crab pulsar:

< 2% of energy loss due to GW emission ApJ, 713, 671, 2010: LIGO S5 data, Bayesian analysis

and Vela pulsar:

Analysis method	95% upper limit for h_0		
Heterodyne, restricted priors	$(2.1 \pm 0.1) \times 10^{-24}$		
Heterodyne, unrestricted priors	$(2.4 \pm 0.1) \times 10^{-24}$		
<i>G</i> -statistic	$(2.2 \pm 0.1) \times 10^{-24}$		
\mathcal{F} -statistic	$(2.4 \pm 0.1) \times 10^{-24}$		
MF on signal Fourier components, 2 d.o.f.	$(1.9 \pm 0.1) \times 10^{-24}$		
MF on signal Fourier components, 4 d.o.f.	$(2.2 \pm 0.1) \times 10^{-24}$		

 $< 35\% \text{ of energy loss} \\ \text{due to GW emission;} \\ \text{ellipticity} \\ \epsilon < 1.2 \times 10^{-3} \\ \end{cases}$

ApJ, 737, 93, 2011: Virgo VSR2 data, Bayesian analysis, matched filtering

Indirect spin down limits

★ Signal

galact

 \star For stars with unknown f, but known age $au=f/(4|\dot{f}|)$, h and ϵ estimated by assuming all energy lost in GWs:

$$h_{\rm isd} = 2 \times 10^{-23} \sqrt{\left(\frac{I}{10^{45} \ {\rm g \ cm^2}}\right) \left(\frac{1000 \ {\rm yr}}{\tau}\right)} \left(\frac{100 \ {\rm pc}}{d}\right),$$

 \star In accreting systems like Sco X-1, f unknown - accretion torque balanced by the GW emission (Papaloizou & Pringle 1978, Bildsten 1999, Chakrabarty et al., 2003); h related to flux in X-rays:

$$h_{acc} \approx 5 \times 10^{-27} \sqrt{\left(\frac{300 \text{ Hz}}{f}\right) \left(\frac{F_x}{10^{-8} \text{ erg cm}^{-2} \text{ s}^{-1}}\right)}$$

Signal from hypothetical population of gravitars. Blandford limit (uniform distribution in the galactic disk) - $h \approx 4 \times 10^{-24}$, independent of ϵ and f . (more detailed study by Knispel & Allen 2008).
2008).
$$\frac{h_{acc}}{f} \approx 5 \times 10^{-27} \sqrt{\left(\frac{300 \text{ Hz}}{f}\right) \left(\frac{F_x}{10^{-8} \text{ erg cm}^{-2} \text{ s}^{-1}\right)}} \sqrt{\left(\frac{F_x}{10^{-8} \text{ erg cm}^{-2} \text{ s}^{-1}\right)}}$$

GWs from non-axisymmetric collapse

$$h_{GW} \sim 2 \times 10^{-17} \sqrt{\eta_{eff}} \left(\frac{1 \text{ ms}}{\tau}\right)^{1/2} \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{10 \text{ kpc}}{r}\right) \left(\frac{1 \text{ kHz}}{f_{GW}}\right),$$

where τ is the duration. Efficiency in case of core-collapse supernovae is estimated to be quite low,

$$\eta_{eff} = rac{\Delta E}{Mc^2} \sim 10^{-7} - 10^{-10}.$$

Comparison with other kinds of radiation for SN at 20 kpc:

* GW: ~ 400
$$\left(\frac{1 \ kHz}{f_{GW}}\right)^2 \left(\frac{h}{10^{-21}}\right)^2 \ \frac{erg}{cm^2 \ s}$$
 in ms,
* neutrinos: 10⁵ $\frac{erg}{cm^2 \ s}$ in ~ 10 s,
* Optical: ~ 10⁻⁴ $\frac{erg}{cm^2 \ s}$ in a week.

Electromagnetic vs gravitational waves: comparison

Electromagnetic waves:

- radiation by accelerating charges (time changing dipole),
- incoherent superposition of emission from electrons, atoms and molecules,
- direct information about thermodynamics,
- wavelenghts small compared to the source,
- strong interaction with matter (absorption, scattering...)

Gravitational waves:

- radiation by accelerating masses (time changing quadrupole),
- coherent superposition of emission from moving masses,
- direct information about the dynamics,
- wavelengths large compared to the source,
- ★ small interaction with matter.

- * "Lecture Notes on General Relativity", Sean Carroll,
- * "Gravitational waves", A. Buonanno, arXiv:0709.4682,
- * "Gravitational waves, sources and detectors", B. F. Schutz, F. Ricci, arXiv:1005.4735,
- Living Reviews in Relativity: "Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case", P. Jaranowski & A. Królak,