Gravitational waves

Michał Bejger
N. Copernicus Center, Warsaw

Outline

* Wave equation in linearized GR,
* the quadrupolar nature of gravitational waves,
\star Detection principle,
夫 Astrophysical sources.

GR is nonlinear \& fully dynamical \rightarrow not so clear a distinction between waves and the rest of the metric. Speaking about waves is 'safe' in in certain limits:

* linearized theory,
* as small perturbations of a smooth background metric (gravitational lensing of waves, cosmological perturbations),
* in post-Newtonian theory (far-zone, i.e., more than one wave- length distant from the source).

Wave equation in linearized GR

Since we anticipate the gravitational-wave component w.r.t the otherwise stationary (e.g., Minkowski) metric η to be small, $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$, $\left|h_{\mu \nu}\right| \ll 1$ let's linearize the Einstein's equations,

$$
\begin{aligned}
& R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{8 \pi G}{c^{4}} T_{\mu \nu}, \quad \text { where } \quad R=g^{\mu \nu} R_{\mu \nu}, \quad R_{\mu \nu}=g^{\rho \sigma} R_{\rho \mu \sigma \nu} \\
& R_{\mu \rho \sigma}^{\nu}=\partial_{\rho} \Gamma_{\mu \sigma}^{\nu}-\partial_{\sigma} \Gamma_{\mu \rho}^{\nu}+\Gamma_{\lambda \rho}^{\nu} \Gamma_{\mu \sigma}^{\lambda}-\Gamma_{\lambda \sigma}^{\nu} \Gamma_{\mu \rho}^{\lambda}, \quad R_{\nu \mu \rho \sigma}=g_{\nu \rho} R_{\mu \rho \sigma}^{\rho}, \\
& \Gamma_{\mu \rho}^{\nu}=\frac{1}{2} g^{\nu \lambda}\left(g_{\lambda \mu, \rho}+g_{\lambda \rho, \mu}-g_{\mu \rho, \lambda}\right) .
\end{aligned}
$$

At linear order in $h_{\mu \nu}$ the connection coefficients are

$$
\Gamma_{\mu \rho}^{\nu}=\frac{1}{2} \eta^{\nu \lambda}\left(h_{\lambda \mu, \rho}+h_{\lambda \rho, \mu}-h_{\mu \rho, \lambda}\right)
$$

and

$$
\begin{aligned}
& R_{\mu \rho \sigma}^{\nu}=\partial_{\rho} \Gamma_{\mu \sigma}^{\nu}-\partial_{\sigma} \Gamma_{\mu \rho}^{\nu}+\mathcal{O}\left(h^{2}\right) \rightarrow \\
& R_{\mu \nu \rho \sigma}=\frac{1}{2}\left(\partial_{\rho \nu} h_{\mu \sigma}+\partial_{\sigma \mu} h_{\nu \rho}-\partial_{\rho \mu} h_{\nu \sigma}-\partial_{\sigma \nu} h_{\mu \rho}\right) .
\end{aligned}
$$

Wave equation in linearized GR

To simplify previous expressions, the trace-reversed tensor is introduced:

$$
\bar{h}^{\mu \nu}=h^{\mu \nu}-\frac{1}{2} \eta^{\mu \nu} h, \quad \text { where } \quad h=\eta_{\alpha \beta} h^{\alpha \beta} \quad \text { and } \quad \bar{h}=-h .
$$

With these changes, the Einstein equations are

$$
\square \bar{h}_{\nu \sigma}+\eta_{\nu \sigma} \partial^{\rho} \partial^{\lambda} \bar{h}_{\rho \lambda}-\partial^{\rho} \partial_{\nu} \bar{h}_{\rho \sigma}-\partial^{\rho} \partial_{\sigma} \bar{h}_{\rho \nu}+\mathcal{O}\left(h^{2}\right)=-\frac{16 \pi G}{c^{4}} T_{\nu \sigma}
$$

where $\square=\eta_{\rho \sigma} \partial^{\rho} \partial^{\sigma}$ is the d'Alambert (wave) operator. In Cartesian terms

$$
\square=\eta_{\rho \sigma} \partial^{\rho} \partial^{\sigma}=-\frac{1}{c^{2}} \partial_{t}^{2}+\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2} .
$$

Further simplification is the use of gauge freedom; by imposing the Lorentz (de Donder, harmonic) gauge condition, $\partial_{\nu} \bar{h}^{\mu \nu}=0$, one obtains

$$
\square \bar{h}_{\nu \sigma}=-\frac{16 \pi G}{c^{4}} T_{\nu \sigma}
$$

Gauge transformation freedom

Consider an infinitesimal coordinate transformation,

$$
x^{\prime \alpha}=x^{\alpha}+\xi^{\alpha}\left(x^{\beta}\right), \quad \text { with } \xi^{\alpha} \text { small in the sense that }\left|\partial_{\beta} \xi^{\alpha}\right| \ll 1 .
$$

This imply

$$
\frac{\partial x^{\prime \alpha}}{\partial x^{\beta}}=\delta_{\beta}^{\alpha}+\partial_{\beta} \xi^{\alpha}, \quad \text { and } \quad \frac{\partial x^{\alpha}}{\partial x^{\prime \beta}}=\delta_{\beta}^{\alpha}-\partial_{\beta} \xi^{\alpha}+\mathcal{O}\left((\partial \xi)^{2}\right) .
$$

Recalling that $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$ and $g_{\mu \nu}^{\prime}\left(x^{\prime}\right)=\frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\beta}}{\partial x^{\prime \nu}} g_{\alpha \beta}(x)$, one finally gets

$$
g_{\alpha \beta}^{\prime}=\eta_{\alpha \beta}+\underbrace{h_{\alpha \beta}-\partial_{\alpha} \xi_{\beta}-\partial_{\beta} \xi_{\alpha}}_{h_{\alpha \beta}^{\prime}}+\mathcal{O}\left(h \partial \xi,(\partial \xi)^{2}\right) \quad\left(\xi_{\alpha}=\eta_{\alpha \beta} \xi^{\beta}\right) .
$$

Because $\left|\partial_{\beta} \xi^{\alpha}\right| \ll 1$ the metric perturbation $h_{\alpha \beta}^{\prime}$ is small, the approximation is still valid. Applied to metric perturbation $\bar{h}_{\alpha \beta}^{\prime}$:

$$
\bar{h}_{\alpha \beta}^{\prime}=\bar{h}_{\alpha \beta}-\partial_{\alpha} \xi_{\beta}-\partial_{\beta} \xi_{\alpha}+\eta_{\alpha \beta} \partial_{\mu} \xi^{\mu} .
$$

Transverse-traceless gauge

We have limited 10 degrees of freedom of a symmetric 4×4 tensor $h_{\mu \nu}$ to 6 independent components by imposing the Lorentz gauge. In vacuum, where the waves propagate, $T_{\mu \nu}=0$,

$$
\square \bar{h}_{\nu \sigma}=0
$$

\rightarrow speed of the wave equals speed of light c. Concerning the remaining degrees of freedom, in Lorentz gauge one can always consider coordinate transformations
$\overline{h^{\prime}}{ }_{\nu \sigma}=\bar{h}_{\nu \sigma}+\xi_{\mu \nu}, \quad$ where $\quad \xi_{\mu \nu}=\eta_{\mu \nu} \partial_{\rho} \xi^{\rho}-\xi_{\mu, \nu}-\xi_{\nu, \mu} \rightarrow \square \xi_{\mu \nu}=0$
$\square \xi_{\mu \nu}=0$ means fixing 4 from 6 remaining degrees of freedom, for example choosing ξ^{0} such that $\bar{h}=0$ and ξ^{i} such that $h^{i t}=0, \partial_{t} h^{t t}=0$:

$$
h^{t t}=0, \quad h^{t i}=0, \quad \partial_{i} h^{i j}=0, \quad h^{i i}=0
$$

This is the definition of the transverse-traceless tensor $h_{i j}^{T T}$.

Transverse-traceless tensor $h_{i j}^{T T}$

For a propagation direction n^{i}, the transversality condition means $n^{i} h_{i j}^{\mathrm{TT}}=0$ (in the TT gauge the gravitational wave is described by 2×2 matrix in the plane orthogonal to the direction of propagation \mathbf{n}). Assuming the plane wave that propagates along the z-axis

$$
h_{i j}^{\mathrm{TT}}(t, z)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & h_{+} & h_{\times} & 0 \\
0 & h_{\times} & -h_{+} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \cos (\omega t-k z)
$$

where h_{+}and h_{\times}are two independent polarization states (two remaining degrees of freedom).
h_{+}and h_{\times}are the helicity states - in the form described by the TT gauge they change under rotation of ϕ around \mathbf{n} as

$$
\begin{aligned}
& h \rightarrow e^{i \mathbf{S} \cdot n \phi} h \quad \text { where } \quad \mathbf{S}=\text { particle spin } \\
& h_{\times} \pm i h_{+} \rightarrow e^{\mp 2 i \phi}\left(h_{\times} \pm i h_{+}\right) .
\end{aligned}
$$

GW interaction with a point particle in the TT gauge

Let's consider a test particle, at rest at $\tau=0$. From the geodesic equation one has

$$
\frac{d^{2} x^{i}}{d \tau^{2}}{ }_{\left.\right|_{\tau}=0}=-\left(\Gamma_{\rho \sigma}^{i} \frac{d x^{\rho}}{d \tau} \frac{d x^{\sigma}}{d \tau}\right)_{\left.\right|_{\tau=0}}=-\left(\Gamma_{t t}^{i} \frac{d x^{t}}{d \tau} \frac{d x^{t}}{d \tau}\right)_{\left.\right|_{\tau=0}},
$$

with $\left(d x^{\mu} / d \tau\right)_{\tau=0}=(c, 0)$ and
$\Gamma_{t t}^{i}=\frac{1}{2} \eta^{i j}\left(\partial_{t} h_{t j}+\partial_{t} h_{j t}-\partial_{j} h_{t t}\right)$, but $h_{t t}=0, h_{t j}=0$ so $\left(\Gamma_{t t}^{i}\right)_{\tau=0}=0$.
If at $\tau=0 d x^{i} / d \tau=0$, also $d^{2} x^{i} / d \tau^{2}=0$ and a particle at rest before the GW arrives remains at rest. What varies is the proper distance between the particles. For a plane wave in the z-direction,

$$
\begin{aligned}
& d s^{2}=-c^{2} d t^{2}+d x^{2}\left(1+h_{+} \cos (\omega t-k z)\right) \\
& +d y^{2}\left(1-h_{+} \cos (\omega t-k z)\right)+2 d x d y h_{\times} \cos (\omega t-k z)+d z^{2}
\end{aligned}
$$

If particles A and B set down initially along the x-axis, we have

$$
s \simeq L\left(1+\frac{h_{+}}{2} \cos \omega t\right)
$$

where L is the initial, unperturbed distance between particles A and B.

Newtonian tidal force \& geodetic deviation

For two particles A and B falling in Euclidean space under gravitational potential Φ. At $t=0$ separation is $\xi=\mathbf{x}_{A}-\mathbf{x}_{B}$ and $\mathbf{v}_{\mathbf{A}}(t=0)=\mathbf{v}_{B}(t=0)$. The evolution of ξ because of $\mathbf{g}=-\nabla \Phi$

$$
\frac{d^{2} \xi^{i}}{d t^{2}}=-\left(\frac{\partial \Phi}{d x^{i}}\right)_{\mathrm{B}}+\left(\frac{\partial \Phi}{d x^{i}}\right)_{\mathrm{A}} \simeq-\underbrace{\left(\frac{\partial^{2} \Phi}{\partial x^{i} \partial x^{j}}\right)}_{\text {Tidal gravity tensor } \mathcal{E}_{j}^{j}} \xi^{j}
$$

In GR for two neigboring geodesics $x^{\mu}(\tau)$ and $x^{\mu}(\tau)+\xi^{\mu}(\tau)$, the geodetic equation,

$$
\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\rho \sigma}^{\mu}(x) \frac{d x^{\rho}}{d \tau} \frac{d x^{\sigma}}{d \tau}=0
$$

By expanding the geodesic equation of particle B around the position of particle A and subtracting it from the geodesic equation of particle A, one gets

$$
\nabla_{u} \nabla_{u} \xi^{\mu}=-R^{\mu}{ }_{\nu \rho \sigma} \xi^{\rho} \frac{d x^{\nu}}{d \tau} \frac{d x^{\sigma}}{d \tau},
$$

with $u^{\beta}=d x^{\beta} / d \tau$. Nearby time-like geodesics are tidally deviated proportional to the Riemann tensor.

GWs in the free-falling frame

By changing the coordinates to a system in which $\Gamma_{\rho \sigma}^{\mu}(x)=0$,

$$
\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\rho \sigma}^{\mu}(x) \frac{d x^{\rho}}{d \tau} \frac{d x^{\sigma}}{d \tau}=0 \quad \rightarrow \quad\left(\frac{d^{2} x^{\mu}}{d \tau^{2}}\right)_{x}=0
$$

A particle is not experiencing acceleration (free-falling, FF). Let's chose a coordinate system in which $x^{j}=0$ and $x^{0}=\tau$ (coordinate time is proper time), the metric at the origin is Minkowski

$$
\begin{aligned}
& d s^{2}=-c^{2} d t^{2}+d \mathbf{x}^{2}+\mathcal{O}\left(\frac{|\mathbf{x}|^{2}}{\mathcal{R}^{2}}\right)=-c^{2} d t^{2}\left(1+R_{i t j t} x^{i} x^{j}\right) \\
& -2 c d t d x^{i}\left(\frac{2}{3} R_{t j i k} x^{j} x^{k}\right)+d x^{i} d x^{j}\left(\delta_{i j}-\frac{1}{3} R_{i j k l} x^{k} x^{\prime}\right)
\end{aligned}
$$

where \mathcal{R} is the curvature radius $\mathcal{R}^{-2}=\left|R_{\mu \nu \rho \sigma}\right|$. On Earth, the detector is not in full free fall (acceleration $\mathbf{a}=-\mathbf{g}$ w.r.t a local inertial frame), but some directions (horizontal movement) may be used.

GWs in the free-falling frame

Let's investigate the geodesic deviation in this frame:

$$
\nabla_{u} \nabla_{u} \xi^{\alpha}=u^{\beta} \nabla_{\beta}\left(u^{\lambda} \nabla_{\lambda} \xi^{\alpha}\right)=u^{\beta} u^{\lambda}\left(\partial_{\beta \lambda} \xi^{\alpha}+\Gamma_{\lambda \sigma, \beta}^{\alpha} \xi^{\sigma}\right)
$$

which simplifies because $\Gamma_{\lambda \sigma}^{\alpha}=0$, particles are initially at rest $\left(u^{\beta}=\delta_{0}^{\beta}\right)$, with $\xi^{0}=0$ and $\Gamma_{t k, t}^{j}$

$$
\nabla_{u} \nabla_{u} \xi^{j}=\frac{d^{2} \xi^{j}}{d \tau^{2}} \quad \rightarrow \quad \frac{d^{2} \xi^{j}}{d \tau^{2}}=-R_{t k t}^{j} \xi^{k}
$$

from the geodesic deviation equation. In linearized theory the Riemann tensor is invariant under change of coordinates, so in TT gauge

$$
\begin{gathered}
R_{\mu \nu \rho \sigma}=\frac{1}{2}\left(\partial_{\rho \nu} h_{\mu \sigma}+\partial_{\sigma \mu} h_{\nu \rho}-\partial_{\rho \mu} h_{\nu \sigma}-\partial_{\sigma \nu} h_{\mu \rho}\right) \quad \rightarrow \quad R_{j t k t}^{\mathrm{TT}}=-\frac{1}{2 c^{2}} \ddot{h}_{j k}^{\mathrm{TT}} \\
\rightarrow \frac{d^{2} \xi^{j}}{d t^{2}}=\frac{1}{2} \ddot{h}_{j k}^{\mathrm{TT}} \xi^{k}
\end{gathered}
$$

(also, in FF the coordinate distances and proper distances coincide)

GWs in the free-falling frame

The GW effect on a point particle can be described as an effect of a Newtonian force

$$
\frac{d^{2} \xi^{j}}{d t^{2}}=\frac{1}{2} \ddot{h}_{j k}^{\mathrm{TT}} \xi^{k} \quad \leftrightarrow \quad F_{i}=\frac{m}{2} \ddot{h}_{i j}^{\mathrm{TT}} \xi^{j} .
$$

Free-falling approximation to geodesic deviation applies as long as
$\star g_{\mu \nu}=\eta_{\mu \nu}+\mathcal{O}\left(x^{2} / \mathcal{R}^{2}\right)$,

* since $\mathcal{R}^{-2}=\left|R_{i t j t}\right| \sim \ddot{h} \sim h / \lambda_{\mathrm{GW}}^{2}$, one has $x^{2} / \mathcal{R}^{2} \simeq L^{2} h / \lambda_{\mathrm{GW}}^{2}$, and comparing with $\delta L / L \sim h \rightarrow L^{2} / \lambda_{\text {GW }}^{2} \ll 1$,
\star Works for a ground based detector: for $L=4 \mathrm{~km}$ and $\lambda_{\mathrm{GW}} \sim 3000$ km,
* Space-based detectors: $L \sim 10^{6} \mathrm{~km}$ set to observe GWs with wavelength comparable or shorter L - different strategy needed (time of flight, phase shifts measurements).

Gravitational-wave detection

GW acting on a ring of free-falling test particles, with x_{0} and y_{0} the unperturbed position at time $t=0$. For + polarization

$$
h_{i j}^{\mathrm{TT}}=h_{+}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \sin \omega t, \quad \xi_{i}=\left(x_{0}+\delta x(t), y_{0}+\delta y(t)\right)
$$

$\delta x(t)=\frac{h_{+}}{2} x_{0} \sin \omega t, \quad \delta y(t)=-\frac{h_{+}}{2} y_{0} \sin \omega t, \quad$ and likewise for \times polarization: $\delta x(t)=\frac{h_{\times}}{2} y_{0} \sin \omega t, \quad \delta y(t)=\frac{h_{\times}}{2} x_{0} \sin \omega t$.

left - a wave with + polarization, right - with \times polarization.

Gravitational-wave detection

Lines of force for both polarizations are as follows:

The simplest detector - test mass m and an apparatus to check the change of distance L (e.g., a spring with the resonant frequency Ω and quality factor Q):

$$
\ddot{\Delta L}(t)+2 \frac{\Omega}{Q} \dot{\Delta} L(t)+\Omega^{2} \Delta L(t)=\frac{L}{2}\left(F_{+} \ddot{h}_{+}(t)+F_{\times} \ddot{h}_{\times}(t)\right),
$$

where F_{+}and F_{\times}depend on the direction of the source.

Quadrupolar nature of GWs

In electromagnetism, radiation due time changing electric dipole moment $\mathbf{d}=e x$:

$$
\text { Luminosity } \propto \ddot{\mathbf{d}}
$$

Gravitational-wave emission in the dipole mode would mean the changing in time mass dipole moment:

$$
\mathbf{d}=\sum_{i} m_{i} \mathbf{x}_{i} \quad \rightarrow \quad \dot{\mathbf{d}}=\underbrace{\sum_{i} m_{i} \dot{x}_{i}}_{\text {Momentum }}
$$

Conservation of momentum means no mass dipole GW radiation. Likewise, for the current dipole moment

$$
\mathcal{M}=\underbrace{\sum_{i} m_{i} \mathbf{x}_{i} \times \dot{\mathbf{x}}_{i}}_{\text {Angular momentum }}
$$

the conservation of angular momentum mean no current dipole GW radiation.

Estimate of wave amplitude

The wave equation for GWs,

$$
\square \bar{h}^{\alpha \beta}=\frac{16 \pi G}{c^{4}} T^{\alpha \beta}
$$

is an analogue to the Maxwell equation (Gauss law) in the Lorentz gauge, $\left.\left(1 / c^{2}\right) \partial_{t} \phi+\nabla \cdot \mathbf{A}=0\right)$:

$$
\nabla \cdot \mathbf{E}=\square \phi=4 \pi \rho, \quad \text { where } \quad \mathbf{E}=-\nabla \phi+\partial_{\mathrm{t}} \mathbf{A} .
$$

By analogy between solutions

$$
\phi(t, \mathbf{r})=\int \frac{\rho(t-R / c, \mathbf{x})}{R} d V, \quad \bar{h}^{\alpha \beta}=\frac{4 G}{c^{4}} \int \frac{T^{\alpha \beta}(t-R / c, \mathbf{x})}{R} d V .
$$

with $R=|\mathbf{r}-\mathbf{x}|$. Far from the compact source $(r \gg \mathbf{x})$, the solution is described by the far-field solution:

$$
\bar{h}^{\alpha \beta}(t, \mathbf{r})=\frac{4 G}{c^{4} r} \int T^{\alpha \beta}(t-R / c, \mathbf{x}) d V
$$

Estimate of wave amplitude

Using the energy-momentum conservation it can be shown that

$$
T_{, \beta}^{\alpha \beta}=0 \quad \rightarrow \quad \bar{h}^{i j} \approx-\frac{2 G}{c^{4} r} \frac{d^{2} I^{i j}}{d t^{2}}
$$

where $I^{i j}=\int \rho x^{i} x^{j} d V$ is the moment of inertia tensor (quadrupole tensor).
Consider two equal masses M separated by a on circular orbit in the $x-y$ with angular frequency Ω around their center of mass. Then

$$
I^{x x}=\int \rho x^{2} d V=2 M\left(\frac{a}{2} \cos \Omega t\right)^{2}=\frac{1}{4} M a^{2}(1+\cos 2 \Omega t)
$$

which leads to, and other terms like that,

$$
\bar{h}^{x x}=\frac{2 G M a^{2} \Omega^{2}}{c^{4} r} \cos 2 \Omega t
$$

Two important conclusions:
^ Quadrupole radiation: GW at twice the orbital frequency,
\star Amplitude $\propto G M a^{2} \Omega^{2} / c^{4} r$.

Estimate of wave amplitude

Example - binary system of two stellar-mass black holes:

$$
\begin{aligned}
& \star M=10 M_{\odot}, \\
& \star a=1 R_{\odot} \\
& \star r=8 \mathrm{kpc}(\text { Galactic center })
\end{aligned}
$$

From the Kepler's third law,
$\Omega^{2}=\frac{G(M+M)}{a^{3}} \approx 8 \times 10^{-4} \mathrm{rad}^{2} / \mathrm{s}^{2}$
Orbital period $38 \mathrm{~min} \rightarrow$ GW period 19 min . The GW strain amplitude is $h \sim 10^{-21}$.

Another example: binary neutron star pair, 10M light years distance (Virgo cluster), moving at $\sim 10 \%$ of the speed of light $\rightarrow h \simeq 10^{-21}$.

The quadrupole formula

The first term of the perturbation in the multipolar expansion far from the source is

$$
\bar{h}_{\alpha \beta}(t, \mathbf{r}) \simeq \frac{4 G}{c^{4} R} \int T_{\alpha \beta}(t-R / c, \mathbf{x}) d V .
$$

By imposing the conservation equation for the energy-momentum tensor

$$
\partial_{\nu} T^{\mu \nu}=0 \quad \rightarrow \quad \frac{\partial T_{i j}}{\partial x^{i}}-\frac{\partial T_{t j}}{\partial x^{t}}=0 \quad \text { and } \quad \frac{\partial T_{t i}}{\partial x^{i}}-\frac{\partial T_{t t}}{\partial x^{t}}=0
$$

it can be shown that

$$
\int T_{\alpha \beta} d V \text { can be expressed in terms of } T_{t t} \text {. }
$$

The quadrupole formula

$\# 1: \frac{\partial T_{i j}}{\partial x^{i}}-\frac{\partial T_{t j}}{\partial x^{t}}=0 \quad / \cdot x^{k} \quad$ and integrating on all space \rightarrow
$\int x^{k} \frac{\partial T_{i j}}{\partial x^{i}} d V=\int x^{k} \frac{\partial T_{t j}}{\partial x^{t}} d V=\frac{\partial}{\partial x^{t}} \int x^{k} T_{j t} d V$.
Integrating the left side by parts: $-\int T_{i j} \delta_{i}^{k} d V=\frac{\partial}{\partial x^{t}} \int x^{k} T_{j t} d V$
Symetrization: $\int T_{k j} d V=-\frac{1}{2} \frac{\partial}{\partial x^{t}} \int\left(x_{k} T_{t j}+x_{j} T_{t k}\right) d V$
\#2: $\frac{\partial T_{t i}}{\partial x^{i}}-\frac{\partial T_{t t}}{\partial x^{t}}=0 \quad / \cdot x_{j} x_{k} \quad$ and integrating on all space \rightarrow
$\frac{\partial}{\partial x^{t}} \int T_{t t} x_{j} x_{k} d V=\int \frac{\partial T_{t i}}{\partial x^{i}} x_{j} x_{k} d V$.
Integrating the right side by parts: $\frac{\partial}{\partial x^{t}} \int T_{t t} x_{j} x_{k} d V=-\int\left(x_{k} T_{t j}+x_{j} T_{t k}\right) d V$
Finally: $\int T_{k j} d V=\frac{1}{2 c^{2}} \frac{\partial^{2}}{\partial t^{2}} \int T_{t t} x_{j} x_{k} d V$.

The quadrupole formula

For $T^{t t}=\mu c^{2}$,

$$
\bar{h}_{i j}=\frac{2 G}{c^{4} R} \frac{\partial^{2}}{\partial t^{2}} \int \mu x_{i} x_{j} d V, \quad \text { In TT gauge: } \bar{h}_{i j}^{T T}=\frac{2 G}{c^{4} R} \mathcal{P}_{i}^{k} \mathcal{P}_{j}^{\prime} \ddot{Z}_{k l},
$$

where $I_{k l}=\int \rho\left(x_{k} x_{l}-\frac{1}{3} x^{2} \delta_{k l}\right) d V, \quad \mathcal{P}_{i}^{k}=\delta_{i}^{k}-n^{i} n_{k}$ (projection operator).
Similarly one can show from the conservation equation \#2 that

$$
\int T_{t j} d V=\frac{\partial}{\partial x^{t}} \int T_{t t} x_{j} d V
$$

and that the power P radiated per solid angle in a direction \mathbf{n} is

$$
\frac{d P}{d \Omega}=R^{2} n^{i} \Theta^{i t}, \quad \text { where } \quad \Theta^{i t}=\frac{c^{4}}{32 \pi G}\left\langle\partial_{t} \bar{h}_{\alpha}^{\beta} \partial_{i} \bar{h}_{\beta}^{\alpha}\right\rangle .
$$

The radiated GW power averaged over polarizations is

$$
P=\frac{G}{5 c^{5}} \ddot{i}_{i j}^{2} .
$$

The quadrupole formula: estimates

For a source of mass M, dimension L and deviation from sphericity ϵ,

$$
\begin{aligned}
& P=\frac{G}{5 c^{5}} \ddot{i}_{i j}^{2} \text { with } \quad I \propto \epsilon M L^{2} \quad \rightarrow \quad \dddot{I} \sim \omega^{3} \epsilon M L^{3}, \\
& \text { where } \omega \sim 1 / \tau \quad \text { (source characteristic frequency) } \\
& \rightarrow P \sim \frac{G}{c^{5}} \epsilon^{2} \omega^{6} M^{2} L^{4}, \quad \text { with } \quad \frac{G}{c^{5}}=3.6 \times 10^{50} \mathrm{erg} / \mathrm{s} .
\end{aligned}
$$

Some estimates:

* From Misner-Thorne-Wheeler: steel bar of $M \simeq 500$ tonnes,

$$
L=20 \mathrm{~m}, \omega \sim 30 \mathrm{rad} / \mathrm{s}:
$$

$$
G M \omega / c^{3} \sim 10^{-32}, \quad L c^{2} / G M \sim 10^{25}, \quad P \sim 10^{-27} \mathrm{erg} / \mathrm{s} \sim 10^{-60} P_{\odot}^{E M}
$$

* parametrization by Weber: $R_{s}=2 G M / c^{2}, \omega=(v / c)(c / L)$,

$$
P=\frac{c^{5}}{G} \epsilon^{2}\left(\frac{v}{c}\right)^{6}\left(\frac{R_{s}}{L}\right) \quad \text { for } v \sim c, L \sim R_{s} \quad P \sim \frac{c^{5}}{G} \epsilon^{2} \sim 10^{26} P_{\odot}^{E M} .
$$

Detectors

Ground-based interferometry

Interferometer for GWs

- The concept is to compare the time it takes light to travel in two orthogonal directions transverse to the gravitational waves.
- The gravitational wave causes the time difference to vary by stretching one arm and compressing the other.
- The interference pattern is measured (or the fringe is split) to one part in 10^{10}, in order to obtain the required sensitivity.

As seen by the detector, gravitational wave strain $h=\Delta L / L$, for $L \simeq \mathrm{~km}$, $\Delta L<10^{18} \mathrm{~m}$ (much smaller than the size of a proton).

Virgo detector (Cascina near Pisa, arm length - 3km)

Bar detectors

Passing GW resonates with the characteristic frequency of the bar (narrow frequency searches, typically $\sim 500 \mathrm{~Hz}$):

Amplitude of the vibrations is $\Delta L \sim h L$, response quite complicated.

Space-based interferometry

* Local geometry of geodesic deviation is not enough to analize the free-falling bodies response to the passing gravitational wave, $L \geqslant \lambda_{G W}$. Proposed space-borne mission eLISA with $L \sim 10^{6} \mathrm{~km}$ and study GW in the range $0.1 \mathrm{mHz}<f_{G W}<1 \mathrm{~Hz}$,
* Each spacecraft carries a free-falling test mass,
\star Direct reflection from mirrors not possible due to loses (~ 1 photon/day detection rate) \rightarrow transponder mode,
* Time-delay interferometry, central spacecraft compares the phases of lasers from "arm spacecrafts" (absolute lengths of arms known up to 1 m).

Triangular formation with center 20° behind the Earth, each spacecraft on an individual orbit around the Sun.

Space-based interferometry: time measurements

Let's consider an interferometer with an arm in the $x=$ direction. In a case for pure + polarization (TT gauge, wave travels to z-direction),

$$
d s^{2}=-d t^{2}+\left(1+h_{+}\right) d x^{2}+\left(1-h_{+}\right) d y^{2}+d z^{2}
$$

the coordinate speed along x-axis is $(d x / d t)^{2}=1 /\left(1+h_{+}\right)$. A photon emitted at time t from $x=0$ reaches the end of arm at $x=L$ at the coordinate time

$$
t_{1}=t+\int_{0}^{L} \sqrt{1+h_{+}(t(x))} d x, \quad \text { (implicit knowledge of } t(x) \text { needed). }
$$

One must know the time to reach x in order to calculate h_{+}. In linear approximation, h_{+}small: expansion in powers of h_{+}and assuming zero-order solution of a photon in flat space-time traveling with $c=1, t(x)=t+x:$

$$
t_{1}=t+L+\frac{1}{2} \int_{0}^{L} h_{+}(t+x) d x
$$

Space-based interferometry: time measurements

Round-trip time (after reflection/transmission back) takes

$$
t_{r}=t+L+\frac{1}{2}\left(\int_{0}^{L} h_{+}(t+x) d x+\int_{0}^{L} h_{+}(t+x+L) d x\right) .
$$

The variation of t_{r} means changing GW background (L is fixed),

$$
\frac{d t_{r}}{d t}=1+\frac{1}{2}\left(h_{+}(t+2 L)-h_{+}(t)\right),
$$

depending only on the wave amplitude h_{+}.

Sources of noise - the detector sensitivity

(1989 LIGO proposal)

GW detector output time series:
$s(t)=F^{+}(t) \circ h_{+}(t)+F^{\times}(t) \circ h_{\times}(t)+n(t)$
In Fourier domain, strain amplitude spectral density is $h(f)=\sqrt{S(f)}=\sqrt{\tilde{s}^{*}(f) \tilde{s}(f)}$,
where $\tilde{s}(f)=\int_{-\infty}^{\infty} e^{-2 \pi i f t} s(t) d t$.

Sources of noise of ground-based detectors

* Seismic noise: important below 100 Hz , falls with frequency; multiple pendula with characteristic freq. $\sim 1 \mathrm{~Hz}$ attenuating the ground vibrations etc.,
* Thermal noise: vibrations of the mirrors and suspension pendulum. Their characteristic frequencies designed to be either small ($<1 \mathrm{~Hz}$, pendulum) or large ($>1 \mathrm{kHz}$, mirrors) and high quality factors to narrow the resonances. Typically dominant at $\sim 100 \mathrm{~Hz}$,
\star Photon shot noise: due to quantization of laser light, number of particles that hit the mirror varies $\delta N \rightarrow$ random light intensity variations, and resulting lenght variations is

$$
\delta L_{\text {shot }} \sim \frac{\lambda}{2 \pi \sqrt{N}}
$$

To measure freq. f one needs at least $2 f$ measurements $/ \mathrm{s}$, so the relation between the number of photons N and the laser power P is

$$
N=\frac{2 f P \lambda}{h c}, \quad \text { for } \delta L_{\text {shot }}=\delta L_{G W} \rightarrow P=600 \mathrm{~kW}(!)
$$

Solution: power recycling of laser light by reflecting it many times in the arm and coherently adding in phase.

Types of sources

\star bursts: short in duration, modulation due to the detector motion is negligible (SN explosions, collapses, inspiral of NS and stellar mass BH etc.) ; more than one detector (3 for triangulation) needed to 'do astrophysics',
^ continuous waves: long-lived and steady, motion of the detector modulates the phase and amplitude (binary systems, rotating NSs); in principle one detector pin-points the signal on the sky,

* stochastic background: cosmic origin of GW noise, an excess of power in certain range - can be studied only if the detector noise is well-understood; cross-correlation between detectors needed to confirm.

Advanced Detector Era: 2015-...

How many sources can we see?

Improve amplitude sensitivity by a factor of $10 x$, and...
\Rightarrow Number of sources goes up 1000x!

Nearby mass distribution in the Universe

Sensitivity inversly proportional to the distance (amplitude of the wave measured)

Initial and advanced detectors' rates

- Really need an 'Advanced' detector with about a factor of 10 greater sensitivity, broader bandwidth -
- Since gravitational waves are an amplitude phenomenon, x1000 more volume searched, plus yet greater reach due to bandwidth:

IFO	Source $^{\mathrm{a}}$	$\dot{N}_{\text {low }} \mathrm{yr}^{-1}$	$\dot{N}_{\text {re }} \mathrm{yr}^{-1}$	$\dot{N}_{\text {high }} \mathrm{yr}^{-1}$	$\dot{N}_{\text {max }} \mathrm{yr}^{-1}$
Initial	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			$<0.001^{\mathrm{b}}$	0.01^{c}
	IMBH-IMBH		$10^{-4 \mathrm{~d}}$	$10^{-3 \mathrm{e}}$	
	NS-NS	0.4	40	1000	
Advanced	NS-BH	0.2	10	300	
	BH-BH	0.4	20	1000	
	IMRI into IMBH			10^{b}	300^{c}
	IMBH-IMBH			0.1^{d}	1^{e}

- At ~ 40 events per year, the rate is much more attractive!

Binary coalescence time

From the Newtonian point of view, effective energy of a system is

$$
E=\frac{1}{2} \mu v^{2}-\frac{G M \mu}{r}=-\frac{G M \mu}{2 r} \quad \rightarrow \quad r=-\frac{G M \mu}{2 E},
$$

where $M=m_{1}+m_{2}$ and $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$.

$$
\begin{aligned}
& \dot{r}=\frac{d r}{d E} \frac{d E}{d t}=-\frac{64}{5} \frac{G M^{2} \mu}{r^{3}} \quad \rightarrow \quad r(t)=\left(r_{0}^{4}-\frac{256}{5} G M^{2} \mu \Delta \tau_{\text {coal }}\right)^{1 / 4} . \\
& \text { If } r\left(t_{\text {coal }}\right) \ll r_{0} \rightarrow \Delta \tau_{\text {coal }}=\frac{5 c^{5}}{256} \frac{r_{0}^{4}}{G M^{2} \mu}
\end{aligned}
$$

* Virgo/LIGO stellar mass black hole binary: $M=10 M_{\odot}+10 M_{\odot}$, $r_{0} \simeq 500 \mathrm{~km}, f_{G W} \sim 40 \mathrm{~Hz}: \Delta \tau_{\text {coal }} \sim 1 \mathrm{~s}$,
* eLISA supermassive black hole binary: $M=10^{6} M_{\odot}+10^{6} M_{\odot}$, $r_{0} \simeq 10^{8} \mathrm{~km}, f_{G W} \sim 10^{-5} \mathrm{~Hz}: \Delta \tau_{\text {coal }} \sim 1 \mathrm{yr}$

Binary coalescence parameters

In mass quadrupole approximation $\left(h_{i j}^{T T}\right)$,

$$
h_{G W} \propto \omega^{2 / 3} \cos 2 \psi,
$$

where for quasi-circular orbits (Kepler)

$$
\omega^{2}=\frac{G M}{r^{3}}
$$

The signal is called the chirp amplitude rises with frequency:

$$
h \propto \frac{M_{c h i r p}^{5 / 3} f_{G W}^{2 / 3}}{r}
$$

where $M_{\text {chirp }}=\left(m_{1} m_{2}\right)^{3 / 5} /\left(m_{1}+m_{2}\right)^{1 / 5}$. For $r=100 \mathrm{Mpc}$, $f_{G W} \simeq 100 \mathrm{~Hz}, M_{\text {chirp }} \sim 10, h \sim 10^{-21}$.

Binary system inspiral

Second example: due to the emission of GWs, binary system orbital period and separation decreases. In Newtonian terms, the orbital energy change is the power emitted in GWs

$$
\frac{d E_{\text {orb }}}{d t}=-P, \quad \text { with } \quad E_{o r b}=-\frac{G m_{1} m_{2}}{2 R}, \quad \text { and } \quad \omega^{2}=\frac{G M}{R^{3}}
$$

For adiabatic, quasi-circular orbits $(\dot{\omega} / \omega \ll 1)$,

$$
\dot{R}=-\frac{2}{3} R \omega\left(\frac{\dot{\omega}}{\omega^{2}}\right), \quad \text { with } \quad \frac{\dot{\omega}}{\omega^{2}}=\frac{96}{5} \nu\left(\frac{G M \omega}{c^{3}}\right)^{5 / 3}
$$

where $\nu=\mu / M$ is the symmetric mass ratio; $M=m_{1}+m_{2}$ and $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$. If GW is purely $f=2 \omega$,
$\dot{f}_{G W}=\frac{96}{5} \pi^{8 / 3}\left(\frac{G M_{\text {chirp }}}{c^{3}}\right)^{5 / 3} f_{G W}^{11 / 3} \rightarrow f_{G W} \simeq 130\left(\frac{1.21 M_{\odot}}{M_{\text {chirp }}}\right)^{5 / 8}\left(\frac{1 s}{\tau}\right)^{3 / 8} \mathrm{~Hz}$
Coalescence times $\tau 17 \mathrm{~min}, 2 \mathrm{~s}, 1 \mathrm{~ms}$ for $f_{G W}=10,100,10^{3} \mathrm{~Hz}$.

Binary system inspiral

One can obtain the relation between radial separation and the GW frequency,

$$
R \simeq 300\left(\frac{M}{2.8 M_{\odot}}\right)^{1 / 3}\left(\frac{100 \mathrm{~Hz}}{f_{G W}}\right)^{2 / 3} \mathrm{~km}
$$

and the number of GW cycles,

$$
\mathcal{N}_{G W}=\frac{1}{\pi} \int_{t_{i}}^{t_{f}} \omega(t) d t=\frac{1}{\pi} \int_{\omega_{i}}^{\omega_{f}} \frac{\omega}{\dot{\omega}} d \omega .
$$

For $\omega_{f} \gg \omega_{i}$, one gets

$$
\mathcal{N}_{\mathrm{GW}} \simeq 10^{4}\left(\frac{M_{\text {chirp }}}{1.21 M_{\odot}}\right)^{-5 / 3}\left(\frac{f_{i}}{10 H z}\right)^{-5 / 3}
$$

Post-Newtonian expansions

In GR, the two-body problem is not fully solved (needed for accurate template banks for filter-matching detection statistics). Different approaches:

* numerical relativity,
* perturbation-based self-force approach (extreme ratio inspirals, $m_{1} / m_{2} \ll 1$),
* post-Newtonian expansion:
* Oth order - Newtonian gravity,
* nth PN order - corrections of order

$$
\left(\frac{v}{c}\right)^{2 n} \propto\left(\frac{G m}{r c^{2}}\right)^{n}
$$

(Blanchet et al., Phys. Rev. D 81, 064004, 2010)

Post-Newtonian expansions

Expansion in small parameter, which can be

$$
\left(\frac{v}{c}\right)^{2} \sim\left|h_{\mu \nu}\right| \sim\left|\frac{\partial_{0} h}{\partial_{i} h}\right|^{2} \sim\left|\frac{T^{0 i}}{T^{00}}\right| \sim\left|\frac{T^{i j}}{T^{00}}\right|
$$

For the parameter $\dot{\omega} / \omega^{2}$,

$$
\frac{\dot{\omega}}{\omega^{2}}=\frac{96}{5} \nu v_{\omega}^{5 / 3} \sum_{k=0}^{7} \omega_{(k / 2) \mathrm{PN}} v_{\omega}^{k / 3} \propto \mathcal{O}\left(\frac{v}{c}\right)^{5},
$$

$$
\begin{aligned}
\omega_{0 \mathrm{PN}}= & 1, \\
\omega_{0.5 \mathrm{PN}}= & 0, \\
\omega_{1 \mathrm{PN}}= & -\frac{743}{336}-\frac{11}{4} \nu, \\
\omega_{1.5 \mathrm{PN}}= & 4 \pi+\left[-\frac{47}{3} \frac{S_{\ell}}{M^{2}}-\frac{25}{4} \frac{\delta m}{M} \frac{\Sigma_{\ell}}{M^{2}}\right], \\
\omega_{2 \mathrm{PN}}= & \frac{34103}{18144}+\frac{13661}{2016} \nu+\frac{59}{18} \nu^{2}-\frac{1}{48} \nu \chi_{1} \chi_{2}\left[247\left(\hat{\boldsymbol{S}}_{1} \cdot \hat{S}_{2}\right)-\right. \\
& \left.721\left(\hat{\ell} \cdot \hat{\boldsymbol{S}}_{1}\right)\left(\hat{\ell} \cdot \hat{\boldsymbol{S}}_{2}\right)\right],
\end{aligned}
$$

etc.

Post-Newtonian expansions

Post-Newtonian contributions to the number of GW cycles accumulated from $\omega_{\text {in }}=\pi \times 10 \mathrm{~Hz}$ to $\omega_{\text {fin }}=\omega^{\mathrm{ISCO}}=1 /\left(6^{3 / 2} \mathrm{M}\right)$ for binaries detectable by LIGO and VIRGO. We denote $\kappa_{i}=\widehat{\boldsymbol{S}}_{i} \cdot \hat{\boldsymbol{\ell}}$ and $\xi=\hat{\mathbf{S}}_{1} \cdot \hat{\mathbf{S}}_{2}$.

	$(10+10) M_{\odot}$	$(1.4+1.4) M_{\odot}$
Newtonian	601	16034
1PN	+59.3	+441
1.5PN	$-51.4+16.0 \kappa_{1} \chi_{1}+16.0 \kappa_{2} \chi_{2}$	$-211+65.7 \kappa_{1} \chi_{1}+65.7 \kappa_{2} \chi_{2}$
2PN	$+4.1-3.3 \kappa_{1} \kappa_{2} \chi_{1} \chi_{2}+1.1 \xi \chi_{1} \chi_{2}$	$+9.9-8.0 \kappa_{1} \kappa_{2} \chi_{1} \chi_{2}+2.8 \xi \chi_{1} \chi_{2}$
2.5PN	$-7.1+5.5 \kappa_{1} \chi_{1}+5.5 \kappa_{2} \chi_{2}$	$-11.7+9.0 \kappa_{1} \chi_{1}+9.0 \kappa_{2} \chi_{2}$
3PN	+2.2	+2.6
3.5PN	-0.8	-0.9

(this and previous slides from A. Buonanno lecture, arxiv:0709.4682)

Neutron stars in relativistic binaries: PSR J0737-3039

Post-Keplerian parameters

* Periastron advance:

$$
\dot{\omega}=3\left(\frac{P_{b}}{2 \pi}\right)^{-5 / 3}\left(T_{\odot} M\right)^{2 / 3}\left(1-e^{2}\right)^{-1}
$$

\star Orbit decay:

$$
\begin{aligned}
& \dot{P}_{b}=-\frac{192 \pi m_{p} m_{c}}{5 M^{1 / 3}}\left(\frac{P_{b}}{2 \pi}\right)^{-5 / 3} \times \\
& \left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right)\left(1-e^{2}\right)^{-7 / 2} T_{\odot}^{5 / 3}
\end{aligned}
$$

\star Shapiro effect:

$$
\begin{aligned}
& r=T_{\odot} m_{c}, \\
& s=\frac{a_{p} \sin i}{c m_{c}}\left(\frac{P_{b}}{2 \pi}\right)^{-2 / 3} T_{\odot}^{-1 / 3} M^{2 / 3}
\end{aligned}
$$

* Gravitational redshift:

$$
\begin{aligned}
& \gamma= \\
& e\left(\frac{P_{b}}{2 \pi}\right)^{1 / 3} T_{\odot}^{2 / 3} M^{-4 / 3} m_{c}\left(M+m_{c}\right)
\end{aligned}
$$

where $T_{\odot}=G M_{\odot} / c^{3}, M=m_{p}+m_{c}$.
(All measurements compatible with GR so far)

PSR J0737-3039A/B:

* Pulsar A: $P=22.7 \mathrm{~ms}$, pulsar $\mathrm{B}: ~ P=2.77 \mathrm{~s}$,
\star Orbital period $\simeq 2.4 \mathrm{~h}$,
\star eccentricity $\simeq 0.08$,
\star Orbit decay $\simeq 7 \mathrm{~mm} /$ day.

Orbital decay \dot{P}_{b} test for GR with the PSR J0348+0432

The most relativistic NS-white dwarf binary to date:

PSR J0348+432:
\star Pulsar mass: $2.01 \pm 0.04 M_{\odot}$, WD mass: $0.172 \pm 0.003 M_{\odot}$,
\star Orbital period $P_{b} \simeq 2.4 \mathrm{~h}$,
$\star \dot{P}_{b}=-2.73 \times 10^{-11} \mathrm{~s} / \mathrm{s}$
$\star \dot{P}_{b} / \dot{P}_{b}^{G R}=1.05 \pm 0.18$

Testing scalar-tensor theories of gravity - dipolar term in \dot{P}_{b} :
$\dot{P}_{b}^{\text {dipolar }} \simeq$
$\stackrel{b}{b^{2} G} \underset{c^{3} P_{b}}{\simeq} \frac{\simeq}{m_{p} m_{c}+m_{c}}$
$\left.-\alpha_{p}-\alpha_{c}\right)^{2}$
$\left|\alpha_{p}-\alpha_{0}\right|<0.005$ based on the comparison with $\dot{P}_{b}^{G R}$
(linear term $\alpha_{0}<0.004$ from weak-field experiments)

Other detectors

Continuous GWs from rotating neutron stars

Time-varying quadrupole moment needed:
\star Mountains (supported by elastic and/or magnetic stresses in the NS crust and/or core),
\star Oscillations (r-modes)

* Free precession,
\star Accretion from the companion (deformations, thermal gradients, magnetic fields).
Main characteristics of such GWs:

\star periodic, $f_{G W} \propto f_{\text {rot }}$,
\star long-lived, $T>T_{\text {obs }}$.

Estimated GW amplitude

Using the quadrupole formula, the amplitude is estimated as follows:

$$
h_{0}=4 \times 10^{-25}\left(\frac{\epsilon}{10^{-6}}\right)\left(\frac{l}{10^{45} \mathrm{~g} \mathrm{~cm}^{2}}\right)\left(\frac{f}{100 \mathrm{~Hz}}\right)^{2}\left(\frac{100 \mathrm{pc}}{d}\right)
$$

where $\epsilon=\left(I_{1}-I_{2}\right) / I, I$ - moment of inertia.
Theoretical predictions for maximal possible deformations:

* 'Normal matter", $\epsilon \leqslant 10^{-6}-10^{-7}$
(Ushomirsky, Cutler \& Bildsten 2000, Johnson-McDaniel \& Owen 2012)
* Quark matter, $\epsilon \leqslant 10^{-4}-10^{-5}$
(Owen 2005, Johnson-McDaniel \& Owen 2012)

Spin-down limit for known pulsars

Limit on h_{0}, assuming that all rotational energy is lost in GWs
\star Change of rotational energy: $E_{\text {rot }}=I f^{2}, \dot{E}_{\text {rot }} \propto I f \dot{f}$

* GW luminosity: $\dot{E}_{\mathrm{GW}} \propto \epsilon^{2} I^{2} f^{6}$

$$
\begin{gathered}
\dot{E}_{\mathrm{GW}}=\dot{E}_{\text {rot }} \rightarrow h_{\mathrm{sd}}=\frac{1}{d} \sqrt{\frac{5 G l}{2 c^{3}} \frac{|\dot{f}|}{f}}= \\
=8 \times 10^{-24} \sqrt{\left(\frac{l}{10^{45} \mathrm{~g} \mathrm{~cm}^{2}}\right)\left(\frac{|\dot{f}|}{10^{-10} \mathrm{~Hz} / \mathrm{s}}\right)\left(\frac{100 \mathrm{~Hz}}{f}\right)\left(\frac{100 \mathrm{pc}}{d}\right) .}
\end{gathered}
$$

$h_{0} \leqslant h_{\mathrm{sd}} \rightarrow$ upper limit on the deformation ϵ :

$$
\epsilon_{\mathrm{sd}}=2 \times 10^{-5} \sqrt{\left(\frac{10^{45} \mathrm{~g} \mathrm{~cm}^{2}}{l}\right)\left(\frac{100 \mathrm{~Hz}}{f}\right)^{5}\left(\frac{|\dot{f}|}{10^{-10} \mathrm{~Hz} / \mathrm{s}}\right)} .
$$

Targeted searches

Spin-down limit has been beaten for Crab pulsar:

Epoch	$h_{0}^{95 \%}$		Ellipticity		$h_{0}^{95 \%} / h_{0}^{\text {sd }}$	
	Uniform	Restricted ${ }^{\text {a }}$	Uniform	Restricted ${ }^{\text {a }}$	Uniform	Restricted ${ }^{\text {a }}$
Crab pulsar						
Model (1) ${ }^{\text {b }}$	2.6×10^{-25}	2.0×10^{-25}	1.4×10^{-4}	1.1×10^{-4}	0.18	0.14
Model (2) ${ }^{\text {c }}$	2.4×10^{-25}	1.9×10^{-25}	1.3×10^{-4}	9.9×10^{-5}	0.17	0.13
1.	4.9×10^{-25}	3.9×10^{-25}	2.6×10^{-4}	2.1×10^{-4}	0.34	0.27
2.	2.4×10^{-25}	1.9×10^{-25}	1.3×10^{-4}	1.0×10^{-4}	0.15	0.13

$<2 \%$ of energy loss due to GW emission
ApJ, 713, 671, 2010: LIGO S5 data, Bayesian analysis

and Vela pulsar:

Analysis method	95% upper limit for h_{0}	
Heterodyne, restricted priors	$(2.1 \pm 0.1) \times 10^{-24}$	$<35 \%$ of energy loss
Heterodyne, unrestricted priors	$(2.4 \pm 0.1) \times 10^{-24}$	due to GW emission;
\mathcal{G}-statistic	$(2.2 \pm 0.1) \times 10^{-24}$	ellipticity
\mathcal{F}-statistic	$(2.4 \pm 0.1) \times 10^{-24}$	$\epsilon<1.2 \times 10^{-3}$
MF on signal Fourier components, 2 d.o.f.	$(1.9 \pm 0.1) \times 10^{-24}$	
MF on signal Fourier components, 4 d.o.f.	$(2.2 \pm 0.1) \times 10^{-24}$	

ApJ, 737, 93, 2011: Virgo VSR2 data, Bayesian analysis, matched filtering

Indirect spin down limits

* For stars with unknown f, but known age $\tau=f /(4|\dot{f}|), h$ and ϵ estimated by assuming all energy lost in GWs:

$$
h_{\mathrm{isd}}=2 \times 10^{-23} \sqrt{\left(\frac{l}{10^{45} \mathrm{~g} \mathrm{~cm}^{2}}\right)\left(\frac{1000 \mathrm{yr}}{\tau}\right)}\left(\frac{100 \mathrm{pc}}{d}\right),
$$

* In accreting systems like Sco X-1, f unknown - accretion torque balanced by the GW emission (Papaloizou \& Pringle 1978, Bildsten 1999, Chakrabarty et al., 2003); h related to flux in X-rays:

$$
\left.h_{\mathrm{acc}} \approx 5 \times 10^{-27} \sqrt{\left(\frac{300 \mathrm{~Hz}}{f}\right)\left(\frac{F_{X}}{10^{-8} \mathrm{erg} \mathrm{~cm}}{ }^{-2} \mathrm{~s}^{-1}\right.}\right)
$$

* Signal from hypothetical population of gravitars. Blandford limit (uniform distribution in the galactic disk) - $h \approx 4 \times 10^{-24}$, independent of ϵ and f. (more detailed study by Knispel \& Allen 2008).

GWs from non-axisymmetric collapse

$$
h_{G W} \sim 2 \times 10^{-17} \sqrt{\eta_{e f f}}\left(\frac{1 m s}{\tau}\right)^{1 / 2}\left(\frac{M}{M_{\odot}}\right)^{1 / 2}\left(\frac{10 k p c}{r}\right)\left(\frac{1 k H z}{f_{G W}}\right),
$$

where τ is the duration. Efficiency in case of core-collapse supernovae is estimated to be quite low,

$$
\eta_{\text {eff }}=\frac{\Delta E}{M c^{2}} \sim 10^{-7}-10^{-10} .
$$

Comparison with other kinds of radiation for SN at 20 kpc :

* GW: $\sim 400\left(\frac{1 \mathrm{kHz}}{f_{G W}}\right)^{2}\left(\frac{\mathrm{~h}}{10^{-21}}\right)^{2} \frac{e r g}{c \mathrm{~cm}^{2} \mathrm{~s}}$ in ms ,
* neutrinos: $10^{5} \frac{\mathrm{erg}}{\mathrm{cm}^{2} \mathrm{~s}}$ in $\sim 10 \mathrm{~s}$,
\star Optical: $\sim 10^{-4} \frac{\mathrm{erg}}{\mathrm{cm}^{2} s}$ in a week.

Electromagnetic vs gravitational waves: comparison

Electromagnetic waves:

* radiation by accelerating charges (time changing dipole),
* incoherent superposition of emission from electrons, atoms and molecules,
\star direct information about thermodynamics,
* wavelenghts small compared to the source,
* strong interaction with matter (absorption, scattering...)

Gravitational waves:

^ radiation by accelerating masses (time changing quadrupole),
\star coherent superposition of emission from moving masses,

* direct information about the dynamics,
* wavelengths large compared to the source,
\star small interaction with matter.

Further reading...

* 'Lecture Notes on General Relativity", Sean Carroll,
^ "Gravitational waves", A. Buonanno, arXiv:0709.4682,
^ "Gravitational waves, sources and detectors", B. F. Schutz, F. Ricci, arXiv:1005.4735,
* Living Reviews in Relativity: "Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case", P. Jaranowski \& A. Królak,

