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GR is nonlinear & fully dynamical — not so clear a distinction between
waves and the rest of the metric. Speaking about waves is 'safe’ in in
certain limits:

* linearized theory,

* as small perturbations of a smooth background metric (gravitational
lensing of waves, cosmological perturbations),

* in post-Newtonian theory (far-zone, i.e., more than one wave- length
distant from the source).
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Wave equation in linearized GR

Since we anticipate the gravitational-wave component w.r.t the otherwise
stationary (e.g., Minkowski) metric n to be small, g, = 1., + hu.,
|h,| « 1 let's linearize the Einstein's equations,

1 8r G y -
Ry — Eg”” R = - T,,, where R=g""R,,, Ru =8 Rouov

v _ v v v A v A _ 13
Rupff - aﬂr;w — 0y rup + r>\p rw o rup’ Rowps = gVPRMw’

v 1 VA
Tip = 28 (8xip + rps — up)-

At linear order in h,,,, the connection coefficients are

1 v
57 /\(h/\u,p + o = hup,x)

er: 2

and )
Ripo = 0pl 1o — 0ol +O(h") >

P po wp

1
RWPU = 5 (apvhﬁw + acmhw - apuhw - aavhup) :
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Wave equation in linearized GR
To simplify previous expressions, the trace-reversed tensor is introduced:
o 1 _
R = h — En“”m where h=1,3h*" and h=—h.

With these changes, the Einstein equations are

B 167G

Ohyo + Mo 0° 02 hyx — 0 0, hpy — 07 O, hp, + O(R?) = —a Too,

where [] = 7),, 7 07 is the d'Alambert (wave) operator. In Cartesian
terms

1
D:np06”6”:—§a§+a§+a§+a§.

Further simplification is the use of gauge freedom; by imposing the
Lorentz (de Donder, harmonic) gauge condition, o,h"" = 0, one obtains

\:‘Eya = *@ Tmr-
C
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Gauge transformation freedom

Consider an infinitesimal coordinate transformation,

X' = x + £4(x#),  with £~ small in the sense that |05£%| « 1.

This imply
(9x’a @ a axa a e}
6)(75 = 55 + aﬁf s and ax—,ﬁ = 55 — (755 + (9((05)2).
_ ox* oxP
Recalling that g, = 9 + hy and g, (xX) = FENTE N 7 8as(X),

one finally gets

8hs = Nap + hap — 0als — 0p€a + O(hOE, (0€)%)  (Ea = Napt®).

’
ha B

Because [05§”| « 1 the metric perturbation h, ; is small, the

L . . . R
approximation is still valid. Applied to metric perturbation h, 4

— —
haﬁ = hag — 6a€[3 - aﬁfa + naﬁaﬂgu-
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Transverse-traceless gauge

We have limited 10 degrees of freedom of a symmetric 4 x 4 tensor h,,,
to 6 independent components by imposing the Lorentz gauge. In
vacuum, where the waves propagate, 7,, =0,

Dhun =0.

— speed of the wave equals speed of light ¢. Concerning the remaining
degrees of freedom, in Lorentz gauge one can always consider coordinate
transformations

Fuo = Eua + f;u/a where Suv = Muw 5p§p - fu,u & — DE;W =0

(. = 0 means fixing 4 from 6 remaining degrees of freedom, for
example choosing £° such that h = 0 and &' such that h't = 0, 9, h'* = 0:

Mt =0, h"=0, ohi =0 K =0.
This is the definition of the transverse-traceless tensor h; .
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Transverse-traceless tensor h,-JTT

For a propagation direction n', the transversality condition means

n' AT =0 (in the TT gauge the gravitational wave is described by 2 x 2
matrix in the plane orthogonal to the direction of propagation n).
Assuming the plane wave that propagates along the z-axis

0

0
hit(t,z) = Z+ ; cos (wt — kz),
X 4
0

o O OO
O O OO

where hy and h, are two independent polarization states (two remaining
degrees of freedom).

hy and hy are the helicity states - in the form described by the TT
gauge they change under rotation of ¢ around n as

h— eS"h where S = particle spin
hy +ihy — et % (h, +ihy).
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GW interaction with a point particle in the TT gauge

Let's consider a test particle, at rest at 7 = 0. From the geodesic
equation one has

dx' (AT dxtdxt
Fp:o B P dr dr lhmo N o dr dr ‘T=o’
with (dx*/d7).—¢ = (c,0) and
.1 )
r’tt = 5 (athtj+(/t ljt — 0 htt) bUt htt = 0, ht_[ = 0 SO (r;t)q—zo = O

If at 7 =0 dx’'/dT = 0, also d?x’/d7% = 0 and a particle at rest before
the GW arrives remains at rest. What varies is the proper distance
between the particles. For a plane wave in the z—direction,

ds® = —c?dt? + dx*(1 + h, cos(wt — kz))
+ dy*(1 — h cos(wt — kz)) + 2dxdy h, cos(wt — kz) + dz°.

If particles A and B set down initially along the x-axis, we have

h
szL(l—i—;coswt),

where L is the initial, unperturbed distance between particles A and B.



Newtonian tidal force & geodetic deviation

For two particles A and B falling in Euclidean space under gravitational
potential . At t = 0 separation is £ = x4 — xg and
va(t =0) = vg(t = 0). The evolution of £ because of g = —V®

d 2§ i od od 2o .
dt? dxi ) 5 dxi ) 5 Oxi OxJ
—_—

Tidal gravity tensor 5]!'

In GR for two neigboring geodesics x*(7) and x*(7) + £#(7), the
geodetic equation,

d?xH dx? dx°

I - =
dr? T (X) dr dr

By expanding the geodesic equation of particle B around the position of
particle A and subtracting it from the geodesic equation of particle A,
one gets
dx” dx°
VoV = R, & SO
with v = dx?/d7. Nearby time-like geodesics are tidally deviated

proportional to the Riemann tensor.
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GWs in the free-falling frame

By changing the coordinates to a system in which '} _(x) =0,

2.0 P 2 1
d?x - dx? dx° 0 - (dx>=0_

d7'2+ ()deT: dr2

A particle is not experiencing acceleration (free-falling, FF). Let's chose a
coordinate system in which x/ = 0 and x° = 7 (coordinate time is proper
time), the metric at the origin is Minkowski

[x[?

ds? = —c? dt? + dx? +O<R2

) = —C2 dt2 (1 + Ritjt Xi Xj>
. 1
—2cdtdx’ ( Rjik x) x > + dx'dx! <6,-j — §R"fk' xk x'>

where R is the curvature radius R=2 = |Ruvpo|. On Earth, the detector
is not in full free fall (acceleration a = —g w.r.t a local inertial frame),
but some directions (horizontal movement) may be used.

4/24



GWs in the free-falling frame

Let's investigate the geodesic deviation in this frame:

Vi, V& = 0P Vgt V5E6%) = 0’ u? (006 + TS, 5€%),
which simplifies because 'Y, = 0, particles are initially at rest (v = 05),
with €% = 0 and 7, ,

d2£’ d>¢

\¢ VUEJ = dr2 == tkt§

from the geodesic deviation equation. In linearized theory the Riemann
tensor is invariant under change of coordinates, so in TT gauge

[y

N 1 -
Ruvpo = 2 (Opvhuo + Oophup = Opphve — dovhyy)  — Rjtkt T o2 thkT

d2§ 1. TT
T e T2 i &

(also, in FF the coordinate distances and proper distances coincide)
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GWs in the free-falling frame

The GW effect on a point particle can be described as an effect of a
Newtonian force

d2& 1.
G m e - F= SR

Free-falling approximation to geodesic deviation applies as long as
* 8uv = Nuv + O( 2/R2)
* since R72 = |Rigje| ~ h ~ h/A%y, one has x2/R2 ~ L2 h/\2y,, and
comparing with 0L/L ~ h — [2/\2, < 1,
* Works for a ground based detector: for L = 4 km and Agw ~ 3000
km,

* Space-based detectors: L ~ 10° km set to observe GWs with
wavelength comparable or shorter L - different strategy needed (time
of flight, phase shifts measurements).
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Gravitational-wave detection

GW acting on a ring of free-falling test particles, with xo and yg the
unperturbed position at time t = 0. For + polarization

1 O .
hET_th(O 4 >5|nwt, & = (xo + 0x(t),y0 + dy(t))

ox(t) = %xo sinwt, dy(t) = —% Yo sinwt, and likewise

h h
for x polarization: dx(t) = %yo sinwt, Sy(t) = %xo sinwt.

OO OOIONO

A GW

x(;\\

left - a wave with + polarization, right - with x polarization.
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Gravitational-wave detection

Lines of force for both polarizations are as follows:

X

The simplest detector - test mass m and an apparatus to check the
change of distance L (e.g., a spring with the resonant frequency Q and
quality factor Q):

AL(t) + 2% AL(t) + P AL(t) =

where F and F, depend on the direction of the source.

L

= (F+ hi(t) + Fy }%x(t)) ;
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Quadrupolar nature of GWs

In electromagnetism, radiation due time changing electric dipole moment
d =ex: )
Luminosity oc d

Gravitational-wave emission in the dipole mode would mean the changing
in time mass dipole moment:

d=2m,-x; — d= Emixi

J__

Momentum

Conservation of momentum means no mass dipole GW radiation.
Likewise, for the current dipole moment

M = Zm,-x,- ><5(,'
i

| —

Angular momentum

the conservation of angular momentum mean no current dipole GW
radiation.
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Estimate of wave amplitude

The wave equation for GWs,

aB 167G
C

Ch ——— 708

is an analogue to the Maxwell equation (Gauss law) in the Lorentz gauge,
(1/¢?)0;p + V- A =0):
V-E=[l¢ =4nrp, where E=—-Vo+ 0A.

By analogy between solutions
p(t — R/c,x) —af 4GJT“ﬁ(t—R/c,x)
=|—F—"=dV, h =— | ——F"2—=dV.
oter) = | L= ay, = ey

with R = |[r — x|. Far from the compact source (r » x), the solution is
described by the far-field solution:

2 (e, = A€ fraﬁ(t_ R/c,x)dV

ctr
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Estimate of wave amplitude

Using the energy-momentum conservation it can be shown that

Eijw &dQIU

T -0 — N —,
B c4r dt2

where [V = Jpx"xjdV is the moment of inertia tensor (quadrupole tensor).

Consider two equal masses M separated by a on circular orbit in the
x — y with angular frequency Q around their center of mass. Then

2 1
P> = Jpxzdv =2M (g cos Qt) = ZM32 (1 + cos2Qt),

which leads to, and other terms like that,

B = w 0s 2Q0t.
ctr
Two important conclusions:
* Quadrupole radiation: GW at twice the orbital frequency,
* Amplitude ocGMa?Q2/c*r.
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Estimate of wave amplitude

Example - binary system of two
stellar-mass black holes:

* M =10 M@,

* a=1 R@,

* r = 8 kpc (Galactic center)
From the Kepler's third law,
G(M+ M)

3
Orbital period 38 min — GW period

19 min. The GW strain amplitude is
h ~1072L.

Q= ~ 8x10* rad?/s?

M~10" kg
a-~20km ) <
F~400 Hz

r~10"m

Another example: binary neutron
star pair, 10M light years distance
(Virgo cluster), moving at ~ 10% of
the speed of light — h ~ 1072,
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The quadrupole formula

The first term of the perturbation in the multipolar expansion far from
the source is

4G

Eaﬁ(t,r) ~ s Top(t — R/c,x)dV.

By imposing the conservation equation for the energy-momentum tensor

@ 5th_0 and 8Tt,-_0Ttt:0

v _ _
o T 0 oxi Oxt oxi Ooxt

it can be shown that

fTaﬁdV can be expressed in terms of Ty.
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The quadrupole formula

pe ot 0 /-xk and integrating on all space —
kOT 6Tt 5
J ~Iqy = f gy = [ Tav.

0
Integrating the left side by parts: — J T,jéf‘dV =t Jxk TiedV

A

o

o 1
Symetrization: J TydV = oot

f(xk th + Xj Ttk)d\/

Tii T, . .
#2: aa f — aa it =0 /- xjxc and integrating on all space —
X X

% J TexjxidV = J%xjxkdv.

)
Integrating the right side by parts: # J TuxjxdV = — J(xk T + x; Tuc)dV
)X

1 02

6/24



The quadrupole formula

For T = ;1c?,
— 2G 2 172G _ .
h,'j = ﬁﬁ J,ux,-xjdV, InTT gauge: hlJ = ﬁp' lek/,

1 .
where [}y = Jp(xkx,—§x26k/)dv, PK = 55 —n'n, (projection operator).

Similarly one can show from the conservation equation #2 that

0

and that the power P radiated per solid angle in a direction n is

dpP 2 i i ct 7B 47
5 = RO, where O = <athaa,-hﬁ>.
The radiated GW power averaged over polarizations is
G -
P=5zli
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The quadrupole formula: estimates

For a source of mass M, dimension L and deviation from sphericity e,

P=—I2 with [oceM?® — [|~uw3eML3,
5¢c5 Y
where w ~ 1/7 (source characteristic frequency)

G G
- P~ 562W6M2L4, with == 3.6 x 10°° erg/s.

Some estimates:

* From Misner-Thorne-Wheeler: steel bar of M ~ 500 tonnes,
L =20 m, w~ 30 rad/s:

3 -32 2 25 —27 —60 pEM
GMw/c® ~107°%, Lc"/GM ~ 107, P ~ 107" erg/s ~ 107" Pg

* parametrization by Weber: Ry = 2GM/c?, w = (v/c)(c/L),

5 6 /R 5
P=%62(%) (Ls) forv~c, L~ Ry P~%e2~1026 PEM.
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Detectors
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Ground-based interferometry

Interferometer for GWs

* The concept is to >~ ==
compare the time it takes ‘>1§~
light to travel in two

orthogonal directions
transverse to the -
gravitational waves. testmass O g
= The gravitational wave et mass
causes the time difference
to vary by stretching one
arm and compressing the

light storage am

beam
splitter photodetector

other.

* Theinterference pattern is ~ pufS Sttt taes .
measured (or the fringe is INADRS
split) to one part in 100, in b SRR CT

order to obtain the [ —
required sensitivity.

As seen by the detector, gravitational wave strain h = AL/L, for L ~ km,
AL < 10 m (much smaller than the size of a proton).
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Virgo detector (Cascina near Pisa, arm length - 3km)




Bar detectors

Passing GW resonates with the
characteristic frequency of the bar (narrow
frequency searches, typically ~ 500 Hz):

s Mechanical suspension

wave

Low T

Pre-amplifier

Electromechanical
Transducer tuned
to the lowest

L longitudinal mode
of the bar

Amplitude of the vibrations is AL ~ hL,
response quite complicated.

2o
2
3
s
z
ES
H
W
S
7}
3
&
2
<
=)
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Space-based interferometry

Local geometry of geodesic deviation is
not enough to analize the free-falling
bodies response to the passing
gravitational wave, L > Agw .
Proposed space-borne mission eLISA
with L ~ 108 km and study GW in the
range 0.1 mHz < few < 1 Hz,

Each spacecraft carries a free-falling
test mass,

Direct reflection from mirrors not
possible due to loses (~ 1 photon/day
detection rate) — transponder mode,

Time-delay interferometry, central
spacecraft compares the phases of
lasers from "arm spacecrafts’ (absolute
lengths of arms known up to 1 m).

Triangular formation with center 20°
behind the Earth, each spacecraft on
an individual orbit around the Sun. .
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Space-based interferometry: time measurements

Let's consider an interferometer with an arm in the x =direction. In a
case for pure + polarization (TT gauge, wave travels to z—direction),

ds?® = —dt? + (1 + hy)dx? + (1 — hy)dy? + dz°,
the coordinate speed along x-axis is (dx/dt)?> = 1/(1 + h.). A photon

emitted at time t from x = 0 reaches the end of arm at x = L at the
coordinate time

L
h =t +J V' 1+ hi(t(x))dx, (implicit knowledge of t(x) needed).
0

One must know the time to reach x in order to calculate h,.

In linear approximation, h, small: expansion in powers of h, and
assuming zero-order solution of a photon in flat space-time traveling with
c=1,tx)=t+x

1 L
t1=t+L+§f hy(t + x)dx.
0
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Space-based interferometry: time measurements

Round-trip time (after reflection/transmission back) takes

1 L L
15,:1.‘+L+5 <f h+(t+x)dx+f h+(t+x+L)dx>.
0 0

The variation of t, means changing GW background (L is fixed),

dt, 1
9 —1t3 (he(t +2L) — hy (1)),

depending only on the wave amplitude h. .
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Sources of noise - the detector sensitivity

1078
£
109 3
3
. Q
% |z
10729 3

1072

R (Hz'?)

Residu

a[Gaa

(1989 LIGO proposal)

18 ion of LIGO Detector i over Time

S1LLO (Sep 7, 2002)

~——— 54 LHO (Feb 26, 2005)

S5 LHO (Mar 18, 2007)
—— 56 LHO (May 15, 2010)
-------- Initial LIGO goal (1995)

Smsmlc

e §pectral density (Hz

— ‘.:‘ ‘ | .

noise > ~ m

T i\ !!!J!;}:’ﬂ i Mg
é"’ﬂ ¥ "‘n IF

Thermal §
noise

\S

1000
Frequency (Hz)
GW detector output time series:
s(t) = FT(t)ohy(t)+ F*(t)ohy(t)+n(t)

In Fourier domain, strain amplitude spectral

density is h(f) = \/S(f) = /¥

where § (f) = {* e 2fs(t)dt.
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Sources of noise of ground-based detectors

* Seismic noise: important below 100 Hz, falls with frequency;
multiple pendula with characteristic freq. ~ 1 Hz attenuating the
ground vibrations etc.,

* Thermal noise: vibrations of the mirrors and suspension pendulum.
Their characteristic frequencies designed to be either small (< 1 Hz,
pendulum) or large (> 1 kHz, mirrors) and high quality factors to
narrow the resonances. Typically dominant at ~ 100 Hz,

* Photon shot noise: due to quantization of laser light, number of
particles that hit the mirror varies N — random light intensity
variations, and resulting lenght variations is

_A
27r\/N

To measure freq. f one needs at least 2f measurements/s, so the
relation between the number of photons N and the laser power P is

N = 2';%, for 6Lshor = Loy — P =600 kW (1)

5Lshot ~

Solution: power recycling of laser light by reflecting it many times in

the arm and coherently adding in phase. ,
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Types

of sources

bursts: short in duration, modulation due to the detector motion is
negligible (SN explosions, collapses, inspiral of NS and stellar mass
BHs etc.); more than one detector (3 for triangulation) needed to
"do astrophysics’,

continuous waves: long-lived and steady, motion of the detector
modulates the phase and amplitude (binary systems, rotating NSs);
in principle one detector pin-points the signal on the sky,

stochastic background: cosmic origin of GW noise, an excess of
power in certain range - can be studied only if the detector noise is
well-understood; cross-correlation between detectors needed to
confirm.
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Advanced Detector Era: 2015-...

How many sources can we see?

Improve amplitude
sensitivity by a factor
of 10x, and...

= Number of sources
goes up 1000x!

solar masses)

12

cumulative mass (x 10

2500

2000

1500

1000

500

0+

Nearby mass distribution in the Universe

|

__I @ 3D visualization of cluster mass I___.__

0 ol

Virgo cluster

N

o

o’

el

[

20

30 40

50

LIGOII —

Sensitivity inversly proportional to the distance
(amplitude of the wave measured)
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. . 7
Initial and advanced detectors’ rates
* Really need an ‘Advanced’ detector with about a factor of 10 greater
sensitivity, broader bandwidth —
* Since gravitational waves are an amplitude phenomenon, x1000
more volume searched, plus yet greater reach due to bandwidth:
IFO Source® Nigw yr~! N yr! Nyign yr~' Noay yr!
NS-NS 2% 1074 0.02 0.2 0.6
NS-BH 7% 1073 0.004 0.1
Initial BH-BH 2% 107 0.007 0.5
IMRI into IMBH <0.001° 0.01¢
IMBH-IMBH 10-4¢ 10-3¢
NS-NS 0.4 40 400 1000
NS-BH 0.2 10 300
Advanced BH-BH 0.4 20 1000
IMRI into IMBH 100 300¢
IMBH-IMBH 0.14 e

At ~40 events per year, the rate is much more attractive!
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Binary coalescence time

From the Newtonian point of view, effective energy of a system is

1 , GMu GMu GMu
E=—puv- — = — = ,
2 r 2r 2E

where M = my + myp and p = mymy/(my + my).

;_ drdE 64 GM
dEdt 5 3

256
r(t) = (rg — ?Gmmmm,)l/‘*.

5 g
256 GM24.

If r(tcoa,) <L rn — ATcoaI =

* Virgo/LIGO stellar mass black hole binary: M =10 Mg + 10 Mg,
ro ~ 500 km, fguw ~ 40 Hz: ATcoa ~ 1 s,

* eLISA supermassive black hole binary: M = 10° Mg, + 10° M,
ro ~ 108 km, fow ~ 107° Hz: ATeoa ~ 1 yr
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Binary coalescence parameters

In mass quadrupole approximation h
(hTT) GW
"j ’
hGW o w2/3 cos 2\_]]7 \ coale:cence
inspiral waveform I ;‘II‘Hl wavelorm
- . i
where for quasi-circular orbits m'l.:: |/, ringdown”
(Kepler) (A
| time
GM iU
wQ = — !
r3 ‘ I1SCO
) ) . Plunge
The signal is called the chirp -
amplitude rises with frequency: -
adiabatic inspiral
("chirp")

5/3 (2/3
h o MchirprW

r
where My, = (mymy)3/5/(my + my)/5. For r = 100 Mpc,
fGW ~ 100 Hz, Mchirp ~ 10, h ~ 10~21,

13 /24



Binary system inspiral

Second example: due to the emission of GWSs, binary system orbital
period and separation decreases. In Newtonian terms, the orbital energy
change is the power emitted in GWs

dE, ) Gmim
d‘;rb =—P, with E,p=— 2}\) 2,

For adiabatic, quasi-circular orbits (w/w « 1),

: 2 o w96 [ GMw\*?

R = _gR(JJ (o\)2> s Wlth E = 51/( C3 > s
where v = /M is the symmetric mass ratio; M = m; + m, and
w=mymy/(my + my). If GW is purely f = 2w,

/3 5/8 3/8
.96 g5 ((GMehinp\ 113 1.21Mg ls
fGW = 5 s 3 fGW fGW ~ 130 Mchirp pu Hz

Coalescence times 7 17 min, 2 s, 1 ms for fgy, = 10,100,10% Hz.
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Binary system inspiral

One can obtain the relation between radial separation and the GW

frequency, s s
M 100 Hz

and the number of GW cycles,

73 W
J\/’GW:EJ w(t)dt:lf Y dw.
t;

™

For wr » wy, one gets

Mep: —5/3 £ —5/3
- 4 chirp i
Naw =10 (1.21/\/1@) 10 Hz '
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Post-Newtonian expansions

In GR, the two-body problem is not log,y (7 /mi)
fully solved (needed for accurate .

4t -
~
I ’, ~

template banks for filter-matching | ’

1 PostNewtonian

detection statistics). Different N I [ C e
- Theory [
approaches: \\h:.:mm )

S

* numerical relativity, 2 f

* perturbation-based self-force
approach (extreme ratio
inspirals, my/my « 1),

* post-Newtonian expansion: . . . . s tog m,/m)
. 0 1 2 3 4 2
* Oth order - Newtonian

gravity, (Blanchet et al., Phys. Rev. D 81, 064004,
* nth PN order - corrections of 2010)
order

(&)« (%)
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Post-Newtonian expansions

Expansion in small parameter, which can be

V2 doh> | TO| | TV
(2) ~ Ml ~| 55 “‘roo ”’roo
For the parameter w/w?,
w 96 55 ’ k/3 AN
E = ? VVw/ Z w(k/Q)PN Vw/ oc O (E) s
k=0
wopNn = 1,
wospn = 0,
oy = 1B _1
N7 7336 4
_ oapy | TS _250mxe
wreeNs = 3M2 4 MM
34103 13661 59 , 1 B
WPN = 1124 T o016 VT 18V T a2 [247(51 S2)

721(2-31)(2-52)} ,

etc.
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Post-Newtonian expansions

Post-Newtonian contributions to the number of GW cycles accumulated from
win = ™ X 10Hz to whn = wS€C = 1/(6%2 M) for binaries detectable by LIGO

and VIRGO. We denote x; = S; - £ and £¢=8,-85,.

[ [ (10 + 10)Mgp [ (1.4 + L4 Mg

Newtonian 601 16034

1PN +59.3 +441

1.5PN —51.4 +16.0Kk1 x1 + 16.0 k2 X2 —211 + 65.7 k1 x1 + 65.7 k2 X2
2PN +4.1 -33Kk1kaxix2+11&xix2 | +9.9—8.0k1 k2 X1 X2 +2.8&x1 X2
2.5PN —7.1 +55Kk1 x1 +5.5K2 x2 —11.7 +9.0k1 x1 + 9.0 k2 x2
3PN +2.2 +2.6

3.5PN —0.8 —0.9

(this and previous slides from A. Buonanno lecture, arxiv:0709.4682)
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Neutron stars in relativistic binaries: PSR J0737-3039

Post-Keplerian parameters

* Periastron ad\é%nce:

w=3 (%) (ToM)?3(1 — €2)~*
* Orbit decay:

p, = — 1o2mmpme (P,, =5/ «

sM1/3 27

_ 5/3
(1+Be?+ e*) (1— )27
* Shapiro effect:

r=Tom,
= ot ()7 T

* Gravitational redshift:

"Y =
1/3
e(2)" T MM + m)
where T = GMg/c®, M = m, + m..

(All measurements compatible with GR so far)

Mass B (Mg,,)

1.5

1

0.5

° L L

ST
1.32 ) 1.34 1|.38
[ 0.5 1 1.5 2

Mass A (Mg,,)

PSR J0737-3039A/B:

*

*
*
*

Pulsar A: P = 22.7 ms, pulsar B: P = 2.77 s,
Orbital period ~ 2.4 h,
eccentricity ~ 0.08,
Orbit decay ~ 7 mm/day.
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Orbital decay Py test for GR with the PSR J0348+-0432

The most relativistic NS-white
dwarf binary to date:

* Pulsar mass: 2.01 + 0.04 Mg,
WD mass: 0.172 + 0.003 Mg,
* Orbital period P, ~ 2.4 h, °
* Pp=—273x10"" s/s 1
* Py/PER =1.05+0.18

0.2 0.3

Companion Mass (Mg)
0.1

o

Testing scalar-tensor theories of

gravity - dipolar term in Pp:
- dipolar
b, = )
__4An°G mpmc _
c3Pb mp+mc (Olp ac)
|ap — ao| < 0.005 based on the
comparison with PSR

Effective Scalar Coupling Strength
= o
3 2

0.0001
(linear term g < 0.004 from i k I 2 i

Neutron Star Mass (solar mass)
weak-field experiments)
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Other detectors

(@)
~ T T T T T T T
|
o | - |
— Coalescing binary _
| black—holes
—
> L 4
5 | Binary SN Core i
o black—holes collapse
- | in galaxies i
[©)
— = i
(@)
N - Current —
|
L Unresolved 4
Galactic binaries
L NS—-NS
Coalescence Advanced
el PPTA LISA LIGO i
N 1 1 1 1 1 l 1 1 1 1 1 1 1 1
! -10 -5 0 5

log,,(f/Hz) 16/ 24



Continuous GWs from rotating neutron stars

Time-varying quadrupole
moment needed:

* Mountains (supported by elastic
and/or magnetic stresses in the
NS crust and/or core),

* Oscillations (r-modes)
* Free precession,

* Accretion from the companion
(deformations, thermal
gradients, magnetic fields).

Main characteristics of such
GWs:

* periodic, fow cfiot,

* long-lived, T > Tgps.

17 /24



Estimated GW amplitude

Using the quadrupole formula, the amplitude is estimated as
follows:

2
_ —25 € / f 100 be
hO = 4X 10 (10—6) <1045 g Cm2) (100 HZ) ( d

where € = (l; — h)/I, | - moment of inertia.

Theoretical predictions for maximal possible deformations:

* "Normal matter’, e < 107% — 10~
(Ushomirsky, Cutler & Bildsten 2000, Johnson-McDaniel & Owen
2012)

* Quark matter, e <1074 —107°
(Owen 2005, Johnson-McDaniel & Owen 2012)
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Spin-down limit for known pulsars

Limit on hg, assuming that all rotational energy is lost in GWs

* Change of rotational energy: Eyo = If2, Eoroclf f
* GW luminosity: Eqwoce2l2f6

: : 1 |56 |f
Ecw = Erot — hsd:g §¥:

_ I If | 100 Hz\ {100 pc
_ 24
=8x10 <1045gcm2> (1010 Hz/s> ( f > ( d )

ho < hsq — upper limit on the deformation e:

10% g cm?\ (100 Hz\° I |
_ —5
€ =210 J( / ) ( f ) (10—10 Hz/s |

(&,
ey
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Targeted searches

Spin-down limit has been beaten for Crab pulsar:

Epoch i Ellipticity hS%E sl
Uniform Restricted® Uniform Restrcted® Uniform Restricied®
Crab pulsar
Model (1) 26x% 1078 20x 1078 14 x 107 LIx10™ 0.18 0.14
Model (2f 24 %1078 1.9 % 10-% 1.3 x 1074 99%107% 0.17 0.13
1 49% 1078 30 x 1078 26 %1074 21 %107 0.34 0.27
2, 24%1078 19 % 1078 13 %1074 1.0 % 107 0.15 0.13

< 2% of energy loss due to GW emission
ApJ, 713, 671, 2010: LIGO S5 data, Bayesian analysis

and Vela pulsar:

Analysis method 95% upper limit for hg
0

Heterodyne, restricted priors (2.1 +£0.1)x 1072 <35 A) of energy .|OSS
Heterodyne, unrestricted priors (24+0.1)x 10—24 due to GW emission;
G-statistic (224 0.1) % 1072 e|||pt|C|ty
F-statistic (2.4+0.1)x1072 -3
MF on signal Fourier components, 2 d.o.f. (L9£0.1)x 10724 €<12x10
MF on signal Fourier components, 4 d.o.f. (224 0.1)x1072

ApJ, 737, 93, 2011: Virgo VSR2 data, Bayesian analysis, matched filtering 2024



Indirect spin down limits

* For stars with unknown f, but known age 7 = f/(4/f |), h and ¢
estimated by assuming all energy lost in GWs:

_ / 1000 yr 100 pc
o 23
=210 (s ) (92) ()

* In accreting systems like Sco X-1, f unknown - accretion torque
balanced by the GW emission (Papaloizou & Pringle 1978, Bildsten
1999, Chakrabarty et al., 2003); h related to flux in X-rays:

300 Hz F,
Race = 10~ x
ace 5 10 \/( f ) (10—8 erg cm—2 s—1>

102
* Signal from hypothetical

population of gravitars. Blandford £

limit (uniform distribution in the g

galactic disk) - h ~ 4 x 10724, 2

independent of € and f. (more e population |

detailed study by Knispel & Allen ) L0 I
”

2008). ' 0 10
gravitational wave frequency fin Hz 21 / 24



GWs from non-axisymmetric collapse

1ms\?/ M\ /10 kpc 1 kHz
—17 M
row =210 vaar (1) () (57 ()

where 7 is the duration. Efficiency in case of core-collapse supernovae is
estimated to be quite low,

AE _
Neff = W~10 710710,

Comparison with other kinds of radiation for SN at 20 kpc:

2
* GW: ~ 400 (L) (hor)? B in m,

cm? s

* neutrinos: 10° —£-in~10s,

* Optical: ~ 107* 22— in a week.
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Electromagnetic vs gravitational waves: comparison

Electromagnetic waves:

*

radiation by accelerating
charges (time changing dipole),
incoherent superposition of
emission from electrons, atoms
and molecules,

direct information about
thermodynamics,

wavelenghts small compared to
the source,

strong interaction with matter
(absorption, scattering...)

Gravitational waves:

*

radiation by accelerating masses
(time changing quadrupole),

coherent superposition of
emission from moving masses,

direct information about the
dynamics,

wavelengths large compared to
the source,

small interaction with matter.
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Further reading...

*

"Lecture Notes on General Relativity”, Sean Carroll,

*

"Gravitational waves”, A. Buonanno, arXiv:0709.4682,

*

"Gravitational waves, sources and detectors”, B. F. Schutz, F. Ricci,
arXiv:1005.4735,

Living Reviews in Relativity: "Gravitational-Wave Data Analysis.
Formalism and Sample Applications: The Gaussian Case”, P.
Jaranowski & A. Krélak,

*
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