Black holes

Michat Bejger
N. Copernicus Center, Warsaw

1/15



Outline

L N T A

Spherical black holes,

Weak field limit,

pressureless dust star collapse,
black holes and rotation,
orbits,

Penrose-Carter diagrams,

Penrose process and thermodynamics.

2/15



History of black holes

* 0. C. Rgmer (1676) - from observations of the Jupiter moons from
orbiting Earth — speed of light finite,

* |. Newton (1686): gravitational force follows
Fo_ G/\Zm
r
* J. Michell (1783): "All light emitted from such a body would be

made to return towards it by its own proper gravity”,

P.S. Laplace (1796): Exposition du systéme du monde ("dark stars”)
A. Einstein (1905): Special relativity

A. Einstein (1915): General relativity (GR)

K. Schwarzschild (1916): First exact solution of GR - a black hole,

(
H. Reissner (1916), G. Nordstrom (1918): electrically charged black
hole solution,

M. Kruskal & G. Szekeres (1960): Global structure of Schwarzschild,
R. Kerr (1963): rotating stationary black hole.

L A

*

*
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The light cone

timelike

null

\ X

spacelike

Timelike ds? < 0; spacelike ds?> > 0; null (light-like) ds? = 0.
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The Schwarzschild solution

Motivated by the form of the Minkowski metric,
ds? = —dt® + dr* 4 r? (d6? + sin? 0d¢?)

b
N J

dQ?

let's chose a generally-enough form of a spherically-symmetric metric
ds? = —e*rtd? 4 2Pt dr? 4 2402,
To know the functions a and 3, one must solve the Einstein equations

(— connection coefficients — Riemann, Ricci tensors). The non-zero
Christoffel symbols

1
My = ng (8v,p + 8Bp,v — 8up,B)
are
M=o, Th =0, Th =698 T =g,
r r 1 , _ 1
rtr = at67 rrr = arﬁa r?@ == pg = —re 26’ rl(?d) = ?a

infcosd, I'?gzb = cotd.

v, o~

My =—rePsin®0, %, =—
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The Schwarzschild solution

Ricci tensor non-zero components are:

2
= [028 + (0:8)% — 0:00B] + X P[P a + (3,0)% — 0,00, + ;(’)’,a],

2
|

Re = [0+ (2,0)° — 0,00, — 20,8] + V326 + (0B)? — deadef),
Ry = %atﬁ, Rog = e72P[r(0,8 — 0,a) — 1] + 1, Ryy = Regsin® 0.

The solution is obtained by demanding R,,, = 0: trace-reversed version of
the Einstein's equations is

1
Ruv = Ty — EngMV =0, (T =0in vacuum).
From Ry, =0 — 0,5 =0, B = p(r)
. That is ’
0¢(Rog) =0 and ;6 =0 — 0;0,a = 0. a=f(r)+g(t).
By redefining dt — e 8(*)dt,

g(t) =0sothat a =f.
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The Schwarzschild solution

We therefore have a metric with components independent of the t
coordinate:

ds? = —e2*dt? 4 2P dr? + r2d02.
— stationarity, timelike Killing vector.

Another useful combination from the Ricci tensor is:

2
R + Ry eXf=e) — ;(6,01 +0,8) > a+3= const. =0

=0 coord. rescaling
and
Roo = e 2°[r(0, — 0r0) —1] + 1= —**(2rd,a — 1) +1 =0,

s 0u(re®®) =1, thatis e =1+ 1.
r

The metric is then

ds® — — (1 ¥ “) di? + (1 + %)_1 dr® + r2dQ2.

r
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Weak field limit

In order to compare GR with the Newtonian theory, one must express GR
in the limit of small velocities (v/c « 1) and time derivatives much
smaller than spatial derivatives:

* relate the geodesic equation to Newton's law of motion,
* relate the Einstein equation to the Poisson equation.

Assume
8aB = Napg + €hagp, gvP =nP —ehB (because g”ﬂgl,,g = 0H).

The connection’s Christoffel symbols are, in first order

1 L 1 L
rﬁp = Egi B(gﬂwp + 8ppy — 8up,p) X 5677//8([751/,;1 +hpp = hupp)

The geodetic equation for slowly moving particle, for which 7 ~ t and
dx'/dt = O(e):

d?x+ dx? dx? d?xt dx? dx? d?x* , dx® dx?t
R R + M ——
dr2 VP dr dr dt2 VP dt dt dt? dt dt
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Weak field limit

The spatial part of the geodetic equation (three-acceleration):

d?x . dxt dxt i
Tt); + ’tt%% =T, where dx'/dt =c ('speed of time').

i _ 1 s LY i J 1
M = 5€n (hﬁuyp + hgpp — hvmﬁ) ~ *E(ht,t + ht,t —hy) =~ —-ehy,
2 2 ¢ 2 2

small
That is
d?xi 2 ; 2 i d?x’ .
Tt); = %ehtt’ = %eV'hm to be compared with Tt); =-V'o.

Newtonian equation of motion

This means that one can identify the metric function g with the
Newtonian potential:

2¢
gt = N + ehp=—(1+—].
N—— c
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The Schwarzschild solution

Coming back to spherically-symmetric stationary metric:
—1
ds? = — (1+2)de2+ (14 2) " dr? 4 r2de?
r r
The interpretation of the parameter p in terms of physical quantities is
done in the weak field limit. Far from the center,

gtt(r—>oo)=—(1+%), g,,(r—>oo)=(1—%).

On the other hand, weak limit gives

20
gtt(r—>oo)=—<1+c2>,

with the Newtonian potential ® = —GM/r. Therefore, the Schwarzschild
metric finally reads:

—1
ds® = — (1 — ZGM> dt? + (1 — ZGM> dr? + r*dQ2.

rc? rc?
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Spherically-symmetric pressureless collapse

Consider a collapse of a spherical star made of 'dust’ (pressure p = 0).
With G = ¢ =1 the outside metric is Schwarzschild vacuum solution

~1
ds® = <1 — 2r) dt® + <1 — 2£W> dr® + r? (d6? + sin” 0d¢?) .

If radius of the star is R(t), on the surface one has,

2M 2M dR
ds2:_((1_R>_(1_R> <dt> )dt +R2(d92+sm 0d¢’),

and from symmetry the collapsing particles will infall in radial direction
(follow radial timelike geodesics) — dff = d¢ = 0:

(3 (0-5)-0-5) (%))~

with ds?® = d72 denoting the proper time.
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Spherically-symmetric pressureless collapse

Schwarzschild spacetime admits one Killing vector, d/0t, responsible for
time symmetries (conservation of energy).

€= — ut = — ﬂ_ 1_% ﬁ
= Tl = gtth_ R /) dr

is specific energy of a particle, constant along the geodesic. This gives

dR\* ., 1 2M\? [ 2M )
<dt> =R _e2<1_R> <R_1+€>

(with € < 1 for bound particles).

R For a collapse with Rj,; = 0 at
Rmax = 2M/(1 — €2). R decreases
approaching R = 2M asymptotically
(distant observer sees the collapse

slowing down while it approaches
R =2M).

2?\4 Rmax '\ R
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Spherically-symmetric pressureless collapse
What happens from the point of view of an infalling observer? Her clock

measures the proper time along the radial geodesic, so one can rewrite

d_drd 1 2wy
dt ~ dtdr e dr

to obtain, from the previous expression
dR 2M Rmax 2
=) = (-t Sma 1) (1-é?).
(7) = (7 -e) = (S -r)u-e

R = 2M in finite proper time. It
fallsto R =0 in

M

Loy = m

dR\?
(dT) Star collapses from R,,,, through
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What happens near r = 2M?

To probe the spacetime near r = 2M the coordinates adapted to infalling
observers should be used. Let’s consider photons (ds® = 0).
Schwarzschild radial null geodesics are
dr? r—2M
2 a2 r—em
dt —( _w)z_dr r+2MIn| 5 [,
with 7 is the Regge-Wheeler radial coordinate (made to be similar to time
coordinate, ¥ € (—00,0)). The Schwarzschild metric can be rewritten in
the Eddington-Finkelstein ingoing coordinates

2M 2M
ds® = <1 — ) (—dt? +d7?*)+r?dQ? = — (1 - > dv?4+-2drdv+r*dQ?,
r r
with v = t + 7 a new ingoing radial null coordinate.
* the metric coefficients related to dr are not singular at r = 2M —

this singularity in Schwarschild metric is a coordinate singularity.
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What happens near r = 2M? Finkelstein diagram

For r < 2M,

2drdv = — ((ZM - 1) dv? + r*dQ?

r

NV S

light cone

singularity

—ds*) <0 for ds* < 0.

* for all timelike or null worldlines
drdv <0.

* dv > 0 for future-directed
worldlines, so dr < 0 with
equality when r = 2M (i.e.,
ingoing radial null geodesics -
dQ=0-atr=2M).

£
radial outgoing null
geodesic at r =2M

surface of the star

7 increasing v

collapsing -
star S nstant v

* No future-directed timelike or null worldline can reach r > 2M from r < 2M -
nothing physical (any event) can communicate from under the event horizon,
* Coordinates change meaning: t becomes spacelike and r becomes timelike -

singularity is no longer where, but when.
g y g 6/15



Penrose-Carter diagrams

The goal is to present the whole spacetime in a compact way. Let's start
with the Minkowski spacetime:
ds? = —dt?> + dr®> + rPdQ?, with —oo<t<ow, 0>=r<o0.

By changing in to null coordinates !

1 1
u=§(t+r)7 v=§(t—r)7

v = const

— 00 < U< 400,

r

—o<v<+o,Vv<u

u = const

the metric is

ds? = —2(dudv + dvdu) + (u — v)*dQ?.
This metric is in turn transformed to coordinates U(u), V(v) that take
finite value at infinity, such as
U = arctan(u), V = arctan(v),
—m2<U<+7/2, —7w/2<V<+7/2, VU
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Penrose-Carter diagrams

The Minkowski metric in terms of U and V is

1

ds? = ———
cos? U cos? V

(—2(dUdV + dVdU) +sin*(U — V)dQ?) .

In order to recover the timelike and spacelike character of the
coordinates, there is another transformation

n=U+V, x=U-V, with —7<np<m, 0<yxy<m.

timelike spacelike (radial)

The metric is then expressed by an unphysical conformal metric
1
ds® = w 2 (=dn® + dx* +sin® xdQ?), w = cosUcosV = E(cos n-+cos x),

where w is the conformal factor.
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Penrose-Carter diagram for Minkowski spacetime

0 i
X = .t
a1 n=m x=0
+
I i I SR RS b X T
] t = const
I r = const

it future timelike infinity (n =7, x =0),

i® spatial infinity (n =0, x = =),

i~ past timelike infinity (n = —m, x =0),

It future null infinity (n =7 —x, 0 <x <),

L I .

Z~ past null infinity (n = -7+ x, 0 < x <m).
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Kruskal-Szekeres coordinates

M. Kruskal and G. Szekeres (1960) defined
coordinates that cover the whole
Schwarzschild manifold - t and r
coordinates are replaced by, for r > 2GM,

V= (ZGrM - 1)1/2 €4 sinh (4(%/\//) ’
U= (2(;M — 1)1/2 e"/*M cosh (
for r <2GM :

V= (1 — zéM)l/z e"/4M cosh (

o)

i)

_ r \72 Laem . t
U= (1 N 2GM) € sinh (4GM) : Even horizon is defined by V = +U.

with V2 — (2 = (1 r ) er/26M

- 2GM
the metric is

_RGM® e
r

ds? (—dV2+dU?)+r?dQ2.
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Kruskal-Szekeres coordinates

A null version of KS coordinates:

U=v-uU, V=V+U,

7:0

that with JV = (1 ) or/2GM

~2GM
produces the metric

_ 32G3 M3 e—r/ZGM
r

ds®> = (dUdV)+r?dQ?.

'Rescaling the infinities’ to finite values

u = arctan (\/;éil\/l), V=...

gives the conformal structure similar to
previous Minkowski case.
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Penrose-Carter diagrams for Schwarzschild

Singularity (r = 0) r=0

Black Hole

Space
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Embedding of Schwarzschild spacetime

In order to visualize that the Schwarzschild spacetime is really curved,
let's draw a 2-surface of t = const. and 6 = /2 - spatial slice of the line
element

—1
ds® = (1 — 2:\/I> dr® + r’d¢?.

By comparing the Euclidean Cartesian with cylindrical
(x = rcos ¢, y = rsin¢) coordinates

ds? = dx? + dy? + dz% = dr? + r’d¢? + dz2.

one obtains

—1 2
ds® = <1 - 2?”) dr* + r’d¢? = (1 + <Zj> > dr’ + r’d¢’.

with z(r), the elevation function that will visualize the actual shape of
the surface embedded in the Euclidean space.
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Embedding of Schwarzschild spacetime

Comparing the terms, one
calculates the z(r) function
(a way to visualize how
distorted the radial distances
are):

2 -1
dz oM \TTo [ Th 2 3 4 s
1+ <dr - (-2 - \\\\/’ )/ oo e £
AV
’ dr

o \r2M -1

z(r) =
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Orbits in Schwarzschild spacetime

ds® = (1 - 2?"”) dt® + (1 - 2?"”) dr? + r2dQ2.

In general, every symmetry of the metric (symmetry of the action)
corresponds to a specific Killing vector field, L¢g,., = &, + &4 = 0.
The Lie derivative of the metric g along £ vanishes - £ preserves g along
its direction. From symmetry considerations we have the following
constants of motion of an orbiting particle () a parameter along the
path):

. . . 2GMY dt
Time translation (energy conservation) : gy, u" = | 1 — a6
r
Spatial rotation (angular momentum conservation) : gy, u" = r2£ [

Kepler's law
dx* dx”

dx dx

(for massive particles it is £ = m?, for massless £ = 0).

Also, on any geodesic : g,,,,
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Orbits in Schwarzschild spacetime

Expanding the g, (dx*/d\)(dx”/d)):

2GM\ [ dt\* 2GMN\ ' fdr\®  , (do)\?
(80 (8 () e

If multiplied by 1 —2GM/r and with eqgs. for € and / it can be rewritten as

1/ dt\’ 1, 1 GM 12 GMI?
5 (dA) +V(r) = 56 where V(r) = 55 - ST t 52 T
~—— ——
const. Grav. pot.  centrifugal

* Equation of motion of a particle of energy 1/2¢? in a potential V/(r),

* Last term in V(r) - deviation from Newtionian result (which makes
all the differencel!)
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Orbits in Newtonian 'spacetime’

The orbital movement depends on
the V/(r) vs. 1/2€? relation:

1/dt\° 1,
2<d}\> +V(r)—§e

* If V(r) = 1/2€? - turning point,
particle starts to move the
other way,

* r = const. & dV/dr = 0.

av 2 2 2
— = EGMr* — I°’r + 2GMI* = 0.
dr SN——

GR term

In Newtonian gravity, circular orbits
for
I2
- GME
(no circular orbits for photons!)

r

r
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Orbits in Schwarzschild spacetime: massless particles

V(r) = 75 e=2=

In GR, the additional term
—GMI?/r® is important for small r
(r — oo - Newtonian limit).

* at r =2GM V(r) =0,

* for massless particles (£ = 0),
the derivative of the potential
gives

r =3GM.

(a maximum for every /).

— photon circular (unstable) orbit
at 3GM.

GM i B GMI?
2r2 r3

0.8

0.6

0.2

GR massive

GR massless




Orbits in Schwarzschild spacetime: massive particles

0.8
1 GM 2 GMI?
Vin=38-¢—+3m- "5

For massive particles (£ # 0),
V(r) =0at r =2GM. Also

0.6
* the circular orbits are at

P+ 12G2MPP

2GM

r

* — for large | two orbits (one
stable, one unstable). | — «©
gives limiting values

/2

oM and 3GM .

unstable
stable

— approaching 3GM as for photons.

GR massive

GR massless




Orbits in Schwarzschild spacetime: massive particles

1 GM 2 GMI?
Vin=38-¢—+3m- "5

For massive particles (£ # 0),
V(r) =0at r =2GM. Also

* the circular orbits are at

_ 12+ \/I* —12G2M2 |2
B 2GM
* for small / two orbit concide for

| = \/12GM at

r

r =6GM (last stable orbit).
— two regions of circular orbits:

unstable (3GM,6GM) and stable
> 6GM.

0.8

0.6

0.2

GR massive

GR massless




Electrically charged black holes

Assuming spherical symmetry, the general metric is again
ds? = —e2Ut) gt 4 2B g2 4 12402,
and the spacetime is not vacuum, but filled with electromagnetic field F,,

1 1
T;w = E (FuéFg - _4guuF6pF5p) .

From spherical symmetry, the only electric and magnetic components of
F,.., are the radial ones:

E,=Ft,=f(r,t)=—F,t, and

2 rr .
B, = gne"™F,, = LF% — Fpy = —Fyp = h(r,t)sinf.

Vel

(lg| ocr® sin® ). Then, the Maxwell equations together with the Einstein
equations must be solved

8rG

1
guyquud =0, v[qu(S] =0, R;w - ERgMV = 77-/“/'
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Reissner-Nordstrom metric

The solution is given by H. Reissner (1916) and G. Nordstrém (1918):

2GM 2 2
M, G(p? + )

ds®> = —Adt* + A"1dr* +r?dQ?, where A =1- . p

where p is the magnetic charge (equal to zero?), and g is the electric
charge (F,: = —q?/r, Fpy = psin®). The horizon appears at r for which
A =0

re = GM £/G2M? — G(p? + ¢?)
There are several possible cases:

* p?2+q> > GM? — A > 0 - no metric singularity until r = 0, no
event horizon: naked singularity (related: cosmic censorship
conjecture - gravitational collapse of physical matter can never
produce a naked singularity).

p? + g% > GM? indeed unphysical - total mass-energy of the BH is
smaller than the electromagnetic field contribution.
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Reissner-Nordstrom metric

* p2 + g% < GM? corresponds to A
real situation, ry are coordinate
singularities

* r — ry like in Schwarzschild
case, for r_ <r < r; the
radial coordinate changes
character (from spacelike
becomes timelike),

* for r < r_ spacelike again —
not neccesary doomed to hit
the r = 0 singularity!

* r =0 is timelike, as opposed oMZ>p2+ @2 0 0
to Schwarzschild spacelike s~ P=d= .
. . . 4 (Schwarzschild)
singularity (— not necessarily ’

in the future).

* the in-falling observer can
cross r_ again, and be forced
in the direction of increasing
r towards ry.
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New Universe

Er
E
=R
ZE
&
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Some facts

* Birkhoff’s theorem: any spherically symmetric vacuum solution is
static — Schwarzschild. If electromagnetic fields are included
(Einstein-Maxwell system) — Reissner-Nordstrom.

* In order to study real singularities, a measure of curvature must be
used (Riemann tensor). Interesting invariant is Kretschmann scalar

K = Rfl,p(;w/pé =

Tidal force acting on a body m of
size [:

E GMm | /
EER A s
r r To distant
N—— atiracting mass M

At the horizon

(it's better to fall into a big black
hole).

("spaghettification”)
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Rotating black holes

The solution for a rotating black hole is due to R. Kerr (1963). The
metric in Boyer-Lindquist coordinates reads

2 26M.
ds? = —dt2+%dr2+p2d92+(r2+32)sin2 0do+ G2 " (asin? 0dp—dt)?,
p
with
a= Mic € (0,1), A(r) =r*-2GMr+a* and p?(r,0) = r*+a*cos? 0.

spin parameter

by changing 2GMr to 2GMr — (g + p?)/G - the Kerr-Newman metric).
ging

* a — 0 reduces to the Schwarzschild
metric,

~——= 1= const

0= const —— I

* a = const., M — 0 - flat space (metric
expressed in ellipsoidal coordinates).




Kerr black hole singularities: horizons

2
ds® = —dtQ—i-'()Zdrz-i-,o2d02—i—(r2 a%)sin? d > + (;M (asin?0dp—dt)?,

Singularities can appear at A =0 and p = 0.

* (GM)? < a2 cases correspond to
naked snngularltles (super-spinar) >
and the extremal solution (a = 1), K

* for (GM)? > a2, it yields two g
singular points

re = GM £/ G2M? — &2

(null surfaces, event horizons). ry
(outer horizon) corresponds to the
Schwarzschild horizon, r_ is called
the Cauchy horizon.
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Kerr black hole singularities: static limit

Rotating solution admits two Killing

vectors, £# = 0y and N = 0y,

corresponding to energy conservation

and axial symmetry (£# not orthogonal

to t = const. hypersurfaces — metric is

stationary, not static.

* In Schwarzschild time-symmetry

Killing vector £&* = 0; becomes null
at the horizon and spacelike inside.

In Kerr,
1
£ = ——(A— a’sin?6) does not vanish at ry (€€, (ry) = 0).
p

The surface £#¢,, = 0 is the Killing horizon (static limit):
(r — GM)? = G?>M? — 22 cos? f. Region between it and r, is the
ergosphere - inertial observers forced to move with the spin of the BH
(d¢/dt > 0).
12/15



Kerr black hole singularities: ring singularity

The true, central curvature singularity
does not occur simply at r = 0, but
p=0:

PP =r*+a%cos’0 =0
— r=0and cosf =0.

(a ring-like set of points). An observer
who crosses the ring appears in a new
Kerr spacetime with r <0 - A #0 —
no horizons.

— Closed timelike curves. For t,0 = const. the line element in ¢
direction is

ds®> = a? (1 2G;M> d¢? <0, for small r < 0.
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New Parallel Universe

Parallel
Antiverse,

Z
gg
B &
e
&
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Orbital constants of motion in rotating spacetime

General orbits of particles (or photons) with 4-momentum p* are
described by four constants of motion on the geodesic:

* total energy E = —p; = —£,p" = geuP*,

* component of angular momentum parallel to symmetry axis
L= py =nup" = gpup",

* Carter constant: @ = p? + cos® 0(a?(m? — E?) + L?/sin?0),
separation constant from the Hamilton-Jacobi equations (in the
equatorial plane Q = 0),

* mass of the particle m.

How to measure the angular momentum of the hole and its influence on
the moving particles? A photon emitted at r in ¢ direction in the
equatorial plane has

d52 = 0 = gttdtz + 2gt¢dtd¢ + g¢¢d¢27

which gives
2
96 _ & (w> &
dt 8¢  \ \ 8o 8o
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Angular velocity of the hole

At the Killing horizon g3 = 0 and

dé _ &, (gw>>2_gn_)d¢ g 99 2a

dt 8o 8o 8sp  dt dt T 2GM)? + 2%

which is interpreted as the angular drag of retrograde and prograde
photons. "Frame dragging” at the horizon ry (minimal angular velocity of
the particle there) can be defined as the angular velocity of the horizon

itself: do
a
2 = (m») ()=

The coordinate angular velocity of a circular orbit is (G = ¢ = 1):

_,_ VM
R4 M
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Circular orbits around the Kerr black hole

To summarize the characteristic distances and orbits in Kerr spacetime:
* Marginally-stable circular orbits (ISCO):

I'ms = M(3 + 2 F (3 — Zl)(3 + 271 + 222))1/2)7

. 2\ a\1/3 2\1/3
with 21=1+<1—W) ((1+M) +<1_M) ),
Zy = (3% /M? + Z2)Y2,

* Marginally-bound circular orbits: limiting radius for marginal
("parabolic”) circular orbit with e = E/m = 1,

fmb =2M F a+ 24/ M(M F a).

* Photon orbit: in the limit of E — o0 the innermost boundary of the
circular orbits for particles:

rpn = 2M(1 + cos(% cos H(Fa/M))).
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Circular orbits around the Kerr black hole

/M

a/M -
(from Bardeen et al., 1972)
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Kerr vs. rotating star

Fastprograde: : o Fast retrograde
spin . spin

Relative X-rayflux

5 6 A AL Ve e
Energy (keV) Energy (keY)

* The exterior metric of the Kerr metric differs from the rapidly
rotation compact material star; they agree in the first order
approximation - slow rotation:

2 3/2
rm5:6M 1—% (g)

* No 'natural’” material source for Kerr metric (infinitesimally thin

counter-rotating discs etc.) 12/15



Penrose process

Inside the ergosphere ¢, becomes
spacelike. There can exist particles
with

Killing
horizon

ergosphere
E=—&p" <0.

Imagine particle with pﬁ))
disintegrating in the ergosphere into
two other particles:

péto) = Pfl) + pé)v /gu
— E(O) = E(l) + E(Q).

(top view)
If arranged in such a way that

E(Q) < 0, then E(l) > E(o) -
production of energy.
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Irreducible mass

Penrose process is the extraction of energy from the kinetic (rotational)
energy of the black hole. Let's define an additional Killing vector

Xp = gu + QHUW

null and tangent to the outer horizon r. Particle (2) falls under the

horizon if
w w w E(2) .
p(2)xﬂ = p(z)fu +Qy ;)(2)77M <0 - L(2) < 0. <0 since E(g) < 0.
—— —— H

—E@) L2
The black hole mass M and angular momentum J = Ma are decreased by
oM
oM = E(2)7 0J = L(z) so that 0J < QiH

Although the energy is extracted, the horizon area A is not decreasing
(). By integrating over the horizon surface:

A=4r(r? +3%).
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Irreducible mass

How does it work? Let's define an irreducible mass of the black hole as
follows:

A 1 1
M2 = = _—_(s? Y= (M? M4 — 2},
A T AT A ( + (J/6) )
A change in M, is related with §M and §J

My = 2 (M — 6J) > 0,

4G/ G2 M2 — a2 M., %,—/

hence §M;,, cannot decrease. The maximum amount of energy that can
be extracted with a Penrose process is

L i 2 4 21/2
M—Mm_M—ﬁ(M+ M—(J/G))

for a =1 Kerr BH it is approx. 30% of total mass-energy.
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Thermodynamics of black holes

The analogous relation for the horizon area A is
a

0A = 816G ——F—————=(IM — Qud,),
e NG =2 #1)
which is usually rewritten as
K
oM = 0A 4+ Qudd.
8rG e

and where the surface gravity « of the black hole is introduced:
JCM? — 2
K =
2GM(GM + /G2 M? — a?)

(x is acceleration of a ZAMO at the horizon; x = 0 corresponds to
extremal black holes). Curious relation to classical thermodynamics:

oM = L 5A+Qu6J o dU = TdS—pdV + ...
8nrG

* QudJ related to "work” term —pdV,

* the area A never decreases as the entropy S - surface gravity
k/87G ~ T.
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Thermodynamics of black holes

The laws of black hole thermodynamics are (in comparison to classical):

Oth: in equilibrium the temperature
the bodies in contact have the
same temperature (temperature
constant through the system),

Ist: the change of energy is related
to the change of entropy and work
asin dU = TdS — pdV,

2nd: the entropy S of an isolated
system cannot decrease,

3rd: the entropy of any pure
substance in thermodynamic
equilibrium approaches zero as the
temperature approaches zero.

* Oth: for stationary black holes

k8mGT is constant everywhere on
the horizon,

Ist: the change of black hole mass
is related to the change of the
horizon area and angular
momentum as in

OM = Zz0A + QpdJ,

2nd: the area A of the horizon
never decreases.

3rd: it is impossible to achieve
k = 0 in any physical process.
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Blandford-Znajek process: EM analogue of Penrose process

Accertion disk with polar magnetic field,
penetrating the ergosphere, dragged
along and extracting the rotational
energy. Power at light cylinder r:

4
popgr() reo BX
re ¢ c

Total amount of energy is

M
E=03Mc?~5x10%— erg
Mg

Poynting flux ExB— production of
the jet.

Key open issues:
* origin (generation mechanism?) of the magnetic field,
* magnetic field dynamics in accretion disks,

* mass loading/accretion disk outflows. ,
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Hawking radiation

As a result of quantum particle

escape of
antiparticle

creation effects, black hole radiates \

particles with a perfect black body AN

spectrum of temperature ke

proportional to surface gravity: et Q
| ot

particle-
antiparticle
pair

bair P
T=1 é/
27T particle
For Schwarzschild: \/

SPACE

1 he® M,
T = — ~6x1078-2 K.
M [SWGMkB] 01075,

Related:

* Unruh effect - an accelereated observer detects black-body radiation of a
vacuum field,
= ——— X acceleration
2mckg ’
* Rindler coordinates and horizon observed by accelerated observers in

Minkowski spacetime. 1415



Further reading...

* "Lecture Notes on General Relativity”, Sean Carroll,
* "Black holes”, P.K. Townsend arXiv:gr-qc/9707012,

* Penrose diagrams:
http://jila.colorado.edu/~ajsh/insidebh/penrose.html
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