Black holes

Michał Bejger N. Copernicus Center, Warsaw

Outline

- * Spherical black holes,
- ★ Weak field limit,
- * pressureless dust star collapse,
- ★ black holes and rotation,
- ★ orbits,
- * Penrose-Carter diagrams,
- * Penrose process and thermodynamics.

History of black holes

- * O. C. Rømer (1676) from observations of the Jupiter moons from orbiting Earth \rightarrow speed of light finite,
- * I. Newton (1686): gravitational force follows

$$F = -\frac{GMm}{r^2}$$

- * J. Michell (1783): "All light emitted from such a body would be made to return towards it by its own proper gravity",
- * P.S. Laplace (1796): Exposition du système du monde ("dark stars")
- * A. Einstein (1905): Special relativity
- ★ A. Einstein (1915): General relativity (GR)
- * K. Schwarzschild (1916): First exact solution of GR a black hole,
- * H. Reissner (1916), G. Nordström (1918): electrically charged black hole solution,
- * M. Kruskal & G. Szekeres (1960): Global structure of Schwarzschild,
- * R. Kerr (1963): rotating stationary black hole.

The light cone

Timelike $ds^2 < 0$; spacelike $ds^2 > 0$; null (light-like) $ds^2 = 0$.

Motivated by the form of the Minkowski metric,

$$ds^{2} = -dt^{2} + dr^{2} + r^{2} \underbrace{(d\theta^{2} + \sin^{2}\theta d\phi^{2})}_{d\Omega^{2}},$$

let's chose a generally-enough form of a spherically-symmetric metric

$$ds^{2} = -e^{2\alpha(r,t)} dt^{2} + e^{2\beta(r,t)} dr^{2} + r^{2} d\Omega^{2}.$$

To know the functions α and β , one must solve the Einstein equations (\rightarrow connection coefficients \rightarrow Riemann, Ricci tensors). The non-zero Christoffel symbols

$$\Gamma^{\mu}_{\nu\rho} = \frac{1}{2} g^{\mu\beta} (g_{\beta\nu,\rho} + g_{\beta\rho,\nu} - g_{\nu\rho,\beta})$$

are

$$\begin{split} \Gamma^{t}_{tt} &= \partial_{t} \alpha, \quad \Gamma^{t}_{tr} = \partial_{r} \alpha, \quad \Gamma^{t}_{rr} = e^{2(\beta - \alpha)} \partial_{t} \beta, \quad \Gamma^{r}_{tt} = e^{2(\alpha - \beta)} \partial_{r} \alpha, \\ \Gamma^{r}_{tr} &= \partial_{t} \beta, \quad \Gamma^{r}_{rr} = \partial_{r} \beta, \quad \Gamma^{\theta}_{r\theta} = \frac{1}{r}, \quad \Gamma^{r}_{\theta\theta} = -re^{-2\beta}, \quad \Gamma^{\phi}_{r\phi} = \frac{1}{r}, \\ \Gamma^{r}_{\phi\phi} &= -re^{-2\beta} \sin^{2} \theta, \quad \Gamma^{\theta}_{\phi\phi} = -\sin \theta \cos \theta, \quad \Gamma^{\phi}_{\theta\phi} = \cot \theta. \end{split}$$

Ricci tensor non-zero components are:

$$\begin{split} R_{tt} &= \left[\partial_t^2 \beta + (\partial_t \beta)^2 - \partial_t \alpha \partial_t \beta\right] + e^{2(\alpha - \beta)} \left[\partial_r^2 \alpha + (\partial_r \alpha)^2 - \partial_r \alpha \partial_r \beta + \frac{2}{r} \partial_r \alpha\right], \\ R_{rr} &= -\left[\partial_r^2 \alpha + (\partial_r \alpha)^2 - \partial_r \alpha \partial_r \beta - \frac{2}{r} \partial_r \beta\right] + e^{2(\beta - \alpha)} \left[\partial_t^2 \beta + (\partial_t \beta)^2 - \partial_t \alpha \partial_t \beta\right], \\ R_{tr} &= \frac{2}{r} \partial_t \beta, \quad R_{\theta\theta} = e^{-2\beta} \left[r(\partial_r \beta - \partial_r \alpha) - 1\right] + 1, \quad R_{\phi\phi} = R_{\theta\theta} \sin^2 \theta. \end{split}$$

The solution is obtained by demanding $R_{\mu\nu} = 0$: trace-reversed version of the Einstein's equations is

$$R_{\mu\nu} = T_{\mu\nu} - \frac{1}{2} T^{\rho}_{\rho} g_{\mu\nu} = 0, \quad (T_{\mu\nu} = 0 \text{ in vacuum}).$$

From $R_{tr} = 0 \rightarrow \partial_t \beta = 0$, $\partial_t (R_{\theta\theta}) = 0$ and $\partial_t \beta = 0 \rightarrow \partial_t \partial_r \alpha = 0$. That is $\begin{cases} \beta = \beta(r), \\ \alpha = f(r) + g(t). \end{cases}$

> By redefining $dt \rightarrow e^{-g(t)} dt$, g(t) = 0 so that $\alpha = f$.

We therefore have a metric with components independent of the t coordinate:

$$ds^{2} = -e^{2\alpha(r)} dt^{2} + e^{2\beta(r)} dr^{2} + r^{2} d\Omega^{2}.$$

 \rightarrow stationarity, timelike Killing vector.

Another useful combination from the Ricci tensor is:

$$\underbrace{R_{rr} + R_{tt}}_{=0} e^{2(\beta - \alpha)} = \frac{2}{r} (\partial_r \alpha + \partial_r \beta) \rightarrow \alpha + \beta = \underbrace{const. = 0}_{coord. rescaling}$$

and

$$\begin{aligned} R_{\theta\theta} &= e^{-2\beta} [r(\partial_r \beta - \partial_r \alpha) - 1] + 1 = -e^{2\alpha} (2r\partial_r \alpha - 1) + 1 = 0, \\ &\to \partial_r (re^{2\alpha}) = 1, \text{ that is } e^{2\alpha} = 1 + \frac{\mu}{r}. \end{aligned}$$

The metric is then

$$ds^{2} = -\left(1 + \frac{\mu}{r}\right)dt^{2} + \left(1 + \frac{\mu}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}.$$

Weak field limit

In order to compare GR with the Newtonian theory, one must express GR in the limit of small velocities ($v/c \ll 1$) and time derivatives much smaller than spatial derivatives:

- * relate the geodesic equation to Newton's law of motion,
- * relate the Einstein equation to the Poisson equation.

Assume

$$g_{lphaeta} = \eta_{lphaeta} + \epsilon h_{lphaeta}, \quad g^{lphaeta} = \eta^{lphaeta} - \epsilon h^{lphaeta} \quad (ext{because } g^{\mueta}g_{
ueta} = \delta^{\mu}_{
u}).$$

The connection's Christoffel symbols are, in first order

$$\Gamma^{\mu}_{\nu\rho} = \frac{1}{2} g^{\mu\beta} (g_{\beta\nu,\rho} + g_{\beta\rho,\nu} - g_{\nu\rho,\beta}) \approx \frac{1}{2} \epsilon \eta^{\mu\beta} (h_{\beta\nu,\rho} + h_{\beta\rho,\nu} - h_{\nu\rho,\beta})$$

The geodetic equation for slowly moving particle, for which $\tau \approx t$ and $dx^i/dt = O(\epsilon)$:

$$\frac{d^2 x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\nu\rho} \frac{dx^{\nu}}{d\tau} \frac{dx^{\rho}}{d\tau} \rightarrow \frac{d^2 x^{\mu}}{dt^2} + \Gamma^{\mu}_{\nu\rho} \frac{dx^{\nu}}{dt} \frac{dx^{\rho}}{dt} \rightarrow \frac{d^2 x^{\mu}}{dt^2} + \Gamma^{\mu}_{tt} \frac{dx^t}{dt} \frac{dx^t}{dt} = 0.$$

Weak field limit

The spatial part of the geodetic equation (three-acceleration):

$$\frac{d^2x^i}{dt^2} + \Gamma^i_{tt}\frac{dx^t}{dt}\frac{dx^t}{dt} = c^2\Gamma^i_{tt}, \quad \text{where} \quad dx^t/dt = c \quad (\text{'speed of time'}).$$

$$\Gamma^i_{tt} = \frac{1}{2}\epsilon\eta^{\mu\beta}(h_{\beta\nu,\rho} + h_{\beta\rho,\nu} - h_{\nu\rho,\beta}) \approx \frac{1}{2}\epsilon(\underbrace{h^i_{t,t} + h^i_{t,t}}_{small} - h^{i}_{tt}) \approx -\frac{1}{2}\epsilon h_{tt}^{,i},$$

That is

$$\frac{d^2x^i}{dt^2} = \frac{c^2}{2}\epsilon h_{tt}^{,i} = \frac{c^2}{2}\epsilon \nabla^i h_{tt}, \text{ to be compared with } \underbrace{\frac{d^2x^i}{dt^2} = -\nabla^i \Phi}_{Newtonian equation of motion}.$$

This means that one can identify the metric function g_{tt} with the Newtonian potential:

$$g_{tt} = \underbrace{\eta_{tt}}_{=-1} + \epsilon h_{tt} = -\left(1 + \frac{2\Phi}{c^2}\right).$$

Coming back to spherically-symmetric stationary metric:

$$ds^{2} = -\left(1 + \frac{\mu}{r}\right)dt^{2} + \left(1 + \frac{\mu}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}.$$

The interpretation of the parameter μ in terms of physical quantities is done in the *weak field limit*. Far from the center,

$$g_{tt}(r \to \infty) = -\left(1 + \frac{\mu}{r}\right), \quad g_{rr}(r \to \infty) = \left(1 - \frac{\mu}{r}\right).$$

On the other hand, weak limit gives

$$g_{tt}(r \to \infty) = -\left(1 + \frac{2\Phi}{c^2}\right),$$

with the Newtonian potential $\Phi = -GM/r$. Therefore, the Schwarzschild metric finally reads:

$$ds^{2} = -\left(1 - \frac{2GM}{rc^{2}}\right)dt^{2} + \left(1 - \frac{2GM}{rc^{2}}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}.$$

Spherically-symmetric pressureless collapse

Consider a collapse of a spherical star made of 'dust' (pressure p = 0). With G = c = 1 the outside metric is Schwarzschild vacuum solution

$$ds^{2} = -\left(1-\frac{2M}{r}\right)dt^{2} + \left(1-\frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2}+\sin^{2}\theta d\phi^{2}\right).$$

If radius of the star is R(t), on the surface one has,

$$ds^{2} = -\left(\left(1 - \frac{2M}{R}\right) - \left(1 - \frac{2M}{R}\right)^{-1} \left(\frac{dR}{dt}\right)^{2}\right) dt^{2} + R^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right),$$

and from symmetry the collapsing particles will infall in radial direction (follow radial timelike geodesics) $\rightarrow d\theta = d\phi = 0$:

$$\left(\frac{dt}{d\tau}\right)^2 \left(\left(1 - \frac{2M}{R}\right) - \left(1 - \frac{2M}{R}\right)^{-1} \left(\frac{dR}{dt}\right)^2\right) = -1$$

with $ds^2 = d\tau^2$ denoting the proper time.

Spherically-symmetric pressureless collapse

Schwarzschild spacetime admits one Killing vector, $\partial/\partial t$, responsible for time symmetries (conservation of energy).

$$\epsilon = -g_{t\mu}u^t = -g_{tt}\frac{dt}{d\tau} = \left(1 - \frac{2M}{R}\right)\frac{dt}{d\tau}$$

is specific energy of a particle, constant along the geodesic. This gives

$$\left(\frac{dR}{dt}\right)^2 = \dot{R}^2 = \frac{1}{\epsilon^2} \left(1 - \frac{2M}{R}\right)^2 \left(\frac{2M}{R} - 1 + \epsilon^2\right)$$

(with $\epsilon < 1$ for bound particles).

For a collapse with $\dot{R}_{ini} = 0$ at $R_{max} = 2M/(1 - \epsilon^2)$. R decreases approaching R = 2M asymptotically (distant observer sees the collapse slowing down while it approaches R = 2M).

Spherically-symmetric pressureless collapse

What happens from the point of view of an infalling observer? Her clock measures the proper time along the radial geodesic, so one can rewrite

$$\frac{d}{dt} = \frac{d\tau}{dt}\frac{d}{d\tau} = \frac{1}{\epsilon}\left(1 - \frac{2M}{R}\right)\frac{d}{d\tau}$$

to obtain, from the previous expression

$$\left(\frac{dR}{d\tau}\right)^2 = \left(\frac{2M}{R} - 1 + \epsilon^2\right) = \left(\frac{R_{max}}{R} - 1\right)(1 - \epsilon^2).$$

Star collapses from R_{max} through R = 2M in *finite proper time*. It falls to R = 0 in

$$t_{fall} = \frac{M\pi}{(1-\epsilon)^{3/2}}$$

6/15

What happens near r = 2M?

To probe the spacetime near r = 2M the coordinates adapted to infalling observers should be used. Let's consider photons ($ds^2 = 0$). Schwarzschild radial null geodesics are

$$dt^{2} = \frac{dr^{2}}{\left(1 - \frac{2M}{r}\right)^{2}} \equiv d\bar{r}^{2} = r + 2M \ln|\frac{r - 2M}{2M}|,$$

with \overline{r} is the Regge-Wheeler radial coordinate (made to be similar to time coordinate, $\overline{r} \in (-\infty, \infty)$). The Schwarzschild metric can be rewritten in the Eddington-Finkelstein ingoing coordinates

$$ds^{2} = \left(1 - \frac{2M}{r}\right)\left(-dt^{2} + d\overline{r}^{2}\right) + r^{2}d\Omega^{2} = -\left(1 - \frac{2M}{r}\right)dv^{2} + 2drdv + r^{2}d\Omega^{2},$$

with $v = t + \overline{r}$ a new ingoing radial null coordinate.

 ★ the metric coefficients related to dr are not singular at r = 2M → this singularity in Schwarschild metric is a coordinate singularity.

What happens near r = 2M? Finkelstein diagram

For
$$r \leq 2M$$
,
 $2drdv = -\left(\left(\frac{2M}{r} - 1\right)dv^2 + r^2d\Omega^2\right)$

$$-ds^2 \leq 0 \text{ for } ds^2 \leq 0.$$

- ★ for all timelike or null worldlines $dr dv \leq 0$.
- * dv > 0 for future-directed worldlines, so $dr \le 0$ with equality when r = 2M (i.e., ingoing radial null geodesics $d\Omega = 0$ - at r = 2M).

- * No future-directed timelike or null worldline can reach r > 2M from $r \leq 2M$ nothing physical (any **event**) can communicate from under the **event horizon**,
- Coordinates change meaning: t becomes spacelike and r becomes timelike singularity is no longer where, but when.

Penrose-Carter diagrams

The goal is to present the whole spacetime in a compact way. Let's start with the Minkowski spacetime:

$$ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2,$$

By changing in to null coordinates

$$u = \frac{1}{2}(t+r), \quad v = \frac{1}{2}(t-r),$$

$$-\infty < u < +\infty,$$

$$-\infty < v < +\infty, v \le u$$

the metric is

with
$$-\infty < t < \infty$$
, $0 \ge r < \infty$.

 $ds^{2} = -2(dudv + dvdu) + (u - v)^{2}d\Omega^{2}.$

This metric is in turn transformed to coordinates U(u), V(v) that take finite value at infinity, such as

$$\begin{array}{ll} U = \arctan(u), \ V = \arctan(v), \\ -\pi/2 < U < +\pi/2, & -\pi/2 < V < +\pi/2, & V \leqslant U. \end{array}$$

Penrose-Carter diagrams

The Minkowski metric in terms of U and V is

$$ds^{2} = \frac{1}{\cos^{2} U \cos^{2} V} \left(-2(dUdV + dVdU) + \sin^{2}(U - V)d\Omega^{2}\right).$$

In order to recover the timelike and spacelike character of the coordinates, there is another transformation

$$\underbrace{\eta = U + V}_{timelike}, \quad \underbrace{\chi = U - V}_{spacelike \ (radial)}, \quad \text{with} \ -\pi < \eta < \pi, \ 0 \leqslant \chi < \pi.$$

The metric is then expressed by an unphysical conformal metric

$$ds^{2} = \omega^{-2} \left(-d\eta^{2} + d\chi^{2} + \sin^{2}\chi d\Omega^{2} \right), \quad \omega = \cos U \cos V = \frac{1}{2} (\cos \eta + \cos \chi),$$

where ω is the conformal factor.

Penrose-Carter diagram for Minkowski spacetime

- \star i⁰ spatial infinity $(\eta = 0, \ \chi = \pi)$,
 - $\star~i^-$ past timelike infinity $(\eta=-\pi,~\chi={\rm 0}),$
 - * \mathcal{I}^+ future null infinity $(\eta = \pi \chi, \ \mathbf{0} < \chi < \pi)$,
 - * \mathcal{I}^- past null infinity $(\eta = -\pi + \chi, \ 0 < \chi < \pi)$.

Kruskal–Szekeres coordinates

M. Kruskal and G. Szekeres (1960) defined coordinates that cover the whole Schwarzschild manifold - t and r coordinates are replaced by, for r > 2GM,

$$\begin{split} V &= \left(\frac{r}{2GM} - 1\right)^{1/2} e^{r/4GM} \sinh\left(\frac{t}{4GM}\right), \\ U &= \left(\frac{r}{2GM} - 1\right)^{1/2} e^{r/4GM} \cosh\left(\frac{t}{4GM}\right), \\ \text{for } r &< 2GM : \\ V &= \left(1 - \frac{r}{2GM}\right)^{1/2} e^{r/4GM} \cosh\left(\frac{t}{4GM}\right), \\ U &= \left(1 - \frac{r}{2GM}\right)^{1/2} e^{r/4GM} \sinh\left(\frac{t}{4GM}\right). \\ \text{with } V^2 - U^2 &= \left(1 - \frac{r}{2GM}\right) e^{r/2GM} \end{split}$$

the metric is

$$ds^{2} = \frac{32G^{3}M^{3}}{r}e^{-r/2GM}(-dV^{2}+dU^{2})+r^{2}d\Omega^{2}.$$

Even horizon is defined by $V = \pm U$.

Kruskal–Szekeres coordinates

A null version of KS coordinates:

$$\tilde{U} = V - U, \quad \tilde{V} = V + U,$$

that with
$$ilde{U} ilde{V} = \left(1 - rac{r}{2\,{\it GM}}
ight) {\it e}^{r/2\,{\it GM}}$$

produces the metric

$$ds^{2} = -\frac{32G^{3}M^{3}}{r}e^{-r/2GM}(d\tilde{U}d\tilde{V}) + r^{2}d\Omega^{2}.$$

'Rescaling the infinities' to finite values

$$u = \arctan\left(rac{ ilde{U}}{\sqrt{2GM}}
ight), \ v = \dots$$

gives the conformal structure similar to previous Minkowski case.

Penrose-Carter diagrams for Schwarzschild

Embedding of Schwarzschild spacetime

In order to visualize that the Schwarzschild spacetime is really curved, let's draw a 2-surface of t = const. and $\theta = \pi/2$ - spatial slice of the line element

$$ds^2 = \left(1 - \frac{2M}{r}\right)^{-1} dr^2 + r^2 d\phi^2.$$

By comparing the Euclidean Cartesian with cylindrical $(x = r \cos \phi, y = r \sin \phi)$ coordinates

$$ds^{2} = dx^{2} + dy^{2} + dz^{2} = dr^{2} + r^{2}d\phi^{2} + dz^{2}.$$

one obtains

$$ds^{2} = \left(1 - \frac{2M}{r}\right)^{-1} dr^{2} + r^{2} d\phi^{2} = \left(1 + \left(\frac{dz}{dr}\right)^{2}\right) dr^{2} + r^{2} d\phi^{2}.$$

with z(r), the *elevation function* that will visualize the actual shape of the surface embedded in the Euclidean space.

Embedding of Schwarzschild spacetime

Comparing the terms, one calculates the z(r) function (a way to visualize how distorted the radial distances are):

$$1 + \left(\frac{dz}{dr}\right)^2 = \left(1 - \frac{2M}{r}\right)^{-1} \rightarrow z(r) = \int_0^r \frac{dr}{\sqrt{r/2M - 1}}.$$

Orbits in Schwarzschild spacetime

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \left(1 - \frac{2GM}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}.$$

In general, every symmetry of the metric (symmetry of the action) corresponds to a specific Killing vector field, $\mathcal{L}_{\xi}g_{\mu\nu} = \xi_{\nu;\mu} + \xi_{\mu;\nu} = 0$. The Lie derivative of the metric g along ξ vanishes - ξ preserves g along its direction. From symmetry considerations we have the following constants of motion of an orbiting particle (λ a parameter along the path):

Time translation (energy conservation) : $g_{t\mu}u^{\mu} = \left(1 - \frac{2GM}{r}\right)\frac{dt}{d\lambda} = \epsilon$, Spatial rotation (angular momentum conservation) : $g_{\phi\mu}u^{\mu} = \underbrace{r^2\frac{d\phi}{d\lambda}}_{Kepler's \ law}$

Also, on any geodesic :
$$g_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = -\mathcal{E}$$

(for massive particles it is $\mathcal{E} = m^2$, for massless $\mathcal{E} = 0$).

Orbits in Schwarzschild spacetime

Expanding the $g_{\mu\nu}(dx^{\mu}/d\lambda)(dx^{\nu}/d\lambda)$:

$$-\left(1-\frac{2GM}{r}\right)\left(\frac{dt}{d\lambda}\right)^2+\left(1-\frac{2GM}{r}\right)^{-1}\left(\frac{dr}{d\lambda}\right)^2+r^2\left(\frac{d\phi}{d\lambda}\right)^2=-\mathcal{E}.$$

If multiplied by 1-2GM/r and with eqs. for ϵ and l it can be rewritten as

$$\frac{1}{2}\left(\frac{dt}{d\lambda}\right)^2 + V(r) = \frac{1}{2}\epsilon^2, \text{ where } V(r) = \underbrace{\frac{1}{2}\mathcal{E}}_{const.} - \underbrace{\frac{\mathcal{E}\frac{GM}{r}}{r}}_{Grav. pot.} + \underbrace{\frac{l^2}{2r^2}}_{contributed} - \frac{\frac{GMl^2}{r^3}}{r^3}.$$

- * Equation of motion of a particle of energy $1/2\epsilon^2$ in a potential V(r),
- * Last term in V(r) deviation from Newtionian result (which makes all the difference!)

Orbits in Newtonian 'spacetime'

The orbital movement depends on the V(r) vs. $1/2\epsilon^2$ relation:

$$\frac{1}{2}\left(\frac{dt}{d\lambda}\right)^2 + V(r) = \frac{1}{2}\epsilon^2$$

* If $V(r) = 1/2\epsilon^2$ - turning point, particle starts to move the other way,

* $r = const. \leftrightarrow dV/dr = 0.$ $\frac{dV}{dr} = \mathcal{E}GMr^2 - l^2r + \underbrace{2GMl^2}_{GR \ term} = 0.$

In Newtonian gravity, circular orbits for

$$r=\frac{l^2}{GM\mathcal{E}}.$$

(no circular orbits for photons!)

Orbits in Schwarzschild spacetime: massless particles

Orbits in Schwarzschild spacetime: massive particles

Orbits in Schwarzschild spacetime: massive particles

Electrically charged black holes

Assuming spherical symmetry, the general metric is again

$$ds^{2} = -e^{2\alpha(r,t)} dt^{2} + e^{2\beta(r,t)} dr^{2} + r^{2} d\Omega^{2},$$

and the spacetime is not vacuum, but filled with electromagnetic field $F_{\mu
u}$

$$T_{\mu
u} = rac{1}{4\pi} \left(F_{\mu\delta}F^{\delta}_{
u} - rac{1}{4}g_{\mu
u}F_{\delta\rho}F^{\delta
ho}
ight).$$

From spherical symmetry, the only electric and magnetic components of $F_{\mu\nu}$ are the radial ones:

$$\begin{split} E_r &= F_{tr} = f(r,t) = -F_{rt}, \quad \text{and} \\ B_r &= g_{rr} \epsilon^{tr\mu\nu} F_{\mu\nu} = \frac{2g_{rr}}{\sqrt{|g|}} F_{\theta\phi} \rightarrow F_{\theta\phi} = -F_{\phi\theta} = h(r,t) \sin \theta. \end{split}$$

 $(|g| \propto r^4 \sin^2 \theta).$ Then, the Maxwell equations together with the Einstein equations must be solved

$$g^{\mu\nu} \nabla_{\mu} F_{\nu\delta} = 0, \quad \nabla_{[\mu} F_{\nu\delta]} = 0, \quad R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}.$$

Reissner-Nordström metric

The solution is given by H. Reissner (1916) and G. Nordström (1918):

$$ds^{2} = -\Delta dt^{2} + \Delta^{-1} dr^{2} + r^{2} d\Omega^{2}$$
, where $\Delta = 1 - \frac{2GM}{r} + \frac{G(p^{2} + q^{2})}{r^{2}}$,

where p is the magnetic charge (equal to zero?), and q is the electric charge $(F_{rt} = -q^2/r, F_{\theta\phi} = p \sin \theta)$. The horizon appears at r for which $\Delta = 0$:

$$r_{\pm} = GM \pm \sqrt{G^2 M^2 - G(p^2 + q^2)}$$

There are several possible cases:

* $p^2 + q^2 > GM^2 \rightarrow \Delta > 0$ - no metric singularity until r = 0, no event horizon: **naked singularity** (related: cosmic censorship conjecture - gravitational collapse of physical matter can never produce a naked singularity).

 $p^2 + q^2 > GM^2$ indeed unphysical - total mass-energy of the BH is smaller than the electromagnetic field contribution.

Reissner-Nordström metric

- * $p^2 + q^2 < GM^2$ corresponds to real situation, r_{\pm} are coordinate singularities.
 - * $r \rightarrow r_+$ like in Schwarzschild case, for $r_- < r < r_+$ the radial coordinate changes character (from spacelike becomes timelike),
 - * for r < r₋ spacelike again → not neccesary doomed to hit the r = 0 singularity!
 - r = 0 is timelike, as opposed to Schwarzschild spacelike singularity (→ not necessarily in the future).
 - the in-falling observer can cross r_ again, and be forced in the direction of increasing r towards r₊.

Some facts

size I:

hole).

- * **Birkhoff's theorem**: any spherically symmetric vacuum solution is static \rightarrow Schwarzschild. If electromagnetic fields are included (Einstein-Maxwell system) → Reissner-Nordström.
- * In order to study real singularities, a measure of curvature must be used (Riemann tensor). Interesting invariant is Kretschmann scalar

$$K = R_{\mu\nu\rho\delta}^{R}\mu\nu\rho\delta = \underbrace{\frac{48G^{2}M^{2}}{c^{4}r^{6}}}_{Schwarzschild value}$$
Tidal force acting on a body *m* of size *l*:

$$F = \frac{GMm}{r^{2}}\frac{l}{r} \propto \underbrace{\frac{l}{M^{2}}}_{At \ the \ horizon}$$
(it's better to fall into a big black

("spaghettification")

Rotating black holes

The solution for a rotating black hole is due to R. Kerr (1963). The metric in Boyer-Lindquist coordinates reads

$$ds^{2} = -dt^{2} + \frac{\rho^{2}}{\Delta}dr^{2} + \rho^{2}d\theta^{2} + (r^{2} + a^{2})\sin^{2}\theta d\phi^{2} + \frac{2GMr}{\rho^{2}}(a\sin^{2}\theta d\phi - dt)^{2},$$

with

$$\underbrace{a = \frac{J}{Mc}}_{Mc} \in (0,1), \quad \Delta(r) = r^2 - 2GMr + a^2 \quad \text{and} \quad \rho^2(r,\theta) = r^2 + a^2 \cos^2 \theta.$$

spin parameter

(by changing 2GMr to $2GMr - (q^2 + p^2)/G$ - the Kerr-Newman metric).

- * $a \rightarrow 0$ reduces to the Schwarzschild metric,
- ★ $a = const., M \rightarrow 0$ flat space (metric expressed in ellipsoidal coordinates).

Kerr black hole singularities: horizons

$$ds^{2} = -dt^{2} + \frac{\rho^{2}}{\Delta}dr^{2} + \rho^{2}d\theta^{2} + (r^{2} + a^{2})\sin^{2}\theta d\phi^{2} + \frac{2GMr}{\rho^{2}}(a\sin^{2}\theta d\phi - dt)^{2},$$

Singularities can appear at $\Delta = 0$ and $\rho = 0$.

- * $(GM)^2 \leq a^2$ cases correspond to naked singularities (super-spinar) and the *extremal* solution (a = 1),
- * for $(GM)^2 > a^2$, it yields two singular points

$$r_{\pm}=GM\pm\sqrt{G^2M^2-a^2}.$$

(null surfaces, event horizons). r_+ (outer horizon) corresponds to the Schwarzschild horizon, r_- is called the Cauchy horizon.

Kerr black hole singularities: static limit

Rotating solution admits two Killing vectors, $\xi^{\mu} = \partial_t$ and $\eta^{\mu} = \partial_{\phi}$, corresponding to energy conservation and axial symmetry (ξ^{μ} not orthogonal to t = const. hypersurfaces \rightarrow metric is stationary, not static.

* In Schwarzschild time-symmetry Killing vector $\xi^{\mu} = \partial_t$ becomes null at the horizon and spacelike inside.

In Kerr,

$$\xi^{\mu}\xi_{\mu}=-rac{1}{
ho^2}(\Delta-a^2\sin^2 heta) \quad ext{does not vanish at } r_+ \quad (\xi^{\mu}\xi_{\mu}(r_+)\geqslant 0).$$

The surface $\xi^{\mu}\xi_{\mu} = 0$ is the Killing horizon (static limit): $(r - GM)^2 = G^2M^2 - a^2\cos^2\theta$. Region between it and r_+ is the ergosphere - inertial observers forced to move with the spin of the BH $(d\phi/dt > 0)$.

Kerr black hole singularities: ring singularity

The true, central curvature singularity does not occur simply at r = 0, but $\rho = 0$:

$$\rho^2 = r^2 + a^2 \cos^2 \theta = 0$$

$$\rightarrow r = 0 \text{ and } \cos \theta = 0.$$

(a ring-like set of points). An observer who crosses the ring appears in a new Kerr spacetime with $r < 0 \rightarrow \Delta \neq 0 \rightarrow$ no horizons.

 \rightarrow Closed timelike curves. For $t, \theta = const.$ the line element in ϕ direction is

$$ds^2 = a^2 \left(1 + \frac{2GM}{r}\right) d\phi^2 < 0$$
, for small $r < 0$.

Orbital constants of motion in rotating spacetime

General orbits of particles (or photons) with 4-momentum p^{μ} are described by *four* constants of motion on the geodesic:

- \star total energy ${\it E}=ho_t=-\xi_\mu
 ho^\mu=g_{t\mu}
 ho^\mu$,
- * component of angular momentum parallel to symmetry axis $L = p_{\phi} = \eta_{\mu} p^{\mu} = g_{\phi\mu} p^{\mu}$,
- * Carter constant: $Q = p_{\theta}^2 + \cos^2 \theta (a^2(m^2 E^2) + L^2 / \sin^2 \theta)$, separation constant from the Hamilton-Jacobi equations (in the equatorial plane Q = 0),
- ★ mass of the particle *m*.

How to measure the angular momentum of the hole and its influence on the moving particles? A photon emitted at r in ϕ direction in the equatorial plane has

$$ds^2 = 0 = g_{tt}dt^2 + 2g_{t\phi}dtd\phi + g_{\phi\phi}d\phi^2,$$

which gives

$$rac{d\phi}{dt} = -rac{g_{t\phi}}{g_{\phi\phi}} \pm \sqrt{\left(rac{g_{t\phi}}{g_{\phi\phi}}
ight)^2 - rac{g_{tt}}{g_{\phi\phi}}}.$$

Angular velocity of the hole

At the Killing horizon $g_{tt} = 0$ and

$$\frac{d\phi}{dt} = -\frac{g_{t\phi}}{g_{\phi\phi}} \pm \sqrt{\left(\frac{g_{t\phi}}{g_{\phi\phi}}\right)^2 - \frac{g_{tt}}{g_{\phi\phi}}} \rightarrow \frac{d\phi}{dt} = 0, \quad \text{and} \quad \frac{d\phi}{dt} = \frac{2a}{(2GM)^2 + a^2},$$

which is interpreted as the angular drag of retrograde and prograde photons. "Frame dragging" at the horizon r_+ (minimal angular velocity of the particle there) can be defined as the angular velocity of the horizon itself:

$$\Omega_{H} = \left(\frac{d\phi}{dt}\right)(r_{+}) = \frac{a}{r_{+}^{2} + a^{2}}$$

The coordinate angular velocity of a circular orbit is (G = c = 1):

$$\Omega = \pm \frac{\sqrt{M}}{r^{3/2} \pm a\sqrt{M}}$$

Circular orbits around the Kerr black hole

To summarize the characteristic distances and orbits in Kerr spacetime: * Marginally-stable circular orbits (ISCO):

$$\begin{aligned} r_{ms} &= M(3+Z_2\mp(3-Z_1)(3+Z_1+2Z_2))^{1/2}),\\ \text{with } Z_1 &= 1+\left(1-\frac{a^2}{M^2}\right)^{1/3}\left(\left(1+\frac{a}{M}\right)^{1/3}+\left(1-\frac{a}{M}\right)^{1/3}\right),\\ Z_1 &= (3a^2/M^2+Z_1^2)^{1/2}. \end{aligned}$$

* Marginally-bound circular orbits: limiting radius for marginal ("parabolic") circular orbit with $\epsilon = E/m = 1$,

$$r_{mb} = 2M \mp a + 2\sqrt{M(M \mp a)}.$$

* **Photon orbit**: in the limit of $E \rightarrow \infty$ the innermost boundary of the circular orbits for particles:

$$r_{ph} = 2M(1 + \cos(\frac{2}{3}\cos^{-1}(\mp a/M))).$$

Circular orbits around the Kerr black hole

Kerr vs. rotating star

* The exterior metric of the Kerr metric differs from the rapidly rotation compact material star; they agree in the first order approximation - slow rotation:

$$r_{ms} = 6M\left(1 - \frac{J}{M^2}\left(\frac{2}{3}\right)^{3/2}\right)$$

 No 'natural' material source for Kerr metric (infinitesimally thin counter-rotating discs etc.)

Penrose process

Inside the ergosphere ξ_{μ} becomes spacelike. There can exist particles with

$$E=-\xi_{\mu}\rho^{\mu}<0.$$

Imagine particle with $p^{\mu}_{(0)}$ disintegrating in the ergosphere into two other particles:

$$\begin{split} p^{\mu}_{(0)} &= p^{\mu}_{(1)} + p^{\mu}_{(2)}, \quad /\xi_{\mu} \\ &\to E_{(0)} = E_{(1)} + E_{(2)}. \end{split}$$

If arranged in such a way that $E_{(2)} < 0$, then $E_{(1)} > E_{(0)}$ - production of energy.

Irreducible mass

Penrose process is the extraction of energy from the kinetic (rotational) energy of the black hole. Let's define an additional Killing vector

$$\chi_{\mu} = \xi_{\mu} + \Omega_H \eta_{\mu},$$

null and tangent to the outer horizon r_+ . Particle (2) falls under the horizon if

$$p_{(2)}^{\mu}\chi_{\mu} = \underbrace{p_{(2)}^{\mu}\xi_{\mu}}_{-E_{(2)}} + \Omega_{H} \underbrace{p_{(2)}^{\mu}\eta_{\mu}}_{L_{(2)}} < 0 \quad \rightarrow \quad L_{(2)} < \frac{E_{(2)}}{\Omega_{H}} < 0 \quad \text{since} \quad E_{(2)} < 0.$$

The black hole mass M and angular momentum J = Ma are decreased by

$$\delta M = E_{(2)}, \quad \delta J = L_{(2)}$$
 so that $\delta J < rac{\delta M}{\Omega_H}.$

Although the energy is extracted, the horizon area A is not decreasing (!). By integrating over the horizon surface:

$$A = 4\pi (r_+^2 + a^2).$$

Irreducible mass

How does it work? Let's define an *irreducible mass* of the black hole as follows:

$$M_{irr}^2 = \frac{A}{16\pi G^2} = \frac{1}{4G^2}(r_+^2 + a^2) = \frac{1}{2}\left(M^2 + \sqrt{M^4 - (J/G)^2}\right).$$

A change in M_{irr} is related with δM and δJ

$$\delta M_{\rm irr} = \frac{a}{4G\sqrt{G^2M^2 - a^2}M_{\rm irr}} \underbrace{\left(\Omega_H^{-1}\delta M - \delta J\right)}_{>0} > 0,$$

hence $\delta M_{
m irr}$ cannot decrease. The maximum amount of energy that can be extracted with a Penrose process is

$$M - M_{\rm irr} = M - \frac{1}{\sqrt{2}} \left(M^2 + \sqrt{M^4 - (J/G)^2} \right)^{1/2}$$

for a = 1 Kerr BH it is approx. 30% of total mass-energy.

Thermodynamics of black holes

The analogous relation for the horizon area A is

$$\delta A = 8\pi G \frac{a}{\Omega_H \sqrt{G^2 M^2 - a^2}} (\delta M - \Omega_H \delta_J),$$

which is usually rewritten as

$$\delta M = \frac{\kappa}{8\pi G} \delta A + \Omega_H \delta J.$$

and where the surface gravity κ of the black hole is introduced:

$$\kappa = \frac{\sqrt{G^2 M^2 - a^2}}{2GM(GM + \sqrt{G^2 M^2 - a^2})}$$

(κ is acceleration of a ZAMO at the horizon; $\kappa = 0$ corresponds to extremal black holes). Curious relation to classical thermodynamics:

$$\delta M = \frac{\kappa}{8\pi G} \delta A + \Omega_H \delta J \leftrightarrow dU = T \, dS - p \, dV + \dots$$

- * $\Omega_H \delta J$ related to "work" term -pdV,
- * the area A never decreases as the entropy S surface gravity $\kappa/8\pi G\sim T$.

Thermodynamics of black holes

The laws of black hole thermodynamics are (in comparison to classical):

- **0th**: in equilibrium the temperature the bodies in contact have the same temperature (temperature constant through the system),
- * **1st**: the change of energy is related to the change of entropy and work as in dU = TdS - pdV,
- * **2nd**: the entropy *S* of an isolated system cannot decrease,
- * 3rd: the entropy of any pure substance in thermodynamic equilibrium approaches zero as the temperature approaches zero.

- * **0th**: for stationary black holes $\kappa 8\pi GT$ is constant everywhere on the horizon,
- * **1st**: the change of black hole mass is related to the change of the horizon area and angular momentum as in $\delta M = \frac{\kappa}{8\pi G} \delta A + \Omega_H \delta J$,
- * **2nd**: the area *A* of the horizon never decreases.
- * **3rd**: it is impossible to achieve $\kappa = 0$ in any physical process.

Blandford-Znajek process: EM analogue of Penrose process

Accertion disk with polar magnetic field, penetrating the ergosphere, dragged along and extracting the rotational energy. Power at light cylinder r_c :

$$P = B^2 \left(\frac{r}{r_c}\right)^4 r_c c = \frac{B^2 r^4 \omega^2}{c}$$

Total amount of energy is

$$E = 0.3 Mc^2 \simeq 5 \times 10^{53} rac{M}{M_{\odot}} erg$$

Poynting flux $\vec{E} \times \vec{B} \rightarrow$ production of the jet.

Key open issues:

- \star origin (generation mechanism?) of the magnetic field,
- * magnetic field dynamics in accretion disks,
- mass loading/accretion disk outflows.

Hawking radiation

As a result of quantum particle creation effects. black hole radiates particles with a perfect black body spectrum of temperature proportional to surface gravity:

$$T = \frac{\kappa}{2\pi}$$

For Schwarzschild:

Related:

* Unruh effect - an accelereated observer detects black-body radiation of a vacuum field.

$$T = \frac{\hbar}{2\pi c k_B} imes$$
 acceleration,

Rindler coordinates and horizon observed by accelerated observers in Minkowski spacetime.

- * "Lecture Notes on General Relativity", Sean Carroll,
- "Black holes", P.K. Townsend arXiv:gr-qc/9707012,
- * Penrose diagrams:

 $\tt http://jila.colorado.edu/~ajsh/insidebh/penrose.html$