Black holes

Michał Bejger
N. Copernicus Center, Warsaw

Outline

* Spherical black holes,
* Weak field limit,
* pressureless dust star collapse,
* black holes and rotation,
* orbits,
\star Penrose-Carter diagrams,
* Penrose process and thermodynamics.

History of black holes

* O. C. Rømer (1676) - from observations of the Jupiter moons from orbiting Earth \rightarrow speed of light finite,
^ I. Newton (1686): gravitational force follows

$$
F=-\frac{G M m}{r^{2}}
$$

* J. Michell (1783): "All light emitted from such a body would be made to return towards it by its own proper gravity",
* P.S. Laplace (1796): Exposition du système du monde ('dark stars')
* A. Einstein (1905): Special relativity
* A. Einstein (1915): General relativity (GR)
* K. Schwarzschild (1916): First exact solution of GR - a black hole,
^ H. Reissner (1916), G. Nordström (1918): electrically charged black hole solution,
^ M. Kruskal \& G. Szekeres (1960): Global structure of Schwarzschild,
\star R. Kerr (1963): rotating stationary black hole.

The light cone

Timelike $d s^{2}<0 ;$ spacelike $d s^{2}>0 ;$ null (light-like) $d s^{2}=0$.

The Schwarzschild solution

Motivated by the form of the Minkowski metric,

$$
d s^{2}=-d t^{2}+d r^{2}+r^{2} \underbrace{\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)}_{d \Omega^{2}}
$$

let's chose a generally-enough form of a spherically-symmetric metric

$$
d s^{2}=-e^{2 \alpha(r, t)} d t^{2}+e^{2 \beta(r, t)} d r^{2}+r^{2} d \Omega^{2} .
$$

To know the functions α and β, one must solve the Einstein equations (\rightarrow connection coefficients \rightarrow Riemann, Ricci tensors). The non-zero Christoffel symbols

$$
\Gamma_{\nu \rho}^{\mu}=\frac{1}{2} g^{\mu \beta}\left(g_{\beta \nu, \rho}+g_{\beta \rho, \nu}-g_{\nu \rho, \beta}\right)
$$

are

$$
\begin{aligned}
& \Gamma_{t t}^{t}=\partial_{t} \alpha, \quad \Gamma_{t r}^{t}=\partial_{r} \alpha, \quad \Gamma_{r r}^{t}=e^{2(\beta-\alpha)} \partial_{t} \beta, \quad \Gamma_{t t}^{r}=e^{2(\alpha-\beta)} \partial_{r} \alpha \\
& \Gamma_{t r}^{r}=\partial_{t} \beta, \quad \Gamma_{r r}^{r}=\partial_{r} \beta, \quad \Gamma_{r \theta}^{\theta}=\frac{1}{r}, \quad \Gamma_{\theta \theta}^{r}=-r e^{-2 \beta}, \quad \Gamma_{r \phi}^{\phi}=\frac{1}{r} \\
& \Gamma_{\phi \phi}^{r}=-r e^{-2 \beta} \sin ^{2} \theta, \quad \Gamma_{\phi \phi}^{\theta}=-\sin \theta \cos \theta, \quad \Gamma_{\theta \phi}^{\phi}=\cot \theta
\end{aligned}
$$

The Schwarzschild solution

Ricci tensor non-zero components are:

$$
\begin{aligned}
& R_{t t}=\left[\partial_{t}^{2} \beta+\left(\partial_{t} \beta\right)^{2}-\partial_{t} \alpha \partial_{t} \beta\right]+e^{2(\alpha-\beta)}\left[\partial_{r}^{2} \alpha+\left(\partial_{r} \alpha\right)^{2}-\partial_{r} \alpha \partial_{r} \beta+\frac{2}{r} \partial_{r} \alpha\right], \\
& R_{r r}=-\left[\partial_{r}^{2} \alpha+\left(\partial_{r} \alpha\right)^{2}-\partial_{r} \alpha \partial_{r} \beta-\frac{2}{r} \partial_{r} \beta\right]+e^{2(\beta-\alpha)}\left[\partial_{t}^{2} \beta+\left(\partial_{t} \beta\right)^{2}-\partial_{t} \alpha \partial_{t} \beta\right], \\
& R_{t r}=\frac{2}{r} \partial_{t} \beta, \quad R_{\theta \theta}=e^{-2 \beta}\left[r\left(\partial_{r} \beta-\partial_{r} \alpha\right)-1\right]+1, \quad R_{\phi \phi}=R_{\theta \theta} \sin ^{2} \theta .
\end{aligned}
$$

The solution is obtained by demanding $R_{\mu \nu}=0$: trace-reversed version of the Einstein's equations is

$$
R_{\mu \nu}=T_{\mu \nu}-\frac{1}{2} T_{\rho}^{\rho} g_{\mu \nu}=0, \quad\left(T_{\mu \nu}=0 \text { in vacuum }\right)
$$

From $R_{t r}=0 \rightarrow \partial_{t} \beta=0$,
$\partial_{t}\left(R_{\theta \theta}\right)=0$ and $\partial_{t} \beta=0 \rightarrow \partial_{t} \partial_{r} \alpha=0 . \quad$ That is $\left\{\begin{array}{l}\beta=\beta(r), \\ \alpha=f(r)+g(t) .\end{array}\right.$
By redefining $d t \rightarrow e^{-g(t)} d t$, $g(t)=0$ so that $\alpha=f$.

The Schwarzschild solution

We therefore have a metric with components independent of the t coordinate:

$$
d s^{2}=-e^{2 \alpha(r)} d t^{2}+e^{2 \beta(r)} d r^{2}+r^{2} d \Omega^{2} .
$$

\rightarrow stationarity, timelike Killing vector.
Another useful combination from the Ricci tensor is:

$$
\underbrace{R_{r r}+R_{t t}}_{=0} e^{2(\beta-\alpha)}=\frac{2}{r}\left(\partial_{r} \alpha+\partial_{r} \beta\right) \rightarrow \alpha+\beta=\underbrace{\text { const. }=0}_{\text {coord. rescaling }}
$$

and

$$
\begin{aligned}
& R_{\theta \theta}=e^{-2 \beta}\left[r\left(\partial_{r} \beta-\partial_{r} \alpha\right)-1\right]+1=-e^{2 \alpha}\left(2 r \partial_{r} \alpha-1\right)+1=0, \\
& \rightarrow \partial_{r}\left(r e^{2 \alpha}\right)=1, \text { that is } e^{2 \alpha}=1+\frac{\mu}{r} .
\end{aligned}
$$

The metric is then

$$
d s^{2}=-\left(1+\frac{\mu}{r}\right) d t^{2}+\left(1+\frac{\mu}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

Weak field limit

In order to compare GR with the Newtonian theory, one must express GR in the limit of small velocities $(v / c \ll 1)$ and time derivatives much smaller than spatial derivatives:

* relate the geodesic equation to Newton's law of motion,
\star relate the Einstein equation to the Poisson equation.
Assume

$$
g_{\alpha \beta}=\eta_{\alpha \beta}+\epsilon h_{\alpha \beta}, \quad g^{\alpha \beta}=\eta^{\alpha \beta}-\epsilon h^{\alpha \beta} \quad\left(\text { because } g^{\mu \beta} g_{\nu \beta}=\delta_{\nu}^{\mu}\right)
$$

The connection's Christoffel symbols are, in first order

$$
\Gamma_{\nu \rho}^{\mu}=\frac{1}{2} g^{\mu \beta}\left(g_{\beta \nu, \rho}+g_{\beta \rho, \nu}-g_{\nu \rho, \beta}\right) \approx \frac{1}{2} \epsilon \eta^{\mu \beta}\left(h_{\beta \nu, \rho}+h_{\beta \rho, \nu}-h_{\nu \rho, \beta}\right)
$$

The geodetic equation for slowly moving particle, for which $\tau \approx t$ and $d x^{i} / d t=\mathcal{O}(\epsilon):$
$\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\nu \rho}^{\mu} \frac{d x^{\nu}}{d \tau} \frac{d x^{\rho}}{d \tau} \rightarrow \frac{d^{2} x^{\mu}}{d t^{2}}+\Gamma_{\nu \rho}^{\mu} \frac{d x^{\nu}}{d t} \frac{d x^{\rho}}{d t} \rightarrow \frac{d^{2} x^{\mu}}{d t^{2}}+\Gamma_{t t}^{\mu} \frac{d x^{t}}{d t} \frac{d x^{t}}{d t}=0$.

Weak field limit

The spatial part of the geodetic equation (three-acceleration):

$$
\begin{aligned}
& \frac{d^{2} x^{i}}{d t^{2}}+\Gamma_{t t}^{i} \frac{d x^{t}}{d t} \frac{d x^{t}}{d t}=c^{2} \Gamma_{t t}^{i}, \quad \text { where } \quad d x^{t} / d t=c \quad \text { ('speed of time'). } \\
& \Gamma_{t t}^{i}=\frac{1}{2} \epsilon \eta^{\mu \beta}\left(h_{\beta \nu, \rho}+h_{\beta \rho, \nu}-h_{\nu \rho, \beta}\right) \approx \frac{1}{2} \epsilon(\underbrace{h_{t, t}^{i}+h_{t, t}^{i}}_{\text {small }}-h_{t t}^{i}) \approx-\frac{1}{2} \epsilon h_{t t}^{, i},
\end{aligned}
$$

That is
$\frac{d^{2} x^{i}}{d t^{2}}=\frac{c^{2}}{2} \epsilon h_{t t}^{, i}=\frac{c^{2}}{2} \epsilon \nabla^{i} h_{t t}, \quad$ to be compared with $\underbrace{\frac{d^{2} x^{i}}{d t^{2}}=-\nabla^{i} \Phi .}_{\text {Newtonian equation of motion }}$
This means that one can identify the metric function $g_{t t}$ with the Newtonian potential:

$$
g_{t t}=\underbrace{\eta_{t t}}_{=-1}+\epsilon h_{t t}=-\left(1+\frac{2 \Phi}{c^{2}}\right)
$$

The Schwarzschild solution

Coming back to spherically-symmetric stationary metric:

$$
d s^{2}=-\left(1+\frac{\mu}{r}\right) d t^{2}+\left(1+\frac{\mu}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

The interpretation of the parameter μ in terms of physical quantities is done in the weak field limit. Far from the center,

$$
g_{t t}(r \rightarrow \infty)=-\left(1+\frac{\mu}{r}\right), \quad g_{r r}(r \rightarrow \infty)=\left(1-\frac{\mu}{r}\right) .
$$

On the other hand, weak limit gives

$$
g_{t t}(r \rightarrow \infty)=-\left(1+\frac{2 \Phi}{c^{2}}\right)
$$

with the Newtonian potential $\Phi=-G M / r$. Therefore, the Schwarzschild metric finally reads:

$$
d s^{2}=-\left(1-\frac{2 G M}{r c^{2}}\right) d t^{2}+\left(1-\frac{2 G M}{r c^{2}}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

Spherically-symmetric pressureless collapse

Consider a collapse of a spherical star made of 'dust' (pressure $p=0$). With $G=c=1$ the outside metric is Schwarzschild vacuum solution

$$
d s^{2}=-\left(1-\frac{2 M}{r}\right) d t^{2}+\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) .
$$

If radius of the star is $R(t)$, on the surface one has,
$d s^{2}=-\left(\left(1-\frac{2 M}{R}\right)-\left(1-\frac{2 M}{R}\right)^{-1}\left(\frac{d R}{d t}\right)^{2}\right) d t^{2}+R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$,
and from symmetry the collapsing particles will infall in radial direction (follow radial timelike geodesics) $\rightarrow d \theta=d \phi=0$:

$$
\left(\frac{d t}{d \tau}\right)^{2}\left(\left(1-\frac{2 M}{R}\right)-\left(1-\frac{2 M}{R}\right)^{-1}\left(\frac{d R}{d t}\right)^{2}\right)=-1
$$

with $d s^{2}=d \tau^{2}$ denoting the proper time.

Spherically-symmetric pressureless collapse

Schwarzschild spacetime admits one Killing vector, $\partial / \partial t$, responsible for time symmetries (conservation of energy).

$$
\epsilon=-g_{t \mu} u^{t}=-g_{t t} \frac{d t}{d \tau}=\left(1-\frac{2 M}{R}\right) \frac{d t}{d \tau}
$$

is specific energy of a particle, constant along the geodesic. This gives

$$
\left(\frac{d R}{d t}\right)^{2}=\dot{R}^{2}=\frac{1}{\epsilon^{2}}\left(1-\frac{2 M}{R}\right)^{2}\left(\frac{2 M}{R}-1+\epsilon^{2}\right)
$$

(with $\epsilon<1$ for bound particles).

For a collapse with $\dot{R}_{i n i}=0$ at $R_{\text {max }}=2 M /\left(1-\epsilon^{2}\right) . R$ decreases approaching $R=2 M$ asymptotically (distant observer sees the collapse slowing down while it approaches $R=2 M$).

Spherically-symmetric pressureless collapse

What happens from the point of view of an infalling observer? Her clock measures the proper time along the radial geodesic, so one can rewrite

$$
\frac{d}{d t}=\frac{d \tau}{d t} \frac{d}{d \tau}=\frac{1}{\epsilon}\left(1-\frac{2 M}{R}\right) \frac{d}{d \tau}
$$

to obtain, from the previous expression

$$
\left(\frac{d R}{d \tau}\right)^{2}=\left(\frac{2 M}{R}-1+\epsilon^{2}\right)=\left(\frac{R_{\max }}{R}-1\right)\left(1-\epsilon^{2}\right)
$$

Star collapses from $R_{\text {max }}$ through $R=2 M$ in finite proper time. It falls to $R=0$ in

$$
t_{\text {fall }}=\frac{M \pi}{(1-\epsilon)^{3 / 2}}
$$

What happens near $r=2 M$?

To probe the spacetime near $r=2 M$ the coordinates adapted to infalling observers should be used. Let's consider photons ($d s^{2}=0$).
Schwarzschild radial null geodesics are

$$
d t^{2}=\frac{d r^{2}}{\left(1-\frac{2 M}{r}\right)^{2}} \equiv d \bar{r}^{2}=r+2 M \ln \left|\frac{r-2 M}{2 M}\right|
$$

with \bar{r} is the Regge-Wheeler radial coordinate (made to be similar to time coordinate, $\bar{r} \in(-\infty, \infty)$). The Schwarzschild metric can be rewritten in the Eddington-Finkelstein ingoing coordinates
$d s^{2}=\left(1-\frac{2 M}{r}\right)\left(-d t^{2}+d \bar{r}^{2}\right)+r^{2} d \Omega^{2}=-\left(1-\frac{2 M}{r}\right) d v^{2}+2 d r d v+r^{2} d \Omega^{2}$,
with $v=t+\bar{r}$ a new ingoing radial null coordinate.
\star the metric coefficients related to $d r$ are not singular at $r=2 M \rightarrow$ this singularity in Schwarschild metric is a coordinate singularity.

What happens near $r=2 M$? Finkelstein diagram

For $r \leqslant 2 M$,
$2 d r d v=-\left(\left(\frac{2 M}{r}-1\right) d v^{2}+r^{2} d \Omega^{2}\right.$
$\left.-d s^{2}\right) \leqslant 0$ for $d s^{2} \leqslant 0$.

* for all timelike or null worldlines $d r d v \leqslant 0$.
* $d v>0$ for future-directed worldlines, so $d r \leqslant 0$ with equality when $r=2 M$ (i.e., ingoing radial null geodesics $d \Omega=0-$ at $r=2 M)$.

\star No future-directed timelike or null worldline can reach $r>2 M$ from $r \leqslant 2 M$ nothing physical (any event) can communicate from under the event horizon,
\star Coordinates change meaning: t becomes spacelike and r becomes timelike singularity is no longer where, but when.

Penrose-Carter diagrams

The goal is to present the whole spacetime in a compact way. Let's start with the Minkowski spacetime:

$$
d s^{2}=-d t^{2}+d r^{2}+r^{2} d \Omega^{2}, \quad \text { with } \quad-\infty<t<\infty, \quad 0 \geqslant r<\infty .
$$

By changing in to null coordinates

$$
\begin{aligned}
& u=\frac{1}{2}(t+r), \quad v=\frac{1}{2}(t-r) \\
& -\infty<u<+\infty \\
& -\infty<v<+\infty, v \leqslant u
\end{aligned}
$$

the metric is

$$
d s^{2}=-2(d u d v+d v d u)+(u-v)^{2} d \Omega^{2} .
$$

This metric is in turn transformed to coordinates $U(u), V(v)$ that take finite value at infinity, such as

$$
\begin{aligned}
& U=\arctan (u), V=\arctan (v) \\
& -\pi / 2<U<+\pi / 2, \quad-\pi / 2<V<+\pi / 2, \quad V \leqslant U
\end{aligned}
$$

Penrose-Carter diagrams

The Minkowski metric in terms of U and V is

$$
d s^{2}=\frac{1}{\cos ^{2} U \cos ^{2} V}\left(-2(d U d V+d V d U)+\sin ^{2}(U-V) d \Omega^{2}\right)
$$

In order to recover the timelike and spacelike character of the coordinates, there is another transformation

$$
\underbrace{\eta=U+V}_{\text {timelike }}, \quad \underbrace{\chi=U-V}_{\text {spacelike (radial) }}, \quad \text { with }-\pi<\eta<\pi, 0 \leqslant \chi<\pi .
$$

The metric is then expressed by an unphysical conformal metric $d s^{2}=\omega^{-2}\left(-d \eta^{2}+d \chi^{2}+\sin ^{2} \chi d \Omega^{2}\right), \quad \omega=\cos U \cos V=\frac{1}{2}(\cos \eta+\cos \chi)$, where ω is the conformal factor.

Penrose-Carter diagram for Minkowski spacetime

$\star i^{+}$future timelike infinity $(\eta=\pi, \chi=0)$,
$\star i^{0}$ spatial infinity $(\eta=0, \chi=\pi)$,
$\star i^{-}$past timelike infinity $(\eta=-\pi, \chi=0)$,
$\star \mathcal{I}^{+}$future null infinity $(\eta=\pi-\chi, 0<\chi<\pi)$,
$\star \mathcal{I}^{-}$past null infinity $(\eta=-\pi+\chi, 0<\chi<\pi)$.

Kruskal-Szekeres coordinates

M. Kruskal and G. Szekeres (1960) defined coordinates that cover the whole Schwarzschild manifold - t and r coordinates are replaced by, for $r>2 G M$,

$$
\begin{aligned}
& V=\left(\frac{r}{2 G M}-1\right)^{1 / 2} e^{r / 4 G M} \sinh \left(\frac{t}{4 G M}\right), \\
& U=\left(\frac{r}{2 G M}-1\right)^{1 / 2} e^{r / 4 G M} \cosh \left(\frac{t}{4 G M}\right),
\end{aligned}
$$

for $r<2 G M$:

$$
\begin{aligned}
& V=\left(1-\frac{r}{2 G M}\right)^{1 / 2} e^{r / 4 G M} \cosh \left(\frac{t}{4 G M}\right), \\
& U=\left(1-\frac{r}{2 G M}\right)^{1 / 2} e^{r / 4 G M} \sinh \left(\frac{t}{4 G M}\right) .
\end{aligned}
$$

Even horizon is defined by $V= \pm U$.

$$
\text { with } V^{2}-U^{2}=\left(1-\frac{r}{2 G M}\right) e^{r / 2 G M}
$$

the metric is
$d s^{2}=\frac{32 G^{3} M^{3}}{r} e^{-r / 2 G M}\left(-d V^{2}+d U^{2}\right)+r^{2} d \Omega^{2}$.

Kruskal-Szekeres coordinates

A null version of KS coordinates:

$$
\tilde{U}=V-U, \quad \tilde{V}=V+U
$$

that with $\tilde{U} \tilde{V}=\left(1-\frac{r}{2 G M}\right) e^{r / 2 G M}$ produces the metric

$$
d s^{2}=-\frac{32 G^{3} M^{3}}{r} e^{-r / 2 G M}(d \tilde{U} d \tilde{V})+r^{2} d \Omega^{2}
$$

'Rescaling the infinities' to finite values

$$
u=\arctan \left(\frac{\tilde{U}}{\sqrt{2 G M}}\right), v=\ldots
$$

gives the conformal structure similar to previous Minkowski case.

Penrose-Carter diagrams for Schwarzschild

Embedding of Schwarzschild spacetime

In order to visualize that the Schwarzschild spacetime is really curved, let's draw a 2 -surface of $t=$ const. and $\theta=\pi / 2$ - spatial slice of the line element

$$
d s^{2}=\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2} d \phi^{2}
$$

By comparing the Euclidean Cartesian with cylindrical ($x=r \cos \phi, y=r \sin \phi$) coordinates

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}=d r^{2}+r^{2} d \phi^{2}+d z^{2} .
$$

one obtains

$$
d s^{2}=\left(1-\frac{2 M}{r}\right)^{-1} d r^{2}+r^{2} d \phi^{2}=\left(1+\left(\frac{d z}{d r}\right)^{2}\right) d r^{2}+r^{2} d \phi^{2}
$$

with $z(r)$, the elevation function that will visualize the actual shape of the surface embedded in the Euclidean space.

Embedding of Schwarzschild spacetime

Comparing the terms, one calculates the $z(r)$ function (a way to visualize how distorted the radial distances are):
$1+\left(\frac{d z}{d r}\right)^{2}=\left(1-\frac{2 M}{r}\right)^{-1} \rightarrow$
$z(r)=\int_{0}^{r} \frac{d r}{\sqrt{r / 2 M-1}}$.

Orbits in Schwarzschild spacetime

$$
d s^{2}=-\left(1-\frac{2 G M}{r}\right) d t^{2}+\left(1-\frac{2 G M}{r}\right)^{-1} d r^{2}+r^{2} d \Omega^{2}
$$

In general, every symmetry of the metric (symmetry of the action) corresponds to a specific Killing vector field, $\mathcal{L}_{\xi} g_{\mu \nu}=\xi_{\nu ; \mu}+\xi_{\mu ; \nu}=0$. The Lie derivative of the metric g along ξ vanishes $-\xi$ preserves g along its direction. From symmetry considerations we have the following constants of motion of an orbiting particle (λ a parameter along the path):
Time translation (energy conservation) : $g_{t \mu} u^{\mu}=\left(1-\frac{2 G M}{r}\right) \frac{d t}{d \lambda}=\epsilon$, Spatial rotation (angular momentum conservation) : $g_{\phi \mu} u^{\mu}=\underbrace{r^{2} \frac{d \phi}{d \lambda}=I}_{\text {Kepler's law }}$,
Also, on any geodesic : $g_{\mu \nu} \frac{d x^{\mu}}{d \lambda} \frac{d x^{\nu}}{d \lambda}=-\mathcal{E}$
(for massive particles it is $\mathcal{E}=m^{2}$, for massless $\mathcal{E}=0$).

Orbits in Schwarzschild spacetime

Expanding the $g_{\mu \nu}\left(d x^{\mu} / d \lambda\right)\left(d x^{\nu} / d \lambda\right)$:

$$
-\left(1-\frac{2 G M}{r}\right)\left(\frac{d t}{d \lambda}\right)^{2}+\left(1-\frac{2 G M}{r}\right)^{-1}\left(\frac{d r}{d \lambda}\right)^{2}+r^{2}\left(\frac{d \phi}{d \lambda}\right)^{2}=-\mathcal{E}
$$

If multiplied by $1-2 G M / r$ and with eqs. for ϵ and $/$ it can be rewritten as

$$
\frac{1}{2}\left(\frac{d t}{d \lambda}\right)^{2}+V(r)=\frac{1}{2} \epsilon^{2} \text {, where } V(r)=\underbrace{\frac{1}{2} \mathcal{E}}_{\text {const. }}-\underbrace{\mathcal{E} \frac{G M}{r}}_{\text {Grav. pot. }}+\underbrace{\frac{l^{2}}{2 r^{2}}}_{\text {centrifugal }}-\frac{G M I^{2}}{r^{3}}
$$

« Equation of motion of a particle of energy $1 / 2 \epsilon^{2}$ in a potential $V(r)$,

* Last term in $V(r)$ - deviation from Newtionian result (which makes all the difference!)

Orbits in Newtonian 'spacetime'

The orbital movement depends on the $V(r)$ vs. $1 / 2 \epsilon^{2}$ relation:

$$
\frac{1}{2}\left(\frac{d t}{d \lambda}\right)^{2}+V(r)=\frac{1}{2} \epsilon^{2}
$$

* If $V(r)=1 / 2 \epsilon^{2}$ - turning point, particle starts to move the other way,
$\star r=$ const. $\leftrightarrow d V / d r=0$.

$$
\frac{d V}{d r}=\mathcal{E} G M r^{2}-I^{2} r+\underbrace{2 G M I^{2}}_{G R \text { term }}=0
$$

In Newtonian gravity, circular orbits for

$$
r=\frac{I^{2}}{G M \mathcal{E}} .
$$

(no circular orbits for photons!)

Orbits in Schwarzschild spacetime: massless particles

$V(r)=\frac{1}{2} \mathcal{E}-\mathcal{E} \frac{G M}{r}+\frac{l^{2}}{2 r^{2}}-\frac{G M I^{2}}{r^{3}}$.
In GR, the additional term
$-G M I^{2} / r^{3}$ is important for small r ($r \rightarrow \infty$ - Newtonian limit).

* at $r=2 G M V(r)=0$,
\star for massless particles $(\mathcal{E}=0)$, the derivative of the potential gives

$$
r=3 G M .
$$

(a maximum for every l).
\rightarrow photon circular (unstable) orbit at 3 GM .

Orbits in Schwarzschild spacetime: massive particles

$V(r)=\frac{1}{2} \mathcal{E}-\mathcal{E} \frac{G M}{r}+\frac{r^{2}}{2 r^{2}}-\frac{G M I^{2}}{r^{3}}$.
For massive particles $(\mathcal{E} \neq 0)$, $V(r)=0$ at $r=2 G M$. Also

* the circular orbits are at

$$
r=\frac{l^{2} \pm \sqrt{I^{4}-12 G^{2} M^{2} I^{2}}}{2 G M}
$$

$\star \rightarrow$ for large / two orbits (one stable, one unstable). I $\rightarrow \infty$ gives limiting values

$$
\underbrace{\frac{I^{2}}{G M}}_{\text {stable }} \text { and } \underbrace{3 G M}_{\text {unstable }} .
$$

\rightarrow approaching $3 G M$ as for photons.

Orbits in Schwarzschild spacetime: massive particles

$V(r)=\frac{1}{2} \mathcal{E}-\mathcal{E} \frac{G M}{r}+\frac{r^{2}}{2 r^{2}}-\frac{G M I^{2}}{r^{3}}$.
For massive particles $(\mathcal{E} \neq 0)$, $V(r)=0$ at $r=2 G M$. Also

* the circular orbits are at

$$
r=\frac{l^{2} \pm \sqrt{I^{4}-12 G^{2} M^{2} I^{2}}}{2 G M}
$$

* for small / two orbit concide for $I=\sqrt{12} G M$ at

$$
r=6 G M \quad \text { (last stable orbit). }
$$

\rightarrow two regions of circular orbits: unstable ($3 G M, 6 G M$) and stable $>6 G M$.

Electrically charged black holes

Assuming spherical symmetry, the general metric is again

$$
d s^{2}=-e^{2 \alpha(r, t)} d t^{2}+e^{2 \beta(r, t)} d r^{2}+r^{2} d \Omega^{2}
$$

and the spacetime is not vacuum, but filled with electromagnetic field $F_{\mu \nu}$

$$
T_{\mu \nu}=\frac{1}{4 \pi}\left(F_{\mu \delta} F_{\nu}^{\delta}--\frac{1}{4} g_{\mu \nu} F_{\delta \rho} F^{\delta \rho}\right)
$$

From spherical symmetry, the only electric and magnetic components of $F_{\mu \nu}$ are the radial ones:

$$
\begin{aligned}
& E_{r}=F_{t r}=f(r, t)=-F_{r t}, \quad \text { and } \\
& B_{r}=g_{r r} t^{t r \mu \nu} F_{\mu \nu}=\frac{2 g_{r r}}{\sqrt{|g|}} F_{\theta \phi} \rightarrow F_{\theta \phi}=-F_{\phi \theta}=h(r, t) \sin \theta .
\end{aligned}
$$

$\left(|g| \propto r^{4} \sin ^{2} \theta\right)$. Then, the Maxwell equations together with the Einstein equations must be solved

$$
g^{\mu \nu} \nabla_{\mu} F_{\nu \delta}=0, \quad \nabla_{[\mu} F_{\nu \delta]}=0, \quad R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=\frac{8 \pi G}{c^{4}} T_{\mu \nu}
$$

Reissner-Nordström metric

The solution is given by H. Reissner (1916) and G. Nordström (1918):
$d s^{2}=-\Delta d t^{2}+\Delta^{-1} d r^{2}+r^{2} d \Omega^{2}, \quad$ where $\quad \Delta=1-\frac{2 G M}{r}+\frac{G\left(p^{2}+q^{2}\right)}{r^{2}}$,
where p is the magnetic charge (equal to zero?), and q is the electric charge $\left(F_{r t}=-q^{2} / r, F_{\theta \phi}=p \sin \theta\right)$. The horizon appears at r for which $\Delta=0$:

$$
r_{ \pm}=G M \pm \sqrt{G^{2} M^{2}-G\left(p^{2}+q^{2}\right)}
$$

There are several possible cases:

* $p^{2}+q^{2}>G M^{2} \rightarrow \Delta>0$ - no metric singularity until $r=0$, no event horizon: naked singularity (related: cosmic censorship conjecture - gravitational collapse of physical matter can never produce a naked singularity).
$p^{2}+q^{2}>G M^{2}$ indeed unphysical - total mass-energy of the BH is smaller than the electromagnetic field contribution.

Reissner-Nordström metric

* $p^{2}+q^{2}<G M^{2}$ corresponds to real situation, $r_{ \pm}$are coordinate singularities.
$\star r \rightarrow r_{+}$like in Schwarzschild case, for $r_{-}<r<r_{+}$the radial coordinate changes character (from spacelike becomes timelike),
* for $r<r$ - spacelike again \rightarrow not neccesary doomed to hit the $r=0$ singularity!
* $r=0$ is timelike, as opposed to Schwarzschild spacelike singularity (\rightarrow not necessarily in the future).
* the in-falling observer can cross r_{-}again, and be forced in the direction of increasing r towards r_{+}.

Some facts

\star Birkhoff's theorem: any spherically symmetric vacuum solution is static \rightarrow Schwarzschild. If electromagnetic fields are included (Einstein-Maxwell system) \rightarrow Reissner-Nordström.

* In order to study real singularities, a measure of curvature must be used (Riemann tensor). Interesting invariant is Kretschmann scalar

$$
K=R_{\mu \nu \rho \delta}^{R} \mu \nu \rho \delta=\underbrace{\frac{48 G^{2} M^{2}}{c^{4} r^{6}}}_{\text {Schwarzschild value }}
$$

Tidal force acting on a body m of size I :

$$
F=\frac{G M m}{r^{2}} \frac{I}{r} \propto \underbrace{\frac{I}{M^{2}}}_{\text {At the horizon }}
$$

(it's better to fall into a big black hole).

("spaghettification")

Rotating black holes

The solution for a rotating black hole is due to R. Kerr (1963). The metric in Boyer-Lindquist coordinates reads
$d s^{2}=-d t^{2}+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2}+\left(r^{2}+a^{2}\right) \sin ^{2} \theta d \phi^{2}+\frac{2 G M r}{\rho^{2}}\left(a \sin ^{2} \theta d \phi-d t\right)^{2}$, with

$$
\underbrace{a=\frac{J}{M c}}_{\text {spin parameter }} \in(0,1), \quad \Delta(r)=r^{2}-2 G M r+a^{2} \quad \text { and } \quad \rho^{2}(r, \theta)=r^{2}+a^{2} \cos ^{2} \theta
$$

(by changing $2 G M r$ to $2 G M r-\left(q^{2}+p^{2}\right) / G$ - the Kerr-Newman metric).
\star a $\rightarrow 0$ reduces to the Schwarzschild metric,

* $a=$ const., $M \rightarrow 0$ - flat space (metric expressed in ellipsoidal coordinates).

Kerr black hole singularities: horizons

$$
d s^{2}=-d t^{2}+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2}+\left(r^{2}+a^{2}\right) \sin ^{2} \theta d \phi^{2}+\frac{2 G M r}{\rho^{2}}\left(a \sin ^{2} \theta d \phi-d t\right)^{2},
$$

Singularities can appear at $\Delta=0$ and $\rho=0$.
$\star(G M)^{2} \leqslant a^{2}$ cases correspond to naked singularities (super-spinar) and the extremal solution ($a=1$),

* for $(G M)^{2}>a^{2}$, it yields two singular points

$$
r_{ \pm}=G M \pm \sqrt{G^{2} M^{2}-a^{2}}
$$

(null surfaces, event horizons). r_{+}
 (outer horizon) corresponds to the Schwarzschild horizon, r_{-}is called the Cauchy horizon.

Kerr black hole singularities: static limit

Rotating solution admits two Killing vectors, $\xi^{\mu}=\partial_{t}$ and $\eta^{\mu}=\partial_{\phi}$, corresponding to energy conservation and axial symmetry (ξ^{μ} not orthogonal to $t=$ const. hypersurfaces \rightarrow metric is stationary, not static.

* In Schwarzschild time-symmetry Killing vector $\xi^{\mu}=\partial_{t}$ becomes null at the horizon and spacelike inside.
 In Kerr,

$$
\xi^{\mu} \xi_{\mu}=-\frac{1}{\rho^{2}}\left(\Delta-a^{2} \sin ^{2} \theta\right) \quad \text { does not vanish at } r_{+} \quad\left(\xi^{\mu} \xi_{\mu}\left(r_{+}\right) \geqslant 0\right)
$$

The surface $\xi^{\mu} \xi_{\mu}=0$ is the Killing horizon (static limit):
$(r-G M)^{2}=G^{2} M^{2}-a^{2} \cos ^{2} \theta$. Region between it and r_{+}is the ergosphere - inertial observers forced to move with the spin of the BH $(d \phi / d t>0)$.

Kerr black hole singularities: ring singularity

The true, central curvature singularity does not occur simply at $r=0$, but $\rho=0$:

$$
\begin{aligned}
& \rho^{2}=r^{2}+a^{2} \cos ^{2} \theta=0 \\
& \rightarrow r=0 \text { and } \cos \theta=0
\end{aligned}
$$

(a ring-like set of points). An observer who crosses the ring appears in a new Kerr spacetime with $r<0 \rightarrow \Delta \neq 0 \rightarrow$ no horizons.

\rightarrow Closed timelike curves. For $t, \theta=$ const. the line element in ϕ direction is

$$
d s^{2}=a^{2}\left(1+\frac{2 G M}{r}\right) d \phi^{2}<0, \quad \text { for small } r<0
$$

Orbital constants of motion in rotating spacetime

General orbits of particles (or photons) with 4-momentum p^{μ} are described by four constants of motion on the geodesic:
\star total energy $E=-p_{t}=-\xi_{\mu} p^{\mu}=g_{t \mu} p^{\mu}$,

* component of angular momentum parallel to symmetry axis

$$
L=p_{\phi}=\eta_{\mu} p^{\mu}=g_{\phi \mu} p^{\mu}
$$

\star Carter constant: $Q=p_{\theta}^{2}+\cos ^{2} \theta\left(a^{2}\left(m^{2}-E^{2}\right)+L^{2} / \sin ^{2} \theta\right)$, separation constant from the Hamilton-Jacobi equations (in the equatorial plane $Q=0$),

* mass of the particle m.

How to measure the angular momentum of the hole and its influence on the moving particles? A photon emitted at r in ϕ direction in the equatorial plane has

$$
d s^{2}=0=g_{t t} d t^{2}+2 g_{t \phi} d t d \phi+g_{\phi \phi} d \phi^{2}
$$

which gives

$$
\frac{d \phi}{d t}=-\frac{g_{t \phi}}{g_{\phi \phi}} \pm \sqrt{\left(\frac{g_{t \phi}}{g_{\phi \phi}}\right)^{2}-\frac{g_{t t}}{g_{\phi \phi}}}
$$

Angular velocity of the hole

At the Killing horizon $g_{t t}=0$ and
$\frac{d \phi}{d t}=-\frac{g_{t \phi}}{g_{\phi \phi}} \pm \sqrt{\left(\frac{g_{t \phi}}{g_{\phi \phi}}\right)^{2}-\frac{g_{t t}}{g_{\phi \phi}}} \rightarrow \frac{d \phi}{d t}=0, \quad$ and $\quad \frac{d \phi}{d t}=\frac{2 a}{(2 G M)^{2}+a^{2}}$,
which is interpreted as the angular drag of retrograde and prograde photons. 'Frame dragging' at the horizon r_{+}(minimal angular velocity of the particle there) can be defined as the angular velocity of the horizon itself:

$$
\Omega_{H}=\left(\frac{d \phi}{d t}\right)\left(r_{+}\right)=\frac{a}{r_{+}^{2}+a^{2}} .
$$

The coordinate angular velocity of a circular orbit is $(G=c=1)$:

$$
\Omega= \pm \frac{\sqrt{M}}{r^{3 / 2} \pm a \sqrt{M}} .
$$

Circular orbits around the Kerr black hole

To summarize the characteristic distances and orbits in Kerr spacetime:

* Marginally-stable circular orbits (ISCO):

$$
\begin{aligned}
& \left.r_{m s}=M\left(3+Z_{2} \mp\left(3-Z_{1}\right)\left(3+Z_{1}+2 Z_{2}\right)\right)^{1 / 2}\right) \\
& \text { with } Z_{1}=1+\left(1-\frac{a^{2}}{M^{2}}\right)^{1 / 3}\left(\left(1+\frac{a}{M}\right)^{1 / 3}+\left(1-\frac{a}{M}\right)^{1 / 3}\right), \\
& Z_{1}=\left(3 a^{2} / M^{2}+Z_{1}^{2}\right)^{1 / 2}
\end{aligned}
$$

\star Marginally-bound circular orbits: limiting radius for marginal ('parabolic') circular orbit with $\epsilon=E / m=1$,

$$
r_{m b}=2 M \mp a+2 \sqrt{M(M \mp a)} .
$$

\star Photon orbit: in the limit of $E \rightarrow \infty$ the innermost boundary of the circular orbits for particles:

$$
r_{p h}=2 M\left(1+\cos \left(\frac{2}{3} \cos ^{-1}(\mp a / M)\right)\right) .
$$

Circular orbits around the Kerr black hole

(from Bardeen et al., 1972)

Kerr vs. rotating star

* The exterior metric of the Kerr metric differs from the rapidly rotation compact material star; they agree in the first order approximation - slow rotation:

$$
r_{m s}=6 M\left(1-\frac{J}{M^{2}}\left(\frac{2}{3}\right)^{3 / 2}\right) .
$$

\star No 'natural' material source for Kerr metric (infinitesimally thin counter-rotating discs etc.)

Penrose process

Inside the ergosphere ξ_{μ} becomes spacelike. There can exist particles with

$$
E=-\xi_{\mu} p^{\mu}<0
$$

Imagine particle with $p_{(0)}^{\mu}$ disintegrating in the ergosphere into two other particles:

$$
\begin{aligned}
& p_{(0)}^{\mu}=p_{(1)}^{\mu}+p_{(2)}^{\mu}, \quad / \xi_{\mu} \\
& \rightarrow E_{(0)}=E_{(1)}+E_{(2)}
\end{aligned}
$$

If arranged in such a way that $E_{(2)}<0$, then $E_{(1)}>E_{(0)}$ production of energy.

Irreducible mass

Penrose process is the extraction of energy from the kinetic (rotational) energy of the black hole. Let's define an additional Killing vector

$$
\chi_{\mu}=\xi_{\mu}+\Omega_{H} \eta_{\mu},
$$

null and tangent to the outer horizon r_{+}. Particle (2) falls under the horizon if
$p_{(2)}^{\mu} \chi_{\mu}=\underbrace{p_{(2)}^{\mu} \xi_{\mu}}_{-E_{(2)}}+\Omega_{H} \underbrace{p_{(2)}^{\mu} \eta_{\mu}}_{L_{(2)}}<0 \quad \rightarrow \quad L_{(2)}<\frac{E_{(2)}}{\Omega_{H}}<0 \quad$ since $\quad E_{(2)}<0$.
The black hole mass M and angular momentum $J=M a$ are decreased by

$$
\delta M=E_{(2)}, \quad \delta J=L_{(2)} \quad \text { so that } \quad \delta J<\frac{\delta M}{\Omega_{H}}
$$

Although the energy is extracted, the horizon area A is not decreasing (!). By integrating over the horizon surface:

$$
A=4 \pi\left(r_{+}^{2}+a^{2}\right)
$$

Irreducible mass

How does it work? Let's define an irreducible mass of the black hole as follows:

$$
M_{i r r}^{2}=\frac{A}{16 \pi G^{2}}=\frac{1}{4 G^{2}}\left(r_{+}^{2}+a^{2}\right)=\frac{1}{2}\left(M^{2}+\sqrt{M^{4}-(J / G)^{2}}\right) .
$$

A change in $M_{i r r}$ is related with δM and δJ

$$
\delta M_{\mathrm{irr}}=\frac{a}{4 G \sqrt{G^{2} M^{2}-a^{2}} M_{\mathrm{irr}}} \underbrace{\left(\Omega_{H}^{-1} \delta M-\delta J\right)}_{>0}>0,
$$

hence $\delta M_{\text {irr }}$ cannot decrease. The maximum amount of energy that can be extracted with a Penrose process is

$$
M-M_{\mathrm{irr}}=M-\frac{1}{\sqrt{2}}\left(M^{2}+\sqrt{M^{4}-(J / G)^{2}}\right)^{1 / 2}
$$

for $a=1$ Kerr BH it is approx. 30% of total mass-energy.

Thermodynamics of black holes

The analogous relation for the horizon area A is

$$
\delta A=8 \pi G \frac{a}{\Omega_{H} \sqrt{G^{2} M^{2}-a^{2}}}\left(\delta M-\Omega_{H} \delta_{J}\right),
$$

which is usually rewritten as

$$
\delta M=\frac{\kappa}{8 \pi G} \delta A+\Omega_{H} \delta J .
$$

and where the surface gravity κ of the black hole is introduced:

$$
\kappa=\frac{\sqrt{G^{2} M^{2}-a^{2}}}{2 G M\left(G M+\sqrt{G^{2} M^{2}-a^{2}}\right)}
$$

(κ is acceleration of a ZAMO at the horizon; $\kappa=0$ corresponds to extremal black holes). Curious relation to classical thermodynamics:

$$
\delta M=\frac{\kappa}{8 \pi G} \delta A+\Omega_{H} \delta J \leftrightarrow d U=T d S-p d V+\ldots
$$

$\star \Omega_{\boldsymbol{H}} \delta J$ related to "work" term $-p d V$,
\star the area A never decreases as the entropy S - surface gravity $\kappa / 8 \pi G \sim T$.

Thermodynamics of black holes

The laws of black hole thermodynamics are (in comparison to classical):

* 0th: in equilibrium the temperature the bodies in contact have the same temperature (temperature constant through the system),
* 1st: the change of energy is related to the change of entropy and work as in $d U=T d S-p d V$,
* 2nd: the entropy S of an isolated system cannot decrease,
* 3rd: the entropy of any pure substance in thermodynamic equilibrium approaches zero as the temperature approaches zero.
* 0th: for stationary black holes $\kappa 8 \pi G T$ is constant everywhere on the horizon,
* 1st: the change of black hole mass is related to the change of the horizon area and angular momentum as in $\delta M=\frac{\kappa}{8 \pi G} \delta A+\Omega_{H} \delta J$,
* 2 nd: the area A of the horizon never decreases.
* 3rd: it is impossible to achieve $\kappa=0$ in any physical process.

Blandford-Znajek process: EM analogue of Penrose process

Accertion disk with polar magnetic field, penetrating the ergosphere, dragged along and extracting the rotational energy. Power at light cylinder r_{c} :

$$
P=B^{2}\left(\frac{r}{r_{c}}\right)^{4} r_{c} c=\frac{B^{2} r^{4} \omega^{2}}{c}
$$

Total amount of energy is

$$
E=0.3 M c^{2} \simeq 5 \times 10^{53} \frac{M}{M_{\odot}} \mathrm{erg}
$$

Poynting flux $\vec{E} \times \vec{B} \rightarrow$ production of the jet.

Key open issues:

* origin (generation mechanism?) of the magnetic field,
* magnetic field dynamics in accretion disks,
\star mass loading/accretion disk outflows.

Hawking radiation

As a result of quantum particle creation effects, black hole radiates particles with a perfect black body spectrum of temperature proportional to surface gravity:

$$
T=\frac{\kappa}{2 \pi}
$$

For Schwarzschild:

$$
T=\frac{1}{8 \pi M}=\left[\frac{\hbar c^{3}}{8 \pi G M k_{B}}\right] \sim 6 \times 10^{-8} \frac{M_{\odot}}{M} K
$$

Related:
\star Unruh effect - an accelereated observer detects black-body radiation of a vacuum field,

$$
T=\frac{\hbar}{2 \pi c k_{B}} \times \text { acceleration }
$$

\star Rindler coordinates and horizon observed by accelerated observers in Minkowski spacetime.

Further reading...

* 'Lecture Notes on General Relativity", Sean Carroll,
* "Black holes", P.K. Townsend arXiv:gr-qc/9707012,
* Penrose diagrams: http://jila.colorado.edu/~ajsh/insidebh/penrose.html

