
Black holes

Michaª Bejger
N. Copernicus Center, Warsaw

1 / 15



Outline

� Spherical black holes,

� Weak �eld limit,

� pressureless dust star collapse,

� black holes and rotation,

� orbits,

� Penrose-Carter diagrams,

� Penrose process and thermodynamics.

2 / 15



History of black holes

� O. C. Rømer (1676) - from observations of the Jupiter moons from
orbiting Earth Ñ speed of light �nite,

� I. Newton (1686): gravitational force follows

F � �GMm

r2

� J. Michell (1783): �All light emitted from such a body would be
made to return towards it by its own proper gravity� ,

� P.S. Laplace (1796): Exposition du système du monde (�dark stars�)

� A. Einstein (1905): Special relativity

� A. Einstein (1915): General relativity (GR)

� K. Schwarzschild (1916): First exact solution of GR - a black hole,

� H. Reissner (1916), G. Nordström (1918): electrically charged black
hole solution,

� M. Kruskal & G. Szekeres (1960): Global structure of Schwarzschild,

� R. Kerr (1963): rotating stationary black hole.
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The light cone

Timelike ds2   0; spacelike ds2 ¡ 0; null (light-like) ds2 � 0.
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The Schwarzschild solution

Motivated by the form of the Minkowski metric,

ds2 � �dt2 � dr2 � r2 pdθ2 � sin2 θdφ2q,loooooooooomoooooooooon
dΩ2

let's chose a generally-enough form of a spherically-symmetric metric

ds2 � �e2αpr ,tqdt2 � e2βpr ,tqdr2 � r2dΩ2.

To know the functions α and β, one must solve the Einstein equations
(Ñ connection coe�cients Ñ Riemann, Ricci tensors). The non-zero
Christo�el symbols

Γµνρ �
1

2
gµβpgβν,ρ � gβρ,ν � gνρ,βq

are

Γttt � Btα, Γttr � Brα, Γtrr � e2pβ�αqBtβ, Γrtt � e2pα�βqBrα,
Γrtr � Btβ, Γrrr � Brβ, Γθrθ �

1

r
, Γrθθ � �re�2β , Γφrφ �

1

r
,

Γrφφ � �re�2β sin2 θ, Γθφφ � � sin θ cos θ, Γφθφ � cot θ.
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The Schwarzschild solution

Ricci tensor non-zero components are:

Rtt � rB2t β � pBtβq2 � BtαBtβs � e2pα�βqrB2r α� pBrαq2 � BrαBrβ �
2

r
Brαs,

Rrr � �rB2r α� pBrαq2 � BrαBrβ �
2

r
Brβs � e2pβ�αqrB2t β � pBtβq2 � BtαBtβs,

Rtr � 2

r
Btβ, Rθθ � e�2βrrpBrβ � Brαq � 1s � 1, Rφφ � Rθθ sin

2 θ.

The solution is obtained by demanding Rµν � 0: trace-reversed version of
the Einstein's equations is

Rµν � Tµν � 1

2
T ρ
ρ gµν � 0, pTµν � 0 in vacuumq.

From Rtr � 0 Ñ Btβ � 0,

BtpRθθq � 0 and Btβ � 0 Ñ BtBrα � 0.
That is

#
β � βprq,
α � f prq � gptq.

By rede�ning dt Ñ e�gptqdt,
gptq � 0 so that α � f .
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The Schwarzschild solution

We therefore have a metric with components independent of the t
coordinate:

ds2 � �e2αprqdt2 � e2βprqdr2 � r2dΩ2.

Ñ stationarity, timelike Killing vector.
Another useful combination from the Ricci tensor is:

Rrr � Rttlooomooon
�0

e2pβ�αq � 2

r
pBrα� Brβq Ñ α� β � const. � 0loooomoooon

coord. rescaling

and

Rθθ � e�2βrrpBrβ � Brαq � 1s � 1 � �e2αp2rBrα� 1q � 1 � 0,

Ñ Br pre2αq � 1, that is e2α � 1� µ

r
.

The metric is then

ds2 � �
�
1� µ

r

	
dt2 �

�
1� µ

r

	�1

dr2 � r2dΩ2.
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Weak �eld limit

In order to compare GR with the Newtonian theory, one must express GR
in the limit of small velocities (v{c ! 1) and time derivatives much
smaller than spatial derivatives:

� relate the geodesic equation to Newton's law of motion,

� relate the Einstein equation to the Poisson equation.

Assume

gαβ � ηαβ � εhαβ , gαβ � ηαβ � εhαβ pbecause gµβgνβ � δµν q.
The connection's Christo�el symbols are, in �rst order

Γµνρ �
1

2
gµβpgβν,ρ � gβρ,ν � gνρ,βq � 1

2
εηµβphβν,ρ � hβρ,ν � hνρ,βq

The geodetic equation for slowly moving particle, for which τ � t and
dx i{dt � Opεq:
d2xµ

dτ2
�Γµνρ

dxν

dτ

dxρ

dτ
Ñ d2xµ

dt2
�Γµνρ

dxν

dt

dxρ

dt
Ñ d2xµ

dt2
� Γµtt

dx t

dt

dx t

dt
� 0.
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Weak �eld limit

The spatial part of the geodetic equation (three-acceleration):

d2x i

dt2
� Γitt

dx t

dt

dx t

dt
� c2Γitt , where dx t{dt � c ('speed of time').

Γitt �
1

2
εηµβphβν,ρ � hβρ,ν � hνρ,βq � 1

2
εphit,t � hit,tloooomoooon

small

�h,ittq � �1

2
εh ,i

tt ,

That is

d2x i

dt2
� c2

2
εh ,i

tt � c2

2
ε∇ihtt , to be compared with

d2x i

dt2
� �∇iΦ.loooooooomoooooooon

Newtonian equation of motion

This means that one can identify the metric function gtt with the
Newtonian potential:

gtt � ηttloomoon
��1

� εhtt � �
�
1� 2Φ

c2



.
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The Schwarzschild solution

Coming back to spherically-symmetric stationary metric:

ds2 � �
�
1� µ

r

	
dt2 �

�
1� µ

r

	�1

dr2 � r2dΩ2.

The interpretation of the parameter µ in terms of physical quantities is
done in the weak �eld limit. Far from the center,

gttpr Ñ8q � �
�
1� µ

r

	
, grr pr Ñ8q �

�
1� µ

r

	
.

On the other hand, weak limit gives

gttpr Ñ8q � �
�
1� 2Φ

c2



,

with the Newtonian potential Φ � �GM{r . Therefore, the Schwarzschild
metric �nally reads:

ds2 � �
�
1� 2GM

rc2



dt2 �

�
1� 2GM

rc2


�1

dr2 � r2dΩ2.
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Spherically-symmetric pressureless collapse

Consider a collapse of a spherical star made of 'dust' (pressure p � 0).
With G � c � 1 the outside metric is Schwarzschild vacuum solution

ds2 � �
�
1� 2M

r



dt2 �

�
1� 2M

r


�1

dr2 � r2
�
dθ2 � sin2 θdφ2

�
.

If radius of the star is Rptq, on the surface one has,

ds2 � �
��

1� 2M

R



�
�
1� 2M

R


�1�
dR

dt


2
�
dt2�R2

�
dθ2 � sin2 θdφ2

�
,

and from symmetry the collapsing particles will infall in radial direction
(follow radial timelike geodesics) Ñ dθ � dφ � 0:

�
dt

dτ


2
��

1� 2M

R



�
�
1� 2M

R


�1�
dR

dt


2
�
� �1

with ds2 � dτ2 denoting the proper time.
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Spherically-symmetric pressureless collapse

Schwarzschild spacetime admits one Killing vector, B{Bt, responsible for
time symmetries (conservation of energy).

ε � �gtµut � �gtt dt
dτ

�
�
1� 2M

R



dt

dτ

is speci�c energy of a particle, constant along the geodesic. This gives

�
dR

dt


2

� 9R2 � 1

ε2

�
1� 2M

R


2�
2M

R
� 1� ε2




(with ε   1 for bound particles).

For a collapse with 9Rini � 0 at
Rmax � 2M{p1� ε2q. R decreases
approaching R � 2M asymptotically
(distant observer sees the collapse
slowing down while it approaches
R � 2M).
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Spherically-symmetric pressureless collapse

What happens from the point of view of an infalling observer? Her clock
measures the proper time along the radial geodesic, so one can rewrite

d

dt
� dτ

dt

d

dτ
� 1

ε

�
1� 2M

R



d

dτ

to obtain, from the previous expression

�
dR

dτ


2

�
�
2M

R
� 1� ε2



�
�
Rmax

R
� 1



p1� ε2q.

Star collapses from Rmax through
R � 2M in �nite proper time. It
falls to R � 0 in

tfall � Mπ

p1� εq3{2
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What happens near r � 2M?

To probe the spacetime near r � 2M the coordinates adapted to infalling
observers should be used. Let's consider photons (ds2 � 0).
Schwarzschild radial null geodesics are

dt2 � dr2�
1� 2M

r

�2 � dr̄2 � r � 2M ln| r � 2M

2M
|,

with r̄ is the Regge-Wheeler radial coordinate (made to be similar to time
coordinate, r̄ P p�8,8q). The Schwarzschild metric can be rewritten in
the Eddington-Finkelstein ingoing coordinates

ds2 �
�
1� 2M

r



p�dt2�dr̄2q�r2dΩ2 � �

�
1� 2M

r



dv2�2drdv�r2dΩ2,

with v � t � r̄ a new ingoing radial null coordinate.

� the metric coe�cients related to dr are not singular at r � 2M Ñ
this singularity in Schwarschild metric is a coordinate singularity.
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What happens near r � 2M? Finkelstein diagram

For r ¤ 2M,

2drdv � �
��

2M

r
� 1



dv2 � r2dΩ2

�ds2� ¤ 0 for ds2 ¤ 0.

� for all timelike or null worldlines
dr dv ¤ 0.

� dv ¡ 0 for future-directed
worldlines, so dr ¤ 0 with
equality when r � 2M (i.e.,
ingoing radial null geodesics -
dΩ � 0 - at r � 2M).

� No future-directed timelike or null worldline can reach r ¡ 2M from r ¤ 2M -
nothing physical (any event) can communicate from under the event horizon,

� Coordinates change meaning: t becomes spacelike and r becomes timelike -
singularity is no longer where, but when.
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Penrose-Carter diagrams

The goal is to present the whole spacetime in a compact way. Let's start
with the Minkowski spacetime:

ds2 � �dt2 � dr2 � r2dΩ2, with �8   t   8, 0 ¥ r   8.
By changing in to null coordinates

u � 1

2
pt � rq, v � 1

2
pt � rq,

�8   u   �8,
�8   v   �8, v ¤ u

the metric is

ds2 � �2pdudv � dvduq � pu � vq2dΩ2.

This metric is in turn transformed to coordinates Upuq,V pvq that take
�nite value at in�nity, such as

U � arctanpuq, V � arctanpvq,
� π{2   U   �π{2, �π{2   V   �π{2, V ¤ U.
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Penrose-Carter diagrams

The Minkowski metric in terms of U and V is

ds2 � 1

cos2 U cos2 V

��2pdUdV � dVdUq � sin2pU � V qdΩ2
�
.

In order to recover the timelike and spacelike character of the
coordinates, there is another transformation

η � U � Vlooooomooooon
timelike

, χ � U � Vlooooomooooon
spacelike pradialq

, with � π   η   π, 0 ¤ χ   π.

The metric is then expressed by an unphysical conformal metric

ds2 � ω�2
��dη2 � dχ2 � sin2 χdΩ2

�
, ω � cosU cosV � 1

2
pcos η�cosχq,

where ω is the conformal factor.
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Penrose-Carter diagram for Minkowski spacetime

� i
� future timelike in�nity pη � π, χ � 0q,

� i
0 spatial in�nity pη � 0, χ � πq,

� i
� past timelike in�nity pη � �π, χ � 0q,

� I� future null in�nity pη � π � χ, 0   χ   πq,

� I� past null in�nity pη � �π � χ, 0   χ   πq.
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Kruskal�Szekeres coordinates

M. Kruskal and G. Szekeres (1960) de�ned
coordinates that cover the whole
Schwarzschild manifold - t and r
coordinates are replaced by, for r ¡ 2GM,

V �
�

r

2GM
� 1

	
1{2

e
r{4GM sinh

�
t

4GM

	
,

U �
�

r

2GM
� 1

	
1{2

e
r{4GM cosh

�
t

4GM

	
,

for r   2GM :

V �
�
1�

r

2GM

	
1{2

e
r{4GM cosh

�
t

4GM

	
,

U �
�
1�

r

2GM

	
1{2

e
r{4GM sinh

�
t

4GM

	
.

with V
2 � U

2 �
�
1�

r

2GM

	
e
r{2GM

the metric is

ds2 � 32G 3M3

r
e�r{2GMp�dV 2�dU2q�r2dΩ2.

Even horizon is de�ned by V � �U.
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Kruskal�Szekeres coordinates

A null version of KS coordinates:

Ũ � V � U, Ṽ � V � U,

that with ŨṼ �
�
1� r

2GM

	
er{2GM

produces the metric

ds2 � �32G 3M3

r
e�r{2GMpdŨdṼ q�r2dΩ2.

'Rescaling the in�nities' to �nite values

u � arctan

�
Ũ?
2GM

�
, v � . . .

gives the conformal structure similar to
previous Minkowski case.
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Penrose-Carter diagrams for Schwarzschild
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Embedding of Schwarzschild spacetime

In order to visualize that the Schwarzschild spacetime is really curved,
let's draw a 2-surface of t � const. and θ � π{2 - spatial slice of the line
element

ds2 �
�
1� 2M

r


�1

dr2 � r2dφ2.

By comparing the Euclidean Cartesian with cylindrical
(x � r cosφ, y � r sinφ) coordinates

ds2 � dx2 � dy2 � dz2 � dr2 � r2dφ2 � dz2.

one obtains

ds2 �
�
1� 2M

r


�1

dr2 � r2dφ2 �
�
1�

�
dz

dr


2
�
dr2 � r2dφ2.

with zprq, the elevation function that will visualize the actual shape of
the surface embedded in the Euclidean space.
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Embedding of Schwarzschild spacetime

Comparing the terms, one
calculates the zprq function
(a way to visualize how
distorted the radial distances
are):

1�
�
dz

dr


2

�
�
1� 2M

r


�1

Ñ

zprq �
» r

0

dra
r{2M � 1

.
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Orbits in Schwarzschild spacetime

ds2 � �
�
1� 2GM

r



dt2 �

�
1� 2GM

r


�1

dr2 � r2dΩ2.

In general, every symmetry of the metric (symmetry of the action)
corresponds to a speci�c Killing vector �eld, Lξgµν � ξν;µ � ξµ;ν � 0.
The Lie derivative of the metric g along ξ vanishes - ξ preserves g along
its direction. From symmetry considerations we have the following
constants of motion of an orbiting particle (λ a parameter along the
path):

Time translation (energy conservation) : gtµu
µ �

�
1� 2GM

r



dt

dλ
� ε,

Spatial rotation (angular momentum conservation) : gφµu
µ � r2

dφ

dλ
� lloooomoooon

Kepler 1s law

,

Also, on any geodesic : gµν
dxµ

dλ

dxν

dλ
� �E

(for massive particles it is E � m2, for massless E � 0).
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Orbits in Schwarzschild spacetime

Expanding the gµνpdxµ{dλqpdxν{dλq:

�
�
1� 2GM

r


�
dt

dλ


2

�
�
1� 2GM

r


�1�
dr

dλ


2

� r2
�
dφ

dλ


2

� �E .

If multiplied by 1�2GM{r and with eqs. for ε and l it can be rewritten as

1

2

�
dt

dλ


2

�V prq � 1

2
ε2, where V prq � 1

2
Eloomoon

const.

� E GM
rloomoon

Grav . pot.

� l2

2r2loomoon
centrifugal

�GMl2

r3
.

� Equation of motion of a particle of energy 1{2ε2 in a potential V prq,
� Last term in V prq - deviation from Newtionian result (which makes

all the di�erence!)
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Orbits in Newtonian 'spacetime'

The orbital movement depends on
the V prq vs. 1{2ε2 relation:

1

2

�
dt

dλ


2

� V prq � 1

2
ε2

� If V prq � 1{2ε2 - turning point,
particle starts to move the
other way,

� r � const. Ø dV {dr � 0.

dV

dr
� EGMr2 � l2r � 2GMl2loomoon

GR term

� 0.

In Newtonian gravity, circular orbits
for

r � l2

GME
.

(no circular orbits for photons!)
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Orbits in Schwarzschild spacetime: massless particles

V prq � 1

2
E � E GM

r
� l2

2r2
� GMl2

r3
.

In GR, the additional term
�GMl2{r3 is important for small r
(r Ñ8 - Newtonian limit).

� at r � 2GM V prq � 0,

� for massless particles pE � 0q,
the derivative of the potential
gives

r � 3GM.

(a maximum for every l).

Ñ photon circular (unstable) orbit
at 3GM.
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Orbits in Schwarzschild spacetime: massive particles

V prq � 1

2
E � E GM

r
� l2

2r2
� GMl2

r3
.

For massive particles pE � 0q,
V prq � 0 at r � 2GM. Also

� the circular orbits are at

r � l2 �?l4 � 12G 2M2l2

2GM

� Ñ for large l two orbits (one
stable, one unstable). l Ñ8
gives limiting values

l2

GMloomoon
stable

and 3GMloomoon
unstable

.

Ñ approaching 3GM as for photons.
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Orbits in Schwarzschild spacetime: massive particles

V prq � 1

2
E � E GM

r
� l2

2r2
� GMl2

r3
.

For massive particles pE � 0q,
V prq � 0 at r � 2GM. Also

� the circular orbits are at

r � l2 �?l4 � 12G 2M2l2

2GM

� for small l two orbit concide for
l � ?

12GM at

r � 6GM (last stable orbit).

Ñ two regions of circular orbits:
unstable p3GM, 6GMq and stable
¡ 6GM.
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Electrically charged black holes

Assuming spherical symmetry, the general metric is again

ds2 � �e2αpr ,tqdt2 � e2βpr ,tqdr2 � r2dΩ2,

and the spacetime is not vacuum, but �lled with electromagnetic �eld Fµν

Tµν � 1

4π

�
FµδF

δ
ν ��

1

4
gµνFδρF

δρ



.

From spherical symmetry, the only electric and magnetic components of
Fµν are the radial ones:

Er � Ftr � f pr , tq � �Frt , and

Br � grr ε
trµνFµν � 2grra|g |Fθφ Ñ Fθφ � �Fφθ � hpr , tq sin θ.

(|g | 9r4 sin2 θ). Then, the Maxwell equations together with the Einstein
equations must be solved

gµν∇µFνδ � 0, ∇rµFνδs � 0, Rµν � 1

2
Rgµν � 8πG

c4
Tµν .
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Reissner-Nordström metric

The solution is given by H. Reissner (1916) and G. Nordström (1918):

ds2 � �∆dt2�∆�1dr2�r2dΩ2, where ∆ � 1� 2GM

r
� G pp2 � q2q

r2
,

where p is the magnetic charge (equal to zero?), and q is the electric
charge (Frt � �q2{r , Fθφ � p sin θ). The horizon appears at r for which
∆ � 0:

r� � GM �
a
G 2M2 � G pp2 � q2q

There are several possible cases:

� p2 � q2 ¡ GM2 Ñ ∆ ¡ 0 - no metric singularity until r � 0, no
event horizon: naked singularity (related: cosmic censorship
conjecture - gravitational collapse of physical matter can never
produce a naked singularity).

p2 � q2 ¡ GM2 indeed unphysical - total mass-energy of the BH is
smaller than the electromagnetic �eld contribution.
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Reissner-Nordström metric

� p2 � q2   GM2 corresponds to
real situation, r� are coordinate
singularities.

� r Ñ r� like in Schwarzschild
case, for r�   r   r� the
radial coordinate changes
character (from spacelike
becomes timelike),

� for r   r� spacelike again Ñ
not neccesary doomed to hit
the r � 0 singularity!

� r � 0 is timelike, as opposed
to Schwarzschild spacelike
singularity (Ñ not necessarily
in the future).

� the in-falling observer can
cross r� again, and be forced
in the direction of increasing
r towards r�.
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Some facts

� Birkho�'s theorem: any spherically symmetric vacuum solution is
static Ñ Schwarzschild. If electromagnetic �elds are included
(Einstein-Maxwell system) Ñ Reissner-Nordström.

� In order to study real singularities, a measure of curvature must be
used (Riemann tensor). Interesting invariant is Kretschmann scalar

K � RR
µνρδµνρδ �

48G 2M2

c4r6looomooon
Schwarzschild value

.

Tidal force acting on a body m of
size l :

F � GMm

r2
l

r
9 l

M2loomoon
At the horizon

(it's better to fall into a big black
hole).

(�spaghetti�cation�)
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Rotating black holes

The solution for a rotating black hole is due to R. Kerr (1963). The
metric in Boyer-Lindquist coordinates reads

ds2 � �dt2�ρ
2

∆
dr2�ρ2dθ2�pr2�a2q sin2 θdφ2�2GMr

ρ2
pa sin2 θdφ�dtq2,

with

a � J

Mclooomooon
spin parameter

P p0, 1q, ∆prq � r2�2GMr�a2 and ρ2pr , θq � r2�a2 cos2 θ.

(by changing 2GMr to 2GMr �pq2�p2q{G - the Kerr-Newman metric).

� aÑ 0 reduces to the Schwarzschild
metric,

� a � const., M Ñ 0 - �at space (metric
expressed in ellipsoidal coordinates).
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Kerr black hole singularities: horizons

ds2 � �dt2�ρ
2

∆
dr2�ρ2dθ2�pr2�a2q sin2 θdφ2�2GMr

ρ2
pa sin2 θdφ�dtq2,

Singularities can appear at ∆ � 0 and ρ � 0.

� pGMq2 ¤ a2 cases correspond to
naked singularities (super-spinar)
and the extremal solution (a � 1),

� for pGMq2 ¡ a2, it yields two
singular points

r� � GM �
a
G 2M2 � a2.

(null surfaces, event horizons). r�
(outer horizon) corresponds to the
Schwarzschild horizon, r� is called
the Cauchy horizon.
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Kerr black hole singularities: static limit

Rotating solution admits two Killing
vectors, ξµ � Bt and ηµ � Bφ,
corresponding to energy conservation
and axial symmetry (ξµ not orthogonal
to t � const. hypersurfaces Ñ metric is
stationary, not static.

� In Schwarzschild time-symmetry
Killing vector ξµ � Bt becomes null
at the horizon and spacelike inside.

In Kerr,

ξµξµ � � 1

ρ2
p∆� a2 sin2 θq does not vanish at r� pξµξµpr�q ¥ 0q.

The surface ξµξµ � 0 is the Killing horizon (static limit):
pr � GMq2 � G 2M2 � a2 cos2 θ. Region between it and r� is the
ergosphere - inertial observers forced to move with the spin of the BH
(dφ{dt ¡ 0).

12 / 15



Kerr black hole singularities: ring singularity

The true, central curvature singularity
does not occur simply at r � 0, but
ρ � 0:

ρ2 � r2 � a2 cos2 θ � 0

Ñ r � 0 and cos θ � 0.

(a ring-like set of points). An observer
who crosses the ring appears in a new
Kerr spacetime with r   0 Ñ ∆ � 0 Ñ
no horizons.

Ñ Closed timelike curves. For t, θ � const. the line element in φ
direction is

ds2 � a2
�
1� 2GM

r



dφ2   0, for small r   0.
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Orbital constants of motion in rotating spacetime

General orbits of particles (or photons) with 4-momentum pµ are
described by four constants of motion on the geodesic:

� total energy E � �pt � �ξµpµ � gtµp
µ,

� component of angular momentum parallel to symmetry axis
L � pφ � ηµp

µ � gφµp
µ,

� Carter constant: Q � p2θ � cos2 θpa2pm2 � E 2q � L2{ sin2 θq,
separation constant from the Hamilton-Jacobi equations (in the
equatorial plane Q � 0),

� mass of the particle m.

How to measure the angular momentum of the hole and its in�uence on
the moving particles? A photon emitted at r in φ direction in the
equatorial plane has

ds2 � 0 � gttdt
2 � 2gtφdtdφ� gφφdφ

2,

which gives

dφ

dt
� � gtφ

gφφ
�
d�

gtφ
gφφ


2

� gtt
gφφ

.
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Angular velocity of the hole

At the Killing horizon gtt � 0 and

dφ

dt
� � gtφ

gφφ
�
d�

gtφ
gφφ


2

� gtt
gφφ

Ñ dφ

dt
� 0, and

dφ

dt
� 2a

p2GMq2 � a2
,

which is interpreted as the angular drag of retrograde and prograde
photons. �Frame dragging� at the horizon r� (minimal angular velocity of
the particle there) can be de�ned as the angular velocity of the horizon
itself:

ΩH �
�
dφ

dt



pr�q � a

r2� � a2
.

The coordinate angular velocity of a circular orbit is (G � c � 1):

Ω � �
?
M

r3{2 � a
?
M
.
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Circular orbits around the Kerr black hole

To summarize the characteristic distances and orbits in Kerr spacetime:

� Marginally-stable circular orbits (ISCO):

rms � Mp3� Z2 	 p3� Z1qp3� Z1 � 2Z2qq1{2q,

with Z1 � 1�
�
1� a2

M2


1{3��
1� a

M

	1{3
�
�
1� a

M

	1{3

,

Z1 � p3a2{M2 � Z 2
1 q1{2.

� Marginally-bound circular orbits: limiting radius for marginal
(�parabolic�) circular orbit with ε � E{m � 1,

rmb � 2M 	 a� 2
a
MpM 	 aq.

� Photon orbit: in the limit of E Ñ8 the innermost boundary of the
circular orbits for particles:

rph � 2Mp1� cosp2
3
cos�1p	a{Mqqq.
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Circular orbits around the Kerr black hole

(from Bardeen et al., 1972)
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Kerr vs. rotating star

� The exterior metric of the Kerr metric di�ers from the rapidly
rotation compact material star; they agree in the �rst order
approximation - slow rotation:

rms � 6M

�
1� J

M2

�
2

3


3{2
�
.

� No 'natural' material source for Kerr metric (in�nitesimally thin
counter-rotating discs etc.)
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Penrose process

Inside the ergosphere ξµ becomes
spacelike. There can exist particles
with

E � �ξµpµ   0.

Imagine particle with pµp0q
disintegrating in the ergosphere into
two other particles:

pµp0q � pµp1q � pµp2q, {ξµ
Ñ Ep0q � Ep1q � Ep2q.

If arranged in such a way that
Ep2q   0, then Ep1q ¡ Ep0q -
production of energy.
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Irreducible mass

Penrose process is the extraction of energy from the kinetic (rotational)
energy of the black hole. Let's de�ne an additional Killing vector

χµ � ξµ � ΩHηµ,

null and tangent to the outer horizon r�. Particle p2q falls under the
horizon if

pµp2qχµ � pµp2qξµloomoon
�Ep2q

�ΩH pµp2qηµloomoon
Lp2q

  0 Ñ Lp2q  
Ep2q

ΩH

  0 since Ep2q   0.

The black hole mass M and angular momentum J � Ma are decreased by

δM � Ep2q, δJ � Lp2q so that δJ   δM

ΩH

.

Although the energy is extracted, the horizon area A is not decreasing
(!). By integrating over the horizon surface:

A � 4πpr2� � a2q.
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Irreducible mass

How does it work? Let's de�ne an irreducible mass of the black hole as
follows:

M2
irr �

A

16πG 2
� 1

4G 2
pr2� � a2q � 1

2

�
M2 �

a
M4 � pJ{G q2

	
.

A change in Mirr is related with δM and δJ

δMirr � a

4G
?
G 2M2 � a2Mirr

�
Ω�1
H δM � δJ

�loooooooomoooooooon
¡0

¡ 0,

hence δMirr cannot decrease. The maximum amount of energy that can
be extracted with a Penrose process is

M �Mirr � M � 1?
2

�
M2 �

a
M4 � pJ{G q2

	1{2
.

for a � 1 Kerr BH it is approx. 30% of total mass-energy.
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Thermodynamics of black holes

The analogous relation for the horizon area A is

δA � 8πG
a

ΩH

?
G 2M2 � a2

pδM � ΩHδJq,

which is usually rewritten as

δM � κ

8πG
δA� ΩHδJ.

and where the surface gravity κ of the black hole is introduced:

κ �
?
G 2M2 � a2

2GMpGM �?G 2M2 � a2q
(κ is acceleration of a ZAMO at the horizon; κ � 0 corresponds to
extremal black holes). Curious relation to classical thermodynamics:

δM � κ

8πG
δA� ΩHδJ Ø dU � TdS�pdV � ...

� ΩHδJ related to �work� term �pdV ,
� the area A never decreases as the entropy S - surface gravity
κ{8πG � T .
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Thermodynamics of black holes

The laws of black hole thermodynamics are (in comparison to classical):

� 0th: in equilibrium the temperature
the bodies in contact have the
same temperature (temperature
constant through the system),

� 1st: the change of energy is related
to the change of entropy and work
as in dU � TdS � pdV ,

� 2nd: the entropy S of an isolated
system cannot decrease,

� 3rd: the entropy of any pure
substance in thermodynamic
equilibrium approaches zero as the
temperature approaches zero.

� 0th: for stationary black holes
κ8πGT is constant everywhere on
the horizon,

� 1st: the change of black hole mass
is related to the change of the
horizon area and angular
momentum as in
δM � κ

8πG δA� ΩHδJ,

� 2nd: the area A of the horizon
never decreases.

� 3rd: it is impossible to achieve
κ � 0 in any physical process.
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Blandford�Znajek process: EM analogue of Penrose process

Accertion disk with polar magnetic �eld,
penetrating the ergosphere, dragged
along and extracting the rotational
energy. Power at light cylinder rc :

P � B2

�
r

rc


4

rcc � B2r4ω2

c

Total amount of energy is

E � 0.3Mc2 � 5� 1053
M

Md
erg

Poynting �ux ~E � ~B Ñ production of
the jet.

Key open issues:

� origin (generation mechanism?) of the magnetic �eld,
� magnetic �eld dynamics in accretion disks,
� mass loading/accretion disk out�ows.
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Hawking radiation

As a result of quantum particle
creation e�ects, black hole radiates
particles with a perfect black body
spectrum of temperature
proportional to surface gravity:

T � κ

2π

For Schwarzschild:

T � 1

8πM
�
�

~c3

8πGMkB

�
� 6� 10�8Md

M
K .

Related:

� Unruh e�ect - an accelereated observer detects black-body radiation of a
vacuum �eld,

T �
~

2πckB
� acceleration,

� Rindler coordinates and horizon observed by accelerated observers in
Minkowski spacetime.
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Further reading...

� �Lecture Notes on General Relativity� , Sean Carroll,

� �Black holes� , P.K. Townsend arXiv:gr-qc/9707012,

� Penrose diagrams:
http://jila.colorado.edu/�ajsh/insidebh/penrose.html

15 / 15




