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ABSTRACT
Statistical properties of two broad classes of methods used in period search, namely, phase binning

and model function methods, are compared. We employ hypothesis-testing theory to study these
methods and present closed analytical formulae for evaluation of the sensitivity of period search, for
di†erent kinds of signals. Based on this theory, we draw two conclusions : (1) the methods using smooth
model functions are generally more sensitive than those using phase binning and (2) the resolution of the
model functions should match structures in the detected signal. Both excess and insufficient resolution
result in decreased detection sensitivity. Finally, we demonstrate that within the broad class of the
methods discussed, methods utilizing the same models but di†erent statistics generally are equally sensi-
tive. Our considerations apply to most existing period-search methods, which enable formulation of sta-
tistical detection criteria.
Subject headings : binaries : eclipsing È methods : numerical È methods : statistical È pulsars : general È

stars : oscillations È X-rays : stars

1. INTRODUCTION

Astronomical time series often di†er by their uneven sam-
pling from the evenly sampled series, encountered in eco-
nomics and communications and discussed in the vast
statistical literature. Thus astronomers are often forced to
help themselves by inventing methods to analyze their time
series. In this paper we consider methods for period search-
ing, which admit formulation of objective statistical detec-
tion criteria, at least in principle. Examples of such methods
used in astronomy are given by LaÑer & Kinman (1965),
Jurkevich (1971), Lomb (1976), Stellingwerf (1978), Ferraz-
Mello (1981), Scargle (1982), Schwarzenberg-Czerny (1989,
hereafter Paper I), Davies (1990), Foster (1994),
Schwarzenberg-Czerny (1996, 1997a, hereafter Papers II
and III, respectively). The detection criteria are based on the
classical hypothesis-testing theory of statistics (e.g., Eadie et
al. 1971 ; Lupton 1993). The null hypothesis to be testedH0,in the process of period search, states that a time series
consists of a pure noise. In other words, states that theH0amplitude of the (deterministic) periodic component of an
input signal vanishes, A\ 0. Hence, detection criteria do
not depend on the properties of the periodic component for
A[ 0.

The wealth of methods employed in period searching
raised the question of a choice of the optimum one. In
statistics optimum sensitivity is obtained by Ðtting of data
with their (hypothetical) realistic model (e.g., ° 2.3). In that
sense no single optimum method valid for all types of data
and/or signals exists. In other words, (1) for A[ 0 sensi-
tivity of a method does depend on the type of input signal,
i.e., on the alternative hypothesis In practice, the shapeH1.of the deterministic component in the input signal is rarely
known a priori. Hence, (2) general methods have to rely on
a simple mathematical model, as a Ðrst guess. It is a fact of
profound consequences that the guessed model often di†ers
considerably from the observed process. Both facts, (1) and
(2), cause the evaluation of the detection performance of a
given method to be a rather complex process. Occasionally,

extensive Monte Carlo simulations were conducted to
study performance of various methods and to compare
them (Heck, Manfroid, & Mersch 1985 ; De Jager, Swan-
epoel, & Raubenheimer 1989). In the present paper we take
a more systematic approach and develop an analytical
theory of the sensitivity of the period search. Our discussion
applies to the broad class of methods deÐned more precisely
in ° 2.1. Our measure of sensitivity for signal detection is the
test power, discussed in ° 2.2. Since the sensitivity depends
on the properties of a mixture of a noise and of the deter-
ministic component, no known analytical probability dis-
tributions from general statistics apply. To proceed further,
we assume that the deterministic component is so small that
the perturbation methods may be employed for construc-
tion of the relevant probability distribution (° 2.3).

Up to this point our considerations are quite general. In
order to illustrate our discussion we consider in detail the
von Mises family of signal shapes. The example has broad
enough scope to be useful in many interesting applications
(° 3). In analysis of our example we expand the input signal
in terms of one of two families of the model functions, the
orthogonal trigonometric (Fourier) polynomials and the
step functions (phase bins). Given the theory and a signal
shape, a number of interesting questions concerning the
choice of the best method can be answered. These involve
the determination of the optimum kind of model (° 4.1) and
its sophistication, i.e., the desired number of its parameters
(° 4.2). Finally, we consider dependence of sensitivity on the
signal-to-noise ratio and on the number of the observations
(° 5).

For an excellent introduction to hypothesis testing, the
reader may refer to the books by Eadie et al. (1971) and
Lupton (1993), or to the summary by Press et al. (1992). Few
statistical texts discuss unevenly sampled time series ; exam-
ples of some that do are those by Mardia (1972), Deeming
(1975), and BloomÐeld (1976). Statistical functions are con-
tained in many commercial software libraries. We also Ðnd
useful the source code of the statistical functions published
by Press et al. (1992).
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2. STATISTICAL HYPOTHESES AND TEST POWER

2.1. Vector Norms as Detection Statistics
Our considerations are restricted to a well-deÐned class

of period-search methods, which employ a merit function #
that is calculated in such a way as to be independent of the
kind of data. These methods admit the detection criterion
which involves a critical value, independent of the data#

c
,

(° 2.2). To simplify our derivations, we assume that # is a
quadratic norm: # ½ L2. Most of the methods admitting the
data-independent detection criterion known from the liter-
ature either belong to the L2 class or may be approximated
by a class member. This class also contains methods in
which multiple frequencies u contribute to a single value of
#, though in an a priori prescribed way, e.g., cepstrum,
multiharmonic Fourier series, etc. However, methods like
CLEAN and CLEANEST, in which the number of the fre-
quencies considered depends on the data, are not part of
this class. These methods are more complex to evaluate,
since they require the sequential tests theory (Eadie et al.
1971 ; Fisz 1963). An analogy between linear and nonlinear
equation solvers exists : the former always work but are
occasionally inefficient, while the latter may be very efficient
but will often yield wrong solutions.

Let an observed time series consist of n observations x
iobtained at times i\ 1, . . . , n. Unless stated otherwise,t

i
,

we shall assume throughout the paper that are sampledx
ifrom the Gaussian distribution, for any Ðxed It is conve-t
i
.

nient to consider as components of an n-dimensionalx
ivector x. For these vectors we deÐne a scalar product SÉ ,ÉT

and a norm p É p, such that

Sm, gT \
P
0

2n m(/)g(/)dk(/)

\ ;
i/1

n k
i
m
i
g
i
, (1)

pmp2\ Sm, mT , (2)

where m and g are arbitrary vectors and dk corresponds to
the Stieltjes integral. For the step weight function k, the
integral in equation (1) reduces to a weighted sum. The
natural weights for a set of discrete observations are inverse
variances :

k
i
\ V ~1Mx

i
N . (3)

Let us adopt a set of r orthogonal vectors /(l), l \ 1,
. . . , r, such that r \ n, We shall use linearS/(k), /(l)T \ d

kl
.

combinations of these vectors as models of observations. In
vector language, /(k) form an orthogonal basis of an r-
dimensional subspace of the n-dimensional vector spaceX

rof observations We call this subspace a subspace ofX
n
. X

rmodels. An arbitrary vector of observations may bex ½ X
ndecomposed uniquely into combination of a vector from the

model space and a vector of residuals, such thatx
A

½ X
r

x
M
,

their norms correspond to the following sums of squares :

px
A
p24 ;

l/1

r
o Sx, /(l)T o2 , (4)

px
M
p24 pxp2[ px

A
p2 , (5)

If components of x are independent random variables with
the standard normal distributions N(0, 1), the norms pxp2,

and follow the s2(d), and dis-px
A
p2, px

M
p2 s2(d

A
), s2(d

M
)

tributions. Here d, and denote numbers ofd
A
, d

M
\ d [ d

A

degrees of freedom corresponding to the whole data, model,
and residuals, respectively. Depending on whether an
average value has been subtracted from all data x or not,
d \ n [ 1 and or d \ n and The normsd

A
\ r[ 1 d

A
\ r.

and measure the quality of the Ðt of the modelpx
A
p2 px

M
p2

series

x
A

\ ;
l/1

r Sx, /(l)T/(l) (6)

to the observed series x. Large or small indi-px
A
p2 px

M
p2

cates a good Ðt, i.e., a possible detection of the model signal.
In practical applications, these norms su†er from the scale-
factor indeterminacy of in equation (1). One has to usek

itheir ratio in order to get rid of the indeterminacy. By virtue
of the Fisher lemma, and are statistically inde-px

A
p2 px

M
p2

pendent as long as the null hypothesis holds (° 2.2).H0Hence their ratio is sampled from the Fisher-Snedecor F-
distribution. The partial norms and divided bypx

A
p2 px

M
p2

the total norm obey the particular kind of beta distribution,
which is related to the F-distribution ; the statistic on the left
is related to the distribution shown at the right (e.g., Abra-
movitz & Stegun 1971 ; Bickel & Doksum 1977 ; Paper III) :

Statistic Distribution

#
F
4

d
M
px

A
p2

d
A
px

M
p2 F(d

A
, d

M
; #

F
)

#
A

4
px

A
p2

pxp2 I#A
(d

A
/2, d

M
/2) (7)
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pxp2 I#M
(d

M
/2, d

A
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where

#
A

\ 1 [ #
M

\ d
A

#
F
/(d

M
] #

F
) (8)

and b) is an incomplete beta function (Abramovitz &I#(a,
Stegun 1971). As discussed elsewhere (e.g., Papers I and III),
most of the statistics used in period searching correspond to
one of the # statistics listed above. In particular, in Paper I
we demonstrate how the string-length statistics (LaÑer &
Kinman 1965 ; Dvoretsky 1983) may be approximated by a
# statistic.

2.2. Sensitivity
Let us adopt a general model of a signal x, consisting of a

Gaussian white noise n and of a deterministic function s
scaled by the amplitude factor Ad1@2 : x \ n ] Ad1@2s. We
assume here that the normalization of the deterministic
function s is such that psp \ 1 and Ss, 1T \ 0 (eq. [B3]). The
factor Ad1@2 is consistent with A2 being the signal-to-noise
ratio (S/N) :

S/N 4 pAd1@2sp2/EMpnp2N\ A2d/d ,

where we exploited the properties of the s2 random variable
pnp2 (eqs. [3] and [A5]).

Detection criteria and sensitivity in time series analysis
correspond respectively to hypothesis testing and test
power in statistics (e.g., Eadie et al. 1971). In order to detect
the deterministic signal s, we try to choose among two
hypotheses : a null hypothesis stating that the observedH0signal consists of a pure noise, i.e., A\ 0, and an alternative
hypothesis that the observed signal consists of the noiseH1,and the deterministic signal of amplitude A[ 0. Of particu-
lar relevance are two probability distributions of a given
statistic #, one which assumes is true and another whichH0
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assumes is true : P(0 ; #) and P(A ; #), respectively. TheH1null hypothesis is rejected and the deterministic signal isH0detected if according to observation of a value of #H0,exceeding its actually recorded value is very improbable :
P(0 ; #)[ 1 [ a, where a > 1 and 1 [ a is called the con-
Ðdence level. The choice of a and 1 [ a Ðxes expected frac-
tions of false detections and of correct rejections,
respectively. A given Ðxed value of a corresponds to the
critical value of such that#

c
1 [ a \ P(0 ; #

c
) . (9)

Hence, the detection criterion may be formulated as # [
This criterion depends solely on the distribution for#

c
. H0,and not on that for H1.Sensitivity of the test does depend on the distribution for
however. The more the and distributions di†er,H1, H0 H1the more sensitive is the statistic #. Quantitatively, sensi-

tivity is measured by the power 1 [ b of the statistic,
deÐned as

1 [ b \ 1 [ P(A ; #
c
) , (10)

where is Ðxed and corresponds to a given value of a.#
cThus b and 1 [ b yield expected fractions of missed and of

correct detections, respectively. The higher the fraction of
correct detections, the more sensitive a given method is. In
this paper we adopt the power (eq. [10]) as a quantitative
measure of sensitivity of methods for period search. Our
comparison of methods and selection of the optimum one
rely on test power.

2.3. Asymptotic Distribution for Small Amplitude
For the moment we restrict our attention to just one of

three # statistics, namely the F-statistic #
F
\

We are unable to derive analytically itsd
M
px

A
p2/d

A
px

M
p2.

exact probability distribution for i.e., forP(A ; #
F
) H1,

#
F
\ d

M
p(n ] Ad1@2s)

A
p2/d

A
p(n ] Ad1@2s)

M
p2

and for A[ 0 (cf. ° 2.2). To proceed further, we assume that
A is small and adopt a perturbation approach. We assume
that the perturbed distribution for in equationH1, P(A ; #

F
)

(10), is close to the unperturbed distribution for H0,
in equation (9). Further, we assume that a pertur-P(0 ; #

F
)

bation a†ects the mean and variance of the distribution but
has little e†ect on its shape R(É) :

P(A ; #
F
)B R(!) , (11)

where

!\ #
F
[ EMA ; #

F
N

JV MA ; #
F
N

, (12)

P(0 ; #
F
)4 R

A#
F
[ EM0 ; #

F
N

JV M0 ; #
F
N
B

. (13)

For large and such that R(!)d
A

d
M
, 1 > d

A
> d

M
,

approaches the normal distribution N(0,1), by virtue of the
central limit theorem. The only remaining task is calcu-
lation of moments of the distribution We calcu-P(A ; #

F
).

late the relevant moments, and byEMA ; #
F
N V MA ; #

F
N,

expanding powers of and in a series according to#
F
1 #

F
2

powers of A, our small parameter. The Ðnal results are
obtained by truncating of terms higher than A2 and taking
the expected values. Details of the calculation are contained
in Appendix A. Retaining only the leading term in equation

(11), we obtain

!B
#

c
[ EM0 ; #

F
N

JV M0 ; #
F
N

[ A2d ps
A
p2

J2d
A

] O
A
A4,
Ad

A
d
M

B1B
, (14)

where and correspond to the mean andEM0 ; #
F
N V M0 ; #

F
N

variance of the probability distribution for In the latterH0.case the Fisher-Snedecor distribution holds, soF(d
A
, d

M
)

that and (eqs. [A8] andEM0 ; #
F
ND 1 V M0 ; #

F
ND 2/d

A[A9]). The A2 term corresponds to the change in the
expected values Indeed, by takingEM0 ; #

F
N[ EMA ; #

F
N.

and allowing the mean valueV MA ; #
F
N4 V M0 ; #

F
N

to vary with A and repeating the calculations ofEMA ; #
F
N

Appendix A, one obtains the A2 term in the same form.
Note that the A2 term is proportional to the S function
introduced in Paper I :

S 4 (LEMA, #
F
N/LA2)/J2V MA, #

F
N\ dps

A
p2/2Jd

A
.

In fact, the present derivation constitutes generalization of
the results from Paper I.

Equation (14) may be derived in another way, up to terms
of order A2. For this purpose we observe that for A[ 0 the
norm pn ] Ad1@2sp2 has the noncentral s2(d, A2dpsp2) dis-
tribution. The noncentral s2 distribution may be approx-
imated by the scaled central s2 distribution (Eadie et al.
1971). Hence, the distribution for mayP(A ; #

F
) H1 : A[ 0

be approximated by the scaled Fisher-Snedecor distribu-
tion. In this way we obtain the A2 term in the same form as
in equation (14) above. Hence, we are conÐdent that for the
alternative hypothesis equation (14) for theH1 : A[ 0,
probability distribution of the statistic holds under quite#

Fgeneral assumptions.
Results obtained so far in this section hold for only.#

FNow we extend our results onto the remaining # statistics.
The Fisher-Snedecor statistic is completely equivalent#

Fto the two kinds of beta statistics and (° 2.1 ; see, e.g.,#
A

#
MAbramovitz & Stegun 1971 ; Bickel & Doksum 1977 ; Paper

III). Conversion between these statistics and their corre-
sponding distributions is e†ected by a simple change of
variable (eq. [8]). Hence, within our approximation

equivalence of and holds for theirH1 : A[ 0, #
F
, #

A
, #

Mdistributions : Fisher-Snedecor betaP(A ; #
F
), P(A ; #

A
),

and another beta Thus, all conclusions obtainedP(A ; #
M
).

for including equation (14), hold for and as long#
F
, #

A
#

Mas A> 1 and a suitable change of variable is applied. For
the special case of the basis of step functions this has already
been demonstrated in Paper I. In the present derivation
nothing was assumed about the sampling pattern and
shapes of the signal and model functions. Thus our results
apply quite generally, both for Ðtting of a smooth model
function and for phase-folding and binning methods (i.e., for
a step function). The only restrictive assumption here is that
the amplitude A is small enough to neglect terms of order
higher than A2. Combining equations (9)È(14), one obtains

1 [ b \ 1 [ R
A
R~1(1[ a) [ A2d ps

A
p2

J2d
A

] O
A
A4, d

A
d
M

BB
,

(15)

where in the asymptotic limit of corresponding1 > d
A

> d
to the central limit theorem, the distribution R approaches
the standard normal distribution :

R(!) \ 1 ] erf (!/J2)
2

. (16)



318 SCHWARZENBERG-CZERNY Vol. 516

FIG. 1.ÈCritical values of the data-quality product 2A2S 4
are plotted against required sensitivity levelA2dps

A
p2/d

A
1@2 [ log10 b,

where 1 [ b, A2, d, and denote the expected fraction of correctd
A
, ps

A
p

detections, signal-to-noise ratio, number of observations and number of
parameters of the model, and fraction of power Ðtted by the model, respec-
tively. Lines are plotted for signiÐcance levels 1[ a, where

from bottom to top. Present calculations are[ log10 a \ 1.5,2.0,2.5,3.0
valid for A2> 1 and for the standard normal distribution consistent with
the limit theorem (eq. [16]). Note that for the optimum model, ps

A
p B 1.

The number of observations d \ n and signal-to-noise
ratio A2 enter equation (15) only in the combination A2d.
Solving equation (15), one obtains

A2d ps
A
p2

Jd
A

\ J2[R~1(1[ a)[ R~1(b)] . (17)

Hence, a given sensitivity level, corresponding to
A2d \ constant, may be obtained either for a large number
of observations or for a large signal-to-noise ratio. This
scaling of sensitivity with A and d is essential for the design
of experiments. Equation (17) may be used to calculate the
minimum number of observations required to obtain a
given signal-to-noise ratio. Note, that for the optimum
model (° 4.2). In Figure 1 we plot the critical valueps

A
p B 1

of required to achieve sensitivity 1[ b, forA2dps
A
p2/d

A
1@2,

the standard normal distribution, i.e., for R~1(P) \ J2
erf~1 (2P[ 1) (eq. [16]).

3. AN EXAMPLE : VON MISES INPUT SIGNAL

Up to this point our considerations have been quite
general. Now, to illustrate applications of equation (14), we
are going to consider a speciÐc example of the input signal.
Without much difficulty similar results may be obtained for
di†erent shapes of input signals. This is facilitated by the
fact that the test power depends on the shape of the input
signal solely via the norm

ps
A
p2 4 1 [ ps

M
p2\ ;

l/1

r
o Ss, /(l)T o2 . (18)

Prior to the calculation of the scalar products Ss, /(l)T one
has to select a speciÐc Stieltjes weight function, orthogonal
basis vectors /(l), and, of course, the shape of the input
signal. The weight function k is related to the sampling of
the time series. The continuous uniform weight function
adopted here, dk \ d//2n, is a suitable approximation for
discrete observations either sampled evenly or sampled ran-
domly with the uniform distribution. Thus, for an estimate
of the expected value of the norm the Stieltjes integralps

A
p2,

reduces to the ordinary Riemann integral. This is not a
particularly restrictive assumption, since some freedom

remains in adopting the orthogonal basis-most suitable for
a particular sampling pattern, e.g., the Dirac d distributions
for the discrete case. For the present purposes we consider
two di†erent sets of orthonormal basis vectors : (1) the step
functions related to phase bins, and (2) the Fourier har-t

S
,

monics tF :

t
S
(l)(/) \

q

r

s

t

t

Jr , l [
1

2
\

N/

2n
\ l [

1

2
,

0 , otherwise, (19)

tFC(l) (/) \ J2 cos l/ , (20)

tFS(l) (/) \ J2 sin l/ . (21)

These two sets cover most models used in practical
methods. Because of the symmetry of the von Mises func-
tion, its sine components all vanish and need noSs, tFSTfurther considerations.

For the deterministic component of the input signal, s, we
adopt the von Mises function s(/) D ei cos Õ, where i is the
shape parameter and / is phase. The von Mises function is
a periodic analog of the Gaussian bell function (e.g., Mardia
1972). Its advantage is its ability to mimic a wide range of
signals encountered in astronomy, from sinusoidal oscil-
lations (i \ 0) to the narrow pulses and eclipses (i ] O)
(Fig. 2). Because of the normalization adopted in ° 2.2,
namely, Ss, 1T \ 0 and psp \ 1, we have to scale the von
Mises function accordingly. The detailed formulae are listed
in the Appendix B. We do not pretend that our assumptions
on the weight function, the model functions, and the input
signal are optimal. However, they should emulate reason-
ably well most cases encountered in practice. In a similar
way one can perform the calculations for a di†erent set of
the assumptions, if desired.

Expanding the von Mises signal into Fourier cosine har-
monics, we obtain andSs, tFC(0)T \ 0

Ss, tFC(l) T \J2
n

a(i)

]
CP

0

n
d/ cos l/ ei cos Õ[ I0(i)

P
0

n
d/ cos l/

D
.

FIG. 2.ÈFamily of von Mises signals, for values of i \ ei[ 1, i \ 0, 1,
. . . , 4.
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The second integral vanishes and the Ðrst one reduces to
a Bessel function (Abramovitz & Stegun 1971,I

leq. [9.6.19]), thus, Ðnally,

Ss, tFC(l) T \ J2a(i)I
l
(i) (22)

for l[ 0, where a(i) is deÐned in equation (B2).
For the step function the calculations are a little more

involved. By expansion of s in the series of Bessel functions
(eq. [9.6.34] of Abramovitz & Stegun 1971) one obtains

Ss, t
S
(l)T \Jr

n
a(i)
P
2n(l~1@2)@r

2n(l`1@2)@r
d/ ;

k/1

=
I
k
(i) cos l/ .

By integration of the sum term by term and by
subsequent application of the trigonometric identity
sin (a ] b)[ sin (a [ b)\ 2 cos a sin b, one obtains

Ss, t
S
(l)T \ 2

Jr
n

a(i) ;
k/1

= I
k
(i)
k

sin
kn
r

cos
2nkl

r
(23)

for l\ 1, . . . , r. Note that it suffices to evaluate the Bessel
functions only once for all l. An efficient algorithm to doI

kso is described by Abramovitz & Stegun (1971, ° 9.12 and
eqs. [9.6.26] and [9.6.37]).

4. STATISTICAL PROPERTIES

It follows from equation (14) that for a given amplitude A
and number of the parameters of the model the e†ect ofd

A
,

the shape of the model functions a†ects alone. Theps
A
p2

larger is, the more sensitive the corresponding periodps
A
p2

statistics for the particular input signal. Di†erent models
are compared in ° 4.1. For the optimum choice of the
number of model parameters, we consider in ° 4.2 the ratio

Finally, in ° 5 we discuss the trade-o†s involvedps
A
p2/d

A
1@2.

in choosing the optimum number of observations and sensi-
tivity of the period search.

4.1. Choice of Model
In Figure 3 we plot the norm of the modeled signal ps

A
p2

against the pulse-shape parameter i. The considered shapes
range from the pure sinusoidal oscillations (i \ 0) to the
narrow Gaussian pulses (i \ 5). Two families of curves are
plotted for the Fourier series model and the step function

FIG. 3.ÈDependence of sensitivity on the shape of the input signal.
SpeciÐcally we plot the norm of the Ðtted model against the shapeps

A
p2

parameter i of the von Mises signal. The extreme values of i \ 0 and
i ] O correspond to sinusoidal and delta function signals, respectively (cf.
Fig. 2). Fits were performed for the Fourier series (continuous line) and
phase-folding-and-binning models (dashed lines), for r \ 3 and 11 param-
eters, corresponding to 1 and 5 Fourier harmonics or 3 and 11 phase bins,
respectively. For phase folding we plot families of curves for the signal
peak and bin centers o†set by 0, 0.25 and 0.5 bin widths.

model. For the latter family computations were performed
for three di†erent o†sets of the bin centers and pulse
maxima: 0¡, 120¡, and 240¡ in phase. For each family two
curves were plotted, corresponding to the number of model
parameters r \ 3 and r \ 11. These models correspond to
the Fourier and step function models using (r [ 1)/2 har-
monics or r phase bins, respectively. For a given number of
the parameters r the Fourier series yields large com-ps

A
p2

pared to that for phase folding and binning. This is true
except for the chance coincidence of the signal peak and bin
centers, when phase folding may be marginally better for a
range of the signal shapes. Inspection of Figure 3 reveals
that typical values of for the step model are a factor ofps

A
p

v smaller than the corresponding values for Fourier series,
where 0.75[ v [ 0.50. This result is perhaps obvious, as the
smooth von Mises function is Ðtted better by smooth
Fourier harmonics than by a step function. The worse the
Ðt, the worse the sensitivity of the period search. The loss of
the sensitivity for phase binning is particularly severe for
smooth signals, i.e., for small i, and for simple models, i.e.,
for small r. For very narrow pulses, i.e., for large i, both
types of methods perform equally poorly. Whether decrease
of causes signiÐcant decrease in sensitivity of stepps

A
p2

methods depends on di†erent factors present in equation
(14). This equation constitutes a tool to quantify the loss of
sensitivity. To preserve sensitivity, loss in in equationps

A
p2

(14) by a factor of 0.75[ v [ 0.50 should be matched by the
increase of an amplitude by the factor 1.15\ 1/Jv\ 1.41
or by the increase of a number of observations by the factor
1.33\ 1/v\ 2.0.

So far our considerations were valid only for the von
Mises signal. Their extension for general signals encoun-
tered in astronomy requires caution. Our discussion
remains valid for all discrete observations of light curves
and radial velocity curves of pulsating and eclipsing stars
and radio and X-ray pulsars, which are sufficiently Ðnely
sampled in phase to resolve their basic shape. From our
point of view such observations di†er insigniÐcantly from
continuous functions used in our example. For these data,
methods involving a smooth model (e.g., power spectrum,
Lomb-Scargle spectrum, the multiharmonic Fourier perio-
dogram, and those s2 methods involving a smooth model)
are more sensitive than those which rely on phase folding
and binning, for the same number of model parameters r.
Skewness of the shape, e.g., in light curves of Cepheids, and
scatter due to random noise do not much a†ect our conclu-
sions. Our conclusions do not hold for coarse discrete sam-
pling, unable to resolve important features of a signal. For
such sampling, the performance of smooth and step models
is the same.

4.2. T he Optimum Resolution
According to equation (14) the sensitivity depends on the

size of the model solely via the detection powerd
A

\ r [ 1
function S (° 2.3). In Figure 4 we plot S against the number
of model parameters r, for a given shape of the input signal.
SpeciÐcally for this example we used the Fourier series
model and the von Mises input signal for i \ 50. According
to equation (14) the maximum of corresponds tops

A
p2/d

A
1@2

the maximum of sensitivity. Hence, the model corresponding
to the maximum of S is optimal for detection of the given
signal. The optimal model in the present example has r \ 15
parameters, i.e., 7 harmonics. It is widely appreciated that a
good match of model and observations increases sensitivity.
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FIG. 4.ÈDependence of sensitivity on the complexity of a model. Spe-
ciÐcally, we plot the value of the test power function S against the number
of harmonics of the model Fourier series. The input signal is the von Mises
function for i \ 50.

However, it is less widely realized that use of excessively Ðne
models, involving a large number of parameters, decreases
sensitivity. In the present example all models using more
then 7 harmonics are less sensitive then the optimum one.

In order to study dependence of the optimal model on the
shape of an input signal, we considered a number of exam-
ples similar to the one illustrated in Figure 4, for
0 \ i \ 400. In Figure 5 we plot the resolution of the
optimum models against the width of their corresponding
input signals. SpeciÐcally, we plot the FWHM of the highest
harmonics of the optimal model, n/(2r [ 1), against the
FWHM of the von Mises signal (eq. [B5]). Inspection of
Figure 5 reveals that resolution of the optimum model
matches the characteristic scale of features of the detected
signal.

FIG. 5.ÈOptimum model resolution as function of signal width.
Resolution of the Fourier model most sensitive for detection of the von
Mises signal is plotted against the FWHM of the signal, for 0 ¹ i \ 400,
on log scales. As resolution we plot the FWHM of the highest harmonic of
a Fourier series.

Our conclusion is that the use of models, which are either
coarser or Ðner than the optimal model, decreases sensitivity
of the period search. Gregory & Loredo (1992) reach the
same conclusion using a Bayesian approach. In fact it may
be demonstrated that at least in an asymptotic limit Bayes-
ian and classical period-search methods di†er only by their
e†ective signiÐcance level (Schwarzenberg-Czerny 1998).
This inefficiency plagues methods using narrow phase bins,
e.g., containing just two observations each, and the related
string-length method (LaÑer & Kinman 1965 ; Dvoretsky
1983). In that respect it is important to realize that these
methods are not ““ assumption-free, ÏÏ ““ model-free, ÏÏ or
““ nonparametric. ÏÏ On the contrary, they involve implicit
models with a large number of parameters, such as averages
of all bins, coordinates of string nodes, and so on. A loss of
sensitivity corresponds to broader distribution of dP/d#
and more overlap of dP(0 ; #)/d# and dP(A ; #)/d# in
equations (9) and (10). It may be exhibited either directly or
indirectly. The direct manifestation occurs when is#

cincreased to keep a Ðxed. The indirect manifestation occurs
when, by oversight of the loss, is kept Ðxed, resulting in#

cincrease of the e†ective a. Then the true detections are not
lost, but the number of false detections increases. This case
applies to methods relying on a large number of models
tried in sequence, while by mistake a single trial value of #

cis used (e.g., the H test of De Jager et al. 1989). A related
phenomenon is called the bandwidth or multiple-trial e†ect
(° 5).

5. SENSITIVITY VERSUS DATA SIZE

Let us consider two fairly realistic examples of photoelec-
tric observations of an intermediate polar (IP) star and
search of RR Lyrae (RR) stars in a CCD survey. We adopt
the following general procedure : Ðrst we set in equation (15)
the values of all parameters except for the one for which the
value is unknown; then we solve for that unknown value.
The di†erence is that in the IP case A2 is known and n
unknown, while in the RR Lyrae case n is Ðxed and A2 is
unknown. In Table 1 we list values of all input parameters,
for IP and RR Lyrae cases.

The unknown parameters are indicated in Table 1 by
question marks. For both cases we assume a conÐdence
level 1[ a \ 0.99. In equation (15) we use the normal dis-
tribution approximation (eq. [16] ; cf. Fig. 1).

Rigid statistical criteria are mistrusted by many observers
because of the examples of seemingly absurd results. Gener-
ally, these examples are caused by errors in application of
statistical procedures. The most frequent errors are neglect
of (1) the multiple-trial e†ect (cf. Horne & Baliunas 1986),
(2) the correlation-of-residuals e†ect (cf. Schwarzenberg-
Czerny 1991), and (3) use of an invalid probability distribu-
tion (cf. Paper III ; Schwarzenberg-Czerny 1998). We
account for the correlation of residuals in the IP example,
applying an equation for conversion of the e†ec-d \ n/ncorr

TABLE 1

PARAMETERS OF SAMPLE DATA SETS

Name 1 [ b 2A2S d
A

ncorr n A2

IP . . . . . . . 0.5 3.4 3 10 ? 0.1
RR . . . . . . 0.99 6.7 11 1 200 ?
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tive number of observations d to the true number of obser-
vations n. Since usually many frequencies are searched, the
multiple-trial correction should apply to the probability
distributions discussed here. However, such detailed
calculations remain outside the scope of the present simple
examples.

5.1. Monitoring of an Intermediate Polar
Assume that for a given IP star, the signal-to-noise ratio

is Ðxed by internal stellar properties, pulsation versus
Ñickering, to A2\ 0.1, and that the number of observations
n required to detect sinusoidal periodic pulses at least 50%
of the time (1 [ b \ 0.5) remains unknown. Further,
assume that Fourier models with corresponding tod

A
\ 3,

pure sinusoid is optimum, i.e., that Next we solveps
A
p \ 1.

equation (15) for d. Here d denotes the e†ective number of
independent observations. The actual observations are not
independent. The consecutive random deviations from the
average light curve are correlated because the timescale of
Ñickering is long compared to the sampling interval. For
this reason d depends on the number of consecutive corre-
lated observations so that (° 5). Finally, forncorr, d \ n/ncorrthe IP we calculate the required number of observations to
be n \ 600, corresponding to over 3 hours for an integra-
tion time of 20 s.

5.2. Search of RR L yrae Stars
In the RR Lyrae example the number of CCD frames

n \ 200 obtained in an observing run is Ðxed, and the
limiting signal-to-noise ratio A2 corresponding to 99%
completeness of the detections remains unknown. In this
case we assume that the Fourier model using 5 harmonics

is optimum, hence By solving equation(d
A

\ 11) ps
A
p \ 1.

(15) with respect to A2, we obtain the limit signal-to-noise
ratio A2\ 0.1 for 99% completeness. In order to calculate
from this ratio the maximum error level of the CCD photo-
metry, one has to assume that a typical amplitude of RR
Lyrae stars in question is, say, D\ 0.1 mag. The prescribed
completeness may be reached for those RR Lyrae stars for
which CCD photometry for each frame yields an error of
E¹ D/(A2)1@2\ 0.3 mag.

6. CONCLUSIONS

Our evaluation of methods for period search rests on
application of the theory of hypothesis testing for a system-
atic analytical study of the sensitivity of these methods.
Hence our conclusions have wider application than the
results of Monte Carlo simulations. Some of our results are
quite obvious intuitively :

1. The period-search methods using smooth functions to
model the signal are more sensitive than the methods using
the step functions, i.e., phase binning (° 4.1).

2. Sensitivity increases for models that more closely Ðt
features in the signal.

3. However, it is not always appreciated that sensitivity
of methods involving an excessive number of parameters is
small (however, cf. Gregory & Loredo 1992). In that sense,
the so-called nonparametric methods, e.g., involving multi-
ple bins or string length, are actually excessively multip-
arametric methods.

4. We demonstrated that for optimum sensitivity, the
resolution of the model should match the resolution of the
signal features (° 4.2).

5. Our nonobvious result is that the sensitivity of the
detection depends on the product of the signal-to-noise
ratio A2 and the number of observations n. The form of this
dependence enables prediction of the number of obser-
vations required to reach a given level of sensitivity, for a
given signal-to-noise ratio.

6. Our important conclusion is that many methods are
statistically equivalent, provided that they use a quadratic
norm corresponding to any of the # statistics with its
correct distribution (° 2.3) and that the model involves the
same number and kind of orthogonal functions. Hence, a
number of methods relying on phase binning are equivalent
for the same number of bins. A number of the methods
relying on the Fourier harmonics are statistically equiva-
lent, provided that the same number of harmonics is used.
Sensitivity does depend on the model and its number of the
parameters and on the kind of detected signal, and not so
much on the kind of periodogram statistic. However, one
must be aware that many distributions and corresponding
detection criteria claimed in the literature are incorrect. One
has to employ the correct criteria for validity of the equiva-
lence.

7. Methods using nonorthogonal models are prone to
unpredictable variations in their sensitivity, depending on
sampling and signal phase. The ordinary power spectrum
for uneven sampling su†ers from this problem.

8. Observers are reminded to use the correct statistical
procedures. These should account for the e†ective number
of searched frequencies and for the correlation of the
residuals from the model Ðt (° 5). Note that for a large
number of methods, incorrect probability distributions are
claimed in the literature (see Paper III and Schwarzenberg-
Czerny 1997b, 1998, for examples). Our results permit
evaluation of the performance of a vast class of period-
search methods used in practice. A detailed account of the
review of the methods remains outside the scope of the
present paper and will be published elsewhere. Below we
quote some results without their justiÐcation.

9. The sensitivity of our orthogonal multiharmonic AOV
method (Paper II) for r chosen to match the signal
resolution is optimal. Optimality in the soft sense means
that in certain circumstances other methods perform
equally well, but none outperforms our method. SpeciÐ-
cally, for r \ 2 or 3 the multiharmonic AOV method is
equivalent statistically and computationally to Lomb
(1976), Ferraz-Mello (1981), and Scargle (1982) spectra.

10. For signals with sharp pulses or eclipses, requiring
r [ 10, the Akerlof et al. (1994) method is nearly as sensitive
as our method, but computationally more efficient. It is
more complex to implement, though.

11. Our methods passed extensive tests on over 15,000
light curves obtained by the OGLE team (Udalski et al.
1994).
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APPENDIX A

MOMENTS OF F-STATISTICS FOR COMPOSITE SIGNALS

We consider moments of an F-statistic

#
F
\ d

M
p(n ] AJds)

A
p2/d

A
p(n ] AJds)

M
p2

for small A[ 0 using the perturbation approach. For this purpose we expand the statistic in the power series of the amplitude
A, compute its powers and and take the expected values. First, by using the identity pnp2\ Sn, nT and the skew#

F
1 #

F
2

linearity of the scalar product we obtain

pn ] AJdsp2 \ pnp2] A2dpsp2] 2AJd Re Sn, sT , (A1)

pn ] AJdsp4 \ pnp4] 2A2dpsp2pnp2] 4A2d Re Sn, sT2] A4pd2sp4 , (A2)

Using these expansions for the norms we obtain the following expressions for the moments of #
F
:
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EM#
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p4N
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] O(A4) . (A4)

Our calculations were simpliÐed by independence of and by virtue of FisherÏs lemma. The norm pnp2 for thepn
A
p2 pn

M
p2

noise is sampled from the s2(d) distribution, so

EMpnp2mN\ 2m!(m] d/2)/!(d/2) for m[ [d/2 . (A5)

We have exploited the relation

P
xms2(d ; x)dx D

P
s2(d ] 2m ; x)dx \ 1 .

Since all n are independent,

EMRe Sn, sT2NB p s p 2EM p n p 2N/d .

The expressions resulting from equations (A3) and (A4) are lengthy, but they contain many terms proportional to high
powers of the small number Neglecting all these small terms, one obtainsd

A
/d

M
> 1.

EMA ; #
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N\ EM0 ; #
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where for the Fisher-Snedecor distribution (e.g., Eadie et al. 1971)F(d
A
, d

M
)

EM0 ; #
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N\ d
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d
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[ 2
, (A8)
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Finally, substituting these moments we obtain

#
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[ EMA ; #

F
N

JV MA ; #
F
N
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] O
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A4,

Ad
A

d
M

B1B
. (A10)

The series expansions were performed using Mathematica (Wolfram 1991). In the calculations the terms higher than those
listed were accounted for, to protect against cancellation of terms.
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APPENDIX B

VON MISES SIGNAL

Von Mises introduced a periodic analog of the Gaussian bell function s(/) D ei cos Õ, where / is phase, i is the shape
parameter (e.g., Mardia 1972). In the present paper we adopt the following normalization conditions for the input signal : Ss,
1T \ 0 and psp \ 1. Evaluating the integrals in the normalization condition and in the mean square derivative Ss@2T, using
Abramovitz & Stegun (1971) formula [9.6.19], one obtains

s(/) \ a(i)[ei cos Õ [ I(i)] , (B1)

where

a(i) \ 1

JI0(2i) [ I0(i)2
, (B2)

Ss, 1T \ 0 , psp \ 1 , (B3)

ps@2p2\ i2a(i)
2

[I0(2i) [ I2(2i)2] , (B4)

DFWHM\ 1
n

arccos
Alog cosh i

i
B

. (B5)

is the modiÐed Bessel function, and is the full width at half-maximum. Since the denominators in equationsI
n
(i) DFWHM(B1)È(B5) vanish for i ] 0, the following asymptotic expansions obtained using Mathematica (Wolfram 1991) are useful :

s(/)\ J2
C
cos /] i

2
A
cos2 /[ 1

2
BD

] O(i2) , (B6)

ps@p2\ 1 ] 3i2
16

] O(i4) , (B7)

DFWHM \ n [ i
2n

] O(i2) . (B8)

In the limit of i ] O the von Mises function reduces to the Gaussian bell :

s(/)] J2(ni)1@2(e~iÕ2@2[ 1/J2ni) ; (B9)

ps@p2] i/2 , (B10)

DFWHM] (1/n)J2 ln 2/i . (B11)
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