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ABSTRACT
The phase dispersion minimization (PDM) statistic is a popular method for searching for non-

sinusoidal pulsations. The method involves comparison of the PDM value with the Fisher-Snedecor F
distribution to assess the signiÐcance of pulsations. Later, it was demonstrated that the PDM statistic
does not follow the F distribution and that the sensitivity of the method in its original form, based on
the F distribution, is poor. In the present paper we demonstrate that the PDM statistic follows a beta
distribution, which we designate PDM*. We Ðnd that the signiÐcance of a given detected pulsation
according to the relevant beta distribution is higher than the corresponding signiÐcance obtained using
the F distribution. In addition, we demonstrate that all methods relying on phase binning and variance
estimates related to s2 are equivalent for a given sampling, binning, and weighting pattern. We conclude
by observing that with the invention of the high-performance Fourier series method, based on orthog-
onal projections, the original motivation for the use of phase binning for nonsinusoidal signals has
weakened considerably.
Subject headings : binaries : eclipsing È methods : data analysis È methods : statistical È

pulsars : general È stars : oscillations È X-rays : stars

1. INTRODUCTION

The statistical evaluation of detected periods resembles
the evaluation of a theoretical curve Ðtted to experimental
data The periodogram statistic, #, measures(Lomb 1976).
the Ðt for a given pulsation frequency. The probability dis-
tribution of # is then used to calculate the probability,
P(# [ c), of obtaining the value of the periodogram higher
than the actual observed value, # \ c, from a hypothetical
pure noise signal. An unlikely good Ðt, corresponding to
small P, is interpreted as detection of the corresponding
period. Its complement probability, a \ 1 [ P(# [ c), is
called the signiÐcance level. This is the kind of the game
statisticians call hypothesis testing (e.g., et al. AEadie 1971).
precondition of hypothesis testing is a knowledge of the
probability distribution of #.

The # statistics considered in the present paper were
derived from methods devised by early observers of spectro-
scopic binaries. They searched for periods that would either
minimize the scatter of their observations around the
smooth curve or maximize the amplitude of the curve. Later
these methods were combined with phase histograms and
s2-related statistics. The work of & RobinsonWhittaker

hereafter & Kinman and(1926, WR), LaÑer (1965),
hereafter was important in thatStellingwerf (1978, S78)

these authors insisted on adopting rigorous statistical
machinery for evaluating detected periods. The phase dis-
persion minimization method (PDM) of Stellingwerf
became particularly popular. However, Schwarzenberg-

hereafter and slightly laterCzerny (1989, Paper I), Davies
noted that the Fisher-Snedecor distribution pro-(1990),

posed in for the PDM statistic is applied incorrectlyS78
and that it reduces sensitivity. These authors proposed
instead using the analysis of variance (ANOVA, AOV)
periodogram, giving examples of ways in which an incorrect
statistic for PDM reduces sensitivity, and discussing the
relation of the PDM, and AOV statistics. No correctWR,
probability distribution for the PDM statistic itself has so
far been published. In the asymptotic normal PDMPaper I

distribution was derived. In of this paper, we derive the° 2
exact analytical probability distribution for the PDM perio-
dogram. is devoted to a discussion of its proper-Section 3
ties. The new statistic is compared with the previously
employed F statistic in We also suggest ways to reinter-° 4.
pret the results of PDM obtained with the F statistic in
agreement with the correct beta statistic. As incorrect prob-
ability distributions for the PDM periodogram have been
used in the astronomical literature for the past two decades,
our conclusions are new; for the Ðrst time the correct dis-
tribution for the PDM statistic is identiÐed. For sta-
tisticians, our discussion contains nothing new, as it simply
constitutes an application of the classic results of Fisher.
Our discussion is particularly relevant for astronomical
observations, since it holds for uneven sampling.

The papers cited above are all concerned with single-
frequency (i.e., single-trial) probability. Since realistic perio-
dograms cover multiple frequencies, their statistical
evaluation requires signiÐcant correction for multiple trials.
This correction is called a bandwidth penalty or bandwidth
correction. In this paper we concentrate on single-trial
probabilities, speciÐcally for phase-folding periodograms.
These single-trial probability are required for the band-
width correction, either for analytical approximations or for
testing Monte Carlo simulations. The bandwidth penalty
issue is not speciÐc to the type of periodogram used, and the
reader is encouraged to refer to der Klis for anvan (1989)
introduction and to & Baliunas for a descrip-Horne (1986)
tion of Monte Carlo simulations. As pointed out by this
paperÏs anonymous referee, the analytical formulae Ðtted to
simulations by the latter authors often yield wrong results
(e.g., for evenly spaced observations), and generally should
not be used.

2. THE DISTRIBUTION OF THE PDM STATISTICS

Let us consider n observations folded in phase into rx
ijbins, so that the indices i and j stand for bin number and

observation number, respectively. The ranges of the indices
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are 1 ¹ i ¹ r and where denotes the number of1 ¹ j ¹ n
i
, n

iobservations in the ith bin, so that We follown \;
i/1r n

i
.

the notation of and introduce the auxiliary statisticsPaper I
and such thats02, s12, s22,
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where and give the cor-d0\ n [ 1, d1\ r[ 1, d2\ n [ r
responding numbers of the degrees of freedom. For arbi-
trary but not necessarily random x, these statistics satisfy
the algebraic relation (Fisz 1963)

d0 s02\ d1 s12] d2 s22 , (6)

and therefor not all of the statistic are independent.
As shown in the PDM, Whittaker-RobinsonPaper I,

and AOV periodogram statistics can be(WR, S78),
expressed in terms of s

k
2,

#PDM \ s22
s02

#WR\ 1 [ s12
s02

#AOV \ s12
s22

. (7)

The one-to-one correspondence of the # statistics follows
from equation (6) :

U 4
d2
d0

#PDM \ d2
d2 ] d1#AOV

\ d2
d0

] d1
d0

#WR . (8)

To assess the signiÐcance of a period detected using a
statistic, one considers the probability distribution of the
statistic assuming that observations are purely random
noise. The assumption that observations are noise is called
the null hypothesis, We assume that the noise is white,H0.i.e., that its values are mutually independent, and that the
distribution is Gaussian, N(0, 1). Then by virtue of FisherÏs
Lemma and are independent random variablesd1 s12 d2 s22with and distributions The ratios2(d1) s2(d2) (Fisz 1963).

has a Fisher-Snedecor distribution#AOV \ s12/s22 (Paper I)
given by

P(#AOV [ f )\ 1 [ F(d1, d2 ; f ) . (9)

The Fisher-Snedecor and beta distributions are closely
related (see Theorem 1.2.3 in & Doksum eq.Bickel 1977 ;
26.6.2 of & StegunAbramovitz 1971) ;

1 [ F(d1, d2 ; #AOV) \ I
Ad2

2
,
d1
2

;
d2

d2] d1#AOV

B
, (10)

where I denotes the regularized incomplete beta function,
and I and F are the beta and Fisher-Snedecor cumulative
distributions, respectively. The formulae for the calculation
of and their implementation in the code have beenI

x
(a, b)

published by & Stegun and et al.Abramovitz (1971) Press

respectively. A comparison of equations and(1986), (8) (10)
reveals the identity of U and the beta random variable ;
hence,
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To avoid confusion, the incorrect Fisher-Snedecor distribu-
tion for the PDM statistic and the new correct beta(S78)
distribution are denoted as P(PDM) and(eq. [11]),
P(PDM*), respectively. The di†erence a†ects only the dis-
tributions. The deÐnition of the statistic remains the#PDMsame for both cases, so we drop the \ for #. By simply
changing the notation of the classical statistical formulae,
we obtain the probability distributions of the PDM* and

periodograms The distributions are exact for anWR (S78).
arbitrary number of bins and observations r and n, respec-
tively, such that 1 \ r \ n.

3. PROPERTIES OF THE PDM* DISTRIBUTION

Since 0\ U \ 1, the whole PDM* distribution is con-
tained in the Ðnite interval From the0 ¹ #PDM ¹ d0/d2.
standard formulae for the beta distribution, rescaled by the
factor we obtain the probability density andd2/d0 (eq. [11]),
the moments of the PDM* distribution for the hypothesis

such thatH0

dPPDM* \ (d2/d0)d2@2#d2@2~1[1[ (d2/d0)#]d1@2~1 d#
B(d2/2, d1/2)

, (12)

k
k
@ \
Ad0
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(13)

\ <
l/0

k~1 1 ] 2l/d2
1 ] 2l/d0

, (14)

where B(p, q) \ !(p)!(q)/!(p ] q) is the complete beta
function and is obtained by the change of thek

k
@ \ / #k dP*

integration variable to U. The expected value, variance,
skew, and kurtosis are given by

E*M#PDMN\ 1 (15)

var* M#PDMN\ 2(r [ 1)
(n ] 1)(n [ r)

(16)

c1* \ [ 2(n [ 2r ] 1)J2(n ] 1)

(n ] 3)J(r [ 1)(n [ r)
(17)

c2* \ 12[n3[ n2(5r [ 4)]
(n ] 3)(n ] 5)(r [ 1)(n [ r)

] 12[n(5r2[ 12r ] 6) ] 7r2[ 7r ] 1]
(n ] 3)(n ] 5)(r [ 1)(n [ r)

. (18)

The asymptotic distribution for 1 > r > n ] O is N[1,
2(r [ 1)/n2]. This agrees with the result derived in Paper I
for PDM*. For the small values of r in use, the asymptotic
normality is never reached. demonstrates thatEquation (18)
no Gaussian limit holds for small r, since the kurtosis
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FIG. 1.ÈCritical values of the statistic at 3 p and 5 p conÐdence#PDM*
levels (short-dashed and long-dashed lines, respectively) are plotted against
the sample sizes n. Curves from left to right correspond to the number of
bins, r \ 2, 8, 32, and 128. The curves for r \ 128 lie within 5 of their
asymptotic limit for N[1, 2(r [ 1)/n2].

In we plot the critical valuesc2] 12/(r [ 1)[ 0. Figure 1,
of the PDM* statistic for the range of parameters where no
normality limit applies. This plot may be used to interpret
the signiÐcance of features in published PDM periodog-
rams. Depending on the problem, these critical probabilities
may or may not require bandwidth correction (see ° 1).

By rescaling and shifting the beta distribution in equation
we Ðnd that the whole distribution is contained in(11), WR

the interval Its expected value and[d2/d1¹#WR ¹ 1.
variance are

EM#WRN\ 0 (19)

var M#WRN\ 2(n [ 1)2
(n ] 1)(n [ r)(r [ 1)

. (20)

For a given n and r, the statistic is equivalent to theWR
PDM* and AOV statistics. Its possible change of sign poses
a mild inconvenience. The beta statistic, is mored1 s12/d0 s02,convenient in that respect. However, requires fewerWR
calculations than AOV and PDM, and combined with

it may constitute a more efficient way toequation (8)
compute AOV and PDM.

4. OLD VS. CORRECT PDM DISTRIBUTION

The distribution claimed for PDM was (S78) :

P(#PDM [ c3) \ F(d2, d0 ; c3) (21)

EM#PDMN\ n [ 1
n [ 3

(22)

var M#PDMN\ 2(n [ 1)2(2n [ r [ 3)
(n [ r)(n [ 3)2(n [ 5)

. (23)

For comparison, in we plot this claimed F distribu-Figure 2
tion and the actually valid beta distributions (eqs. and[21]

respectively). The families of curves are plotted for[11],
four phase bins, r \ 4, and for a range of sample sizes n.

The F distributions are Ñat, with positive skew, extending
from 0 to O, and approach normal for large n. The beta
distributions extend over a Ðnite interval of #, are concen-
trated around 1 and retain a negative skew for arbitrarily
large n. Their variances diverge even more with growing
sample size n ] O. At this point, the ratio var* M#PDMN/var

Clearly, the F distributionM#PDMN] (r[ 1)/2n > 1. (eq.
is incorrect and may not serve even as an approx-[21])

imation of the true PDM* distribution. The most undesir-
able e†ect of the F distribution was in decreasing the
signiÐcance of detected signals. It now seems plausible that
the deÐciencies attributed in the past to the PDM method
were in fact related to an incorrect F distribution.

5. AN EXAMPLE

The inconsistency between the incorrect and correct dis-
tributions, PDM and PDM*, can be illustrated by means of
a simple simulation. For this purpose we replace the true
values of n \ 49 observations of BK Cen discussed by S78
with simulated Gaussian noise. The PDM periodograms
are calculated following the prescription of with r \ 5S78,
bins and coverage. The whole procedure is repeatedn

c
\ 1

1000 times. In this way, for a given frequency we obtained a
sample of 1000 independent values of the statistic.#PDMEstimates of the sample mean and variance were calculated
in the usual way for each frequency (cf. eq. (1) of TheseS78).
estimates may be compared with the moments of the PDM*
and PDM distributions, equations and and(15) (16), (22)

respectively. To facilitate the comparison, the esti-(23),

FIG. 2a FIG. 2b

FIG. 2.ÈFamilies of the PDM di†erential probability distributions for the claimed F and actually valid beta distributions, (a) and (b), respectively. For the
Ðxed number of bins, r \ 4, the families cover a range of sample sizes n.
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TABLE 1

MOMENTS OF THE PDM STATISTIC

SAMPLE MOMENTS

Mean Variance

Simulated, n
c
\ 1 . . . . . . . . 1.00191 0.00347

Standard deviation . . . . . . 0.00528 0.00060
PDM* (this paper) . . . . . . 1.00000 0.00327
PDM (S78) . . . . . . . . . . . . . . . 1.04348 0.09596
Simulated, n

c
\ 2 . . . . . . . . 1.00216 0.00242

Standard deviation . . . . . . 0.00510 0.00044

mated sample mean and variances were averaged over fre-
quencies. The average values and standard deviations of
individual samples are listed in with their corre-Table 1
sponding theoretical values for PDM* and PDM distribu-
tions. Interpretation of these results requires some care.
Owing to power leakage and aliasing, samples correspond-
ing to di†erent frequencies may be correlated, and the usual
relation of the individual standard deviation and the stan-
dard deviation of an average does not hold in general.
Therefore, lists the standard deviation for a single-Table 1
frequency sample, rather than for the frequency average
value. Clearly, the distribution of simulated values of the
PDM statistic is inconsistent with the PDM distribution of

Both mean value and variance of the simulatedS78.
samples are inconsistent with di†ering by many stan-S78,
dard deviations. The e†ect of changing from a PDM to a
PDM* distribution for this example is comparable to the
change from the PDM method to the AOV method for the
same sample considered by and inS78 Paper I.

Let us turn our attention to coverages. Coverages are
deÐned by as sets of phase bins di†ering from eachS78
other by their phase o†set. The number of bins in each
coverage, r, is the same. It was assumed by that theS78
e†ect of the coverages on the probability is the same as the
e†ect of multiplying the number of phase bins. This assump-
tion is not correct, as an increased number of coverages
does not decrease the magnitude of residuals. The coverages
correspond to di†erent step functions shifted in phase. Their
steps remain coarse for large numbers of coverages. The
variance of the PDM statistics is expected to grow with the
number of phase bins Inspection of(eq. [16]). Table 1
reveals that the variance of the simulated distribution
decreases with growing from 1 to 2. The decrease isn

c
,

approximately proportional to a factor of Such an
c
~1@2.

decrease would arise for averaging independent values ofn
cFurther simulations reveal that the proportionality#PDM.

breaks down for large as the total number of bins,n
c

n
c
r,

approaches the number of observations, n, and # statistics
computed for di†erent coverages become severely corre-
lated. We conclude by recommending against the use of
multiple coverages, as a corresponding probability distribu-
tion remains unknown.

6. DISCUSSION

The correct distribution of the PDM* periodogram turns
out to be a beta distribution, not an F distribution as orig-
inally claimed. The dramatic di†erence of the two distribu-
tions for the same periodogram and parameters are

illustrated in The old results of the PDM methodFigure 2.
using an F statistic are incorrect and should be reanalyzed
using a beta statistic. For this purpose, in we plotFigure 1
the critical values of the PDM* statistic for a range of
parameters. The plot may be used to interpret the signiÐ-
cance of features in published PDM periodograms. Gener-
ally, features discovered in the PDM* periodogram are
more signiÐcant than was previously thought. For the same
data and phase binning, the results obtained using the
PDM* statistic and the AOV statistic are the(Paper I)
same. Depending on the problem, the critical PDM* prob-
abilities may or may not require a bandwidth correction
(see ° 1).

The PDM*, and AOV methods areWR, (S78, Paper I)
fully equivalent. Their di†erences reduce to simply a change
of variables. In the present paper, we demonstrate that these
statistics are equally useful in practice by deriving the ana-
lytical distributions for PDM* and The distributionsWR.
are exact for an arbitrary number of bins r and observations
n, such that 1 \ r \ n. In order to compute each of the
statistics, it suffices to compute just one sum, say for eachs12trial frequency, and to use with Theequation (6) s02 \ const.
choice of the PDM*, or AOV statistic is a matter ofWR,
taste, whether one prefers the ““ emission ÏÏ or ““ absorption ÏÏ
lines in the temporal spectrum (introduced by E. Nather).
Since AOV, PDM, and statistics are all based on theWR
same signal model, namely the step function, their equiva-
lence is understandable. For a given sampling, binning, and
weighting pattern, the equivalence in fact extends to all
methods relying on phase binning and variance estimates
resembling s2. In view of the equivalence of the statistics,
and our discussions in and inPaper I Schwarzenberg-

the sensitivity of the period detectionCzerny (1991),
depends on the consistency of the underlying theoretical
signal model with observations, and not on the statistics
used in the periodograms. On the one hand, it is important
that the model use sufficient bins, harmonics, etc. to match
its resolution to the characteristic features in the signal. On
the other hand, it is important to avoiding Ðtting the noise
with an excessive number of parameters. The more fre-
quencies analyzed, the more likely is the occurrence of a
good Ðt just by chance, i.e., the less signiÐcant the detection.
However, a fraction of the frequencies do not count in the
game, owing to the e†ects of oversampling and aliasing
(cf. ° 1).

Phase binning was originally introduced to raise the
sensitivity for narrow pulses, for which the power spectrum
is rather insensitive. However, the step function, involved
implicitly in phase binning, does not Ðt well with real,
smooth signals, and its use causes uneven phase sensitivity.
The Fourier series is a much better statistical model in that
sense. The invention of the high-performance Fourier series
method, based on the Ðnite-step orthogonal projection

has considerably weakened(Schwarzenberg-Czerny 1996),
the original cost-saving motivation for using phase binning
for nonsinusoidal signals. The algorithm spends as much
time per harmonic as the ordinary discrete Fourier trans-
form (DFT) does for the power spectrum.

The authorÏs research was supported by KBN grant 2
P304 002 005.
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