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ABSTRACT
The classical methods for searching for a periodicity in uneven sampled observations suffer from a poor match

of the model and true signals and/or use of a statistic with poor properties. We present a new method employing
periodic orthogonal polynomials to fit the observations and the analysis of variance (ANOVA) statistic to
evaluate the quality of the fit. The orthogonal polynomials constitute a flexible and numerically efficient model
of the observations. Among all popular statistics, ANOVA has optimum detection properties as the uniformly
most powerful test. Our recurrence algorithm for expansion of the observations into the orthogonal polynomials
is fast and numerically stable. The expansion is equivalent to an expansion into Fourier series. Aside from its use
of an inefficient statistic, the Lomb-Scargle power spectrum can be considered a special case of our method. Tests
of our new method on simulated and real light curves of nonsinusoidal pulsators demonstrate its excellent
performance. In particular, dramatic improvements are gained in detection sensitivity and in the damping of alias
periods.
Subject headings: binaries: eclipsing—methods: data analysis —methods: statistical —

pulsars: general — stars: oscillations—X-rays: stars

1. INTRODUCTION

Popularity of the discrete Fourier transform (DFT) based
power spectrum in period analysis stems from its simplicity,
clear interpretation and computational efficiency. There are
two problems in application of DFT to searching for periodi-
cities, however. First, it is well known that DFT uses a sinusoid
to model the observations and hence is unsuitable for the
nonsinusoidal signals. Second, it is less well known that in
practical applications neither power spectrum nor its modifi-
cation by Lomb (1976) and Scargle (1983) obey the theoretical
x2(2) probability distribution. The departure from the x2

distribution occurs in the normalization of the periodogram by
an empirical variance (§ 3). In § 2 we present a new method
which does not suffers from these problems. In §§ 4 and 5 we
compare the performance of the new and classical methods on
simulated and observed time series, respectively.

2. METHODS

The correspondence between Fourier series and complex
polynomials was noted long before the advent of electronic
computers. Polynomials useful for the present application are
periodic and orthogonal on a discrete set of uneven observa-
tions. We are unaware of any recent discussion of the numer-
ical properties of these polynomials. Hence, we present here
the details of the algorithm. A Fourier series of N harmonics
F(N)(t) corresponds to the complex polynomial of order 2N,
namely C2N(z) 5 zNF(N)(t). Writing explicitly, one obtains

zN O
n 5 0

N

~an cos nv t 1 bn sin nv t!

(1)

5
1
2 O
n 5 0

N

@~an 2 ibn!zN 1 n 1 ~an 1 ibn!zN 2 n# ,

where a0 5 b0. All the arguments z 5 eiv t lay on the unit circle
u zu 5 1. For a given trial frequency v, times of observation tk

map onto points on the unit circle: zk 5 eiv tk, k 5 1, · · · , K.
The complex polynomials form Hilbert space with the scalar
product defined by the Stjeltjes integral over the unit circle (F,
C) 5 (1/2p) *2p

p F(z)C(z) dm(t). The integral depends on the
weight function m(t) defined on the circle. A natural weight
function m for the case of discrete observations is the step
function with the steps at the phases v tk. Then the scalar
product reduces to the weighted sum:

~F, C! 5 O
k 5 1

K

gkF~zk!C~zk!. (2)

Thus, observations with uneven weights gk 1 1/Var {Xk} are
accounted for here in a natural way.
For a given base FN(z) 5 (n 5 0

N an(N)zn, N 5 0, 1, · · · , the
expansion of a polynomial CN is unique:

CN~z! 5 O
n 5 0

N

cnFn~z!. (3)

In the polynomial Hilbert space, there exists a unique or-
thonormal base, with real and positive leading coefficients
0 , an(n) [ R. It satisfies the following conditions of orthonor-
mality:

~Fn , Fm! 5 dn, m . (4)

A convenient way to generate FN is by means of the recur-
rence relation (Grenander & Szegö 1958):

F̃0~z! 5 1, (5)

F̃n 1 1~z! 5 zF̃n 2 anznF̃n~z!, (6)

Fn~z! 5
F̃n~z!

Î~F̃n , F̃n!
. (7)
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The formulae for the coefficients an and cn follow from
equations (6) and (3) multiplied by Fn:

an 5
~zF̃n , F̃n!

~znF̃n , F̃n!
, (8)

cn 5
~C, F̃n!

Î~F̃n , F̃n!
. (9)

Equation (9) corresponds to a generalized Fourier integral.
The recurrence solution for F̃ and cn proceeds in the following
steps: (1) set n 5 21, F̃21 5 1/z and a21 5 0, (2) increment n
by 1, (3) compute equation (6), (4) add the increments to the
scalar products (eqs. [8] and [9]) for all observations, (5)
compute an and cn, and finally (6) jump back to step 2. In this
way, in the z space one fits C 5 zNX with the polynomial C2N

and in the real space X with the corresponding Fourier series
F(N). Although the fit is obtained by a fast recurrence process,
the result is identical to the least-squares solution of the
overdetermined system (n 5 0

N Fn(zk)cn 5 C(zk), k 5 1, · · · , K
(Eadie et al. 1982; Schwarzenberg-Czerny 1995).
The new algorithm requires 2(WNK) operations, i.e., much

less than the 2(WN2K) required by the least-squares solution.
Here W is number of frequencies v. Our algorithm is only a
factor N less efficient than the ordinary, non-FFT, DFT power
spectrum for uneven sampling. Our orthogonal expansion is
advantageous by virtue of its numerical stability and statistical
independence. The variance of the parameters attains a min-
imum in the orthogonal case. It is true that the phase-folding
and binning may be considered an expansion in terms of
the periodic orthogonal step functions (e.g., Schwarzenberg-
Czerny 1989). However, for most applications, step functions
are less suitable base functions than the smooth functions
corresponding to Fn.
Parseval’s theorem corresponding to Fourier integral in

equation (9) has the following form:

~2N 1 1! Var̂ $F~N! % [ O
k 5 0

K

~F~N! !2 5 O
n 5 0

2N

u cn u2 . (10)

A simple proof follows from equations (1) and (3), and from
the identity (F(N), F(N)) 5 (C2N, C2N) 5 (n 5 0

2N (C2N, Fn)(Fn,
C2N). The orthogonal expansion discussed above yields the
variance of the fitted Fourier series without explicit use of the
sine and cosine amplitudes an and bn. Note that because of
orthogonality, cn, n 5 0, 1, · · · are statistically independent: a
change of cm in equation (3) does not affect the estimate of cn
in equation (9) for m Þ n. For N 5 1 our variance estimate
u c0(1) u2 1 u c2(1) u2 reduces to Lomb-Scargle statistic: it constitutes
the sum of two statistically independent variables, is quadratic
in X, and is invariant against time shift (Lomb 1976). A time
shift rotates the whole complex plane without affecting the
absolute values u cnu. For the reasons discussed in § 3 we do not
recommend direct use of the variance (eq. [10]) for period
searching.
We recommend instead use of the analysis of variance

(ANOVA) statistic. Let observations X consist of the sum of
the signal F and of the noise E: Xk 5 Ek 1 Ek. Their variance
estimates satisfy an algebraic identity (X, X) 5 (C, C) 5
(C2N, C2N) 1 (n 5 2N 1 1

K 2 1 u cnu2 equivalent to (K 2 1) Var̂
{X} 5 2N 3 Var̂ {F} 1 (K 2 2N 2 1) Var̂ {E} (Scheffe

1959). The relevant ANOVA statistic Q [ Var̂ {F}/Var̂ {E}
has the following form:

Q~v! 5
~K 2 2N 2 1! On 5 0

2N u cn u2

~2N!@~X, X ! 2 On 5 0
2N u cn u2#

. (11)

Note that it suffices to compute the total variance (K 2 1)
Var̂ {X} 5 (X, X) in equation (11) only once at the beginning.
It is assumed in equation (11) that the average value was
subtracted from the data X. This is recommended by numer-
ical considerations. If no subtraction has been made, replace
2N in the denominator (and not in the numerator) by 2N 1 1.

3. STATISTICAL CONSIDERATIONS

For the quantiative evaluation of detection significance one
uses the probability distribution of the periodogram for the
hypothesis H0. The hypothesis H0 states that observations
contain only pure white noise. The relevant statistical proce-
dure is hypothesis testing. The statistics Var̂ {F} and Var̂ {E}
are independent by virtue of Fisher’s Lemma. So, the AOV
periodogram, even for small samples, has Fisher’s F probabil-
ity distribution with 2N and K 2 2N 2 1 degrees of freedom
F(2N, K 2 2N 2 1) (Scheffe 1959). The classical statistics
(power spectrum, PDM, x2 for the residuals, x2 for the signal)
all have to be normalized by the empirical variance Var̂ {X}.
Because of this normalization their true distribution is no
longer the theoretical distribution. Although the normalized
statistics are ratios of variances, they do not obey Fisher’s F
distribution since Var̂ {X} is correlated to the periodogram
itself. Fisher’s F distribution holds only for ratios of indepen-
dent variances. The string-length statistic (Dvoretsky 1983)
obeys no known distribution for the same reason. For most of
these statistics, the tail of the distribution used for testing may
converge to its theoretical distribution very slowly at best, and
diverge at worst (Schwarzenberg-Czerny 1989). All classical
periodograms rely on some quadratic functions of the obser-
vations, i.e., on some variance estimates. Among these statis-
tics, for a fixed number of the parameters, the AOV is the
uniformly most powerful test, i.e., it is the most sensitive for
detection (Scheffe 1959). This is amply illustrated by our
examples in §§ 4 and 5.
A period search method assumes that data may contain a

given model of a signal, called by statisticians an alternative
hypothesis H. A good model fits data well with a minimum
number of the parameters, i.e., with minimal loss of degrees of
freedom. Such a model yields decreased Var̂ {E} and in-
creased significance or sensitivity of the detection in equation
(11). A poor model, inflexible and with too few parameters
loses sensitivity by growth of Var̂ {E}. The pure sinusoid used
in the power spectrum is a poor model for a nonsinusoidal
signal. The step functions implicitly involved in all phase-
binning statistics are poor models for a smooth signal. For
other reasons, the loss of degrees of freedom occurs for
correlated observations. Correlated observations are equiva-
lent to a smaller number of independent observations
(Schwarzenberg-Czerny 1991). For a model with an excess
number of parameters, the residuals (2N 1 1) Var̂ {E} do not
decrease quickly with N, i.e., the surplus cn’s are small.
Averaging out these small c’s in the numerator of equation
(11) results in a smaller significance of detection. This problem
affects the string-length methods. A related problem, concern-
ing the ‘‘bandwidth penalty,’’ is discussed below. In practice
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one rarely tests the simple alternative hypothesis H1: ‘‘The
data contain the signal of assumed shape and of frequency v1,
suspected from other data.’’ More commonly the test is of the
composite hypothesis HNf

for unknown v. It corresponds to
many, say Nf , simultaneous tests of the simple hypotheses/
models at once, where 1# Nf # min (W, K). One pays the
‘‘bandwidth penalty’’ for the corresponding waste of the
degrees of freedom for the parameters of all these simple
models. The bandwidth penalty is best expressed in terms of
the confidence levels PNf 5 1 2 (1 2 P1)Nf , where P1 and PNf
are the confidence levels for H1 and HNf

detections, respec-
tively. Unfortunately, Nf has to be guessed at, or estimated by
simulations (Horne & Baliunas 1986). For further interesting
discussions of this issue, see the Eadie et al. (1982) mono-
graph, §§ 10.5.5 and 11.5.1.
The present Fourier model enables optimum tuning of the

number of the parameters to the data. Additionally, our
method is conservative in the sense that for a given number of
parameters, the fitted series has minimum variance between
the observed points (see Grenander & Szegö 1958). For a pure
sinusoidal signal our 1 harmonic periodogram corresponds to
the Lomb-Scargle periodogram transformed using equation
(11). The computational overhead associated with the trans-
formation is negligible. Still, for this case our method retains
an advantage in its optimum statistic.

4. TESTS BY SIMULATIONS

We employed simulations to compare the performances in
detection of the periodic signals of our new periodogram and
of the power spectrum. To simulate an observed time series,
1000 times of observations tk were drawn from the standard
normal distribution, half of them were then shifted by 110.
For these moments of time we computed the values of the
signal. The signal consists of the periodic narrow pulse of the
height S/N plus unit-variance Gaussian white noise E. The
signal was calculated according to the formula Xk 5 (S/N) exp
(2sin2 60p tk) 1 Ek. A family of time series was simulated for
signal-to-noise ratios S/N in the range from 16 to 1/8. Each of
the time series was analyzed using our new periodogram for
eight harmonics, and the Lomb-Scargle power spectrum, over
the frequency range from 0 to 100 cycles day21 with oversam-
pling by a factor of 5. The confidence levels P1 for the
detection of the pulsations at 60 cycles day21 were computed
from x2(2) and F(16,983) distributions, respectively. Both were
corrected for the estimated Nf 5 600 independent frequencies
(Horne & Baliunas 1986). The results, converted to the
normal distribution s confidence levels, are presented in
Figure 1. Note that for the simulation, our new periodogram
yields steeper rise of the significance with S/N and unique
detections for weaker signals compared to the power spec-
trum.

5. APPLICATIONS

Walker (1994) obtained high-quality (S/N$ 30) CCD light
curves of the pulsating variables in M68. Although the obser-
vations span over 90 days, they are clumped into just 3 weeks.
Hence, the aliasing at 1 and 1/70 cycle day21 poses a severe
problem in the analysis (see Fig. 6 of Walker 1994). Our
method applied to the observations of the single mode RRab
pulsating stars yielded periodograms free of most spurious
features. The periodograms identify the true period quite
unambiguously (Fig. 2). The only remaining spurious features

are the subharmonics of the main period. An alias period
enables fit of the light curve with an amplitude comparable to
that for the true period. Hence, the alias in the power
spectrum may be nearly as high as for the true period. Still, for
good observations the residuals and the denominator in
equation (11) for the alias period are large compared to these
for the true period. The consequence is the damping of the
alias in our ANOVA spectrum. The better the fit for the true
period, i.e., the larger S/N and the more harmonics are used,
the more pronounced is the damping of aliases. For the
smooth light curves, e.g., for V15 and V18, the best results
were obtained using up to 4 harmonics. For the light curve of
V22 featuring a sharp peak, up to 8 harmonics were useful. For
the data at hand, use of higher harmonics is counterproductive
because of the degrees of freedom economy (§ 3).
For the bimodal pulsating stars (RRc), e.g., V21 or V7 our

mathematical model is no better than the pure sinusoid in the
power spectrum. Clearly, the residuals are dominated by the
other mode. Use of the harmonics higher than 2 never
improves the periodogram for these stars. For S/N ,, 1 an-
other oscillation has no effect on the detection of the primary
oscillation, except for its contribution to the general noise
level. The detection for S/N,, 1 depends on the sampling of
observations. For the well-sampled observations, covering
many cycles of both periods, the peaks of the periodogram
converge to the values of Q(vj) 5 (K 2 2N 2 1)Pj/ 2N (i Þ j

FIG. 1.—Confidence levels for the detection of a simulated narrow pulse
signal (see text) plotted against log amplitude S/N ratio, with the Monte Carlo
error bars. Filled symbols indicate the unique detections as the highest peaks in
the 0 to 100 cycles day21 range. Note that compared to the Lomb-Scargle
power spectrum, our new periodogram yields unique detections for smaller
S/N. Our detection significance level rises more steeply with S/N.

FIG. 2.—Our new periodogram for the single mode pulsating star V15 of
the type RRab (see Fig. 6 of Walker 1994). The periodogram was calculated
using 3 harmonics expansion. Note the damping of aliases. The only remaining
spurious features are the subharmonics of the main period.
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Pi, where Pi is the total power in all the harmonics of ith
mode. The convergence is asymptotic for S/N3 E and N3 E.
For an incomplete sampling some insight can be gained by
simulations. For Walker’s (1994) sampling, S/N 5 30, and
frequencies and amplitudes of a typical bimodal RRc star, we
obtained peak values of Qi, i 5 0, 1 that differed by up to a
factor of 3 from their asymptotic values, depending on the
initial phases of the modes. The difficulties encountered by our
method for these stars affect all the classical methods relying
on the single period models, too. As not much overhead is
involved, there is little harm in using our method for this case
also. The generalization of the present methods for the
multiple frequencies is beyond the scope of the present paper.

6. CONCLUSIONS

The statistical advantages of our new period search method
are the following: (1) a tunable and flexible Fourier model for

oscillations, (2) orthogonal variables, and (3) the optimum
(uniformly most powerful) ANOVA statistic which guarantees
the best sensitivity. An extra bonus comes with the known
statistical properties for the small samples. The model is ideal
for pulsating and/or eclipsing X-ray sources and variable stars.
The ANOVA statistic takes full advantage of good S/N by
making aliases less of a problem. Our orthogonal expansion
algorithm is efficient and numerically stable. In fact, for 1
harmonic our method reduces to the non-FFT Lomb-Scargle
periodogram, except for our better statistic (eq. [11]).
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