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Summary. We recommend one way analysis of variance (AoV) as a method for
detection of sharp periodic signals. Application of the method requires folding
and binning data with a trial period. Among several methods of this type
employed in astronomy, AoV has the advantage that its probability distribution
is known for any number of observations, so that its usefulness for small
samples is unquestionable. We compare the AoV test with other tests in use and
demonstrate that for large samples it is at least as powerful as any of them.
Examples of application of the AoV method for photometric observations are
discussed. We discuss an error in the phase dispersion minimization (PDM)
method, namely an incorrect probability distribution and significance criterion.
We argue that the power of the Lafler and Kinman test is comparable to that of
the AoV2 test, the AoV test with narrow bins, containing two observations
each. However, the AoV2 test is less powerful than any AoV test with a
reduced number of bins and so is the Lafler and Kinman test.

1 Introduction

At least two factors should be taken into account in the choice of the most suitable method for
detection of a periodic signal in observations, namely the shape of the signal we are looking for
and the distribution of observations in time.

Fourier methods are best suited for detection of sinusoidal signals. For observations
distributed very non-uniformly in time, such as observations with large gaps, one has to use the
clasical Fourier method (e.g. Deeming 1975) or its modification by Scargle (1982). The latter
method has the advantage that its statistical properties are well understood. For more or less
uniform distribution of observations one can use faster versions of the above methods, namely
the FFT method and its modification by Press & Rybicki (1988). The performance of Fourier
methods in the detection of non-sinusoidal periodic signals, such as for example sharp and
narrow pulses, is poor. The resolution of these methods is limited by the broad profile of a
sinusoid and the power associated with such a signal is spread in the periodogram among many
harmonics, rendering them less detectable.

Several methods suitable for detection of non-harmonic oscillations in observations uniform
in time were employed. We have no space here to review all of them. The maximum entropy
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method modified by Fahlman & Ulrych (1982) performs well. The standard procedure well
suited for non-uniformly distributed observations is folding data with a trial period and
grouping them into phase bins. Several such methods were invented and Stellingwerf (1978,
hereafter S78) lists some of them. They are discussed in Section 4. Lafler & Kinman (1963, see
also Stobie & Hawarden 1972) and Dworetsky (1983) proposed methods which avoid binning
and thus may be suitable for small samples. In this paper we pay special attention to the
classical one-way analysis of variance (AoV) as a period search method in application to data
folded and binned.

All popular methods of period search have much in common. For each method a test
statistic is defined. It is a real function of all observations and of a trial period (or its
corresponding frequency). Since the observations are random variables because of their mea-
surement errors, so is the test statistic. Period is not a random variable but a parameter of the
statistic. For each period, and for all available observations, the test statistic yields a single num-
ber. The plot of values of the statistic for a range of periods is called a periodogram. Oscillations
in the observations correspond to features in the periodogram called lines by analogy to spec-
troscopy. However, since similar features may arise due to noise in the data, the essential ingre-
dient of each period search method is a criterion for statistical significance of the lines. The
most desirable are cases in which the probability distribution of the statistic is known so that
the criterion corresponds to testing the validity of a certain statistical hypothesis for a given
value of the test statistic. In this paper we discuss those methods in which observations are
folded and grouped into bins according to the phase of a trial period. Since in effect this is a
classification of observations, we propose in Section 2 to use a standard statistical method for
testing significance of the classification, namely the one-way analysis of variance. Several
period search methods and the AoV method are compared in Section 4. Examples of use of
the AoV method are given in Section 5.

2 Analysis of variance and related test statistics

Most textbooks on statistics discuss the AoV method. We summarize here the basic concepts
of the method and results of its application to random data, because they constitute a
convenient departure point for our discussion of periodic data and for comparison of period
search methods. We follow Fisz (1963) and use his notation: n, X are the total number of
observations and their average, ris the number of bins, »;, X, are the number of observations in
the ith bin and their average and x;=x(z;) is the jth individual observation in the ith bin,
obtained at time ¢;. With no loss of generality we put x=0. Three statistics s}, s3 and s3 are
defined

They satisfy an algebraic identity
(n=1)s§=(r—1)st+(n—r)s} (2)

valid for any observed values of statistics, so that all three may not be independent. Here we
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have departed from the Fisz (1963) notation since we use s2 instead of his s2. We reserve the
symbol s for the generic name of all three statistics.

2.1 A PURE NOISE SIGNAL

Let us assume that the observations are Gaussian white noise with zero mean and variance
chosen for unit of power

E[x;]=0, Var[x;]= %=1, Cov[x;x;]= 0,9, (3)
We call this assumption our null hypothesis H,. If the hypothesis is valid then the probability
distributions of (r—1)s?, (n—r)s? and (n—1)s2 are x? with r—1, n—rand n—1 degrees of
freedom and s? and s3 are independent. It follows from equation (2) that s3 is not independent

of s? and s3. In fact, their correlation coefficients may be calculated using this equation. We
summarize here properties of all three statistics

E[sf]=E[s}]=Els§l=0’=1

2
Var[sfl=-—7,  Varlsi]="—,  Varlsj]=

Cov[s?s3]=0, Cov[s?s3]=Cov|[s3 3]

The expected values of all s> demonstrate that the s? statistics are unbiased estimates of o2
In general we do not know the expected value of . So in order to verify H, we have to use the
ratios ©, = s?/s3, ©®, =s3/s2 and ©,,, = s?/s3 instead of the individual values of s%. The ©,
statistic is the standard AoV test statistic. Since it is the ratio of two independent y? random
variables it has Fisher-Snedecor F distribution with »— 1 and »n —r degrees of freedom

E[@l=—""> (5)

2n—r(n-23)

Var[®on] = (r—l)(n _r_2)2(n —r—4) .

However, ©, and ©, are not ratios of independent random variables, so it is not guaranteed
that their probability distributions are F distributions.

The ©, and O, statistics or their functions are used in practice as test statistics. We shall
investigate their distributions now while we defer any discussion of their relation to other
statistics to Section 4. For our purpose it suffices to consider only an asymptotic case

n-— o, r-»o and r/n—0, (6)

in which distributions of all s? are approximately normal by virtue of the central limit theorem,
under certain conditions which are satisfied here. On the one hand, we shall demonstrate that
our results are interesting whereas, on the other hand, calculation of the distribution in the
general case may be difficult. Additionally, we assume that all bins contain an equal number of
data n,. The latter assumption is not particularly restrictive since we may skip some data and
adjust bin borders accordingly.

It follows from equation (4) that in the asymptotic limit the relative scatter of the statistics
JVar[s?]/ E[s?] decreases to zero. So, we may expand any sufficiently smooth function of s? in a
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series around their expected values E[s?] (Eadie ef al. 1971, their equation 2.43). In this way
we obtain the expressions for expected values and variances of all ©, in terms of known
expected values, variances and covariances of s? (equation 4). We obtain the following
formulae

E[O,v]=E[O,]=E[O,]=1

_ 2(n—-1)
Var[®,,v] = (n-r(r—1) (7)
Varl® 2(n—r)
o= -1
_ 2(r-1)
Var[@)z]——————(n_r)(n_l).

It turns out that the limit of Var[®,] is not a limit for any Fisher-Snedecor distribution, since in
its expression the numerator does not contain the sum of factors in the denominator, as it
should. In consequence, we have proven that the probability distribution of the ©, statistic is
not F-type. Using similar considerations it may be proven that the probability distribution of
O, in the limit n> r does approach that of the Fisher-Snedecor variable with r—1 and n—1
degrees of freedom. In order to understand these results better, let us note that in the limit the
correlation coefficient o[s3s3] approaches unity while the coefficient p[s?s3] approaches zero.
Of course, vanishing of the correlation coefficient does not imply independence of s? and 53
required for applicability of the F distribution, but nevertheless it is a necessary condition. We
conclude this section by stating that for small r and n, ©,,, has the F probability distribution
but two other statistics certainly do not have the F distribution.

2.2 A PERIODIC SIGNAL WITH NOISE

In this section we consider properties of the © statistics under an alternative hypothesis H;
Namely we assume that observations contain the sum of a white noise a and a periodic signal f:

Xy =4ay +Afij- (8)

The noise a; = a(t;) satisfies equation (3). The periodic signal has amplitude A and period P.
The function fis an arbitrary periodic function with period F,, normalized to unit amplitude.
With no loss of generality we put f=0.

Straightforward calculations yield the expected values of the s? statistics:

E[s?=1+A2F?
E[sj]=1+A’F} (9)
E[s}]=1+A%F%,

where

2_ 1 d P72

Fl_r—l,gln'(l f)

F=—L % 5 (5,77 (10)
R—=7ri=1j=1

Fi=—— 3 3 (f,-i7
R=ri-1j=1
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are coefficients dependent on the shape of the signal and independent of its amplitude. It
follows from equation (9) that the asymptotic distributions of s> do depend on the shape of the
periodic signal.

Again we consider the asymptotic case (equation 6). With such assumptions, and for a small
A, the distributions of all statistics considered here also tend to the normal ones. Since the
expected values of the s? statistics approach unity while their variances still remain small we
can again expand functions of 52 in a Taylor series. In this way we obtain approximate expected
values of ©

E[@xn]=1+AXF;—F3)+ O(A*)
E[®,]=1+A*Fi-F)+0(A" (11)
E[@®,]=1+A*(F;—F;)+ O(A*).

The coefficients F? do satisfy equation (2) (Fisz 1963), so we can eliminate one of them from
equation (11)

-1
E[@]=1+AXF:—F) " + 0(4"
2/ 2 LA 4
-

E[©,]=1-AXF-F3)+ 0(A%.

We shall compare the power 1—f of various © statistics for testing randomness of
observations (Eadie et al. 1971, their equation 10.2). In order to make our task simpler we
derive an explicit expression for the power. Since in the asymptotic limit the probability
distributions of ® are normal, their power 1— f may be expressed in terms of the error
function erf (Abramowitz & Stegun 1964)

1] [e"(a)-E[®; 4]
1-5 2[1 erf[ 2 Varl®; 4] ” 13)

where O (a) is the critical value of the © statistic for confidence level a. The critical value
satisfies an equation

_1f,__ [e"(a)-E[;0] |
“”2{1 e“”f[ Va0 ” (14)

Note that after the semicolon we indicate explicitly the dependence of means and variances on
amplitude A. For small amplitudes A we may expand the argument of the erf function in
equation (13) in a Taylor series. After retaining two terms of the series and substituting
equation (14) we obtain an explicit approximate expression for power of the test

1-pB=4{1—erflerf ~1(1—2a)—A2S]}, (15)

where

g |[4E[©;0] 1

_‘ dA® | [2Var[®;0]’ e
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The power of a test increases with the factor S. The presence of the periodic signal does not
affect the expected values of the individual © statistics in the same direction, since the factors
multiplying A? in equation (11) may differ in sign. We ignored that fact in order to simplify
explanations. However, we account for it by taking the absolute value in equation (16). In order
to calculate the power we substitute equations (12) and (7) into equation (16). The striking
result is that in the limit of equation (6) and for small amplitude A the power of all three ©
tests is the same

(n=r)(n-1)

S=(F;—F3) S0—1)

. (17)

3 The AoV periodograms

Now, let us consider properties of the © statistics as functions of their parameter, namely the
trial period P. We assume that the observations x; remain fixed. As a consequence, the
parameters of the signal, namely its period P, and amplitude A, are also assumed to be fixed.
For convenience of notation we shall skip most explicit references to those parameters. Under
such assumptions the statistics are ordinary, non-stochastic functions of P. Plots of these
functions of P are called periodograms. Any detectable periodic signal in the observations
produces a feature in the periodogram at its corresponding period F,. The feature is called a
line by analogy with spectroscopy.

Let us note that s3 and F3are independent of P and so are the left-hand side of equation (2)
and their equivalent for F2 It follows from the equations that s?(or F?) and s%(F3 periodo-
grams are reflections of each other and so are ®, and ©, periodograms. It follows from
equation (12) that all ® periodograms for small-amplitude signals are identical, except for
scaling. All three © statistics depend on period P via the F P) function, therefore they all
have the same spectral resolution.

As before we consider the asymptotic case (equation 6). Additionally, in order to avoid
boundary effects, we assume that the observation interval [ — T, + T] covers many cycles

Py

It is interesting to note that we do not request good coverage of each cycle by observations. On
the contrary, the number of observations per cycle may tend to zero, as long as sufficient
coverage of all phases is ensured by the whole sample. The expected continuum value of the
statistic is near unity, even for finite signal amplitudes, provided that our asymptotic
assumptions hold. We defer the proof for Section 3.1.

The depth of a spectral line is a function of the ratio ©(F,)/@(P)=E[O(P,); A] (see
equation 23), so that the results of Section 2, in particular equation (12), apply here. We
approximate the profile of the line by a parabola in order to simplify the estimate of its width
A, (HWHI)

FyR)~Fi(R) 030 Py (37 (19
FR) TV 2A(f?)

The truth of the latter limit value remains to be proven in Section 3.2.
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We apply our results to two kinds of periodic signals frequently encountered in practice: (a)
a sinusoidal signal and (b) a Gaussian narrow pulse

2

fi=sinot  (f2y=} <f:3>=% (20)

fi=exp(220?)~2e  (f2)=e-2¢ <f{3>=;’2:—6,

where &= J7a/P,. Both powers (or S factors) and resolutions A, 12/ Py of the AoV and related
tests are functions of number of bins r or of bin width 6 = P/2r:

Sa=1 (1_ 16n2) (n—r)(n-1) Aipa _ 3P (21)

3r 2(r—1) P,  2af2T

S ';zl c— 47 (n'_r)(n—].) Al/Z ~ ﬁpos
° 3rie 2(r—1) P, [2aT’

For the sinusoidal signal the maximum power of © tests is achieved for a small number of bins
r. However, very small bin numbers r<3 should be avoided since then the tests become
excessively sensitive to the phase of the signal. For narrow pulses the maximum power is
achieved for bins and pulses of comparable widths. Resolutions of the ® tests and of the
Fourier spectrum for a sinusoidal signal are comparable. However, for narrow pulses the gain
in the resolution achieved by binning observations is substantial.

3.1 THE CONTINUUM

As long as the assumptions of equations (6) and (18) hold and times of observations are not
correlated with the observed signal, the sums in equation (10) are good Monte Carlo or other
approximations of integrals. Texts on numerical integration discuss convergence of such
approximations.

In order to estimate the continuum level we consider. F2 for periods P sufficiently distant
from any spectral lines or their harmonics. Following our assumptions we may replace the
average of signal values in ith bin by a sum over the whole interval [— 7, + T] covered by
observations:

{1}

, 1
fimyi= Z_TJ' {(8)f(2) dt, (22)

where E (¢) is a function which assumes value 1 for #falling into ith bin and 0 otherwise. Since
periods P and P, of E and f are non-commensurate, these functions are orthogonal with
respect to integration, i.e. f,~ 0, for large T and for f=0. It follows from equation (10) that in
the limit F3- F2, so that equation (12) implies

E[®@(P;A]~1 if P#P, (23)

This continuum value does not apply if the observations cover a short interval of time or if
noise in the observations is correlated, since our assumptions hold no longer. In the first case,
when a small number of cycles was observed, an interference with the boundaries produced
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similar effects to those in the Fourier analysis with no window trimming. In the latter case the
departure of the continuum from its white noise level is the worst for the mean correlation
length equal to the bin size. Let us assume that, on average, n, consecutive observations fall into
a single bin and that they are correlated. Then our effective number of independent data points
is less by a factor of #, and so we overestimate the correction factor for the number of degrees
of freedom in B, by the same factor (Section 5.2).

3.2 THE LINES

Now we are going to consider the profile of a spectral line defined by the shape of F4 P) near
the line centre at F,. We assume that P satisfies an inequality A < P, where A = P— F, and that
the other assumptions from Section 3.1 hold (equations 6 and 18). In particular we stress that
no coverage of each cycle by observations is required. Large gaps in observations are
permitted as long as all F, phases are covered during a single beat period of P and F,. The
intrinsic or natural profiles of the spectral lines are rarely observed in practice, in close analogy
to spectroscopy. Profiles of lines in the periodogram are in most cases artefacts produced by
observation and data analysis procedures.

We start our analysis from consideration of the behaviour of the sums (or their integral
approximations) in equation (10) near F,. It is convenient to expand a periodic function of time
in terms of small variables, the halfwidth of a bin, 6 = P/2r, and the distance from the line
centre A

~<—

(0= (g kA + )= 1)+ £ () kA + i+ B e (24)

where ¢, is the phase in the centre of the phase bin corresponding to ¢, in units of time,
k=[t/Pland t=1t—¢,— kP, | 7| < 0. We exploited the F, periodicity of the function fand primes
indicate the time derivatives. The integral over the whole interval of observations may be
replaced by the sum of the integrals over small intervals where the expansion {equation 24)
holds so we obtain an operator equation

1 +T 17 1 (TIP,) 1 ()
“J di== ) > — | dr (25)
}

Explicit formulae for v, (equation 22) and F3 may be obtained using the above expansions
of functions and integrals. The calculations are straightforward but tedious so we just give the
end results, retaining only their most significant terms for A~ 0 —~0

¥~ f(4)) F3~56%f"%)

.

¥;~0 F3~0 (26)
. fle)T L, 2THS)

Yi 3P§ F; 3P20

and

Fi~{f*,

where () indicates a value averaged over the P, period. Dots indicate the partial derivatives
with respect to the trial period P.
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4 Comparison of methods for period search

The results of Section 2 enable the comparison of various methods of period search relying on
folding and binning of observations. S78 describes two statistics, namely the phase dispersion
minimization (PDM) statistic, and Whittaker & Robinson (1926) @y statistic. The PDM
statistic is a modification of Lafler & Kinman (1965) statistic. We shall compare all three
statistics with the AoV statistic.

4.1 THE PHASE DISPERSION MINIMIZATION (PDM) STATISTIC

For simplicity we use only a single bin pattern (or ‘a cover’), although the PDM statistic was
used frequently with multiple bin covers. One can easily see that the PDM statistic is identical
to the ©, statistic in Section 2. Thus, its distribution for H, is not at all the F distribution, even
in the asymptotic limit of equation 6. In the limit the true variance of the PDM statistic is by a
factor of 1/2 n less than the one for its distribution given in S78. The cause of the discrepancy
is the fact that the PDM statistic is the ratio of correlated statistics, unlike the Fisher-Snedecor
F statistic. The erroneous distribution renders this test insensitive to small but significant
signals. In fact, the more observations are available, the less sensitive is the erroneous signi-
ficance criterion. In Section 5.1 we demonstrate that also for a small number of observations,
loss of sensitivity occurs. The effect was in fact noted (S78) and left unexplained. In principle,
one could use the asymptotic normal distribution found in Section 2 in order to correct the
significance criterion. As we demonstrated, such a test would be no more powerful than the
AoV test. However, it would still fail for small samples since in this case its distribution is
unknown and the correlation may result in accepting spurious periods as real.

4.2 WHITTAKER AND ROBINSON STATISTIC

Not quite the same situation applies to the © yy statistic. Assuming that bins were selected so
that they contain an equal number of points »; = constant, equation (6) in S78 may be written
in our notation as

_ 2
Flr—1,n—1)~—_|1-1+31). (27)
(r—=1)n; nisg

The right-hand side of the equation does converge in the limit of equation (6) to ®,, which
approaches the F(r—1, n —1) distribution (section 2). So for a rich sample the criterion given
in S78 for O yy, yields correct results. Nevertheless, use of the © yy, statistic for small samples
is not recommended since its distribution then remains unknown.

4.3 LAFLER AND KINMAN STATISTIC

Lafler & Kinman (1965) introduced a statistic which we designate ® . The AoV statistic for
bins containing two observations each, called here the AoV2 statistic, is directly comparable to
it. In order to demonstrate this, we define a covariance coefficient C=2_, x;x;,,/(n—1). The
sums in both statistics can be expanded and expressed in terms of s3 and C, namely

N2+ cn
T O =2""—. (28)

AoV2 = T2
° S'!O_C” SO

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1989MNRAS.241..153S&db_key=AST

FTIBOMNRAS, 2417 ~ 15350

162 A. Schwarzenberg-Czerny

We indicated the sums of even terms with !! and exploited an approximation s3/2 = s!!3. There
are two cases to be considered. For small amplitude A the covariance C is also small and
O xx0O M2 For large A the covariance C—s3 and ©x © 1ov2. We assumed that the
number of observations is so large and the bins sufficiently narrow that C/s3 = C!/s!3 holds.

One consequence of the fact that the two statistics are functions of each other, in the large
sample limit, is their equal sensitivity and resolution. However, we demonstrated in Section 3.2
that the AoV test with many observations per bin is more sensitive than the AoV?2 test. So, in
ordinary cases the AoV statistic is more sensitive than ©¢. An exception holds for pulses so
narrow that their width is comparable to 1/n (Section 3.2). However, we have little chance of
seeing more than one such pulse.

5 Examples
5.1 paOoTOMETRY OF BK Cen

For a direct comparison of the AoV and PDM methods let us consider n=49 photometric
observations of the double mode Cepheid BK Centauri by C. J. van Houten, published by
Leotta-Janin (1967) and treated previously with the PDM method (S78). In Fig. 1, we present
the AoV periodogram computed for »= 5 bins of equal extent in phase.

The continuum level corresponds to ©,,, =1, as expected for a random noise. However,
the signal-to-noise ratio for these observations is 50 or more, so that they are clearly non-

AoV periodogram BK Cen

Fourier spectrum

0.1 0.2 0.3 0.4 0.5
FREQUENCY

Figure 1. The analysis of variance (AoV) and Fourier periodograms for the photometric observations of the
double-mode Cepheid BK Cen (Leotta-Janin 1967). Frequency is in cycles per day and power in arbitrary units.
The annotation of the lines follows the PDM analysis by Stellingwerf (1978). The dotted line indicates the
critical value of the AoV statistic for the significance level 0.05, uncorrected for bandwidth (see text).
Comparison with the PDM results indicates the superior sensitivity of the AoV criterion.
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random. The explanation of the paradox relies on the large mean interval between consecutive
observations of 137/49 d, compared to the basic period. In effect, the consecutive observa-
tions are uncorrelated. It results immediately from the definition of © Aov that it depends
primarily on the correlation coefficients, so that we naturally obtain the continuum value near
unity for observations which are strongly dependent.

Several lines appear in the periodogram. Their annotation follows S78. The critical value of
the F statistic for r—1=4 and n —r=44 degrees of freedom at 0.05 significance level is 3.78
and is indicated in Fig. 1 by the dotted line. Since we are looking for lines at locations known in
advance, i.e. at combinations of the basic and first overtone frequencies, no correction for the
total bandwidth is required. One can see that almost all lines marked are statistically significant
contrary to what is indicated by the PDM significance test (S78). The advantage in using the
AoV method is clear in this case. In a general case of search for lines at random locations, all
probabilities should be corrected to account for the larger probability of detecting spurious
lines in a wider frequency band (e.g. Scargle 1982). Each line occupies at least a 2A , band in
the periodogram. This band should be increased if sub-harmonics are present. Therefore a
periodogram is equivalent roughly to T/A, , independent observations of the statistic © Ao+

5.2 PHOTOMETRY OF V603 Aql

The old nova V603 Aquilae (1918) was recently observed photometrically by Udalski &
Schwarzenberg-Czerny (1989), who obtained nine runs lasting several hours each and

V603 Aql

40

20

Fourier spectrum

1 1 ] 1
10 20 30 40 50

FREQUENCY

Figure 2. The same as Fig. 1 for one of nine runs of observations of Nova V603 Aquilae obtained by Udalski &
Schwarzenberg-Czerny (1989). The run lasted 3.9 h and the main 3.5-h period was removed from the data. An
arrow indicates the 61.4-min oscillation period discovered by these authors in optical and X-ray data. Since in
the AoV periodograms no harmonic artefacts are produced, the first high-frequency feature (at 25 cycles d—1)
ought to be real, indicating detection of the 61-min oscillation in this single run (see text for details).
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spanning 30 d. They discovered an oscillation with a 61-min period and 0.02-mag amplitude.
Their discovery was contirmed by subsequent analysis of the Einstein satellite X-ray ‘light’
curve. Its power spectrum revealed a single strong line corresponding to the period 61 min.
The complicating factor is that the oscillation is masked by a 0.2-mag amplitude sinusoidal
variation with a 3.5-h period and by random flickering of similar amplitude. It is interesting to
note whether a single night of observation may suffice for detection of the oscillation, in such a
difficult case of S/N=0.1. In Fig. 2 we present the AoV periodogram computed for n=609
observations obtained during 3.9 h on 1988 August 14 by Udalski & Schwarzenberg-Czerny.
Although the main 3.5-h period was removed from the data, some residual features at low
frequencies clearly remained.

The mean continuum level is as much as © ,,, = 5. Such a high value of the continuum was
obtained despite the presence in the data of relatively large and random flickering. The cause is
the large time-scale of the flickering, typically several minutes, compared to the 20-s
separation of observations. In effect, consecutive observations of essentially random signals are
strongly correlated. In such circumstances the null hypothesis H, is not valid and neither does
the Fisher-Snedecor significance criterion apply. In Section 3.1 a partial remedy for correla-
tion of observations was discussed. Namely, one can adopt the value of the mean continuum
level for the mean number of consecutive correlated observations n,=5. Then, one should
divide all values of ©,,, by 7. in order to obtain statistically meaningful values. In the obser-
vation domain such a procedure corresponds to taking mean values of observations over the
correlation length. They are independent by design so that the results of Section 2 apply again.

Let us note a particular property of the periodogram for folded and binned data, namely,
that no spurious harmonic features of the main component are produced by the AoV analysis.
Instead we may get some sub-harmonics. Thus, the highest frequency feature in the AoV
periodogram, in our case at 25 d !, ought to be real. The peak value of the ©,,,/n, statistic is
5. The critical Fisher-Snedecor value for r—1=4 and n/n,—r =117 degrees of freedom is
®.=2.45. It appears that the peak is statistically significant, which means that the 61-min
oscillation may be detected during a single night.

6 Conclusions

On the one hand analysis of variance (AoV) found numerous applications in experimental
science, so its use should not require any special justification. On the other hand, astronomers
who search for periods in their observations tend to avoid its use. In this paper we have argued
that AoV is ideally suited for the purpose of detection of sharp pulses by folding with trial
periods. As we have shown in Section 2.1 for large samples the AoV significance test is
asymptotically as powerful as other tests in use. For small samples the main advantage of the
AoV statistic over the competition is its exactly known probability distribution. Its probability
distribution for small and large samples and for H, hypothesis is the Fisher-Snedecor F
distribution. Computation of the AoV statistics requires no more operations than computation
of the other statistics, except that one has to be careful not to repeat the computation of some
sums.

In Section 4 several statistics for testing significance of periods were compared. Compared
to ©,,, the other statistics considered are neither more powerful nor easier to compute.
However, they all suffer from the lack of known distribution for small samples. The original
significance criterion for the PDM method by S78 is incorrect. The Lafler and Kinman statistic
corresponds to the AoV2 using bins containing two observations each, with loss of power of
the test compared to the AoV test with a small number of bins. The AoV statistic does not
suffer from any of these disadvantages.
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