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SUMMARY

Periods of oscillation are frequently found using one of two methods: least-squares
(LSQ) fit or power spectrum. Their errors are estimated using the LSQ correlation
matrix or the Rayleigh resolution criterion dvi = 1/AT, respectively. In this paper we
demonstrate that both estimates are statistically incorrect. On the one hand the LSQ
covariance matrix does not account for correlation of residuals from the fit. Neglect of
the correlations may cause large underestimation of the variance. On the other hand
the Rayleigh resolution criterion is insensitive to signal-to-noise ratio and thus does
not reflect quality of observations. We derive the correct variance estimates for the
two methods. In the process we demonstrate that centre of the power spectrum line is
a maximum likelihood estimate of frequency of the oscillation and demonstrate it is
statistically equivalent to fitting of a sinusoid by LSQ, so the methods are statistically
equivalent. Our new and correct variance estimate is quite simple and practicable. It is
using the autocorrelation function (ACF) of the residuals to determine their mean
correlation length and is valid under certain assumptions. We tested the extent to

which the assumptions may be relaxed by numerical simulations.

1 INTRODUCTION

In the first paper of this series (Schwarzenberg-Czerny
1989), attention was focused on detection of coherent
oscillations among noise, and testing its statistical signifi-
cance. In the present paper we assume that the oscillation has
already been detected. We discuss critically classical methods
for determination of the value of its period. We point out
statistical inconsistencies in them. The inconsistencies mainly
affect the error estimate and only rarely the period value
itself. So we focus our attention on error estimation. Practical
experience shows that current error estimates are rarely, if
ever, reliable. They are certainly inconsistent with the scatter
of measured period values. We pay special attention to
methods for determination of periods from a power spec-
trum line and by LSQ fitting a sinusoid, because of their great
practical value. Our interest is also motivated by their
apparently contradictory properties. Namely, on the one
hand Lomb (1976) and Scargle (1982) found that the two
methods use the same statistic. On the other hand, in their
currently used form they yield mutually inconsistent
accuracy estimates. The LSQ variance, based on the inverse
normal equations matrix is sensitive to the signal-to-noise
(S/N) ratio. The power spectrum resolution criterion, due to
Rayleigh is independent of the S/N ratio. Based on sound
statistical principles, we analyse these methods anew and
demonstrate that they are indeed statistically equivalent.
Thus they yield same period estimate and with the same
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accuracy. However, the true accuracy turns out to be
inconsistent with either of the afore-mentioned classical
estimates.

An important role in our analysis is played by correlation
of noise in observations. What really matters is the correla-
tion of residuals from the fit of a sinusoid performed either
explicitly by LSQ or implicitly by calculation of power
spectrum. The correlation of residuals may arise for various
reasons. Namely, (i) the physical process under study may
produce noise with some degree of correlation (e.g. flickering
in Cataclysmic Variables and X-ray Binaries), (ii) imperfect
measurements may introduce further correlations (e.g.
atmospheric transparency variations) and (iii) the assumed
mathematical model is a poor fit (e.g. a sinusoid for Cepheid
or pulsar light curves). Most observers are quite weary of the
type (ii) effects and strive to avoid them. Since all physical
systems have limited frequency response band, none is quite
free of the type (i) effect, although its role might be negligible
in certain cases. Actually, observations of the effect give an
extra information on the involved physics. The type (iii)
effects are by far the commonest cause of correlation in the
residuals. Also, observers are mostly ignorant of their role.

Most textbooks on statistics explain how to take into
account correlation of observations in the least-squares
analysis and essentially we could finish the first part of this
paper by stating so. However, the author is not aware of
observations published in a refereed astronomical journal in
which correlation of observations was explicitly taken into
account in period determination by LSQ. Evidence exists to
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support the dim suspicion that in no cases is the correlation
accounted for. In Section 2 we discuss formulation of the
LSQ method for both correlated and uncorrelated observa-
tions. We restrict our discussion to observations depending
on one independent variable, e.g. time. In Section 3 we
discuss effects of the correlation on results of period analysis
and consequences of their neglect. For this purpose we use
analytic considerations. As a particular case we discuss
period determination by LSQ fitting of a sinusoid.

Because of affinity between power spectrum and the LSQ
fit of a sinusoid (Lomb 1976; Scargle 1982) we turn our
attention to power spectrum analysis too. First we consider
as an academic example a maximum likelihood method for
period determination from a power spectrum. From proper-
ties of this method we draw several conclusions of practical
importance. In Section 4 we outline practical methods for
estimation of periods and their variance. We tested our ideas
by Monte Carlo simulations discussed in Section 5.

1.1 Least-squares analysis for correlated and uncorrelated
data

The least-squares analysis is sensitive to correlation of
observations noise (‘the residuals from the fit’). The most
commonly used LSQ algorithm is valid only for Gaussian
white noise residuals with the covariance matrix C,= o’l.

In order to establish notation we rederive the formulae for
the LSQ method. In a general case of correlated data, the
parameters y of a function f,(y)=f(¢,y) are fitted so that the
sum of squares of the residuals is minimal (Eadie et al. 1971):

min.= Q=[x —f(y)[CJx—f(y). (1)

It is convenient to expand the vector function f(y) into
Taylor series around a point y, close enough to the solution.
Retaining only first and second terms we get

If(yo)

S =f(yo)+ 3

(¥y= o)

After translation of origins in x and y spaces to f(y,) and y,,
respectively, we obtain:

min.= Q*=(x—Ay)'C (x—Ay), (2)

where matrix

A= Af{ yo)

Ul 3
9y,

called a design matrix depends on a given problem. The
linear expansion is accurate enough as long as f(y) is
approximately linear for 1o changes in y. When this is not the
case, the LSQ estimate is no longer optimum and unbiased.
Then the maximum likelihood solution should be used
instead of the LSQ method.

The solution of equation (2) is obtained in a standard way
be equating gradient of Q? to zero. Its covariance matrix
follows from the change of variables theorem:

y=(A'C, 'A)"IATC, ~!x (3)
C,=(A'C,A)"". (4)
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Neglecting the correlation of residuals leads to a solution and
its covariance matrix which are both incorrect. They are
obtainable from equation (4) by substitution of 1 for C,:

yU=(ATA ) 'Alx (5)
CY=0YA'A). (6)

Here, o= Var{x,} denotes the variance of the noise. The
solution and their errors which are used in literature corre-
spond to y' and C{?. They do differ from the correct ones
given in equation (4). Later we show that the difference
between the solutions is of little consequence. However,
difference of the correlation matrices is profound. More, y'!)
and C{?) are mutually inconsistent. If we treat y!!) as a certain
linear function of x, then its covariance matrix according to
the change of variables theorem is (e.g. Eadie eral. 1971):

Cl))=(A'A)"'ATC,A(ATA ). (7)

Itis C\!) rather than C{?) which is the correlation matrix of y''.
Note that Toeplitz C, does not guarantee that C, is Toeplitz.
The asymmetry of C, reflects the asymmetry of A and it
stems from asymmetry of parameters of the fitted curve.

The case of perfectly correlated groups of D observations
each is easy to understand. To account for correlation it is
enough to use only one observation from each group, set
C, = 0,1 and substitute into equation (6). Because the omitted
observations contain no additional information, no increase
of covariance C, is incurred in this way. The used observa-
tions are uncorrelated so the results are correct and corre-
spond to y and C,. Algebraically skipping observations
corresponds to division of both ATA and Afx by D. Com-
paring results, what we see is that no error in the solution is
produced by neglect of correlation but covariance C?' is
underestimated by a possibly large factor of D:

y=y!'=(A'A)"'A’x (8)
C,=C\'=g,D(AA)"! (9)
CP=o(AA) " (10)

One can expect similar results for a general signal with finite
correlation length. In the next section we demonstrate that it
is so indeed. Summarizing, both least-squares solutions y and
¥\ are equivalent and have the same covariance matrices
C,=C\". Thus neglect of correlation of noise does not affect
the values of the least-squares solution, as long as our assump-
tions hold. However, the error estimates suffer severely from
the neglect. The covariance matrix which is used in literature
for period estimation, C{!is smaller from the true correlation
matrix C, by a possibly large factor D. Thus neglect of the
correlation causes underestimation of errors by a factor equal
to a mean number of observations with correlated noise.

2 NOISE WITH A SMALL CORRELATION
LENGTH

2.1 Evenly spaced observations

Let us for the rest of this paper assume that observations
depend only on one independent variable - time. In a more
general case of correlations in observations obtained in
multi-dimensional space of independent variables, one has to
consider number of correlated observations in adjacent
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volume. Further, we assume that the noise is Gaussian, i.e.
that its component 7, is normal random variable, E{n}=0
Var{n}=1 for any fixed time r. We shall consider here two
kinds of noise. The white noise w has identity covariance
matrix C,=FE{wiw}=1. Any stationary noise process has
Toeplitz covariance matrix, i.e. a Hermitian matrix homeo-
morphic to the autocovariance vector a: C,;=a;_;=a,_;.
The stationary noise with finite correlation length D has
band covariance matrix, with band width D. Each noise can
be represented by filtered white noise. Its covariance matrix
also depends on the filter. In matrix notation:

n=Bw (11)
C,=BB/, (12)

where matrix B defines the filter. The covariance matrix has
no more symmetry than its filter matrix, except for its
Hermitian property.

We shall denote the time interval spanned by observations
by T, the characteristic length of observed signal (e.g. period)
by L and the noise correlation length by D. We shall
consider only an asymptotic case of short correlation length

T>L>D> 1. (13)

In any realistic case, matrix A is rectangular and has no
symmetry at all. The covariance matrices C,, C{’ and C{!)
differ by powers of C,. On the one hand, only ~ D terms in
each row of C, are large, and so only ~ D terms of column of
A contribute to each product. On the other hand, since we
assumed A varies only on length L large compared to D, all
elements of A which contribute are nearly the same:

(C.A);=~ [Z <a)4 A;. (14)

k

For circular C, all sums in the square brackets are the same.
For Toeplitz C,, C,A=AA. If all observations are positively
correlated A= D. Very much the same applies to multiplica-
tion by an inverse Cy !, except that now the factor is 1/D, so
that the product by C 'C, returns A.

A more strict derivation of these factors is possible. For
lack of space we sketch it only. It follows from the derivation
of equation (14) that the factors do not depend on A. Also
Toeplitz C, can be approximated by a circular matrix dif-
fering from it only in corners, with no large effects on the
matrix products considered. Then, circular matrices C form a
group with matrix multiplication which is homomorphic to
the group of corresponding vectors ¢ with convolution or to
the one of their Fourier transforms & ¢ with common multi-
plication. Assuming Gaussian filter b of width D for the
noise, one can easily perform all calculations in the ¢ group
and then convert results back to matrices. The results are the
same as in equation (9). Some attention must be paid to the
normalization of b since the variance of x, oi, is known to the
observer and must be kept fixed. Equation (9) is valid for a
general asymmetric and rectangular design matrix obeying
restriction on length scale given by equation (13). Although
strictly speaking they are valid only for circular C,, for 7> D
deviations of C, from circular symmetry are so small that to a
good approximation can be neglected. Thus our conclusions
may be extended on a general case of stationary noise since
its covariance matrix is Toeplitz.

2.2 Unevenly spaced observations

Under certain conditions the results of the previous section
are extendable for the case of observations unevenly distri-
buted in time. They depend on convolutions of rows of C,,
i.e. of shifted ACF, with columns of A. The convolutions can
be represented by integrals. The results hold as long as the
distribution of observations in time is such that the ACF can
be found (Edelson & Krolik 1988) and the products of rows
of C, times columns of A are good Monte Carlo approxima-
tions of the corresponding integrals. We shall not expand this
topic in this paper as it belongs to the Monte Carlo integrals
theory. Clearly the conditions are not satisfied, e.g. when the
average separation of observations is larger than the correla-
tion length D or when there is a pattern in the distribution of
the observations at the length comparable to the charac-
teristic length L of the fitted curve. The correlation length D
now corresponds to the mean number of consecutive corre-
lated observations.

3 ON VARIANCE OF PERIOD ESTIMATES

3.1 The least-squares period estimate

Let us now consider a specific case but with important
applications, namely that of fitting by LSQ of the periodic
function of time s(Q¢), such that

1

s(g+1)=s(¢)= > Y:@{9) (15)

i=2
and all trial functions ¢, are orthogonal

J ¢i(¢)¢j(¢) d¢=6ij‘ (16)

It is convenient to introduce new notation for the oscillation
frequency Q=y, and for the normal equations matrix
6 =A'A. Applying the results of the previous section we find
that the variance of Q is

Var{Q}EC‘,,,=0§D(9_I)H. (17)

Since the design matrix A is built of derivatives of s so we
obtain the elements of ® by differentiation and summation:

Ot (a_vf)_(;’)<(a¢)> 3 <(a¢)> 18)

Js, Os,
O=2t- #u= — 9| =0, 19
i (;’)<a¢‘”’> 1)
ei/’:z i ={ @)= 0 (20)
ij=2,..., I, (21)

where 9 is Kronecker symbol and (.) indicates time average.
Note that we replaced variables of differentiation in the
design matrix ds/dQ2 = t(ds/dg¢). Both s and ¢ are periodic
and ¢ does not change much over one period P= L because
of our assumption T L (equation 13). Therefore we
dragged their average values outside the sums over time.
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Here we assume that the distribution of observation is such,
that we can replace sums by the corresponding integrals.
This is a rather weak assumption, amounting in essence to
requiring that moments of observations are not correlated
with the phase of oscillations under study. It is not necessary
to obtain complete phase coverage during any single cycle of
observations. In fact, less than one observation per cycle may
be still acceptable (Schwarzenberg-Czerny 1989). Before we
proceed to evaluation of the inverse matrix element ©,; let
us note that units of elements of A and © are not homoge-
neous. So their relative magnitudes depend on the choice of
units. Thus we must define our units before proceeding any
further. It is also clear from the form of equation (19) that the
mean time of observation (f) is convenient origin of time, so
that ©,; vanishes. Mean separation of observations must be
taken for the unit of time so that D corresponds to the mean
number of correlated observations, as before. It is convenient
to adopt the amplitude of the oscillation for the unit of
signals s, x and y, i=2,..., I. Thus the following estimates
for the averages hold

2

(p;)=9d; orthonormality, (23)

<g_; ¢">S <(§§) ><¢§>=1 Schwarz inequality, (24)

for all ss except pathological ones with steep gradients and
many discontinuities.

With our particular choice of units and trial functions, the
matrix @ turns out to be nearly diagonal, so that its approxi-
mate inversion is simple. Thus the parameters y; are nearly
uncorrelated. Then the variance of the frequency estimate is

362D ’D
ob __30.D (25)

Var{Qso} = T*(os/og)’y T’

The last equality corresponds to our particular choice of
signal units and a smooth s. We stress once again importance
of symmetric choice of the time origin in keeping period and
epoch uncorrelated and their variances small. This is a par-
ticular case of orthogonalization of variables.

3.2 The maximum likelihood period estimation from
power spectrum

A signal containing periodic oscillation produces a feature in
its power spectrum or ‘a spectral line’. The half-width of the
line 0Q, =~ 27/ T is a measure of power spectrum resolution.
It corresponds to the change in frequency producing half
period phase shift over the whole interval of observation.
Except for a constant factor it is equivalent to Rayleigh
resolution criterion. Comparison with equation (25) demon-
strates readily that the Rayleigh resolution overestimates
period variance by a large factor. In fact it corresponds to a
frequency interval in which the value of sum of squares x? is
less than half of one for a spurious frequency. More
importantly, the Rayleigh criterion or any similar based on
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fixed phase shift is independent of signal-to-noise ratio and
thus does not reflect quality of the data.

Lomb (1976) and Scargle (1982) demonstrated that LSQ
and power spectrum methods use equivalent statistics. How-
ever, they produced no practical methods for exploiting the
equivalence. Henceforth we shall call Scargle (1982)
modified power spectrum simply power spectrum. In this
section we shall derive the maximum likelihood method
(MLM) for period estimate from power spectrum. We shall
demonstrate that this method is equivalent to LSQ fitting of a
sinusoid.

We apply the MLM to estimation of period from power
spectrum p, treated as ‘observations’. It is convenient for the
present purpose to consider p as a vector of components
p(w). The components are numbered by frequency w, a
possibly continuous independent (i.e. non-random) variable.
Let f(p,y) be the probability distribution of p and y its para-
meters, such as w, £; 6%, Q, (S/N),... Some of the parameters
are not random variables, being either known in advance or
specified as arguments, e.g. times of observation ¢ or current
frequency w. They are not parameters in the sense used in
the estimation theory and we shall call them independent
variables. To stress their role we shall indicate them
explicitly, if desirable. The aim of estimation is to find values
of other dependent parameters treated as random variables,
e.g. power of noise o2 or frequency and S/N ratio of the
observed oscillation Q, (S/N). We are particularly concerned
with estimation of Q.

The likelihood function for N independent observations is
usually defined as

In Lip,y)= 2 In f(p;) (26)

In the present case the ‘observations’, i.e. the power spectrum
p(w), are continuous and possibly their values at different
frequencies are correlated. We shall use the following likeli-
hood function:

©

In L(P,y)=J L'l f(p(w),y) do, (27)

where I'(w) is an as yet unspecified weighting function, taking
care of the degree of correlation of observations and normal-
ized so that its integral over a certain frequency band corre-
sponds to a number of independent power spectrum
observations in the band. Integration in equation (27) is
extended over the whole band of power spectrum affected by
a given oscillation, i.e. over its whole window pattern.

In case of discrete and evenly spaced observations cover-
ing a time interval 7, independent observations of power
spectrum are too evenly spaced by the frequency interval of
wy=1/T, for all kinds of signals (e.g. Scargle 1982). Thus the
number of independent observations of power spectrum per
unit frequency interval is

1
'=-—=const. (28)
o

To estimate this number in a general case of unevenly
sampled observations we define a ‘calibration signal’, consist-
ing of the sum of a large number of unit amplitude sinusoids
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with random (i.e. non-coherent) phases and spaced evenly in
frequency by w,. It is a well-known fact, that the power
spectrum of a sinusoid of frequency Q is the sum of the
sampling window functions W(w) shifted to Q. Strictly
speaking, this result is valid for the classical power spectrum
only. For Scargle’s (1982) modified power spectrum one has
to use power spectra of high-frequency unit test signals
instead of W, however, this affects little our argument —
unless a high-frequency pattern is present in the distribution
of observation times. Non-coherence of the sinusoids in the
calibration function ensures that their positive and negative
interferences are equally likely. Thus the expected value of
power observed in the calibration signal is simply sum of
powers of components:

Efp(w)i= 2. Wotnw,). (29)

n=—

For sufficiently dense distribution of calibration sinusoids
this sum is proportional to an integral of the window func-
tion. Equation (29) has a curious property: observed power
grows proportionally to the number of aliases and sidelobes
present in the window function. However, power of the input
calibration signal per unit frequency interval is fixed at the
value of 1/w,. Thus all growth of the observed power is
spurious and related to the fact that the power spectrum
contains more and more correlated frequencies as number of
aliases grows. To account for that and for proper normaliza-
tion the weighting function for the general case must take the
following form

=ijWE(w)dw. (30)
w, [Ww)do
Here, by W¢ and W we denoted the window functions for
equidistant and non-equidistant observation of the same
number and spanning the same time interval 7. The analyti-
cal form of Wy is known so the integral in the numerator can
be calculated by elementary methods. Its value is Cw,, where
C=¢(1)=constant. Thus equation (30) can be rewritten as:

C=[TWdo. (31)

As usual in the MLM, parameters y are found by looking
for the maximum of L or as solutions of the following
equations:

dln L(p,y)

oy =0. (32)

Their covariance matrix is (Eadie et al. 1971, section 8.3):

B

The conditions under which second equality holds are
satisfied here. In order to proceed any further, we must know
explicitly the probability distribution f.

The probability distribution of power spectrum for white
noise is exponential. It depends on one parameter, variance
of the noise (Scargle 1982). However, in the present case we
have to cope with a more complex signal composed of a
noise and oscillation. Additional parameters concerning of

the frequency and shape of the oscillation may have to be
considered. In this paper we are interested in sinusoidal
oscillations only. So the relevant parameters are the
frequency of the oscillation Q =y, and power signal-to-noise
ratio (S?/N?)=y,. By $? and N? we indicate power spectra of
the deterministic and noise components. The moments of the
distribution in such a case are considered in Appendix A.
The expected value and variance are E{p}=S5?+ N? and
Var{p}=0,=2N*25>+ N?), respectively. As long as
S$2> N? the standard deviation is small y Var{p}<p and we
may approximate the expected value by the observed one
E{p}= p. The exact equality holds in an asymptotic case of
strong oscillation S?/N?— ., Then we may use a linear
expansion of the power spectrum as a function (statistics) of
observations x. As such the power spectrum has also
Gaussian probability distribution. The parameters of the
distribution E{p}and Var{p} are already known.

Generally, in the MLM we compare the likelihood of the
power spectrum p(y,) for the true parameter values y, with
the observed one p(y). Substituting Gaussians for f in
equation (27) and expanding p(w;y) into linear function of y
we obtain the likelihood function in the following form:

(y_}’oﬂap(w)f/ayn][ap(w)/a."n](y_)’0)
8N’ (28’ + N7

In L(p,y)=—JI" dw

+ const. (34)

Differentiating and substituting into equation (33) we obtain

_ T do ap(w)' ap(w) |
COV{y}_[J4N2p[1—N2/2p] ay, 9y, .

(35)

The integrated function is of order #(p) so it contributes
most within the spectral lines. It follows from equation (35)
that integration should be extended over the whole interval
where line pattern is strong in order to minimize the
variance. In what follows we shall consider a strong line (S/
N> 1), whose positive-frequency window pattern does not
interfere with the negative one and with other lines. So the
profile of the line is p(w) = po W(w — Q) and depends on two
parameters only: y,=Q and y,=p, (power in the line
centre). Covariance of the two parameters vanishes due to
symmetry of the window function, so that dp/dp, and dp/
dQ are even and odd functions with respect to the line cen-
tre. Thus we demonstrated that the MLM power and
frequency estimates are uncorrelated.

We shall derive a simple analytical estimate of the variance
of oscillation frequency Q. Substituting p(w) into equation
(35) we obtain

Var{9}=%Hr dw(j—:uv) w! k%ﬂ(NZ/Zp)k]~ . (36)

For a strong line and near its centre, where most contribution
to the integral comes from, N2/2p <1/2, so that the expan-
sion converges fast and it suffices to retain only first term, i.e.
unity,

Var{Q}=8—;“§ [ Jrde(d:;W) J_l. (37)
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Replacing the derivative dIn W/dw in equation (37) by its
finite difference approximation 1/0, and recalling equation
(31) we obtain
8o, N
Cpe

Var{Q}= (38)

Relations between signal and noise power density func-
tions po and N? and their amplitudes A and o, follow in a
simple way from Parseval’s Theorem: pgo,~A?=1 and
N?wy= N*= ¢2. We denoted widths of the signal and noise
bands with ¢,=1/T and wy. The = signs pertain to our
particular choice of units.

The noise power density function is affected by presence
of any correlation. Assuming a Gaussian filter of width D
and recalling that the noise can be represented by a convolu-
tion b=w of the white noise w with the filter b we obtain

2
o.D e 1)2‘”3/2'

N=|Fbl’| Fw|' = (39)

T

For our case P> D so the exponent function can be

neglected. Note our choice of the amplitude of the oscillation

and mean separation of observations for units of signals and

time. Substituting into equation (38) we obtain for the single

oscillation case

vari@,}~ 22 (40)
T

This equation has the same form as equation (25) except
for a constant factor stemming from different normalizations.
So the MLM estimate of Q has Gaussian probability dis-
tribution, in the asymptotic case of a strong signal and its
expected value and variance are the same as in the LSQ case.
Thus the MLM frequency estimate is equivalent to LSQ
fitting of a sinusoid, provided that equation (40) is used to
estimate variance. Note that as long as Q <1/D no explicit
knowledge of correlation length is required for power
spectrum period estimation.

One can convert Lomb (1976) and Scargle (1982) results
into an explicit relation of yx? and p: yXw)=
(po—p(®)+2Do2)M/o?, where M, the total number of
observations, and pg, D, o> are constants. Since x2 was
computed for a single oscillation so the relation is valid only
for the corresponding spectral line. The correspondence of
the LSQ and MLM results would correspond to a particular
case of a known theorem that LSQ provides MLM estimate
in the linear case (Eadie et al. 1971). So for strong lines we
can entirely dispose with the cumbersome maximum likeli-
hood algorithm and treat power spectrum as reflected x?2
plot and find the confidence interval accordingly (Fig. 1).

4 NUMERICAL CONSIDERATIONS

4.1 Iterations of the noise covariance matrix

In principle one can assume a trial covariance matrix C, and
obtain a LSQ fit. The residuals from the fit can be used to
find the noise ACF, and its corresponding covariance matrix
C,. Methods exist to estimate the autocorrelation function
even for uneven distribution of observations (e.g. Edelson &
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Krolik 1988). In a general case the input and output matrices
C, are inconsistent. Given the new correlation matrix C,, an
improved least-squares solution can be computed using
equation (4). By iterations the solution can be found, which is
consistent with the correlation matrix C,. This iteration
procedure is cumbersome and its convergence is not guaran-
teed. The iteration procedure may serve as a check and in
cases when other methods fail to work.

4.2 The post mortem analysis

We propose the following simple method for LSQ variance
estimation. Initially proceed as if no correlation was present
in the noise and get the LSQ solution as usual. Fit the
unknown parameters »! and calculate their correlation
matrix C{?’ (equation 6). In order to find by what factor this
matrix underestimates the true correlation matrix Cg,”,
perform a simple post mortem analysis. Namely, find the
residuals from the fit and calculate their autocorrelation
function (ACF). Determine the correlation length D by
fitting a Gaussian function centred at 0 lag and width of D.
As long as the conditions (13) are met, the true correlation
matrix is given by equation (9), or simply

C))=DC}. (41)

We discuss below numerical tests which demonstrate how
reliable is this method.

This method has several advantages. With no extra
computations it can be applied to published results.
Provided, that authors published e.g. plots of raw data and
the fitted curve, D can be roughly estimated by looking how
many consecutive observations lay on the same side of the
fitted curve, on average. Thus all quoted variances can be
scaled readily by D to make them realistic. The post mortem
analysis can be generalized for the case of observations in n-
dimension space of the independent variables. Then the
autocorrelation function becomes an n-dimension matrix. It
determines the n-dimension correlation ellipsoid. One

A .| B
P v X
iy @
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Z hEY’
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Figure 1. A schematic plot of lines produced by an oscillation
detected in power spectrum p (a) and yx° periodogram (b). The
shaded area corresponds to the maximum likelihood 10 confidence
interval for the frequency of the line and is exactly the same in both
plots (see Section 4). The interval corresponds to the width of the
line at levels Do’ down and D up from its peak for (a) and (b),
respectively. Here pg denotes power in the line centre, N=T
number of observations, o> and D are true noise variance and
correlation length and Do’ is noise power density, including no
window function artefacts.
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should multiply variances by the average number of observa-
tions within the volume occupied by the ellipsoid.

4.3 Binning of data

An alternative method relies on binning of observations into
bins of size D. This method requires performing the least-
squares computation twice: first for unbinned data in order
to find the solution y and residuals. The residuals serve to
determine the correlation length D. Then obtain second fit
for binned data. It yields directly the true covariance matrix
C}? since now D= 1. Similarly to the previous method, this
method can be generalized to n-dimensions.

4.4 Power spectrum linewidth

An equivalent but particularly simple procedure is possible
for the strong S/N and simple, non-interfering window
patterns. Take power spectrum of an oscillation and find
height p, of the corresponding spectral line. Find in the
vicinity of the line the mean noise power level N2= Do’
Then the width of the line at the p, — N? level is the 10 con-
fidence interval of the oscillation period (Fig. 1). Any effect
of the correlation of residuals is implicitly included. Finding
N? may require some care in practice. Many low-power
features appearing in power spectra are actually not due to
noise but are window patterns of some oscillations and thus
should not be taken into account. However, decision may be
difficult. This problem may be circumvented if noise
variance N? is known a priori, e.g. from tests of the measur-
ing equipment. Then its power is also known (equation 39).
In this case the correlation length D must be known
explicitly. This procedure can be performed graphically with
no calculation at all.

5 SIMULATION TESTS

In order to verify how far our assumptions (equation 13) may
be relaxed, extensive Monte Carlo simulations were per-
formed. The simulated data consisted of a periodic signal

plus the correlated noise. For each simulated data set a
period was found by LSQ fitting of a sinusoid. Comparison
of the variance of the fitted period with computed values of
C, (equation 9) served as a test of validity of our assumptions
and results.

The signal consisted of a sinusoid of amplitude S/N, con-
stant period P and random phase. Two types of the noise
were generated: (i) (MA) a moving average noise obtained by
convolving a white noise with a Gaussian filter of width D
and (ii) (S + W) a sinusoid of amplitude 1 /ﬁ, period D and
random phase plus a white noise of variance 1/2. The MA
red noise may be considered a model of flickering in
accreting binary stars. The S+ W noise imitates a not
uncommon situation when another unrecognized oscillation
is present in data. In both cases noise had unit variance. The
white noise was generated using a Gaussian pseudorandom
number generator. In order to avoid switch-on effects the
first series of random numbers was discarded. For each set of
the parameters D, P and S/N, NC=10000 data sets were
simulated. Each consisted of a time series of length
NT=1000 sampled at unit time intervals.

A sinusoid was fitted to each time series by the non-linear
LSQ method. The calculations started from the true value of
the period P and Newton iterations were performed in each
case in order to find the best-fit period Py . It was found in
practice that six iterations were enough. Those results for
which the period difference AP= P, s, — P produced a shift
in phase in excess of 0.1 on ends were rejected. Their count
NM was kept separately in order to estimate the cycle miss
probability p,, = NM/NC. Thus we rejected simulations for
which no secure cycle count can be established in the same
way as a careful observer would do. For the rest of the
simulations the external variance of the period was found:

NC=NM
1

> (AP

Var{F,}~= NC—NM
. n=1

(42)

This ‘observed’ variance can be compared with the mean of
the LSQ variances computed for each fit (equation 9). The
calculations were repeated for a grid of values of the para-
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Figure 2. Comparison of two variance estimates of periods obtained by LSQ fitting of sinusoids to simulated oscillations with correlated noise.
The calculated variance V, from LSQ muitiplied by the correlation length D accounts for the effect discussed in Section 2. The ‘observed’
variance was obtained directly from the scatter of fitted period around its value used in simulations. The simulations were obtained for a grid of
periods P=25-400, each marked with different symbols, noise correlation lengths D =2.5-40 and signal-to-noise ratio (S/N)=4 and 2 (a), (S/
N)=1 (b) and ($§/N)=0.5 (c). To avoid overcrowding, many symbols overlapping with bottom crosses ( + ) are not drawn. The constant value of
V./Vyin (a) and (b) for D/P <0.2 demonstrates that as long as our assumptions are satisfied V, and V|, are identical except for a constant factor.
Note breakdown of their correspondence for small (S/N) (c¢) for all but the smallest D.
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meters D=2.5, 5, 10, 20, 40, P=25, 50, 100, 200, 400; and
S/IN=0.5, 1, 2, 4. Statistical accuracy of the results was
checked by comparison of calculations using different
random number series. The corresponding variances
differed by no more than 0.01 dex.

Comparison of the observed and computed variances
reveals orders of magnitude discrepancies of observed and
LSQ variances ignoring correlation length effect. The classi-
cal LSQ approach underestimates the variance. Thus the
simulations support our first conclusion: the classical LSQ
variance estimates are wrong in case of correlated residuals.
No clear pattern appears in the S+ W noise simulations. A
change in the period of the interfering oscillation affects the
basic period variance by factor at least of several. The effect
is worst for close principal and ®background periods. At
this point we close discussion of the S+ W simulations.

The MA results reveal some systematic patterns. In Fig. 2
we plot log ratio of the computed variance to that predicted
by equation (9). The latter variance is corrected for noise
correlation length D. In Fig. 2 we plot log ratio of the com-
puted and predicted variances against log correlation length
D. Points corresponding to the same values of P are marked
with the same symbols. Separate graphs are presented for
each S/N value. The results for S/N=4 and 2 are the same
and thus are not repeated on the plot. They demonstrate that
for D/P<0.2 the variances predicted by equation (9) and
true variances agree very well, except for a constant scaling
factor of =10-%2=0.56. For D/P<0.1 any differences are
no greater than the Monte Carlo errors. No discrepancies
occur for correlation length as short as 2.5 time steps. How-
ever, for correlation length comparable to the period of
oscillation, D/P>0.3 a quite different picture emerges.
Instead of being proportional to D/P the true variance is
roughly proportional to (D/P )™, so that the plotted ratio of
variances grows with (D/P )% It is possible that this effect
saturates for D/P>1. However, no further investigations
were carried out since such long D are avoided in practice. S/
N ratio does affect our results but only when its value is
small, (S/N)< 1. For (S/N)=1/2 and P3D>5x 10° the true
variance is less than the predicted one. However, the pre-
dicted variance at such conditions is large and indicates
possibility of wrong cycle count. Indeed, in such cases cycle
miss probability was high, reaching 0.4 for D=40 and
P=400. So, the variance is artificially decreased by rejection
of the outlying period estimates. In such cases the simulated
data are simply insufficient to find the period unambiguously.
Any random noise fluctuations may be mistakenly taken for
oscillation maxima. Still, this situation was correctly pre-
dicted by equation (9).

Summarizing, our estimate of variance (equation 9) is
reliable for the stochastic noise, as long as our assumptions
hold. In fact, our conditions (equation 13) need not be
satisfied with large margin. Our variance estimate fails when
other periodic signals of comparable magnitude interfere.

6 CONCLUSIONS
Our results may be interpreted in a simple way.

(i) Provided, that our new statistically correct procedures
are followed, power spectrum and least-squares (LSQ) fit of a
sinusoid are equivalent methods for period determination.
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For this purpose our corrected variance estimate (equation
9) should be used. This estimate is consistent with scatter
from different measurements. Old error estimates, based on
variance obtained directly from the fit or on the Rayleigh
resolution criterion dv=1/T are statistically incorrect.

(i) If on average D consecutive deviations from the LSQ
fit are correlated, they give us as much information on noise
as a single observation. So in effect we get D times less
uncorrelated observations on which our LSQ analysis is
based. Thus our actual variance is, by a possibly large factor
of D, larger than that indicated by the LSQ fit routine. In
other words we could essentially bin each D observation
together without increase of the period variance. For small .S/
N ratio we propose using least-squares fit as before and then
following it by our post mortem analysis. The analysis
requires calculation of the residuals from the fit and then
their autocorrelation function. The half width at half
intensity of the autocorrelation function maximum around 0
lag is an estimate of the correlation length D. Then all
variances and covariances should be multiplied by D
expressed in units of mean observation separation (Section
2).

(iti) For the strong S/N ratio an equivalent but simpler
procedure using power spectrum is feasible. Take power
spectrum of an oscillation and find height pg of the
corresponding spectral line. Find in the vicinity of the line
the mean noise power level N?= Do’. Then the width of the
line at the p, — Do, level is the 10 confidence interval of the
oscillation period (Fig. 1). Any effect of the correlation of
noise is implicitly included (Section 3.2).

(iv) A particularly pleasing practical property of the new
statistically correct variance estimates in (ii) and (iii) is that
they can be easily obtained for most already published
observations using simple graphic procedure. Namely, to
estimate the correlation length D for LSQ (ii), it suffices to
count mean number of consecutive observations lying on the
same side of the fitted curve. To estimate the noise level for
the power spectrum (iii) it suffices to draw its mean level by
eye, ignoring all strong lines and their aliases. Then the same
height as that from O up to the mean noise level should be
plotted from the peak of the line down. The width of the line
at this level provides 10 confidence interval.

(v) More general and exact numerical procedures are
available (Section 4).

ACKNOWLEDGMENTS

I would like to thank Andrzej Kruszewski for drawing my
attention to the role of correlations in period estimation. I
would like also to thank Louis Balona, Chris Koen, Brian
Warner and an anonymous referee who commented upon
presentation of this paper. I am grateful to Professor Raul
Viollier for granting access to the computing facilities of
UCT Department of Theoretical Physics where simulations
were performed. It is also a pleasure to acknowledge the use
of the computer facilities of Max-Planck-Institute fiir Extra-
terrestische Physik in Garching. Finally I would like to
extend my thanks to members of University of Cape Town
Department of Astronomy and South African Astronomical
Observatory, of all ethnic backgrounds, for making my stay
in their country both productive and thoroughly enjoyable.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1991MNRAS.253..198S&db_key=AST

1 VNRAS, 2537 ZI9850

rt

206 A. Schwarzenberg-Czerny

REFERENCES

Eadie, W. T., Drijard, D., James, F. E., Roos, M. & Sadoulet, B.,
1971. Statistical Methods in Experimental Physics, North-
Holland, Amsterdam.

Edelson, R. A. & Krolik, J. H., 1988. Astrophys. J., 333, 646.

Lomb, N.R,, 1976. Astrophys. Space Sci., 39, 447.

Scargle,J. D., 1982. Astrophys. J., 263, 835.

Schwarzenberg-Czerny, A., 1989. Mon. Not. R. astr. Soc., 241, 153.

APPENDIX A

Let us assume that a signal x is a sum of the deterministic and
stochastic (noise) processes s and n respectively, x=s+n.
We indicate their Fourier transforms by x = Fx, v=%n and
0 =Zs. We assume that noise is independent from signal and
that its variance exists and mean vanishes, so that E{v}=
E{Fn}=FE{n}=0. However, we do not assume here that
the noise is white. The expected values and variances of the
power spectra of the involved processes are E{0d}= 60 =S,
Var{d6}=0, E{vww}=N? Var{vv}=N* These equations
define N2 and S2. We exploited here known exponential dis-
tribution of v (e.g. Scargle 1982). The power spectrum of
the signal is p= &x = 80 + #v+ ¥0 + Sv. The expected value

and variance of the last two terms are
E{90+ dv}=0E{v}+ 6E{v}=0 and Var{vd + év}=E{(vo+
v} = E{120% + v262 + 2w} = O2E{v?} + S2E{vY} +
200E{vv}=252N2 We exploited the fact, that because of the
time symmetry O and /2 phases of the noise transform are
equally probable, so E{v?}=0. Using the above auxiliary
results it is straightforward to obtain the expected value of
the power spectrum of the combined signal:

E{p}=N?*+S$2 (43)

We start calculation of the variance from its definition:
Var{p} = E{(p—N?—-52% = E{(w+v0+vd—N2)?} =
E{(vv— N2)%}+ Var{vd + v8} + 2E{(vv— N2)\#d + v4)}. The
first term can be evaluated explicitly since the probability
distribution of the white noise is exponential (cf: Scargle
1982), yielding N*. We already evaluated the second term.
The last term vanishes since it amounts to an expected value
of a product of two factors, which signs are independent.
Indeed, the sign of the first factor depends solely on the
modulus of the noise transforms and the second one on its
phase. Collecting all terms together we obtain finally

Var{p}= N’ (N2 +252). (44)
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