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Editor’s Note:

On Some Static Solutions of Einstein’s

Grav itational Field Equations in a Spherically

Symmetric Case.

On a New Cosmological Solution of Einstein’s Field

Equations of Grav itation.

by Hidekazu Nariai

Scien ti ® c Reports of the Tôhoku University 34, 160 (1950) .

Scien ti ® c Reports of the Tôhoku University 35, 46 (1951)

The solut ion presented in Nariai’ s papers is an illust ration to a certain text -

book problem that has been persistently got ten wrong in most relat ivity

textbooks, even the recent ones (the Exact solution s ..., Ref. 1, p. 155± 158,

being a notable exception) . From the assumpt ion of spherical symmetry,

the following metric form follows:

ds2
= a(t, r)dt2

+ 2b(t, r)dtdr + c (t, r)dr2
+ d (t, r)(dq 2

+ sin
2 q du

2
), (1)

where a, b, c and d are arbit rary funct ions, q and u are coordinat es on a

sphere, r is a parameter labelling the spheres and t is a time coordinat e.

The funct ions a, b, c and d are determined up to the transformations:

t = f (t 9 , r 9 ), r = g(t 9 , r 9 ), (2)

where f and g are arbit rary funct ions sub ject only to ¶ (f , g)/ ¶ (t 9 , r 9 ) /= 0.

Then, the argument goes, we can use the transformations (2) to simplify

two of the funct ions a, b, c and d as we wish, so we choose f and g so that

b = 0 and d = ± r2 after the transformation. This is where the error is.

Such a transformation exists only if the gradient of d is a spacelike vector,
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which is a coordinat e-independent property. The cases that are then left

out of sight are:

(i) The gradient of d being a timelike vector. Then coordinat es can

be chosen so that d = ± t2 . This case contains, among other things, the

Kantowski± Sachs [2] class of metrics (and its inhomogeneous generaliza-

tions in the b 9 = 0 subfamily of the Szekeres [3]± Szafron [4] metrics, see

Ref. 5). Also, this case contains the Schwarzschild metric extended into

the black hole region r < 2m. Strangely, this extension is discussed in

most textbooks, but its inconsist ency with d = ± r2 remains unnot iced.

(ii) The gradient of d being a nonzero null vector.1 The choice d = ± r2

is then possible, but it automatically implies a = 0 in the new coordinat es,

and so one cannot achieve b = 0 in addit ion. In vacuum with zero cosmo-

logical constant, no solut ion of Einstein’ s equat ions exists in this case, but

this editor is not aware of any further study of this class of metrics.

(iii) The gradient of d being zero, i.e. d being a constant. This is a

coordinat e-independent property in the class (1) ± (2), and so no condit ion

can be imposed on d by coordinat e transformations in this case. Again, no

vacuum solut ion with L = 0 exists, and the vacuum solut ion with L /= 0

was found by Nariai in the papers reprinted here (see also Ref. 6 and

Ref. 1, p. 155± 158) .

In Nariai’ s ® rst paper, the solut ion is hidden among other results. The

main purpose of the paper was to obtain a collect ion of static spherically

symmetric solut ions of Einstein’ s equat ions, and the solut ion in quest ion

came up as just one element of the collect ion. The key observat ion is made

in the phrase containing eq. (3), and the solut ion itself is given by eq. (35) .

The second paper is all devoted to invest igat ing its propert ies.

Later research has brought more information on the solut ion (see Ref.

6). Nariai found it having assumed staticity from the beginning. However,

this assumpt ion is not necessary. It was shown in Ref. 6 that the collec-

tion of all spherically symmetric vacuum solut ions of Einstein’ s equat ions

with the cosmological constant consist s of two metrics; one of them is the

Kottler solut ion (i.e. the Schwarzschild solut ion generalized for L), and

the other is the following:

ds2
= f a(t) cos[ln(r/ l)] + b(t) sin[ln(r/ l)] g 2 dt2

± (l/ r)
2dr2 ± l2

(dq 2
+ sin

2 q du
2
), (3)

1 Here we refer to the case when the function d has a nonzero null grad ient in an

open four-dimensional region. T his should not be mixed up with the situat ion in the

Schwarzsch ild solut ion, where the said grad ient is null on a 3-dimensional hypersur-

face, the event horizon.
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where L = l - 2 . The time-dependence of (3) is spurious; a and b can

be made constant by a coordinat e transformation (see Ref. 6), and the

result ing metric is equivalent to eq. (1) in the second paper.

The manifold of the Nariai solut ion is a Cartesian product of two

surfaces of the same posit ive constant curvat ure, one with signat ure (+

± ), the other with signat ure (+ + ) (a sphere) (see Ref. 6). The solut ion

can be reparametrized so that the limit L ® 0 (i.e. l ® ¥ ) becomes

meaningful; the following coordinat e transformation makes it possible:

r = ler 9 / l
, q = p / 2 + q 9 / l, u = u 9 / l. (4)

Then, dropping primes, the result is

ds2
= [a(t) cos(r/ l) + b(t) sin(r/ l)]2 dt2 ± dr2 ± dq 2 ± cos

2
( q / l)du

2
, (5)

and the limit l ® ¥ is the Minkowski metric.

A certain misunderstanding concerning the so-called Bertotti [7]±

Robinson [8] solut ion can be explained by this opportunity. The two solu-

tions are not the same, contrary to common wisdom. The Bertotti solut ion

is a generalizat ion of the Nariai solut ion for electromagnet ic ® eld in the

source. It has the same geometric structure as the Nariai solut ion, but the

two curvatures are diŒerent, the ® rst one is not necessarily posit ive, and

their diŒerence is proport ional to the electromagnet ic ® eld. The Robinson

solut ion [8] is the limit L = 0 of the Bertotti solut ion (it is conformally

¯ at), and does not contain the Nariai solut ion as a subcase; the two curva-

tures in it are of the same absolut e value, but of opposit e signs. Another

related problem is the so-called BirkhoŒtheorem (see Ref. 9, p. 167, for

a discussion) , which is not as strong as textbooks like to imply. The fol-

lowing two formulat ions of it are met in the literature: Every spherically

symmetric solut ion of the Einstein equat ions in vacuum is:

(i) Static.

(ii) Equivalent to the Schwarzschild solut ion under a coordinat e transfor-

mation.

The ® rst formulat ion is false (the Schwarzschild solut ion taken inside the

black hole region is the counterexample; unless the value of L is negat ive

with a su� cient ly large absolut e value so that the horizon disappears ).

The second formulat ion is correct if L = 0, but false if L /= 0; in the

second case the Nariai solut ion is the counterexample.

Bonnor in Ref. 9, p. 167, proposed bypassing the problem by adding

ª Every physically sign i® can t ...º ; the physical signi® cance requirement was

meant to exclude the Nariai solut ion, very nearly rediscovered in Ref. 9.
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However, it is fair to say that the physical meaning of the Nariai solut ion is

st ill unknown; the original paper and Ref. 6 only invest igated its geometry.

Ð Andrzej Krasi Ânski, Associate Editor

A ckn ow led gem ent . The editor is grateful to K. Tomita for his help in

contacting the publisher and for providing copies of the papers.
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B r ie f b iograp h y

Hidekazu Nariai was born in Taisha-machi, Hikawa-gun, Shimane pre-

fecture (west Japan) on February 2, 1924. He graduat ed from the Matsue

high school in Shimane prefecture and the Tohoku university in Miyagi

prefecture (east Japan) . He obtained his PhD degree at this university

and stayed there as an assist ant. In 1953 he moved to Takehara city in

Hiroshima prefecture (west Japan) as a research associat e in the Research

Inst itute for Theoretical Physics, Hiroshima university and continued his

academic career there as a lecturer, an associat e professor, professor (1972±

1986) , and emeritus professor (1987± 1990) . He died and was buried in

Takehara city on December 5, 1990. In June 1990 his Inst itute (RITP) and

the Research Inst itute for Fundamental Physics, Kyoto university (RIFP)

were united into a single Inst itute Ð - the Yukawa Inst itute for Theoretical

Physics, Kyoto university (YITP).
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His many and valuable works are concerned with (1) exact solut ions

including the Nariai solut ions, (2) cosmological turbulence theory, (3) cos-

mological perturbat ion theory including Nariai and Ueno’ s theory of the

cosmological Newtonian approxim ation, (4) quantum ® eld theory in the

expanding universe including Nariai and Kimura’ s theory, (5) junct ion

condit ions and general-relat ivist ic dynamics in collapsing stars, and (6)

renormalized gravit ation theory with higher-order Lagrangians as an ex-

tension of the Einstein theory. At present the Nariai solut ions seem to be

most famous among his many works.

Ð K. Tomita

A more extended biography of H. Nariai can be found in Ref. 1.

Ð Ed.
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