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Editor’s Note:

On Some Static Solutions of Einstein’s
Gravitational Field Equations in a Spherically
Symmetric Case.

On a New Cosmological Solution of Einstein’s Field
Equations of Gravitation.

by Hidekazu Nariai
Scientific Reports of the Tohoku University 34, 160 (1950).
Scientific Reports of the Tohoku University 35, 46 (1951)

The solution presented in Nariai’s papers is an illustration to a certain text-
book problem that has been persistently gotten wrong in most relativity
textbooks, even the recent ones (the Exact solutions..., Ref. 1, p. 155-158,
being a notable exception). From the assumption of spherical symmetry,
the following metric form follows:

ds® = a(t,r)dt’ + 28(t, r)dtdr + y(t,v)dr* + (¢, r)(dS + sin’ Dde?), (1)

where a, B,y and & are arbitrary functions, O and ¢ are coordinates on a
sphere, 7 is a parameter labelling the spheres and ¢ is a time coordinate.
The functions a, 8,y and 6 are determined up to the transformations:

L=, r=g(t,r), (2)

where f and g are arbitrary functions subject only to o(f, 9)/ o(t',r") # 0.
Then, the argument goes, we can use the transformations (2) to simplify
two of the functions «, B,y and 8 as we wish, so we choose f and g so that
B = 0and & = —r? after the transformation. This is where the error is.
Such a transformation exists only if the gradient of 8 is a spacelike vector,
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which is a coordinate-independent property. The cases that are then left
out of sight are:

(i) The gradient of 8 being a timelike vector. Then coordinates can
be chosen so that 8 = —¢?. This case contains, among other things, the
Kantowski—Sachs [2] class of metrics (and its inhomogeneous generaliza-
tions in the B" = 0 subfamily of the Szekeres [3]-Szafron [4] metrics, see
Ref. 5). Also, this case contains the Schwarzschild metric extended into
the black hole region r < 2m. Strangely, this extension is discussed in
most textbooks, but its inconsistency with 8 = —r? remains unnoticed.

(ii) The gradient of 8 being a nonzero null vector.! The choice § = —7?
is then possible, but it automatically implies a = 0 in the new coordinates,
and so one cannot achieve § = 0 in addition. In vacuum with zero cosmo-
logical constant, no solution of Einstein’s equations exists in this case, but
this editor is not aware of any further study of this class of metrics.

(iil) The gradient of & being zero, i.e. O being a constant. This is a
coordinate-independent property in the class (1)-(2), and so no condition
can be imposed on 8 by coordinate transformations in this case. Again, no
vacuum solution with A = 0 exists, and the vacuum solution with A # 0
was found by Nariai in the papers reprinted here (see also Ref. 6 and
Ref. 1, p. 155-158).

In Nariai’s first paper, the solution is hidden among other results. The
main purpose of the paper was to obtain a collection of static spherically
symmetric solutions of Einstein’s equations, and the solution in question
came up as just one element of the collection. The key observation is made
in the phrase containing eq. (3), and the solution itself is given by eq. (35).
The second paper is all devoted to investigating its properties.

Later research has brought more information on the solution (see Ref.
6). Nariai found it having assumed staticity from the beginning. However,
this assumption is not necessary. It was shown in Ref. 6 that the collec-
tion of all spherically symmetric vacuum solutions of Einstein’s equations
with the cosmological constant consists of two metrics; one of them is the
Kottler solution (i.e. the Schwarzschild solution generalized for A), and
the other is the following:

ds* = {a(t) cos[In(r/ )] + b(t) sin[ln(7/ 1)]} *dt*
— (U r)drt — 12 (adY + sin> de?), (3)

' Here we refer to the case when the function & has a nonzero null gradient in an

open four-dimensional region. This should not be mixed up with the situation in the
Schwarzschild solution, where the said gradient is null on a 3-dimensional hypersur-
face, the event horizon.
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where A = [7?. The time-dependence of (3) is spurious; a and b can
be made constant by a coordinate transformation (see Ref. 6), and the
resulting metric is equivalent to eq. (1) in the second paper.

The manifold of the Nariai solution is a Cartesian product of two
surfaces of the same positive constant curvature, one with signature (+
—), the other with signature (++) (a sphere) (see Ref. 6). The solution
can be reparametrized so that the limit A — 0 (i.e. I —>00) becomes
meaningful; the following coordinate transformation makes it possible:

’

r=1le ', S= 2+ 971, 0=l (4)
Then, dropping primes, the result is
ds® = [a(t) cos(r/ 1) + b(¢) sin(r/ D dt> — dr’ — d — cos> (N Ddo>, (5)

and the limit I —00 is the Minkowski metric.

A certain misunderstanding concerning the so-called Bertotti [7]-
Robinson [8] solution can be explained by this opportunity. The two solu-
tions are not the same, contrary to common wisdom. The Bertotti solution
is a generalization of the Nariai solution for electromagnetic field in the
source. It has the same geometric structure as the Nariai solution, but the
two curvatures are different, the first one is not necessarily positive, and
their difference is proportional to the electromagnetic field. The Robinson
solution [8] is the limit A = 0 of the Bertotti solution (it is conformally
flat), and does not contain the Nariai solution as a subcase; the two curva-
tures in it are of the same absolute value, but of opposite signs. Another
related problem is the so-called Birkhoff theorem (see Ref. 9, p. 167, for
a discussion), which is not as strong as textbooks like to imply. The fol-
lowing two formulations of it are met in the literature: Every spherically
symmetric solution of the Einstein equations in vacuum is:

(i) Static.

(i1) Equivalent to the Schwarzschild solution under a coordinate transfor-
mation.

The first formulation is false (the Schwarzschild solution taken inside the
black hole region is the counterexample; unless the value of A is negative
with a sufficiently large absolute value so that the horizon disappears).
The second formulation is correct if A = 0, but false if A # 0; in the
second case the Nariai solution is the counterexample.

Bonnor in Ref. 9, p. 167, proposed bypassing the problem by adding
“Every physically significant...”; the physical significance requirement was
meant to exclude the Nariai solution, very nearly rediscovered in Ref. 9.
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However, it is fair to say that the physical meaning of the Nariai solution is
still unknown; the original paper and Ref. 6 only investigated its geometry.

— Andrzej Krasinski, Associate Editor
Acknowledgement. The editor is grateful to K. Tomita for his help in
contacting the publisher and for providing copies of the papers.
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Brief biography

Hidekazu Nariai was born in Taisha-machi, Hikawa-gun, Shimane pre-
fecture (west Japan) on February 2, 1924. He graduated from the Matsue
high school in Shimane prefecture and the Tohoku university in Miyagi
prefecture (east Japan). He obtained his PhD degree at this university
and stayed there as an assistant. In 1953 he moved to Takehara city in
Hiroshima prefecture (west Japan) as a research associate in the Research
Institute for Theoretical Physics, Hiroshima university and continued his
academic career there as a lecturer, an associate professor, professor (1972—
1986), and emeritus professor (1987-1990). He died and was buried in
Takehara city on December 5, 1990. In June 1990 his Institute (RITP) and
the Research Institute for Fundamental Physics, Kyoto university (RIFP)
were united into a single Institute —- the Yukawa Institute for Theoretical
Physics, Kyoto university (YITP).
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His many and valuable works are concerned with (1) exact solutions
including the Nariai solutions, (2) cosmological turbulence theory, (3) cos-
mological perturbation theory including Nariai and Ueno’s theory of the
cosmological Newtonian approximation, (4) quantum field theory in the
expanding universe including Nariai and Kimura’s theory, (5) junction
conditions and general-relativistic dynamics in collapsing stars, and (6)
renormalized gravitation theory with higher-order Lagrangians as an ex-
tension of the Einstein theory. At present the Nariai solutions seem to be
most famous among his many works.

— K. Tomita
A more extended biography of H. Nariai can be found in Ref. 1.
— FEd.
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