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Andrzej Krasiński · Maciej Przanowski

Published online: 19 December 2008
© Springer Science+Business Media, LLC 2008

Keywords Goldberg–Sachs theorem · Vacuum metric · Petrov types · Golden Oldie

Part 1: Explanation of some details of derivation

By Andrzej Krasiński

Assumptions about properties of congruences of curves in a spacetime have powerful
implications for the Weyl tensor. A well-known example is the conclusion that follows
from the propagation equations of kinematical tensors in relativistic hydrodynamics
[1]: If, in a perfect fluid spacetime, there exists a family of timelike curves with zero
shear, rotation and acceleration, then the spacetime must be conformally flat. The the-
orem proven in the paper reprinted here is another example, where limitations imposed
on the Weyl tensor by properties of congruences of null curves are discussed. Namely,
a geodesic and shearfree null congruence exists in a vacuum spacetime if and only if
its Weyl tensor is algebraically special. The congruence is then the degenerate princi-
pal null congruence of the Weyl tensor. (The theorem is further extended to include
electromagnetic field with geodesic rays and a null field.)

The republication of the original paper can be found via doi:10.1007/s10714-008-0722-5.
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422 A. Krasiński, M. Przanowski

Although rather abstract and formal, this theorem played a powerful role in deriving
the Kerr metric (see [2]), and was useful in deriving several other exact solutions of
Einstein’s equations [3].

The original publication is rather concise, so its calculations may be difficult to
verify. Therefore, in this note we provide some details omitted by the authors. A still
more detailed derivation, by the same method but in a different notation, is presented
in Ref. [4].

A few rewriting errors of the original paper were corrected by the editor. All the
corrections are marked by editorial footnotes, and some of them are explained in the
note below. The authors’ footnotes have asterisks as footnote marks, the editorial foot-
notes are numbered. Other features of the original article are faithfully reproduced in
this reprint.

1. Section 1, Equation (1.8). The explanation provided in the paragraph around
Eq. (1.8) may be too brief for first-time readers. Here is a more detailed derivation.

A definition of a projection on a subspace locally orthogonal to a null vector k has
to take into account the fact that this hypersurface contains k. Therefore, given ka , we
first define a second null vector �a that is tangent to the same light cone and obeys:

�aka = 1, �a�a = 0. (1)

Note that �a is not defined uniquely. If ma is an arbitrary spacelike vector of unit length
(mama = 1) orthogonal both to ka and to �a , then �′a = �a − 1

2 b2ka + bma obeys (1)
as well, where b is an arbitrary parameter.

Then we define the projection tensor on the (2-dimensional) surface that is orthog-
onal to both �a and ka :

pab = gab − �akb − ka�b �⇒ pabkb = pab�
b = 0. (2)

This surface does not include �a or ka—because a vector that is orthogonal to two
linearly independent null vectors must be spacelike.

Now assume that ka is a null geodesic vector field, and it is affinely parametrised
so that kr ka;r = 0. We then define

Aab
def= kr;s pr

a ps
b. (3)

Then the following holds:

ka;b = Aab + aakb + kabb, (4)

where

aa
def= �ska;s − 1

2
kr;s�r�ska,

(5)
ba

def= �sks;a − 1

2
kr;s�r�ska .
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It follows that aaka = baka = 0. Now we decompose Aab into the trace θ (expansion),
the trace-free symmetric part σab (shear) and the antisymmetric part ωab (rotation):

Aab = ωab + σab + pabθ (6)

(for some reason, tradition requires one to write the last term without the coefficient
1/2 that would be natural here). The geometric interpretation of rotation, expansion
and shear is similar to that in hydrodynamics and agrees with the everyday meaning
of these words; the respective changes apply to images of an object projected by the
family of light rays on 2-surfaces orthogonal to the family. Like in hydrodynamics,
rotation and shear do or do not vanish simultaneously with the scalars defined below.
Also, the following equations are useful:

pa
r pr

b = pa
b, gab pab = pab pab = 2,

pabσab = gabσab = 0, (7)

kbωab = kbσab = �bωab = �bσab = 0.

The scalars of rotation, expansion and shear are then

ω2 def= 1

2
ωabω

ab = 1

2
k[a;b]ka;b, (8)

θ = 1

2
km;m , (9)

σ 2 def= 1

2
σabσ

ab = 1

2
k(a;b)k

a;b − θ2. (10)

As can be seen, these quantities depend only on ka , not on the auxiliary field �a .
Now we set up a field of null vector bases over the spacetime that will include the

ka and �a . The other vectors in the basis, ma and ma , will be complex conjugate to
each other, orthogonal both to ka and to �a , and will obey relations similar to (1):

gabmamb = gabmamb = 0, gαβmamb = 1,
(11)

gabmakb = gabma�b = 0, gabmakb = gabma�b = 0.

(As explained in the paper, these basis vectors are not uniquely defined—see Eq. (1.9)
of the paper. The freedom of transformations includes the non-uniqueness of �a men-
tioned after Eq. (1) above.) We label the basis vectors as follows (hats denote tetrad
indices; in what follows the hats over tetrad indices will be omitted when there is no
risk of confusion):

e
̂3

a = ka, e
̂4

a = �a, e
̂1

a = ma, e
̂2

a = ma . (12)

The eα
a coincide with the kα

a of the paper, but we will keep the eα
a notation to avoid

confusion with the vector ka introduced before. The matrix of scalar products among
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the basis vectors (the tetrad metric) is then given by (1.7) in the paper. Because of
the form of this matrix, the upper and lower tetrad indices are related to each other as
follows:

v
̂3 = v

̂4, v
̂4 = v

̂3, v
̂2 = v

̂1 = v
̂1, v

̂1 = v
̂2 = v

̂2. (13)

Some of the Ricci rotation coefficients1 are related in simple ways to physical quan-
tities, and this is one of the useful features of this tetrad. For the considerations in the
paper, the following formulae are useful.

The tetrad components of the “acceleration” of ka are

eα
aka;r kr = Γ

̂3α̂3. (14)

Thus, if ka is assumed geodesic and affinely parametrised, the first of (2.4) follows.
In order to calculate the expansion, we do the following operations

km;m = gmnkm;n = ηαβeα
meβ

nkm;n,

where ηαβ is the flat Lorentzian metric; and then we explicitly run through all the
values of α and β. Most of the terms are zero or cancel out, and what remains is

θ = 1

2
kr;s (mr ms + mr ms) = 1

2
(Γ312 + Γ321) ≡ 1

2

(

Γ312 + Γ 312
)

. (15)

The tetrad components of the shear tensor are found directly from (6), with use of
(15) and of the orthogonality relations (11). Their only non-zero components are:

σ
̂1̂1 = ka;bmamb = Γ311 ≡ −Γ131,

(16)
σ

̂2̂2 = ka;bmamb = Γ322 ≡ −Γ232.

The component σ̂1̂1 defined above coincides with the complex scalar σ in (1.8) in the
paper.

For the tetrad components of the rotation tensor we find

ω12 = −ω21 = 1

2
(Γ312 − Γ321) = ω21 = −ω12, (17)

all other components being zero. Thus, the only non-vanishing component of the
rotation tensor is pure imaginary, and, moreover, as follows from (8) and (11), it is
connected to the scalar of rotation ω by ω12

2 = −ω2; thus ω12 = iω. As one can see
then, the expansion and the rotation are, respectively, the real and the imaginary part
of the same complex quantity

z
def= θ + iω = Γ312 ≡ −Γ132. (18)

1 Their definition in the paper is not a universally accepted one, some authors define Γαβγ with the opposite
sign.
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Projecting (6) on all the tetrad vectors and using all of the above, Eq. (1.8) in the paper
follows.

2. Section 2, Equations (2.5)–(2.6). The paragraph containing Eqs. (2.5) and (2.6)
in the paper does not give a readable hint on how to derive these equations. Here is
the derivation.

Take the Ricci identity for the field ka :

ka;bc − ka;cb = Rrabckr . (19)

In the further calculations, projections of this equation on different combinations of the
tetrad vectors will be considered. The following equations will be useful (ka;b kb = 0
being assumed):

gabka;bc = 2θ,c , (20)

kcgabka;cb = −kc;bkb;c = −2
(

σ 2 − ω2 + θ2
)

, (21)

kcmambka;bc = kc
(

mambka;b
)

;c −kcma;c mbka;b − kcmamb;c ka;b, (22)

kcmambka;cb = mb
(

kcmaka;c
)

;b −mbkc;b maka;c , (23)

ma;c ka;b = gasms;cma;b = ηαβeα
aeβ

sms;cma;b. (24)

Equations (20) and (21) follow from (9) and (4)–(6). In simplifying the right-hand
sides of (22) and (23) the definition of Γαβγ will be used, and in simplifying the
right-hand side of (24) the terms corresponding to different values of α and β will be
written out explicitly.

Contract (19) with kcgab; the result is the equation of evolution of θ , analogous to
the Raychaudhuri equation:

kcθ,c + σ 2 − ω2 + θ2 = 1

2
Rrckr kc. (25)

Now contract (19) with kc
(

mamb − mbma)

and use the fact that Rr [ab]s kr ks ≡ 0.
The result is

ksΓ3[12],s +1

2

[

(Γ312)
2 − (Γ321)

2
]

= 0. (26)

In consequence of (17), Eq. (26) can be written as

iksω,s + 2iθω = 0. (27)

Equations (25) and (27) can be written as one complex equation, Eq. (2.5) in the paper
(actually, in the original text, the last term +σ 2 was missing, it was restored here).

Equation (2.6) in the paper follows on contracting (19) with kcmamb and using
(22)–(24). The complex conjugate of (2.6) also holds, and it follows from (19) con-
tracted with kcmamb.
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426 A. Krasiński, M. Przanowski

3. Section 2, Equation (2.10). The derivation of Eq. (2.10) involves a trick. From
writing out R31 = 0 we have R31 = R4313 + R1312 = 0—and then we apply the first
of (2.1) to calculate R1343 instead of R4313. (The equality Rαβγ δ = Rγ δαβ is not an
identity when the rotation coefficients are used as basic objects; it has to be imposed as
an extra condition.) This trick enables us to efficiently use the assumptions Γ314 = 0
and Γ3α3 = 0.

4. Section 2, after (2.10). The deductions following (2.5’)–(2.10) in the paper are
described somewhat too briefly, and are thus difficult to follow. Here is a more detailed
presentation. We use the tetrad in which Γ314 = 0 and assume that the field k = e

̂3
is geodesic, affinely parametrised and shearfree (Γ3α3 = 0 = Γ311 = Γ322). Also,
Γ411 = 0 by (2.9).

Applying the integrability condition (2.12) to the set (2.5’)—(2.10) one gets

ks (Γ413 − Γ341) ,s = −2zΓ413 + (Γ123 − z ) (Γ413 − Γ341) . (28)

Then, from the equation R31 = R3
313 + R2

312 = 0 (in tetrad indices), using the first
of (2.1), we get

−ksΓ341,s = Γ341 (z + z − Γ123) − zΓ413 − ms z,s . (29)

We use (29) to eliminate ksΓ341,s from (28), and then use (2.10) to eliminate ms z,s

from the result. This results in Eq. (2.13) (corrected here; in the original paper the last
term before 0 was absent).

Next, writing out R11 = R3
113 + R4

114 = 2R4113 = 0 with use of the first of (2.1),
we obtain (2.14). The integrability condition of (2.13)–(2.14) leads to

Γ413
(−ksΓ121,s + msΓ123,s

) = Γ413 [Γ341Γ123 − 9Γ413z

+ z (Γ121 + Γ413) + Γ123 (−Γ121 + Γ413)] (30)

(in obtaining the above, one must use (2.5’), (2.10), (2.13) and (2.14) to eliminate the
derivatives of z and of Γ413). Writing out R13 = R3134 + R2131 = 0 with use of (2.1),
we get

−ksΓ121,s + msΓ123,s = Γ413 (z + z + Γ123) + Γ341Γ123 − Γ121 (Γ123−z ). (31)

Substituting (31) in (30), we obtain zΓ413
2 = 0, as stated in the paper. (Actually, the

original paper said −10z2Γ413 = 0, but the exponent was misplaced.)
5. Section 2, Equation (2.15). The details of the proof in the paragraph containing

(2.15) are as follows. In the tetrad used in the paper, the conditions for the Weyl tensor
to be algebraically special, with k3 being the double Debever vector, are (in tetrad
indices):

C133α = C233α = 0. (32)
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Using this, the tetrad components of Cρ
αρβ = 0 imply

− C3434 = C3142 + C3241 = −C1212 = 0,

−C3441 = C4112, C3442 = C4212, (33)

C3141 = C3112 = C3242 = C3212 = C4142 = 0.

Take the Bianchi identities Rab[cd;e] = 0, contract them with gbc and use the
assumption Rab = 0. In vacuum, the result is equivalent to Cr

abc;r = 0. By the
equation preceding Eq. (2.1) in the paper, this is equivalent to:

ea
sCa

bcd,s − Γ s
rsCr

bcd + Γ s
br Cr

scd + Γ s
cr Cr

bsd + Γ s
dr Cr

bcs = 0. (34)

Take the components (b, c, d) = (3, 3, 1) and (3, 3, 2) of this equation and use (32)–
(33). Then, join to this set the first of (33) and the identity C3[βγ δ] = 0. When
Γ133 �= 0 �= Γ233, a linear homogeneous set of algebraic equations results, whose
solution is

C3412 = C3142 = C3241 = C3434 = C1212 = 0. (35)

Now take the components (3, 3, 4) and (3, 1, 2) of (34), with (35) assumed. Taking
into account the middle part of (33), with Γ133 �= 0 �= Γ233, the solution of that set is

C3441 = C3442 = C4112 = C4212 = 0. (36)

Take the components (3, 4, 1) and (3, 4, 2) of (34), with (35) and (36) assumed. They
say that Γ233C4141 = 0 = Γ133C4242, i.e. C4141 = C4242 = 0. Together with (33),
(35) and (36) this means Cabcd = 0. With Rab = 0, this is the Minkowski spacetime,
in which a congruence of shearfree null geodesics does exist, so the theorem is trivially
true.

Thus only Γ133 = Γ233 = 0 needs to be considered.
Now take (34) with the sets of indices (1, 3, 1) and (2, 3, 2), and use Γ133 =Γ233 =0.

Then join the first of (33) and again C3[βγ δ] = 0 to this set. If Γ311 �= 0 �= Γ322 then
(35) results once more.

The components (4, 3, 1) and (4, 3, 2)of (34) now say thatΓ311C3442 =Γ322C3441 =
0. With the assumed Γ311 �= 0 �= Γ322, and with (33), this implies (36) again. Then,
the components (4, 3, 4) and (4, 1, 2) of (34) give a set of 2 equations, whose solution,
with Γ311 �= 0 �= Γ322 is C4141 = C4242 = 0, i.e. again Cabcd = 0. Thus the non-triv-
ial solution of the set considered here is Γ311 = Γ322 = 0, which, as seen from (16),
means that the shear of the ka congruence is zero.
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Part 2: Further developments

By Maciej Przanowski

The classical Goldberg–Sachs theorem found its important generalizations to the case
of non-vacuum “physical” (i.e. Lorentzian) spacetimes as well as its counterparts
in the cases of 4-dimensional Riemannian manifolds of non-Lorentzian signature or
4-dimensional complex analytic Riemannian manifolds called the complex spacetimes.

(a) “Physical” (Lorentzian) spacetime The most famous, perhaps, is here the Kundt–
Thompson theorem [5,6]

THEOREM (Kundt–Thompson) For a spacetime V4 (i.e. a 4-dimensional differen-
tial manifold endowed with the metric of signature +2) two of the following statements
yield the third

(A) The Weyl tensor is algebraically special in the sense of the Petrov classification
(B) There exists a shear-free null geodesic congruence
(C)

V ea V bcCd
abc;d = 0 for the types II or D,

V bcCd
abc;d = 0 for the type III,

V eaCd
abc;d = 0 for the type N

where Cabcd is the Weyl tensor, Vab is a complex null bivector such that Vabkb = 0
with ka being the multiple principal null vector in case (A) and the vector tangent to
the shear-free null geodesic congruence in case (B), and “;” stands for the covariant
derivative. ��

It is evident that the “generalization” is expressed by point (C); in this point some
conditions on the covariant derivative of the Weyl tensor are imposed, but it is not
assumed that the respective spacetime is vacuum, as it was in the classical Goldberg–
Sachs theorem.

Consequently, employing the Einstein equations and also the field equations describ-
ing the sources of gravitational field one obtains a significant information about the
spacetime geometry (connection form) [7–12] which in many cases simplifies the
analysis of the equations and enables one to get explicitly the spacetime metric.
In particular, there are distinguished examples of this procedure in the cases of the
Einstein–Maxwell equations or the Einstein equations with pure radiation field [3].

(b) Complex spacetime Complex spacetime, which is the main object of complex
relativity, is a 4-dimensional complex analytic manifold endowed with a holomorphic
metric.

Complex relativity has attracted a great deal of interest for many years. First, a
complex spacetime was found by Newman [13,14] as a space of “good cuts” for
asymptotically flat Lorentzian spacetimes. Such a complex spacetime has been called
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H-space or heavenly space. Then, complex spacetimes emerge in a natural way in
the twistor program of Penrose [15,16]. H-space appears here as a non-linear gravi-
ton. Finally, the program has been proposed by J. Plebański in which the “physical”
spacetime metrics could be obtained from the complex metrics by taking the real
slices.

This promising program was justified by two outstanding results:

(i) the reduction of the H-space equations (Rab = 0, ∗Cabcd = ±Cabcd ; where ∗
denotes the Hodge duality operation) to a single second order non-linear partial
differential equation (the first or the second heavenly equation (H-equation)) for
one holomorphic function [17],

(ii) the reduction of the HH-space equations (Rab = 0, Cabcd + ∗Cabcd or Cabcd −
∗Cabcd is algebraically special) to a single second order non-linear partial dif-
ferential equation (HH-equation) for one holomorphic function [18,19].

[Remark Recently we learned that the first heavenly equation was found in 1935 by
two Japanese mathematicians from the Hiroshima University, Sibata and Moringa
[20]. Of course, J. Plebański was not aware of this fact].

Looking at the considerations leading to the H or HH-equations one quickly real-
izes that the crucial point lies in a complex version of the Goldberg–Sachs theorem
given by Plebański and Hacyan [21]

Before we cite that version some remarks are needed.
The Weyl tensor can be split into its self-dual and anti-self-dual parts as follows

Cabcd = 1

2
(Cabcd + ∗Cabcd) + 1

2
(Cabcd − ∗Cabcd).

Unlike in the Lorentzian spacetimes, where the self-dual part 1
2 (Cabcd + ∗Cabcd)

is complex conjugated to the anti-self-dual part 1
2 (Cabcd − ∗Cabcd), in the case of

complex spacetimes these two objects are independent. Consequently one can con-
sider independently the Petrov algebraic classification of the self-dual part and the
anti-self-dual part of the Weyl tensor.

Now we need also the notion of a self-dual (anti-self-dual) null string or α (β, resp.)
surface according to the Penrose twistorial approach.

The self-dual (anti-self-dual) null string is a totally null 2-dimensional complex
surface � in the complex spacetime V C

4 such that the null bivector Vab, i.e., the sim-
ple 2-form Vab, orthogonal to � is self-dual (anti-self-dual, resp.). One can quickly
show that � is also a totally geodesic complex 2-surface.

Then, the complex version of the Goldberg–Sachs theorem can be stated as follows:

THEOREM (Plebański–Hacyan) The self-dual (anti-self-dual) part of the Weyl ten-
sor of a vacuum complex spacetime V C

4 , Rab = 0, is algebraically special with ka

being the multiple principal null vector if and only if for each point p ∈ V C
4 there

exist an open neighbourhood U of p and a congruence of self-dual (anti-self-dual,
resp.) null strings on U. ��

Thus, in the complex case a congruence of null strings plays the role of the shear-free
null geodesic congruence of the Lorentzian spacetime.

123
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There exist some generalizations of the Plebański–Hacyan theorem to the non-vac-
uum complex spacetime, Rab �= 0, which are analogous to the Kundt–Thompson
theorem [12]

The Plebański–Hacyan theorem and its non-vacuum generalizations can be imme-
diately carried over to the case of a real 4-dimensional Riemannian manifold of the
signature (+ + −−). The only difference lies in the fact that in this last case the
geometrical objects are real.

(c) Euclidean spacetime It is worthwhile to note that there exists a counterpart of
the classical Goldberg–Sachs theorem in the case of 4-dimensional Riemannian man-
ifolds of Euclidean signature (+ + ++) (Euclidean spacetimes). Such spaces have
attracted considerable interest in quantum gravity where they appear as the so called
gravitational instantons [22].

It was shown that also here the Goldberg–Sachs theorem enables us to reduce the
Einstein field equations [23–25]. This theorem reads now [23,24]:

THEOREM The self-dual or anti-self-dual part of the Weyl tensor of the vacuum
Euclidean spacetime V E

4 , Rab = 0, is algebraically special if and only if V E
4 is a

locally Hermitian manifold i.e., for each point p ∈ V E
4 there exist an open neighbour-

hood U of p and two complex coordinates (z1, z2) on U such that the metric ds2 of
V E

4 takes the following form on U

ds2 = gαβ̄(dzα ⊗ dzβ̄ + dzβ̄ ⊗ dzα)

gαβ̄ = gβᾱ , α, β = 1, 2 and dzβ̄ := dzβ , where the overbar stands for the complex
conjugation. ��

Last but not least, one meets an application of the Goldberg–Sachs theorem when
the so-called Cauchy–Riemann structure on a Riemannian manifold is considered.
It has been found that there exists a close relation between the Cauchy–Riemann
structure on a 4-dimensional Riemannian manifold and the Goldberg–Sachs theorem
[26,27].

Concluding our note we would like to point out the universality of the Goldberg–
Sachs theorem. We can see that this theorem plays an important role not only in
standard relativity, but also in the case of any 4-dimensional Riemannian manifold
giving a deep insight into its geometry.

Acknowledgments One of us (MP) is indebted to Sebastian Formański for his assistance and interest in
this note.

Joshua N. Goldberg: a brief biography

By Josh Goldberg

I was born on May 30, 1925 in Rochester, NY and had my early education there.
After serving for 2 years in the US Navy during WWII, I returned to the University of
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Rochester and received a BS in 1947. At Syracuse University, I received an MS (1950)
for a thesis on a problem in molecular beams and a PhD (1952) for a dissertation on
conservation laws, invariance, and equations of motion. Both were supervised by Peter
Bergmann. Following this, I worked for four years at a non-profit research institute on
various problems of interest to the Defense Department. While there, I wrote a paper
showing that gravitational radiation shows up in the 11th order in v/c (3 1/2 PN). By
coincidence, my next position was with the US Airforce at Wright–Patterson Airforce
Base. There I was able to have a small group doing research on general relativity as
well as a fund for support of research at various universities in the US and abroad. In
1960–1961, I was an NSF Fellow with Hermann Bondi at King’s College. Ray Sachs
was there at the time and we collaborated on the paper establishing the necessary and
sufficient conditions that a solution of the Einstein equations be algebraically special.
In 1963, I left the Airforce and became Professor of Physics at Syracuse University.
My principal research has been in the areas of conservation laws, equations of motion,
gravitational radiation, and topics related to quantum gravity. Since retirement in 1995,
I have kept an office in the Physics Department so that I keep up with major develop-
ments in general relativity, cosmology, and astrophysics. However, I also am the grant
seeker for the Syracuse Friends of Chamber Music as well as a member of the board
of the local chapter of the New York Civil Liberties Union.

The biography of Rainer Sachs was published together with the Sachs–Wolfe
Golden Oldie in Gen. Relativ. Gravit. 39, 1941 (2007), article DOI 10.1007/s10714-
007-0448-9.
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