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The maximally extended Reissner–Nordström (RN) spacetime with e2 < m2 can
be interpreted either as an infinite chain of asymptotically flat regions connected by
tunnels between timelike singularities or as a set of just one asymptotically flat region
and one tunnel; the repetitions of this set in the infinite chain being identified. The
second interpretation gives rise to the suspicion of acausality, i.e. the possibility of
sending messages to one’s own past. A numerical investigation of this problem was
carried out in this paper and gave the following result. Let E be the initial point of a
radial timelike future-directed ingoing geodesic G, lying halfway between the outer
horizon and the image of the null infinity in the maximally extended RN spacetime.
Let E′ be the first future copy of E. It was verified whether the turning point of G will
lie to the future or to the past from the past light cone (PLC) of E′. In the second
case the breach of causality does occur. It turned out that the acausality is present
when VE , the timelike coordinate of E, is negative with a sufficiently large |VE |, and
is absent with a sufficiently large VE > 0. In between these values there exists a
ṼE , dependent on the initial data for the geodesic, for which the turning point lies
on the PLC. So, the identification does lead to acausality. Nonradial timelike and
null geodesics were also investigated, and a few hitherto unknown properties of the
maximal extension were revealed. For example, the singularity arc at r = 0 may be
convex or concave, depending on the values of m and e.

1. Motivation and summary

The maximally extended Reissner [1] – Nordström [2] (RN) spacetime with e2 < m2

can be interpreted either as an infinite chain of asymptotically flat regions connected by
tunnels between timelike singularities or as a set of just one asymptotically flat region
and one tunnel; the repetitions of this set in the infinite chain being identified. The
identification may be suspected of leading to acausality (i.e. an observer could supposedly
send a message to its own past by means of timelike or null geodesics). A radial null
geodesic sent into the tunnel will hit the singularity and will not get out into the next
asymptotically flat region unless it is reflected somewhere in the tunnel. The problem was

[1]
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to verify what happens with timelike geodesics, radial and nonradial, and with nonradial
null geodesics.

In the present paper it was shown by numerical examples that the breach of causality
does or does not occur depending on the initial point of the timelike geodesic. The method
of computation was as follows. We first numerically integrated a future-directed ingoing

radial timelike geodesicG1 emitted outside the outer RN horizon r = r+
def
= m+

√
m2 − e2

for which the radial coordinate of the emission event was at a midpoint between the
image of r = r+ and the image of the null infinity, and the emission time was distinctly
later than the instant of time-symmetry. In the (u, v) coordinates adapted to the r+
horizon, G1 smoothly crossed r = r+. At a point P1 in the region r− < r < r+ (where

r−
def
= m −

√
m2 − e2) the coordinates were transformed to the (u′, v′) adapted to the

r− horizon, and the numerical integration was continued from point P3 (the image of P1

under this transformation) smoothly through r = r−. The geodesic G1 was followed up
to its turning point (TP) denoted P5, where, at r = rtp, it would change to an outgoing
one. Then, we issued from event E′ – the first future copy of E that would coincide with
E under the identification – a past-directed ingoing radial null geodesic G2. The G2 is
the radial generator of the past light cone (PLC) of E′. The equation of a radial null
geodesic can be solved explicitly. It was followed through the r+ horizon, and in the
region r− < r < r+ the coordinates were changed from (u, v) to (u′, v′). In the new
coordinates G2 was continued until it reached r = rtp. There, it turned out that P5

lies to the future of the PLC. Hence, if G1 (the first geodesic) were continued to the
future of P5, it would not enter the PLC of E′ and near E′ would lie to the future of
E′. Consequently, the observer at E would not be able to send any message to its past.
Nonradial timelike and null geodesics behave similarly: the (u′, v′) coordinates of their
TPs differ from those of P5, but not sufficiently to change the conclusion.

However, if the initial point E lies at the same r as before, but distinctly earlier
than the instant of time-symmetry, then the opposite occurs: the TP of a radial timelike
ingoing future-directed geodesic lies to the past of the PLC of E′ and sending a message
to one’s own past is possible. A logical conclusion is that if E lies somewhere between the
two previously mentioned locations, then the TP will lie right on the PLC of E′, which
was also verified in this paper. The exact location of this preferred E depends on the
parameters of G1.

The final conclusion is that the identification does lead to acausality.
The paper is organised as follows. In Sec. 2., the basic geometric properties of the

RN spacetime with e2 < m2 are described. The presentation follows the reasoning of
Graves and Brill [3] (GB) with several extensions. Ref. [3] presented the main idea on
how to remove the spurious singularities, but left some details and consequences for the
readers to fill in. For numerical computations everything must be stated explicitly. In
particular, the (u, v) coordinates that remove the spurious singularities at the horizons
and their relation to the (U, V ) coordinates used in the conformal diagrams are discussed
in detail. The maximal extension of the RN metric is re-derived by the GB method. A
surprise emerges: the arcs of the singularity at r = 0 are concave or convex depending on
the values of m and e. The graphs of the maximal extension shown in Refs. [3] and [4]
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are correct only for the distance between the vertices of the hyperbola u2−v2 = constant
being sufficiently small. Also, the transformation from the (t, r) to the (u, v) coordinates
in Ref. [3] covers only one of four sectors of the (u, v) coordinate plane. The sectors are
separated by the u = ±v straight lines, and the transformation is different in each sector.

In Sec. 3., the geodesic equations in the (u, v) coordinates are derived and discussed.
They turn out to be the same in each of the four sectors.

In Sec. 4., the transformations between the (u, v) coordinates adapted to r+ and the
(u′, v′) adapted to r− are derived and discussed. It is shown that the geodesic equations
in the (u′, v′) coordinates are identical to those in the (u, v) coordinates.

In Sec. 5., the method of identifying the lines of constant r, in particular of the locus
of TPs of radial timelike geodesics, is explained and discussed. The transformations
involved in constructing the maximal extension are illustrated by numerical examples.

In Secs. 6. and 7., the numerical integration of radial timelike and null geodesics is
explained step by step and it is proved that a radial timelike geodesic emitted sufficiently
late cannot enter the past light cone of the first future copy of the emitter.

In Secs. 8. and 9. the same is shown (numerically) for a late-emitted nonradial timelike
geodesic with the absolute value of the angular momentum constant J0 being near the
allowed maximum, and for a nonradial null geodesic with the same J0. (Geodesics with
larger |J0| do not enter the r < r+ region, so they cannot propagate through the tunnel
between the singularities and are irrelevant for the problem of causality).

In Sec. 10., it is demonstrated that an early-emitted ingoing radial timelike geodesic
has its TP earlier than the past light cone of E′, so does lead to acausality. It is also
demonstrated that there exists a timelike ingoing radial geodesic emitted at a time be-
tween the early and the late one, for which the TP lies right on (E′)’s past light cone.

In Sec. 11. the conclusions and implications of the results of this paper are summarised
and discussed. In particular, the geometrical peculiarities of the maximal extension that
are not visible at the level of a general discussion, but clearly appear in the numerical
computations, are pointed out.

Some details of the calculations are explained in five appendices.

2. Basic facts about the maximally extended Reissner–Nordström spacetime

The signature (+−−−) will be used throughout the paper.
The RN metric is the electrovacuum solution of the Einstein–Maxwell equations that

describes the spacetime in a neighbourhood of a spherically symmetric body (or a black
hole) of mass m and electric charge e. In curvature coordinates it is

ds2 = ϕdt2 − (1/ϕ)dr2 − r2
(
dϑ2 + sin2 ϑdφ2

)
, (2.1)

where
ϕ = 1− 2m/r + e2/r2. (2.2)

The mass m and the charge e are expressed in units of length. They are related to the
mass M and charge Q in physical units by m = GM/c2 and e =

√
GQ/c2, where G is

the gravitational constant and c is the velocity of light (see Eq. (19.62) in Ref. [4]).
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We shall consider only those RN metrics for which e2 < m2. When e2 > m2, the
spurious singularities do not exist (only the genuine one at r = 0 is there) so no extension
is needed, and the case e2 = m2 is less challenging mathematically. The metric with
e2 < m2 has spurious singularities (event horizons) where ϕ = 0, i.e. at

r− = m−
√
m2 − e2, r+ = m+

√
m2 − e2. (2.3)

In the Schwarzschild limit e → 0, the horizon at r = r− collapses on the genuine singu-
larity at r = 0, while the other one goes over into the Schwarzschild horizon at r = 2m.
The sets (2.3) are made nonsingular by coordinate transformations as follows [3].

We introduce such coordinates u(t, r) and v(t, r) in which

ds2 = f2(u, v)
(
dv2 − du2

)
− r2(u, v)

(
dϑ2 + sin2 ϑdφ2

)
. (2.4)

The functions f , u and v then obey

f2
(
v,t

2 − u,t
2
)

= ϕ(r), f2
(
v,r

2 − u,r
2
)
= − 1

ϕ(r)
,

v,t v,r −u,t u,r = 0. (2.5)

This implies u,t
2/v,r

2 = ϕ2(r). From this and from the last of (2.5) we obtain1

u,t = ϕ(r)v,r , v,t = ϕ(r)u,r . (2.6)

We now introduce the new variable r∗(r) by

dr∗/dr = 1/ϕ, (2.7)

then the solution of (2.6) is

u = h(r∗ + t) + g(r∗ − t), v = h(r∗ + t)− g(r∗ − t), (2.8)

where h and g are arbitrary functions (an additive constant in v has been ignored because
it does not enter (2.5)). Primes will denote the derivatives of h and g by their arguments.
With ϕ given by (2.2), the explicit formula for r∗(r) is

r∗ = r +
r+

2

r+ − r−
ln |r − r+| −

r−
2

r+ − r−
ln |r − r−| . (2.9)

Using (2.8), we find from (2.5)

f2 =
ϕ(r)

4h′(r∗ + t)g′(r∗ − t)
. (2.10)

Any zero of ϕ(r) must now be cancelled by the denominator, and the resulting f must
be time-independent, so that (2.4) is static and nonsingular at ϕ = 0.

1Formally, there exists the second solution u,t = −ϕv,r, v,t = −ϕu,r, but it is equivalent to (2.6) by
the coordinate transformation t = −t′, which is an isometry of (2.1) – (2.2).
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The product h′(r∗ + t)g′(r∗ − t) will be independent of t only if

h = Aeγ(r
∗+t) + C, g = Beγ(r

∗−t) +D, (2.11)

where A, B, C, D and γ are arbitrary constants. We shall take C = D = 0 (they do not
appear in (2.10)) and, for the beginning, 0 < A = B. Then (2.10) becomes

f2 =
ϕ(r)

4A2γ2e2γr∗
. (2.12)

Substituting (2.11) in (2.8) we obtain the formulae for the transformation (t, r) → (u, v):

u = Aeγr
∗ (

eγt + e−γt
)
≡ 2Aeγr

∗
cosh(γt),

v = Aeγr
∗ (

eγt − e−γt
)
≡ 2Aeγr

∗
sinh(γt). (2.13)

This implies u ≥ 0 and |v| ≤ u (|v| → u at t → ±∞ and at eγr
∗ → 0), i.e., (2.13)

covers only the u ≥ 0 part2 of the region where u2 − v2 ≥ 0. The inverse transformation
(u, v) → (t, r) is implicitly given by

4A2e2γr
∗
= u2 − v2, t =

1

γ
artanh(v/u) ≡ 1

2γ
ln

1 + v/u

1− v/u
. (2.14)

Thus, in the (u, v) coordinate plane, t = constant on straight lines through the origin
and r = constant on the hyperbolae u2 − v2 = constant. From (2.12) and (2.14),

f2 =
ϕ

γ2 (u2 − v2)
. (2.15)

To extend the transformation (t, r) → (u, v) to the u2 − v2 < 0 region we choose
C = D = 0 and 0 > B = −A in (2.11), and then (2.13) – (2.15) are replaced by

u = 2Aeγr
∗
sinh(γt), v = 2Aeγr

∗
cosh(γt), (2.16)

4A2e2γr
∗
= v2 − u2, t =

1

γ
artanh(u/v), (2.17)

the function f2 being still given by (2.15).
The two (t, r) → (u, v) transformations given by (2.13) and (2.16) cover only the

v > −u half of the (u, v) coordinate plane, see Fig. 1. For {v < 0, u2 − v2 < 0} the
covering is provided by

u = 2Aeγr
∗
sinh(γt), v = −2Aeγr

∗
cosh(γt), A > 0. (2.18)

Finally, for {u < 0, u2 − v2 > 0} the covering is provided by

u = −2Aeγr
∗
cosh(γt), v = 2Aeγr

∗
sinh(γt), A > 0. (2.19)

2As (2.9) shows, r∗ → −∞ when r → r+ and r∗ → +∞ when r → r−, so, depending on the sign of

γ, eγr
∗ → 0 at r → r+ or at r → r−, hence u ≥ 0 rather than u > 0.
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u

v

(2.13)

u   - v   > 0  2     2

(2.16)

u   - v   < 0  2     2

(2.18)

u   - v   < 0  2     2

(2.19)

u   - v   > 0  2     2

u

v

(2.13)

u   - v   > 0  2     2

(2.16)

u   - v   < 0  2     2

(2.18)

u   - v   < 0  2     2

(2.19)

u   - v   > 0  2     2

Fig. 1: The sectors of the (u, v) coordinate plane covered by different (t, r) → (u, v) tansformations.
See the text for details.

When e2 < m2, Eq. (2.2) can be written as

ϕ =
(r − r+)(r − r−)

r2
, (2.20)

and the expression for e2γr
∗
is, using (2.9),

e2γr
∗
= e2γr |r − r+|2γr+

2/(r+−r−) |r − r−|−2γr−
2/(r+−r−)

. (2.21)

The function e2γr
∗
becomes infinite or zero at r = r+ and r = r−, depending on the sign

of γ (see below). Using (2.20) and (2.21), Eq. (2.12) becomes

f2 =
(r − r+)(r − r−) |r − r+|−2γr+

2/(r+−r−) |r − r−|2γr−
2/(r+−r−)

4A2γ2r2e2γr
. (2.22)

Now γ can be chosen so as to cancel one of the spurious singularities, but not both at
once. Let r1 = r+ and r2 = r−. To cancel the singularity at ri we take

γi =
ri − rj
2ri2

, i ̸= j. (2.23)

The transformations that cancel the singularities at r = r+ and r = r− will be called,
respectively, the γ1 and γ2 transformation. With γ = γ1 and r > r+, Eq. (2.22) becomes

f2 = (r − r−)
1+r−

2/r+
2

/
(
4A2γ1

2r2e2γ1r
)
. (2.24)

For this f2 the metric (2.4) can be smoothly continued through r = r+, but f2 = 0 at
r = r−, so r = r− is still a singularity.

With γ = γ2 = (r− − r+) /(2r−
2) and r < r+, we obtain for f2:

f2 = sign(r− − r) (r+ − r)
1+r+

2/r−
2

/
(
4A2γ2

2r2e2γ2r
)
. (2.25)
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This is zero at r = r+ and well-defined for all r < r+ (since this f2 < 0 for r− < r < r+,
Eq. (2.4) shows that in this range u is the time- and v is the space-coordinate). With
such f2, the metric can be continued through r = r−. For numerical computation, a
more detailed analysis of (2.21) is needed – see Appendix A.

From (2.21) e2γr
∗
(ri) = 0 when γ = γi. Thus, from (2.14), the set r = ri, in

the coordinates that make it nonsingular, has the equation u = ±v. Again by (2.21),
e2γr

∗
(0) = constant > 0. Hence, in the part of the (u, v) coordinate plane wheree (2.14)

applies, the equation of the singular set r = 0 is u2 − v2 = constant > 0, i.e., it is a
pair of hyperbolae that intersect the u-axis and are convex towards smaller |u|. However,
where (2.16) applies, the constant u2 − v2 is negative, and the image of the singular set
is a pair of hyperbolae that intersect the v axis. See Sec. 5. for more on this.

It is useful to map the (u, v) surface into a finite set in such a way that null geodesics
are mapped into themselves (this is called conformal, or Penrose, mapping). The radial
null geodesics in (2.4) are u± v = constant. We first introduce the null coordinates

p = u+ v, q = u− v, (2.26)

and then define
P = tanh p, Q = tanh q. (2.27)

In the (P,Q) coordinates, the equation of the horizon at u = v is Q = 0, and of the
one at u = −v it is P = 0. The image of the whole (u, v) surface fits in the square
(P,Q) ∈ {[−1, 1] × [−1, 1]}, and the null infinities p = ±∞, q = ±∞ are mapped into
the sets P = ±1, Q = ±1. We introduce the time-space coordinates in this square by

U = (P +Q)/2, V = (P −Q)/2. (2.28)

The transformation between the (u, v) of (2.12) – (2.19) and the (U, V ) of (2.28) is

(U, V ) =
(sinh(2u), sinh(2v))

cosh(2u) + cosh(2v)
, (2.29)

u =
1

4

(
ln

1 + U + V

1− U − V
+ ln

1 + U − V

1− U + V

)
, (2.30)

v =
1

4

(
ln

1 + U + V

1− U − V
− ln

1 + U − V

1− U + V

)
, (2.31)

and the metric becomes

ds2 =
f2

(
dV 2 − dU2

)
[1− (U + V )2] [1− (U − V )2]

− r2(U, V )
(
dϑ2 + sin2 ϑdφ2

)
. (2.32)

The horizons have the equations U = ±V , while the infinities of p and q become the
four straight line segments P = U + V = ±1, Q = U − V = ±1. Note from (2.29) that
(u > 0) ⇐⇒ (U > 0), (u = 0) ⇐⇒ (U = 0), and the same is true for the pair (v, V ).

Before we construct the diagram of the maximal analytic extension of the RN space-
time (i.e. transform it piecewise to the (U, V ) coordinates) we have to point out that the
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form of this diagram in earlier papers (e.g. [5]) and textbooks (e.g. [4]) is not universally

correct.3 The two functions F def
= {u(t), v(t)} and G def

= {U(t), V (t)} at constant r are
given by the parametric equations

u(t) = d cosh(t), v(t) = d sinh(t), d
def
= eγr

∗(r), (2.33)

U(t) = sinh(2u(t))/M(t), V (t) = sinh(2v(t))/M(t), (2.34)

M(t)
def
= cosh(2u(t)) + cosh(2v(t)). (2.35)

Curve F is a hyperbola that degenerates to a pair of straight lines in the limit of d → 0.
The shape of curve G depends on the value of d, which is determined by m and e via (2.9)
and (2.3). For large d (d = 2 on curves 1uv and 1UV in Fig. 2) F and G have curvatures
of opposite signs and are far from each other. At an intermediate d (d = 0.9 on curves
2uv and 2UV, this is the case considered further on in this paper), the two curves come
closer together, but still have curvatures of opposite signs. At a smaller d (d = 0.5 on
curves 3uv and 3UV), the curvature of G changes sign along it. At a sufficiently small d
(d = 0.2 on curves 4uv and 4UV in Fig. 2) G nearly coincides with a segment of F and
has the same sign of curvature nearly all along. This is the case for which the schematic
figures in the literature so far were drawn. For the beginning, we will follow the tradition
and construct the extension of the RN spacetime with a small d in (2.33).

We can proceed from a point E in the r > r+ region back in time along a q = constant
null geodesic and cross the spurious singularity r = r+ at p = 0, or to the future along
a p = constant null geodesic and cross r = r+ at q = 0. By extending these two kinds
of null geodesics, we cover sectors I, II and IV of Fig. 3.4 By sending null geodesics
back in time from sector II and to the future from sector IV we cover sector III. In the
r− < r < r+ regions, we transform the (u, v) coordinates continued from sector I to such
(u′, v′) that cancel the r = r− spurious singularity. The following remark will require
attention in the next sections:

We draw the conformal diagrams in (U ′, V ′) corresponding to (u′, v′)

in such a way that their images of r = 0 coincide with the r = 0 sets

of the (U, V ) diagram and this involves a transformation. (2.36)

We will present this transformation in Sec. 5.. The r = r− horizons are again straight
lines. By continuing the extensions and patching together their results, we arrive at the
manifold shown in Fig. 3.

The thin straight segments in Fig. 3 are the images of the null infinities, where
r → ∞. Their endpoints are the timelike and spacelike infinities. The thin hyperbola
segments represent the r = constant lines; they are timelike for r > r+ and r < r− and
spacelike for r− < r < r+. The thicker straight segments are the horizons at r = r±.
The hatched hyperbola segments represent the true singularities at r = 0. Radial null
geodesics (not shown) would be straight lines parallel to the spurious singularities.

3In Refs. [6] and [7] the image of the singularity at r = 0 was drawn purely schematically, with no
intention to show its real shape.

4This figure first appeared in the papers by Carter, see in particular Ref. [5].
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-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.
5 1

1.
5 2

1uv

1UV

2uv

2UV

3uv
3UV

4uv
4UV

u, U

v, V

Fig. 2: Comparison of the graphs of the functions F = {u(t), v(t)} and G = {U(t), V (t)} given by
(2.33) – (2.35) for different distances between the vertices of F . See the explanations in the text. Note
that all {U(t), V (t)} graphs run between V = −0.5 and V = +0.5.

Re ‘represent’: The arcs in Fig. 3 are an illustrative scheme, not an exact drawing.
The shapes and positions in Fig. 3 of the exact images of lines of constant r depend
on the coordinates used and on the range of the m and e parameters. The schematic
presentation thus avoids complications, but see Sec. 5. and Figs. 4, 5 and 6.

The upper tunnel between the true singularities within the thick rectangle is a copy
of the lower one. We can identify the two tunnels, thus making the extended manifold
cyclic in time. Alternatively, we can continue to send null geodesics to the future from
the upper tunnel and to the past from the lower tunnel, to obtain an infinite chain of
asymptotically flat regions and tunnels. A natural suspicion is that the identification may
result in an acausal spacetime, in which one could send signals (by means of geodesics)
to the future and receive them from the past before they were sent. This would lead
to paradoxes such as sending the order “do not emit any message if you receive this
one”, and yet receiving it before it was sent. In the present paper it is shown that the
acausality does or does not occur depending on the position of the origin of the geodesic.

3. The geodesic equations in the (u, v) coordinates

The geodesic equations for the RN metric in the coordinates of (2.1) – (2.2) have
been presented and partly integrated in previous publications,1 see e.g. Ref. [4] (Sec.

1Actually, some of those publications discussed the orbits of charged particles, which are not geodesics.
But they become geodesic in the limit of zero charge of the particle.



[Author and title] 10

-2

-1

0

1

2

-1 -0.5 0 0.5 1

r+

r+

r+

r-

r-

I

II

IV’

III

IV

S1 S2

∞

∞

∞

∞

I’

E

E’

U

V

Fig. 3: The conformal diagram of the maximally extended Reissner–Nordström spacetime with e2 < m2

and with a small d in (2.33). The upper and lower tunnel between the singularities can be identified,
then sector I′ would coincide with sector I, and event E′ in sector I′ (shown together with its past light
cone, PLC) would coincide with event E in sector I. Can a message be sent from E to the PLC of E′?
See the text for more explanation.
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14.16). For each single timelike or null geodesic, the (ϑ, φ) coordinates can be adapted
so that the whole geodesic lies in the ϑ = π/2 hypersurface, and then φ along it obeys

dφ/ds = J0/r
2, (3.1)

where J0 is an arbitrary constant and s is an affine parameter. The geodesic is radial
when J0 = 0. Obtaining these results takes up 2 of the 4 geodesic equations, and the
remaining 2 have the following first integrals:

ϕ dt/ds = Γ = constant, (3.2)

dr/ds = σ
√
Γ2 − Eϕ, (3.3)

E
def
= ε+ J0

2/r2, (3.4)

where Γ > 0 (< 0) on future- (past-) directed geodesics in sector I,2 σ = +1 (−1) on
outgoing (ingoing) geodesics, ε = constant > 0 on timelike geodesics and ε = 0 on null
geodesics. With ε = 1 and Γ2 > 1, the orbit determined by (3.2) – (3.4) is hyperbolic
(r can go to infinity, and limr→∞ |dr/ds| > 0), with Γ2 = 1 = ε it is parabolic (r → ∞
allowed, but limr→∞ dr/ds = 0), with Γ2 < 1 = ε it is elliptic (r < ∞ permanently).

Equations (3.2) – (3.4) imply the general first integral of geodesic equations:

ϕ

(
dt

ds

)2

− 1

ϕ

(
dr

ds

)2

− J0
2

r2
= ε. (3.5)

Taking (2.14) for t and r we find that in the (u, v) coordinates (3.2) – (3.3) become

ϕ

γ (v2 − u2)

(
v
du

ds
− u

dv

ds

)
= Γ, (3.6)

ϕ

γ (v2 − u2)

(
v
dv

ds
− u

du

ds

)
= σ

√
Γ2 − Eϕ. (3.7)

The same formulae (3.6) – (3.7) follow when we use (2.17) instead of (2.14) for calculating
dt/ds and dr/ds. Consequently, when we extend a geodesic from sector I in Fig. 3 into
sector II, we can continue to use Eqs. (3.6) – (3.7) and conclusions from them.

Still the same formulae (3.6) – (3.7) result in sector S1.
Equations (3.6) – (3.7) are equivalent to

du

ds
=

γ

ϕ

[
Γv + σu

√
Γ2 − Eϕ

]
, (3.8)

dv

ds
=

γ

ϕ

[
Γu+ σv

√
Γ2 − Eϕ

]
. (3.9)

Since ϕ < 1 for r− > e2/(2m) < r < ∞, it follows that Γ2 − Eϕ ≥ 0 when 0 < E ≤ Γ2

throughout sectors I and II and in a part of sector S1. The locus of Γ2 − Eϕ = 0 is the

2In sectors where ϕ < 0, Eq. (3.2) shows that t decreases along the geodesic when Γ > 0, but it is a
space coordinate there.
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TP for r(s) as seen from (3.3). For radial (J0 = 0) timelike (ε = +1) geodesics the value
of r at the TP is

rtp =
1

Γ2 − 1

(
−m±

√
m2 − e2 + Γ2e2

)
−→
Γ2→1

e2

2m
. (3.10)

The sign is + for Γ2 > 1, and both signs are allowed when Γ2 < 1.3

For numerical calculation, it will be convenient to take v as the independent variable
and calculate u(v). Then, from (3.8) – (3.9)

du

dv
=

Γv + σu
√
Γ2 − Eϕ

Γu+ σv
√
Γ2 − Eϕ

. (3.11)

For radial null (E = 0) geodesics, (3.11) implies du/dv = ±1, i.e.

v ± u = D = constant. (3.12)

On outgoing radial null geodesics, from (3.12) and (2.29) we have

V − U =
sinh(2v)− sinh(2u)

cosh(2u) + cosh(2v)
≡ sinh(v − u)

cosh(v − u)
= tanhD. (3.13)

For geodesics with σ = −1 that cross the horizons at r = r±, where u = ±v and
ϕ = 0, Eq. (3.11) becomes 0/0. It is shown in Appendix B how to deal with this problem.

Note that (3.11) is invariant under the transformation (v, u) = (u′, v′).
While integrating (3.11) numerically, we will need the value of r at each step to

calculate ϕ(r). Given u, v and γ, (2.14) determines r∗. The numerical calculation of the
corresponding r from (2.9) poses a problem that is explained and solved in Appendix C.

4. Transformations between different coordinates

On lines of constant r, as seen from (2.14) – (2.19), u2 − v2 = C = constant. The
sign of C depends on the region of the (u, v) surface. The following observation will be
useful in further calculations:

Lemma 4.1
Equation (2.29) implies that dV /dv > 0 along a line of constant r when C > 0.
For the proof see Appendix D.
The conclusion is that after the transformation (u, v) → (U, V ) given by (2.29) the

ordering of events by the value of V along a line of constant r agrees with the ordering
by the value of v in those sectors of Fig. 3 in which u2 − v2 > 0. In the other sectors the
two orderings are not necessarily consistent with each other.

By the same method follows

3Note that with Γ2 < 1, the radially moving particle has both TPs in the r < r− region, i.e. it stays
permanently inside the inner event horizon, in sectors S1 or S2 of Fig. 3. The coordinate t → −∞ at
the lower ends of S1 and S2, and t → +∞ at the upper ends, so such a particle keeps oscillating between
the two TPs forever.
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Lemma 4.2
Equation (2.29) implies that dU/du > 0 along a line of constant r in regions where

u2 − v2 < 0. �
The ordering by the values of v agrees with the ordering by the values of t only when

γ > 0 in (2.13) and (2.19). With γ < 0, the two orderings are opposite. With (2.16) and
(2.18), the relation between the two orderings is still more complicated.

From now on we will denote the (U, V ) coordinates in Fig. 3 by (U ,V). They do not
coincide with the internal (U, V ) coordinates of most sectors. In the rectangle consisting
of sectors II and S1 the (U ,V) are shifted by (δU , δV) = (−0.5,+0.5) with respect to the
internal (U, V ). The shifts in the other places can now be easily deduced.

While calculating the geodesics we will have to transform between the γ1 coordinates
(u, v) and the γ2 coordinates (u′, v′) somewhere in sectors II and IV′ in Fig. 3. In order
to derive the transformation formulae we have to recall that square II in the figure is in
truth sector II for the γ1 coordinates (where u2 − v2 < 0) overlaid on sector I for the γ2
coordinates (where u′2−v′2 > 0). The transformation formulae follow from the condition
that the pairs (u, v) and (u′, v′) correspond to the same pair (t, r), so

e2r
∗

=

(
v2 − u2

4A2

)1/γ1

=

(
u′2 − v′2

4A2

)1/γ2

, (4.1)

t =
1

γ1
artanh(u/v) =

1

γ2
artanh(v′/u′), (4.2)

where A > 0. Using the identity artanh x ≡ 1
2 ln 1+x

1−x and denoting

a
def
= (r−/r+)

2 ≡ −γ1/γ2 (4.3)

Eqs. (4.1) – (4.2) lead to1

u =
1

2
(2A)1+a

[
(u′ + v′)−a − (u′ − v′)−a

]
, (4.4)

v =
1

2
(2A)1+a

[
(u′ + v′)−a + (u′ − v′)−a

]
. (4.5)

The inverse formulae are

u′ =
1

2
(2A)1+1/a

[
(v + u)−1/a + (v − u)−1/a

]
, (4.6)

v′ =
1

2
(2A)1+1/a

[
(v + u)−1/a − (v − u)−1/a

]
. (4.7)

When v + u → 0 (i.e. the point of coordinates (u, v) approaches the horizon r = r+),
both u′ and v′ go to +∞, i.e. the point (u′, v′) approaches r = r− in sector II.

1In fact, (4.1) – (4.2) determine (u+ v)2 and (u− v)2. But there is no sign ambiguity in calculating

(u + v) and (u − v) therefrom because, with the assumed A > 0 and eγr
∗ ≥ 0, Eqs. (2.13) guarantee

that u± v ≥ 0 in sector I (so u′ ± v′ ≥ 0 in (4.4) – (4.5)) while (2.16) guarantee that v± u ≥ 0 in sector
II. The same applies to calculating (u′ ± v′) for (4.6) – (4.7).



[Author and title] 14

Now we can calculate du′/dv′ (see Appendix E). The result

du′

dv′
=

Γv′ + σu′
√
Γ2 − Eϕ

Γu′ + σv′
√
Γ2 − Eϕ

(4.8)

is a copy of (3.11). This is consistent with the fact that on proceeding from sector I to
sector II u and v interchange, while (3.11) is invariant under such a transformation.

For radial null geodesics on which v − u = D, Eqs. (4.6) – (4.7) give

v′ − u′ = −(2A)1+1/aD−1/a, (4.9)

so v′ − u′ is also constant, but different from D.
We also need the transformations analogous to (4.4) – (4.7) for past-directed radial

geodesics proceeding from sector I′ to sector IV′. This is equivalent to doing the same
transformation for geodesics going from sector I to sector IV. A comparison of (2.16) with
(2.18) shows that in sector IV we have v ≤ 0 and |u| ≤ |v|, so v + u ≤ 0 and v − u ≤ 0.
Therefore,

√
(v + u)2 = −v − u and

√
(v − u)2 = u− v. In consequence of this

The desired formulae follow from (4.6) − (4.7)

by replacing v + u → −v − u, v − u → u− v. (4.10)

5. Lines of constant r in Fig. 3

Sector I of the γ2 coordinates, as already mentioned, coincides in Fig. 3 with sector II
of the γ1 coordinates. In the former, u2 − v2 > 0 and the arcs of constant r are standing
vertically as in sector I. In the latter, u2 − v2 < 0 and these arcs are lying horizontally
as in sector II of the figure.

The lines of constant r = r0 are determined as follows: given r0 and γ, we calculate

r∗(r0) from (2.9), then d(r0)
def
= 2Aeγr

∗(r0), and we use (2.33) – (2.35). The (U ,V)
coordinates of this line in the figure are calculated by applying the relevant shifts. The
shape and position of the resulting line depends on the value of d, see Fig. 2. In the
(u, v) coordinates with u2 − v2 < 0, Eq. (2.33) applies with u and v interchanged.

Our further reasoning will be carried out within the subset of Fig. 3 shown in Fig.
4. In the latter, the arcs of the singularity at r = 0 are adapted to the numerical values
of r− and r+ that are introduced in Sec. 6. – hence the change explained in Fig. 2 and
in the associated segment of the text. The lines of constant r are drawn in sectors I and
S1 of Fig. 4 as if they had u2 − v2 > 0. However, when we follow a geodesic that begins
in sector II in the γ2 coordinates, it arrives in sector S1 with u2 − v2 < 0 (the sign of
u2 − v2 changes when crossing r = r−) and its arc of r = rtp (i.e. the locus of the TPs
given by (3.10)) lies horizontally – it is marked r2 in Fig. 4. In the (u, v) coordinates
with u2 − v2 < 0 and γ = γ2 < 0, Eq. (2.16) shows that u decreases when t increases.
So, on the r2 arc, the time-ordering of events is right to left, i.e. the events with larger
U (the rightmost ones) are earlier than those with smaller U (recall Lemma 4.2).

There are more elements in Fig. 4 than can be explained at this stage; they will be
explained further on as we go.
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Fig. 4: A radial timelike geodesic running from event E in sector I to the turning point P5 on the arc
r2. The hatched arcs are the exact images of the singularity at r = 0. The meaning of the other elements
in this figure is gradually explained as the text proceeds.
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Figure 5 shows a collection of future-directed radial timelike geodesics that go off in
sector II in the γ2 coordinates with u2 − v2 < 0. Their initial points all have U = 0,
while their V = 0.1, 0.2, . . . , 0.9. They cross the r = r− horizon at the line r− in the
figure. The locus of their TPs lies at r2 because the (u, v) coordinates used here are not
the internal (u, v) of sector S1. The arc of r = 0 in these coordinates lies above r2, but
at the scale of Fig. 5 is indistinguishable from r2.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4
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r-

rtp
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Fig. 5: The future-directed radial timelike geodesics that go off in sector II in the γ2 coordinates with
u2 − v2 < 0 reach their turning points at the arc r2. The locus of the singularity at r = 0 seems to
coincide with r2 at the scale of this figure, but lies above the latter. The r along the geodesics goes
through the value r− at the marked points. The dotted arc marked rtp is the locus of turning points in
sector S1 in the γ2 coordinates with u2 − v2 > 0, see Fig. 6. The thin lines transversal to the goedesics
are loci of constant r, from bottom to top they are r = 0.89, 0.88, 0.87, 0.86 and r = 0.8.

Figure 6 shows a collection of past-directed radial timelike geodesics that go off the
arc r = rtp in sector S1 in the γ2 coordinates with u2 − v2 > 0.1 They cross the horizon
r = r− at the marked points. In the figure, they come close to r = r+ but cannot reach

1This is a different collection from that in Fig. 5. Their initial points are determined from (2.33) –
(2.35) with the value of d that follows from (6.1) – (6.2) and γ = γ2; they have, from top to bottom,
t = 2.0, 1.2, 0.6, 0.2,−0.2,−0.7.
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it because in the γ2 coordinates the set r = r+ lies at infinity – see (2.25) and (2.15).
Figures 5 and 6 illustrate the remark (2.36): to fit in Fig. 4, the image in Fig. 5 has
to be transformed into that in Fig. 6; see below for the transformation. The left arc of
r = 0 in these coordinates lies to the left of r = rtp, but at the scale of Fig. 6 the two
are indistinguishable; the exact second image of r = 0 is shown on the right.
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∞ ∞

rtp r2
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Fig. 6: The past-directed radial timelike geodesics that go off the arc rtp – the locus of their turning
points in the γ2 coordinates with u2 − v2 > 0. See the text for explanations.

The configuration in sectors II and S1 of Fig. 6 is a mirror-reflection in the line
V = −U + 0.5 of that in Fig. 5, where the (U, V ) are the internal coordinates of these
sectors.2 A reflection of a point of coordinates (x, y) in the line y = −x would be
described by the equations (x′, y′) = (−y,−x). Consequently, the reflection in the line
y = −x+ b is described by the equations (x′, y′) = (−y + b,−x+ b), so

(U ′, V ′) = (−V + b,−U + b). (5.1)

To place the result of this reflection in the frame of Fig. 5 we have to shift it by

(δU , δV) = (−0.5, 0.5). (5.2)

2Except that the two sets of geodesics are different. See Fig. 7 for an exact comparison.
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The transformation of Fig. 5 by (5.1) – (5.2) is shown in Fig. 7 – it is consistent with
Fig. 6. This is the transformation implied in (2.36).
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Fig. 7: The transformation of Fig. 5 by (5.1) with the shift (5.2) applied to the result. This graph is
consistent with Fig. 6.

The transformation in the (u, v) coordinate surface corresponding to (5.1) is(
u′

v′

)
=

1

4
ln

[
e−u−v + 2a cosh(u+ v)

eu+v − 2a cosh(u+ v)

]
± 1

2
(u− v). (5.3)

6. A timelike future-directed geodesic that does not break causality

The problem we now wish to solve is the following. Let E be an event in sector I of
Fig. 4. Let E′ be the copy of E in sector I′ (which is the first future copy of sector I).
Is it possible to send from E a future-directed timelike or null geodesic G such that it
goes through the tunnel between the singularities and enters the past light cone of E′?
If this is possible, then the identification described in Sec. 2. indeed leads to causality
violation: E can send a message to its causal past.

G cannot be radial null: in Fig. 4 it would consist of straight segments running
parallel to the event horizons and would hit the singularity at left (see Eq. (3.3) – there
is no TP when E = 0). To enter sector I′, it would have to be reflected somewhere within
the tunnel and the RN geometry does not contain any such mirror.
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Can G be radial timelike? We will deal with this question now. An example will be
presented of a radial timelike geodesic proceeding from event E in sector I of Fig. 4 to
the locus of the TPs. For the parameters of the RN metric and of the geodesic we choose:

r+ = 1.0, r− = 0.9, 2A = 1, (6.1)

Γ = 1.1, E = 1.0. (6.2)

The computation (at double precision in Fortran 90) proceeds as follows:
1. We choose the initial point E in sector I. Its (U ,V) coordinates in Fig. 4 are

(U0,V0) = (0.5, 0.1), (6.3)

and its internal (U0, V0) in sector I are the same. The corresponding (u, v, r) are1

(u0, v0) = (0.55839805537677356, 0.13474912518317173),

r0 = 1.0598002056721780; (6.4)

the high precision will ensure that the calculated effect is larger than a numerical error.
2. We integrate (3.11) off the point E. The integration proceeds towards decreasing

u when σ = −1 (see (3.8) – (3.9)), and towards the future when Γ > 0 (see (3.2)). We
thus launch the future-directed ingoing radial timelike geodesic G1a. We continue the
integration up to point P2, at which r = 0.94, whose coordinates in Fig. 4 are

(U2,V2) = (−0.12857138214262273, 0.72967049671654927). (6.5)

G1a crosses r = r+ smoothly using (3.11) – see the left panel of Fig. 8. As (2.9) shows,
limr→r− r∗ = +∞, limr→r+ r∗ = −∞ and dr∗/dr = 1/ϕ < 0 for r− < r < r+, so with
γ = γ1 the function r∗(r) is monotonic in this range and r at P2 is uniquely determined.

3. At r = 0.97, which occurs at point P1, we transform its (u, v) by (4.6) – (4.7) to
(u′, v′) – the coordinates of P3 (the image of P1). The second segment of G1, denoted
G1b, takes off at P3 whose coordinates in the figure are

(U3,V3) = (0.45594056360076862, 0.46086405038409167). (6.6)

These differ by (δU , δV) = (−0.5,+0.5) from the internal (U, V ) of sector I of the γ2
coordinates.

4. We integrate (4.8) off P3 with σ = −1. Between r(P1) and r(P2), G1a and G1b
run side by side. The right panel of Fig. 8 shows that P4 (the image of P2 under the
transformation (4.6) – (4.7)) lies on G1b with good precision.

5. A radial timelike geodesic cannot hit the singularity at r = 0. If it enters the
r < r− region, then it must have a TP at the rtp < r− given by (3.10) (see Ref. [4], Sec.
14.16). This is point P5 in sector S1, whose coordinates in the figure are

(U5,V5) = (−0.29505173312860367, 1.2143536937009773). (6.7)

Figure 9 shows a closeup view on the neighbourhood of P5.

1(u0, v0) are calculated using (2.30) – (2.31), r0 is calculated by solving the first of (2.14) for r.
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Fig. 8: Left panel: The segment G1a of geodesic G1 crossing the r = r+ horizon. Right panel: The
segment G1b of G1 passes through point P4 – the image of P2 under the transformation (4.6) – (4.7).

7. The past light cone of E′

We continue the enumeration of the phases of calculation from Sec. 6..
6. Now we move to event E′ (also denoted P6), whose coordinates in Fig. 4 are

(U6,V6) = (0.5, 2.1), (7.1)

but its internal (U, V ) and (u, v) are the same as those of E, given by (6.3) and (6.4).
We send from E′ the past-directed ingoing radial null geodesic G2a, which is the radial
generator of the past light cone of E′. Its image in the figure can be calculated exactly
(i.e. without numerical computation) using (3.13) and (6.3), it obeys

V − U = V0 − U0 = −0.4, (7.2)

and we follow it down to point P7 in sector IV′ with coordinates in the figure

(U7,V7) = (0.0, 1.6). (7.3)

The corresponding internal (U7, V7) of P7 in sector IV′ are (0.0,−0.4).
7. We transform the (u7, v7) corresponding to (7.3) to (u′

7, v
′
7) by (4.10), and calculate

the (U ′
7, V

′
7)

def
= (U8, V8) coordinates of point P8 using (2.29). We are now in sector IV′,

so the (U ,V) coordinates in the figure are shifted with respect to the internal (U, V ) of
sector IV′ by (δU, δV ) = (−0.5,+1.5). The coordinates of P8 in the figure are1

(U8,V8) = (0.49380788638802, 1.5). (7.4)

1The value of V8 calculated by the plotting program gnuplot is exactly 1.5.
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See the text for more explanation.

At the scale of Fig. 4, this point lies so near to the intersection of the singularity arc
on the right with r = r± that the two points are indistinguishable. The internal (U, V )
coordinates of P8 in sector IV′ are

(U8, V8) = (U8 + 0.5,V8 − 1.5) = (0.99380788638802, 0.0). (7.5)

8. From P8 we issue the second segment of G2, denoted G2b, that obeys the equation
V − U = V8 − U8 and continue it to the point P11 of intersection with the r = rtp arc.
At the scale of Fig. 4, the G2b segment looks to coincide with r = r−. Just like G1b,
the segment G2b arrives in sector S1 with unadapted coordinates, so the arc of r = rtp,
denoted r3, lies horizontally and is the mirror-reflection of r2 in the line U = 1.

The (U ,V) coordinates of P11 in Fig. 4 can be calculated as follows. Let V8 −
U8

def
= D = constant. Then, from (3.13), the equation of G2b in the (u, v) coordinates is

v − u = artanh D ≡ 1

2
ln

(
1 +D

1−D

)
. (7.6)

From (2.33) and the paragraph containing it adapted to u2 − v2 < 0 and γ = γ2, the
equation of the set r = rtp is

v2 − u2 = d2(rtp) = 4A2e2γ2r
∗(rtp) def

= d0
2. (7.7)
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The solution of (7.6) – (7.7) are the (u, v) coordinates of P11,

u =
1

2

(
d0

2/artanh D − artanh D
)

v =
1

2

(
d0

2/artanh D + artanh D
)
. (7.8)

The coordinates of P11 in the figure are calculated from (2.29) (with the shifts applied):

(U11,V11) = (−0.15257743, 0.85361468). (7.9)

The neighbourhood of P11 is seen in Fig. 9. It is now clear that P5 lies to the future of
the past light cone of E′ – because its U coordinate is smaller than that of P11 (recall
Lemma 4.2). Consequently, no future-directed timelike or null geodesic that originates
at P5 can enter the past light cone of E′. This concludes the proof for a radial timelike
geodesic emitted at E. �

9. As a check of precision we extend the G2a segment down beyond P7, to point P9

whose (U ,V) in the figure are

(U9,V9) = (−0.25, 1.35). (7.10)

We apply the calculation described in point 7 to the internal (U, V ) of sector I′ corre-
sponding to (7.10), they are (−0.25,−0.65). In this way we find the coordinates of P10

– the image of P9 under (4.10). The coordinates of P10 in the figure are

(U10,V10) = (0.27258465, 1.27877676). (7.11)

As can be seen in Fig. 10, point P10 lies well on the G2b segment.
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8. A nonradial timelike geodesic

Let GJ be a nonradial timelike geodesic, and let us denote

EJ = 1 + J0
2/r2, (8.1)

i.e. EJ > 1 is the E for nonradial timelike geodesics.
Lemma 8.1
A nonradial timelike geodesic has its turning point at larger r than the radial one

with the same Γ.
Proof
The TP is where Γ2 − Eϕ = 0 in (3.3). With E = EJ , its equation is(

Γ2/EJ − 1
)
r2 + 2mr − e2 = 0. (8.2)

When Γ2/EJ < 1, the solution of (8.2) obeys

r1tp =
1

1− Γ2/EJ(r1tp)

(
m+

√
m2 − e2 + e2Γ2/EJ(r1tp)

)
(8.3)

(the other solution of (8.2) would have r1tp < 0). When Γ2/EJ > 1, the r = r2tp of the
TP obeys

r2tp =
1

Γ2/EJ(r1tp)− 1

(
−m+

√
m2 − e2 + e2Γ2/EJ(r2tp)

)
(8.4)

(again, the other solution of (8.2) would have r2tp < 0).
The case Γ2/EJ = 1 leads to r3tp = e2/(2m) < r−, but this can happen only when

|J0| = e2
√
Γ2 − 1/(2m). The r3tp is larger than the rtp of (3.10), so Lemma 8.1 holds.

The r1tp of (8.3) is larger than r+, so in this case the lemma holds formally, but such
geodesics do not enter the region r < r− and are irrelevant for the problem of causality.

The r2tp of (8.4) is smaller than r−, which is rather easy to verify. In Appendix F it
is shown that it is larger than the rtp of (3.10). �

Thus, TPs for nonradial timelike geodesics may exist in the region r ≤ r− only when
Γ2/EJ ≥ 1, which translates to

|J0| ≤ r
√

Γ2 − 1. (8.5)

When Γ2 = 1, this implies that J0 = 0, i.e. a parabolic orbit can enter the r ≤ r− region
only when it is radial. With Γ2 > 1, Eq. (8.5) is consistent with r ≤ r− when

|J0| ≤
√
Γ2 − 1r−. (8.6)

Orbits with larger |J0| have TPs in r > r+, i.e. outside the outer event horizon.
With the parameters of (6.1) – (6.2) the limit (8.6) becomes

|J0| ≤ 0.9×
√
0.21 ≈ 0.412431812546. (8.7)
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We will now show (numerically) that even with J0 = 0.412, which is close to the
maximum allowed value, the difference between the radial G1 and the nonradial timelike
geodesic GJ is insignificant from the point of view of our main problem. The nonradial
geodesics do not lie in any fixed (u, v) coordinate plane, so for comparing GJ with G1

each point of GJ will be rotated (with unchanged u) into the (u, v) plane of G1.
The GJ goes off the same (u0, v0) given by (6.4) as G1a. In Fig. 4, their images

between E and the neighbourhood of P2 are indistinguishable. Figure 11 shows their
(U ,V) coordinates near P1 (left panel) and P2 (right panel, the scale in the two panels
is not the same). The ‘new P1’ is reached by GJ at the same r = 0.97 as the old P1 was
reached by G1. The ‘new P2’ is reached at the same r = 0.94 as the old P2.
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Fig. 11: Comparison of the images of the radial G1 and nonradial GJ timelike geodesics in the neigh-
bourhood of points P1 (left panel) and P2 (right panel) from Fig. 4. The two graphs are indistinguishable
at the scale of Fig. 4. See the text for more explanation.

Also the image of the second segment of GJ (from the neighbourhood of P3 to the
neighbourhood of P5) coincides with that of G1b at the scale of Fig. 4, and the images of
their TPs are indistinguishable. The images of these segments are seen as separate only
after magnification – see Fig. 12. The left panel shows the image of the neighbourhood of
their initial points, the right panel shows the images of their final (turning) points. The
’old P3’ is the image of the ’old P1’ from Fig. 11 under the transformation (4.6) – (4.7),
the ’new P3’ is the image of the ’new P1’ under the same transformation. Incidentally,
Figs. 11 and 12 show that the transformation does not preserve the ordering of events
along the U coordinate axis: ’new P1’ is at a larger U than ’old P1’, but ’new P3’ is at a
smaller U than ’old P3. The two panels of Fig. 12 show that somewhere between P3 and
P5 the image of GJ intersects G1b, so GJ goes at a (slightly) larger inclination to the U
axis than G1b.

The r of the TP of GJ (i.e. the solution of (8.2)) can be determined only numerically.
With the parameters of given by (6.1), (6.2) and J0 = 0.412 it is

rJtp = 0.51034408730992153. (8.8)
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Fig. 12: Comparison of the images of G1 and GJ in the neighbourhood of points P3 (left panel) and
P5 (right panel) from Fig. 4. The scales in the panels are different. See the text for more explanation.

9. A nonradial null geodesic

The numerical calculation for this section uses the same algorithm as that of Sec. 8..
The difference is that for a null geodesic GN we have instead of (8.1)

E = EN = J0
2/r2, (9.1)

so (8.2) is replaced by the new equation of TPs(
Γ2r2/J0

2 − 1
)
r2 + 2mr − e2 = 0. (9.2)

Equations (8.3) and (8.4) still apply with EJ replaced by EN , and it is still true that with
Γ2/EN < 1 we have r1tp > r+. With Γ2/EN > 1 it is still true that r2tp < r−. However,
it is not always true that r2tp > rtp for the rtp of (3.10), because here (1 − 1/EN ) may
have any sign depending on the value of r, so (F2) does not imply (F3) in Appendix F.

In the first segment (from E to the neighbourhood of P2) the image of GN does not
differ from G1a of Fig. 4 (GN runs between the same values of r as G1). For completeness
we note: the (U ,V) coordinates in the figure of the analogue of point P2 in Fig. 4 are

(U2,U2)null = (−0.12938745931238965, 0.72955345209300437), (9.3)

to be compared with (6.5). The (U ,V) coordinates in the figure for the analogue of point
P3 (i.e. at the start of the second segment) are

(U3,V3)null = (0.45616174194929571, 0.46112925805749150), (9.4)

to be compared with (6.6). At the scale of Fig. 4 the image of the second segment of
GN is again indistinguishable from G1b, and their endpoints seem to coincide. The r at
the TP of the nonradial null geodesic is

rNtp = 0.43720631439290869, (9.5)
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and it is reached by the second segment of GN with (U ,V) in the figure being

(U5,V5)null = (−0.29636815953860662, 1.2149002620359113), (9.6)

to be compared with (6.7).
So, the conclusion reached for the timelike geodesic remains in power: with the initial

point given by (6.3), the TP lies to the future of the past light cone of E′.

10. Geodesics that violate causality

We will now present two more numerical examples of radial timelike geodesics emitted
in sector I, one of which clearly violates causality, and the other one has its TP nearly
on the past light cone of E′.

For the first emission event we choose the point EE (see now Fig. 13) whose (U ,V)
coordinates (coinciding with the internal (U, V ) in sector I) are

(U ,V) = (0.5,−0.2), (10.1)

i.e. it lies below E at the same U in sector I. The ingoing radial timelike geodesic emitted
there, with Γ and E still given by (6.2), will be denoted G3, and its first segment, denoted
G3a, goes from EE through P12 to P13 (at which, respectively, r = 0.97 and r = 0.94, as
before). The coordinates of P12 and P13 in the figure are

(U12,V12) = (−0.21246353917544286, 0.51294591609812235),

(U13,V13) = (−0.34654016129133364, 0.64719713828109493). (10.2)

The transformation (4.6) – (4.7) is carried out at P12 and takes it to P14. The second
segment of G3, denoted G3b, goes off P14 and continues to the intersection with the
r = rtp set, marked r2. The image of P13 under the same transformation is P15; this is
only a check of precision to show that P15 lies on G3b. The (U ,V) coordinates in Fig.
13 of P14 and P15 are

(U14,V14) = (0.40181862662479906, 0.597770308827682076),

(U15,V15) = (0.13195057342452676, 0.86763568858480716. (10.3)

The point of intersection of G3b with r = r2, marked P16 in Fig. 13, has coordinates

(U16,V16) = (−0.10274640621741898, 1.1023627992828624). (10.4)

Just like we did with the geodesic G1, we now leave G3b behind for a while and move
to point EE′ (also denoted P17) – the first future copy of EE, whose coordinates in the
figure are (U17,V17) = (0.5, 1.8). From there, we issue the past-directed radial ingoing
null geodesic G4, which is the radial generator of the past light cone of EE′. We denote
its first segment by G4a. As before, the equation of this geodesic can be handled exactly.
Using for P17 the internal coordinates of sector I′ it is

V − U = −0.7. (10.5)
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We continue this geodesic down to the point P18 with the coordinates in the figure

(U18,V18) = (0.1, 1.4), (10.6)

then transform its internal (U, V ) = (0.1,−0.6) to (u, v) by (2.30) – (2.31), then transform
these to (u′, v′) by (4.10), then transform (u′, v′) to (U ′, V ′) by (2.29). What results is
point P19 whose coordinates in the figure are

(U19,V19) = (0.400707810772957, 1.56946086423524). (10.7)

From P19 we now send the second segment of G4, denoted G4b. Its equation in the
(U ,V) coordinates of Fig. 13 is

V − U = V19 − U19 = 1.168753053462283. (10.8)

The line G4b intersects r3 (the locus of TPs of radial timelike geodesics) at point P20,
which lies clearly later (has a smaller U coordinate) than P16. Consequently, the geodesic
G3 reaches its TP before crossing the past light cone of EE′, so the observer at EE can
send a message to its own past and causality is broken. Here are the approximate (U ,V)
coordinates of P20, read out from a magnification of its neighbourhood:

(U20,V20) = (−0.401, 0.7678). (10.9)

Since a late-emitted geodesic had its TP later than (EE′)’s past light cone (PLC),
while the early-emitted one had its TP earlier than the PLC, there must exist an inter-
mediate emission point IE such that a radial timelike geodesic G5 going off there will
have its TP right on the PLC. We will now construct a numerical approximation to this
geodesic. To avoid clogging Fig. 13 with too many details, we marked on it only the
characteristic points, without drawing the geodesic segments. Anticipating that IE must
lie close to the point of time-symmetry of sector I, we choose its coordinates at

(U ,V) = (0.5, 0.0). (10.10)

On G5, we choose the point P21 at the same r = 0.97 as on the previously constructed
geodesics. Its coordinates in the figure are

(U21,V21) = (0.012375519215587246, 0.48841064854212529). (10.11)

At P21 we apply the transformation (4.6) – (4.7) that takes it to point P22 of coordinates

(U22,V22) = (0.47402568470461826, −0.0041480326881506938). (10.12)

The second segment of G5 goes off P22 and intersects the locus of TPs at P23 with

(U23,V23) = (−0.21394900777138914, 1.1848938941310596). (10.13)

Now we proceed to the point IE′, also denoted P24, which is the first future copy of
IE. Its coordinates in the figure are

(U24,V24) = (0.5, 2.0). (10.14)
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From there, we issue the past-directed null geodesic G6 (the radial generator of the PLC
of IE′) and follow it to the point P25 of coordinates

(U25,V25) = (−0.1, 1.4). (10.15)

To P25 we apply the transformation (4.10) that takes it to P26 of coordinates

(U26,V26) = (0.400707810772957, 1.43053913576476). (10.16)

From P26 we send the second segment of G6 and continue it slightly beyond the intersec-
tion with r3, denoted P27. It has the approximate (read out from the figure) coordinates

(U27,V27) ≈ (−0.2153, 0.81455). (10.17)

The U27 should coincide with U23, and it does so up to 0.00135, which we will be satisfied
to accept as the proof of our thesis. Figure 14 shows this discrepancy.
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Fig. 14: A closeup view on the neighbourhood of point P27 in Fig. 13. The line U23 marks the U
coordinate of point P23. Ideally, it should go through P27, which is the point of intersection of the past
light cone (PLC) of point IE′ with r3. It can be made arbitrarily near P27 by slightly increasing the
coordinae V of IE (and, correspondingly, of IE′).

11. Conclusions and summary

The main purpose of this paper was to verify whether an observer in an asymptotically
flat region of the maximally extended Reissner – Nordström (RN) spacetime with e2 < m2

can send a message (by means of timelike or null geodesics) to the past of his/her first
future copy (see Figs. 3, 4 and 13). If this is possible, then the identifications of the
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asymptotically flat regions do lead to acausality. The answer is that geodesics emitted
sufficiently late do not break causality, while those emitted sufficiently early do. Let the
initial point of the geodesic be at event E, and let the first future copy of E be E′. Then
any radial null geodesic emitted at E will hit the singularity and stop there. For late-
emitted timelike geodesics the turning point (TP) in the tunnel between the singularities
lies to the future of the past light cone (PLC) of E′, so the signal may come back to the
observer only later than it was emitted. But for early-emitted timelike geodesics, the
opposite happens: the TP lies to the past of the PLC of E′. In this case, the geodesic
continued beyond the TP can cross the worldline of E′ in the past of E′, so the breach
of causality is possible. The border between ’early’ and ’late’ are those emission points
for which the TP lies right on the PLC of E′.

Here is a step-by-step summary of this paper.
After presenting the main idea and the overview of this paper in Sec. 1., the geometric

properties of the Reissner – Nordström (RN) spacetime were discussed in Sec. 2.. For the
needs of the further sections, this discussion, in particular the derivation of the maximal
extension, was done in more detail than in the original paper [3]. Several interesting
facts emerged that may evade the attention of a reader of the basic sources (and perhaps
evaded the attention of the authors of Refs. [3] and [5]); see below for more on this.

Section 3. contains a discussion of the geodesic equations in the (u, v) coordinates
that remove the spurious singularities at the horizons. Also here, a few interesting facts
emerged, see below.

Section 4. contains the following results:

1. Some additional relations between the (u, v) coordinates (see above) and the (U, V )
coordinates of the conformal image of the RN spacetime, used in the figures.

2. The transformations between the (u, v) coordinates removing the singularity at
r = r+ and the (u′, v′) that remove the singularity at r = r−. It turned out that
this transformation leaves the geodesic equation unchanged.

In Sec. 5., the transformation of the (U, V ) coordinates needed to self-consistently
place in one figure the various sectors of the maximal extension was identified and illus-
trated using three figures.

In Secs. 6. and 7., an exemplary radial timelike geodesic G1 going off event E in an
asymptotically flat region of RN into the black hole was numerically calculated. Such a
geodesic cannot hit the true singularity at r = 0 [3, 4], but has a TP at r = rtp ∈ (0, r−).
The question was whether, after bouncing at rtp, it can enter the PLC of E′ – the first
future copy of E. The answer, for this particular geodesic, turned out to be ’no’: the
radial generator G2 of the PLC of E′ can be calculated exactly, and the TP of G1 lies to
the future of G2.

In Sec. 8., the consideration of Sec. 6. was applied to a nonradial timelike geodesic
GJ going off the same event E with the angular momentum constant J0 having a nearly-
maximum absolute value. (With larger |J0|, timelike geodesics do not enter the tunnel
between the singularities and are irrelevant for the problem of causality.) The result was
the same as in Sec. 6.: the turning point lies to the future of the PLC of E′.
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In Sec. 9., still the same consideration was applied to a nonradial null geodesic GN

going off the same E with the same |J0| as in Sec. 8.. The result was still the same: the
TP of GN lies to the future of the PLC of E′.

In Sec. 10., the construction of Sec. 6. was applied to two other emission events, EE
and IE, having the same spatial coordinate V as E. The event EE was earlier than E
while IE was such that the radial timelike geodesic emitted there has its TP nearly on the
PLC of IE′. For EE, the break of causality does occur: the TP of the timelike geodesic
emitted there lies to the past of the PLC of EE′. The second calculation proved that the
logical conclusion from the earlier calculations does indeed hold: such an IE exists.

In addition to these results, the paper revealed a few properties of the maximally
extended RN spacetime that remain unnoticed when one reads general descriptions of
the maximal extension procedure, such as in Refs. [3] and [4]. Here is the recapitulation:

1. The transformation given in Ref. [3] from the curvature coordinates (t, r) to the
(u, v) coordinates that removes one or the other spurious singularity is valid on one
side of the horizon. To cover the whole range of (u, v) one needs to consider four
cases, corresponding to different signs of u, v and u2 − v2, see Sec. 2. and Fig. 1.

2. The shapes of the r = constant lines in the (U, V ) coordinates depend on the values
of the m and e constants, see Fig. 2 (in the (u, v) coordinates they are always
hyperbolae, variously placed). Papers and books published so far used a schematic
illustrative representation of these lines that is correct only for sufficiently small
values of the distance between the foci of the hyperbola u2 − v2 = constant.

3. The geodesic equations in the (u, v) coordinates are the same on both sides of the
horizon r = r+, see the comment under (3.7).

4. The geodesic equations in the (u, v) coordinates are invariant under the transfor-
mation (u, v) = (v′, u′), see (3.8) – (3.9).

5. The geodesic equation is not changed by the transformation between the (u, v)
coordinates that remove the singularity at r = r+ and those that remove the
singularity at r = r− (Eqs. (4.3) – (4.7)), compare (3.11) with (4.8).

6. Matching the conformal images of the regions r > r− and r < r+ requires reflecting
the latter in the line V = −U+0.5. The required transformation of (U, V ) is simple,
see the last paragraph of Sec. 5..

In brief, the main conclusion of this paper is that identifications of asymptotically flat
regions of the maximally extended RN spacetime do lead to acausality (the possibility of
sending messages to one’s own past, or, in other words, the existence of closed timelike
lines). As an additional bonus, the readers now have a clear recipe to follow when
calculating geodesics propagating from one (U, V ) map to another.

A Finding r from a given e2γr
∗
using (2.21)

In the range r > r− and with γ = γ1, Eq. (2.21) becomes

e2γ1r
∗
= e2γ1r |r − r+| (r − r−)

−(r−/r+)2
. (A1)
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This decreases monotonically from ∞ at r → r− to zero at r = r+, then increases
monotonically from 0 to +∞ at r → ∞. Thus, given e2γ1r

∗
, the algorithms for finding

r > r− by the bisection method are different for r < r+ and r > r+.
In the range 0 < r < r+, and with γ = γ2, Eq. (2.21) implies the following. For

0 < r < r− the function e2γ2r
∗
decreases from r+

−(r+/r−)2r− > 0 at r = 0 to zero
at r → r−. For r− < r < r+, it increases from zero at r → r− to +∞ at r = r+.
Consequently, also in this case the algorithms for finding r are different for 0 < r < r−
and for r− < r < r+.

B Crossing r = r± with Eq. (3.11)

To avoid encountering an expression of the type 0/0 while crossing r = r± with
σ = −1, we apply the rule given below to the denominator in (3.11):

x− y =
x2 − y2

x+ y
. (B1)

Using (2.15) to eliminate u2 − v2 in two places, we obtain

du

dv
=

−Γ
√

Γ2 − Eϕ+ Eγ2uvf2

Γ2 + E(γvf)2
. (B2)

Since E ≥ 0, (B2) is well-defined also where ϕ < 0. In the limit (ϕ → 0, v → ±u), Eq.
(B2) becomes (because of Γ > 0)

lim
ϕ→0,v→±u

(
du

dv

)
=

−Γ2 ± E(γuf)2

Γ2 + E(γuf)2
. (B3)

With the minus sign this becomes du/dv = −1.
To deal with the 0/0 problem for (3.11) with σ = +1, we apply x+y = (x2−y2)/(x−y)

instead of (B1) and again use (2.15) to eliminate u2 − v2. The result is

du

dv
=

Γ
√
Γ2 − Eϕ+ Eγ2uvf2

Γ2 + E(γvf)2
. (B4)

C Calculating r from a given r∗ by the bisection method using (2.9)

The equation to be solved for r is

G(r)
def
= e2γ1r

∗
= e2γ1r |r − r+| (r − r−)

−a
, a

def
= r−

2/r+
2, (C1)

where the value of G(r) is given (the second pair of the || brackets in (2.21) was replaced
with () because (C1) will be applied only where r > r−).

1

1With γ = γ2, the corresponding G̃(r) is finite for all r ∈ (0, r+). The choice of the initial bounding
values for r is (r−, r+) in the segment where r− < r < r+ and (0, r−) in the segment where 0 < r < r−.
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In the first segments of the geodesics G1, G3 and G5 in Secs. 6. and 10., the initial
bounding values for r are r = r− and r = r0, where r0 is any r larger than the r
coordinate of the initial point E. But r(E) can be anywhere in (r+,+∞). Therefore, the
upper bound for r0 is not self-evident. The method of determining it is illustrated in
Fig. 15, and here is the description.

G(r)
H(r)

r0 r1

G(r  )0

r

G, H

r+

Fig. 15: In finding r0 from a given G(r0) by the bisection method, the initial upper bound for r0 is r1.
See the text for more explanation.

The function G(r) is monotonic for r > r+ by (2.7) because dr∗/dr = 1/ϕ > 0 in
this range, and it varies between 0 and +∞. We need to find such a function H(r) that
also varies between 0 and +∞ and G(r) > H(r) in (r+,+∞). Then, for any r0 there
exists an r1 > r0 such that G(r0) = H(r1). This r1 is an initial upper bound for r0. The
problem is to ensure that the equation G(r0) = H(r1) can be explicitly solved for r1.

Remembering that the problem arises in the region r > r+ > r−, we have

0 <
r − r+
r − r−

< 1 =⇒
(
r − r+
r − r−

)c

>
r − r+
r − r−

when c < 1 =⇒ (C2)

G(r) ≡ e2γ1r (r − r+)
1−a

(
r − r+
r − r−

)a

> e2γ1r (r − r+)
2−a

/ (r − r−) (C3)

by virtue of (C2) because a = r−
2/r+

2 < 1. Moreover

e2γ1r > e2γ1(r−r−) > 2γ1 (r − r−) , (C4)

since γ1 > 0 and ex > x for all x ∈ (−∞,+∞). Thus finally

G(r) > 2γ1 (r − r+)
2−a def

= H(r) (C5)
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and the upper bound for r0 is

r1 = r+ +

[
G(r0)

2γ1

]1/(2−a)

. (C6)

D Proof of Lemma 4.1

Along a line of constant r we have u =
√
C + v2 from (2.13) – (2.19), so from (2.29)

dV

dv
= 2

1 + cosh(2v) cosh(2u)− (v/
√
C + v2) sinh(2v) sinh(2u)

[cosh(2u) + cosh(2v)]2
. (D1)

Since sinhx < coshx for all finite x, we have sinh(2v) sinh(2u) < cosh(2v) cosh(2u).
With C > 0, v/

√
C + v2 < 1, so dV /dv > 0. �

With C < 0, Lemma 4.1 may hold or not, depending on the value of |C| and the
range of v.

E Calculating du′/dv′ from (4.4) – (4.7)

We use the identity

du

dv
=

du/dv′

dv/dv′
≡ ∂u/∂v′ + (∂u/∂u′)(du′/dv′)

∂v/∂v′ + (∂v/∂u′)(du′/dv′)
(E1)

and equate this to (3.11). We solve the resulting equation for du′/dv′, then substitute
for u and v from (4.4) – (4.5). The final result is (4.8), after quite some algebra.

F A nonradial timelike geodesic going through the tunnel between the sin-
gularities has its turning point at a larger r than the radial one

We verify this statement by contradiction. Let

r2tp ≤ rtp, (F1)

where r2tp is given by (8.4) and rtp by (3.10). Since Γ2 − 1 > 0 and Γ2/EJ − 1 > 0, the
resulting inequality may be written as(

Γ2 − 1
) (

−m+
√

m2 − e2 + e2Γ2/EJ(r2tp)

)
≤

(
Γ2/EJ(r2tp)− 1

) (
−m+

√
m2 − e2 + e2Γ2

)
. (F2)

Both sides above are positive, so they may be squared and the direction of the inequality
will not change. After squaring, using (F2) to eliminate(
Γ2 − 1

) √
m2 − e2 + e2Γ2/EJ(r2tp) and simplifying,

(
Γ2/EJ − 1

)
(1− 1/EJ) > 0 fac-

tors out, and what remains may be written as

2mΓ2
√
m2 − e2 + e2Γ2 ≥ Γ2

(
2m2 − e2 + e2Γ2

)
> 0. (F3)



[Author and title] 35

After both sides of this are squared and the result is simplified, e4
(
Γ2 − 1

)2 ≤ 0 follows.
This can hold only when e = 0 or Γ2 = 1. The first case is the Schwarzschild limit, the
second one is dealt with in the main text below (8.5). So, in generic cases, r2tp > rtp. �

Acknowledgement. For some calculations, the computer algebra system Ortocar-
tan [8, 9] was used.
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