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This paper compares three criteria for a spacetime to be free of position
drift: those by Hasse and Perlick (HP), Krasiński and Bolejko (KB), and
Korzyński and Kopiński (KK). A spacetime having no position drift means
that every observer sees all light sources in unchanging directions. The
following is shown: (1) The HP criterion is a necessary condition for the
KK criterion to apply. (2) If the spacetime metric obeys the Einstein
equations with a perfect fluid source, then another necessary condition for
the KK criterion is the Weyl tensor being zero. (3) Result (2) points to
the Stephani metric, so it is shown that this metric obeys an equation
which is still one more necessary condition for the KK criterion. (4) The
general Szekeres metrics become drift-free by the KK criterion only in the
Friedmann limit. (5) The HP and KB criteria coincide, and the HP zero-
drift condition imposes on the Stephani metric the same restriction as found
by Krasiński and Bolejko (KB). The relations between the three criteria are
displayed and compared in a diagram.
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1. Motivation and summary

Some time ago, the author noted that in an inhomogeneous Universe
a generic observer should see distant light sources drift across the sky, unlike
in Robertson–Walker metrics. The drift is caused by the shearing and rotat-
ing motion of the cosmic matter that sweeps the light rays passing through
it, so the direction from which a ray reaches an observer changes (relative
to other light sources) with the observer’s time. The no-drift condition was
that light rays coming at different times to an observer O from the emitter E
intersect on their way always the same intermediate world lines of cosmic
matter. Equations governing the drift were derived for the class I Szekeres
models [1–3] in Ref. [4], and for the Barnes [5] and the expanding Stephani
models [6] in Refs. [7] and [8]. The angular rate of the drift calculated in
an exemplary Lemaître [9]–Tolman [10] (L–T) model (≈ 10−6 arc seconds

(2-A1.1)

https://www.actaphys.uj.edu.pl/findarticle?series=reg&vol=54&aid=2-A1


2-A1.2 A. Krasiński

per year [4]) was on the verge of detectability for the then-being-constructed
Gaia satellite. A no-drift condition defined in a way equivalent to that of
Ref. [4] was discussed earlier by Hasse and Perlick [11] without reference to
explicit solutions of Einstein’s equations.

Recently, Korzyński and collaborators published a series of papers in
which they discussed a (seemingly) differently defined drift in a general
spacetime [12–14]. They derived a formula for the position drift, not just
a zero-drift condition. Their formula is the Fermi–Walker derivative along
the observer world line of the unit direction vector to the light source. The
aim of the present paper is to relate to each other the sets of results by
the Korzyński–Kopiński (KK) [12], Hasse–Perlick (HP) [11], and Krasiński–
Bolejko (KB) [4, 7] teams.

In Section 2, the semi-null tetrad defined at a point by an observer
velocity uα and a past-directed null vector pα [12] is described. Formulae
are given for the tetrad ei

α, the inverse tetrad eiα, the scalar metric ηij , the
inverse scalar metric ηij , and for the tetrad components of uα and pα.

In Section 3, the position drift formulae are quoted from [12] and ex-
plained.

In Section 4, it is noted that zero drift by the HP definition is a necessary
condition for zero drift by the KK definition. Then, in the same section and
Appendix A, it is shown that if the cosmic matter is a perfect fluid and the
metric obeys the Einstein equations with this fluid as a source, then zero
drift in the KK sense implies zero Weyl tensor.

All conformally flat perfect fluid metrics are known, they are the Stephani
metrics [6, 15]. It is shown in Section 5 and Appendix B that they obey
Eqs. (5.5) and (4.4), which are other necessary conditions for the KK zero
drift.

In Section 6, it is shown that the Szekeres metrics are drift-free in the
KK sense only in the Friedmann limit. This agrees with the result of Ref. [4].

In Section 7, it is shown that the KB definition of zero drift [4, 7] coincides
with HP’s [11]. It is also verified that the HP definition applied to the
expanding Stephani metric leads to the same (axially symmetric) subcase as
the KB definition.

In Section 8, the relations between the HP, KB,and KK approaches and
their applications to the Stephani metric are explained and discussed in more
detail, and displayed in a diagram.

Section 9 contains a brief summary of all the results.
The signature (+ − − −) will be used throughout most of the paper,

except where comparisons with Ref. [12] are made.
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2. The semi-null tetrad

The spacetimes considered here contain world lines of light emitters E
and observers O with four-velocities uαE and uαO, and light rays with tangent
vectors pα. Occasionally, we refer to a third observer with four-velocity Uα.

At each point where an observer world line and a light ray intersect,
a semi-null tetrad (SNT) [13] of vectors can be introduced, on which ten-
sors can be projected. Tetrad indices will be denoted by small latin letters
i, j, · · · = 0, 1, 2, 3, tensor indices by Greek letters. Numerical values of tetrad
indices will have a hat above them. The tetrad indices running through the
two values 1̂ and 2̂ will be denoted by A,B,C, . . .

The contravariant vectors of the SNT are chosen as follows:

e0̂
α = uα , (2.1)

eA
α , A = 1, 2 , (2.2)

e3̂
α = pα , (2.3)

where uα is a timelike unit vector (uαuα = 1), pα is a null vector (pαpα = 0),
and eA

α are two spacelike unit vectors, orthogonal to each other and to
both uα and pα, so gαβeA

αeB
β = −δAB, eAαpα = eA

αuα = 0, not otherwise
specified. The eA

α are defined at O and parallely transported along pα.
The tetrad metric ηij = gαβei

αej
β is then

η 0̂0̂ = 1 , η 0̂1̂ = η 0̂2̂ = 0 , η 0̂3̂ = uρp
ρ , (2.4)

η 1̂1̂ = η 2̂2̂ = −1 , (2.5)
η 1̂2̂ = η 1̂3̂ = η 2̂3̂ = η 3̂3̂ = 0 . (2.6)

The inverse metric to ηij is

η0̂0̂ = η0̂1̂ = η0̂2̂ = 0 , η0̂3̂ = 1/uρp
ρ , (2.7)

η1̂1̂ = η2̂2̂ = −1 , (2.8)

η1̂2̂ = η1̂3̂ = η2̂3̂ = 0 , (2.9)

η3̂3̂ = −1/ (uρp
ρ)2 . (2.10)

Thus, the covariant tetrad eiα = ηisgαρe
s
ρ is

e0̂α = pα/ (uρp
ρ) , (2.11)

e1̂α = −e 1̂α , e2̂α = −e 2̂α , (2.12)

e3̂α = uα/ (uρp
ρ)− pα/ (uρp

ρ)2 . (2.13)
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The tetrad components of uα and pα are

u 0̂ = 1 , u 3̂ = uρp
ρ , u 1̂ = u 2̂ = 0 , (2.14)

u0̂ = 1 , u1̂ = u2̂ = u3̂ = 0 , (2.15)
p 0̂ = uρp

ρ , p 1̂ = p 2̂ = p 3̂ = 0 , (2.16)

p0̂ = p1̂ = p2̂ = 0 , p3̂ = 1 . (2.17)

3. Position drift according to Ref. [12]

We recall the definitions of the basic notions introduced in Ref. [12].
At a point P of a manifold, a future-directed timelike vector uα (which is

the four-velocity of an observer) and a past-directed null vector pα (which is
tangent to a light ray reaching the observer) define the unit spacelike vector
rα pointing from P to the light source

rα = uα − pα/ (pρuρ) . (3.1)

The Fermi–Walker (FW) transport of a vector V α along a unit timelike
vector field Uα (UαUα = 1) is such, by which the component of V α lying
in the {Uα, U̇α} plane, where U̇α def

= UρUα;ρ, remains in this plane (so V α

does not rotate around Uα). Then, V α obeys [16]

UρV α;ρ= (V ρUρ) U̇
α −

(
V ρU̇ρ

)
Uα def

=
∗
V α . (3.2)

If Uα is geodesic, then U̇α =
∗
V α = 0 and the FW and parallel transports

coincide. The Fermi–Walker derivative δU is defined by

(δUV )α
def
= UρV α;ρ−

∗
V α , (3.3)

so that (δUV )α = 0 when V α is FW-transported along Uα. Note that
(δUU)α = 0.

The FW transport and FW derivative can be generalised to arbitrary
tensor fields [12] and then it follows that δUgαβ = 0 for any metric gαβ and
any vector field Uα. From this it follows that δU

(
gαβP

αQβ
)
= 0 for any

FW-transported vector fields Pα and Qβ , so the FW transport preserves the
angle between Pα and Qβ .

The FW derivative along the observer’s world line will be denoted δO.
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Let a geodesic G belong to a one-parameter family FG of geodesics, and
let pα be the vector field tangent to G. Then the field of vectors ξα pointing
from points on G toward neighbouring geodesics in FG is called geodesic
deviation vector field and obeys the geodesic deviation equation

G [ξ]µ
def
= ∇p (∇pξ

µ)−Rµ
αβνp

αpβξν = 0 , (3.4)

where ∇pξ
µ def
= pρξµ;ρ and Rµ

αβν is the curvature tensor. The definition of
ξµ implies

(∇ξp)
µ = (∇pξ)

µ , (3.5)

which means that the fields pα and ξα are surface-forming.
The definition of geodesic deviation applies to any bundle of geodesics,

but in the following, the geodesics will be null.
Imagine a bundle of past-directed rays emanating from the same obser-

vation event and let λ be the affine parameter on them. Take one ray as
the reference and consider the deviation vectors ξα along it. What mat-
ters in calculating the position drift of an observed source are the projec-
tions ξA = eAµξ

µ of ξµ on the 2-dimensional planes orthogonal to pµ and
to uµO. Since the rays converge to the same point, we have ξA(λO) = 0

at the observer, and then ξA(λ) at any other λ is uniquely defined by
eAµ (∇ξp)

µ = eAµ (∇pξ)
µ = dξA/dλ (we assume there are no caustics be-

tween the observer and the light source). Since (3.4) is linear in ξµ, the
Jacobi matrix DA

B exists such that

ξA(λ) = DA
B(λ)∇pξ

B(λO) . (3.6)

The DA
B maps vectors tangent to the past light cone at O to vectors at-

tached at other points along the rays. Since the mapping is 1–1, the inverse
mapping also exists.

Now let a source E send rays γ0, γ1, . . . that intersect the observer world
line O, as in Fig. 1. The corresponding geodesic deviation field Xµ, called
observation time vector [12], is collinear with the observer velocity uαO at O
and with the emitter velocity uαE at E . We choose the affine parameters on
the rays so that λ = λO at all points of intersection with the observer world
line, and λ = λE at all points of intersection with the emitter world line.
Then Xµ obeys G[X]µ = 0 and the initial conditions [12]

Xµ(λO) = uµO , Xµ(λE) =
uµE

1 + z
, (3.7)

where z is the redshift along γ0 between E and O. We split Xµ as follows:

Xµ = ûµ
O +mµ + ϕµ , (3.8)
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Fig. 1. The emitter E keeps sending light rays to the observer O; two such rays, γ0
and γ1, are shown. X is the geodesic deviation vector field along γ0 and p is the
past-directed tangent vector field to γ0. (This is simplified Fig. 8 from Ref. [12].)

where ûµ
O is the observer four-velocity parallely transported along pµ from O

to the running point on γ, while mµ and ϕµ obey

G[m]µ = Rµ
αβν p

α pβ û ν
O , (3.9)

G[ϕ]µ = 0 , (3.10)

with the initial conditions

mµ(λO) = 0 , (3.11)
∇pm

µ(λO) = 0 , (3.12)
ϕµ(λO) = 0 , (3.13)

ϕµ(λE) =
uµE

1 + z
− ûµ

O
∣∣
E −mµ

E . (3.14)

Now ϕµ(λ) can be calculated along γ using (3.6) [12]. Knowing all this, the
position drift of the light source is calculated to be [12]

δOr
A =

1

pσuσO
D−1(λE)

A
B

(
uB

1 + z
− ûBO −mB

)
E
+ wA

O ,

≡ 1

pσuσO
D−1(λE)

A
Bϕ

B (λE) + wA
O , (3.15)

where wµ
O is the observer’s acceleration. The vector field Uα defining the

tetrad for (3.15) need not coincide with uαE , but if it does then uBE = 0.
Since ϕµ obeys (3.10) and (3.13), we can apply (3.6) to it, then

δOr
A =

1

pσ uσO

(
∇p ϕ

A
)
O + wA

O . (3.16)



Spacetimes with No Position Drift 2-A1.7

4. Implications of δOrA = 0 in (3.16)

The FW derivative preserves the scalar products of vectors, so 0 =
δO (rµr

µ) = 2rµδOr
µ, i.e., δOr

µ is orthogonal to rµ. It is also orthogo-
nal to uµO because δOu

µ
O = 0 (see the remark under (3.3)). Consequently,

when δOr
A = 0, the whole 4-dimensional δOrµ = 0. Then, from the para-

graph under (3.3) it follows that angles between the directions to any pair
of light sources will remain constant in observer’s time — which is the HP
[11] criterion for zero position drift. This means that the spacetimes that
are drift-free in the KK sense are necessarily drift-free also in the HP sense.
We will discuss the latter in Section 7. We first investigate a consequence of
δOr

A = 0 in (3.16).
In a zero-drift spacetime Xµ must be everywhere tangent to a surface

formed by the world-lines of the cosmic medium. Consequently, XA = 0
and the change of Xµ along pµ must also be tangent to this surface; i.e.,

∇pX
µ = pρXµ;ρ= fXµ + gpµ , (4.1)

where f and g are functions on the spacetime. The field Xµ obeys (3.4)

(∇p∇pX)µ −Rµ
αβν p

α pβ Xν = 0 . (4.2)

From (4.1), we have ∇p∇pX
µ =

(
∇pf + f2

)
Xµ + (fg +∇pg) p

µ, so(
∇pf + f2

)
Xµ + (fg +∇pg) p

µ = Rµ
αβν p

α pβ Xν . (4.3)

Projecting this on pµ, we obtain ∇pf + f2 = 0. Finally then,

(fg +∇pg) p
µ = Rµ

αβν p
α pβ Xν . (4.4)

We project (4.4) on the eAµ vectors that obey eAµp
µ = 0. The result is

RA
αβν p

α pβ Xν = 0 . (4.5)

However, (4.5) is not equivalent to (4.2) — it is only a subset of consequences
of (4.2). Consequently, conclusions drawn from (4.5) will not fully represent
(4.2), they will only be necessary conditions for (4.2). We will come back to
this in Section 5.

We replace the coordinate summation indices with the tetrad summation
indices and recall that pα = e3̂

α. Then (4.5) becomes

RA
3̂3̂i X

i = 0 . (4.6)

The component X 3̂ gives zero contribution to (4.6) (and is zero anyway),
XA = 0, so what remains of (4.6) is RA

3̂3̂0̂X
0̂ = 0. However, from (2.15)
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X 0̂ = u0̂/(1 + z) ̸= 0. Thus, (4.6) implies RA
3̂3̂0̂ = 0, and so, using (2.4)–

(2.6)
RA0̂

3̂0̂ ≡ RA
3̂3̂0̂ /uρp

ρ = 0 . (4.7)

For the Weyl tensor Cαβ
γδ we have in tetrad components [3]

Rij
kl = Cij

kl −
1

2
δijrkls

(
Rs

r −
1

4
δsrR

)
+

1

12
δijklR , (4.8)

where Ri
j is the Ricci tensor and R = Rs

s. Using (4.8) in (4.7), we find

RA0̂
3̂0̂ = CA0̂

3̂0̂ +
1

2
RA

3̂ = 0 . (4.9)

This simplifies when the cosmic matter is a perfect fluid (this assumption
underlies all cosmological models) and the Einstein equations are obeyed

Ri
j = κ

[
(ϵ+ p)uiuj −

1

2
(ϵ− p)δij

]
, (4.10)

where κ = 8πG/c4, ϵ is the energy density, and p is the pressure. In the
frame (2.1)–(2.3), uA = 0 and δA3̂ = 0, so RA

3̂ = 0, and

CA
3̂3̂0̂ = CA

αβγ pαpβuγ = 0 . (4.11)

This must hold for an arbitrary null vector pα, but only for that one uα

which is tangent to the cosmic matter flow line. It is shown in Appendix A
that the requirement of (4.11) holding for all null fields pα leads to the whole
Weyl tensor being zero. Thus, the conclusion is

Conclusion 1
For spacetimes in which the cosmic fluid is perfect and obeys the Ein-

stein equations (4.10), the direction drift as defined by (3.16) is zero for all
comoving observers only if the spacetime is conformally flat. □

The conformally flat perfect fluid metrics are all explicitly known, they
are the Stephani metrics [6, 15]. In general, the perfect fluid in them
moves with acceleration, but in the limit of zero acceleration, the expand-
ing Stephani metric reduces to the general Robertson–Walker (RW) metric,
while the expansion-free one trivializes to the Einstein universe which is a
subcase of RW; see Section 5 here. Hence:

Conclusion 2
The only perfect fluid spacetimes in which the fluid moves geodesically

and in which the direction drift as defined by (3.16) is zero for all comoving
observers are the Robertson–Walker ones

ds2 = dt2 −R2(t)

[
dr2

1− kr2
+ r2

(
dϑ2 + sin2 ϑdφ2

)]
. (4.12)
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5. The Stephani [6, 15] metrics obey (3.16) with δOrA = 0

From (3.16), δOrA = 0 implies

wA
O = − 1

pσuσO

(
∇pϕ

A
)
O . (5.1)

From (3.8), we have ϕA = XA− ûAO−mA. Since ûαO is parallely transported
along pα, so (∇pûO)

A = 0, and from (3.12), (∇pm)A (λO) = 0. Conse-
quently,

(∇pϕ)
A
O = (∇pX)AO . (5.2)

In a drift-free spacetime, Xα = uα/(1 + z) on each ray. Thus,

(∇pX)AO =
(∇pu)

A

1 + z

∣∣∣∣∣
O

−
uAO

(1 + z)2
∇pz . (5.3)

However, uAO =
(
eAµu

µ
)
O = 0 and z = 0 at the observer. Therefore,

(∇pX)AO = (∇pu)
A
O , (5.4)

wA
O = − 1

pσuσO
(∇pu)

A
O . (5.5)

Note that uAO = 0 does not imply (∇pu)
A
O = 0.

We will show here that the Stephani metrics obey (5.1), so zero Weyl
tensor and a perfect fluid source constitute together a sufficient condition
for (5.1) to hold. For a while, we switch to the signature (− + + +) that
was used in Ref. [12]. The expanding Stephani metric is

ds2 = −
(
FV,t
V

)2

dt2 +
1

V 2

(
dx2 + dy2dz2

)
, (5.6)

where

V =
1

R(t)

{
1 +

1

4
k(t)

[
(x− x0(t))

2 + (y − y0(t))
2 + (z − z0(t))

2
]}

,

(5.7)
the functions R(t), k(t), x0(t), y0(t), and z0(t) being all arbitrary. It obeys
the Einstein equations with a perfect fluid source, the mass density ρ and
pressure p are

κc2ρ = 3C2(t) , κp = −3C2(t)+2CC,t V/V,t , κ
def
= 8πG/c4 , (5.8)
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where the arbitrary function C(t) is related to the other ones by

C2 = kR2 + 1/F 2 . (5.9)

The velocity uα and acceleration wα = uα;ρ u
ρ fields in (5.6) are

uα =
V

FV,t
δα0 , (5.10)

w0 = 0 , wI =
V

V,t
(V V,tI −V,t V,I ) , (5.11)

where I = 1, 2, 3, (x1, x2, x3) = (x, y, z). (The spatial coordinate index I is
not to be confused with the tetrad index A.)

The A components in (5.5) are projections of wα
O and (∇pu)

α on the
vectors eA

α of the tetrad discussed in Section 2. Let qα be any of the eA
α.

Since it is orthogonal at O to the uα of (5.10), it must have q0 = 0. Then,
orthogonality to pα in the metric (5.6) means

p1q1 + p2q2 + p3q3 = 0 . (5.12)

The projection of (∇pu)
α on qα (i.e., one of the (∇pu)

A) at O is

(∇pu)
q
O = gαβ q

α
O(∇pu)

β
O = ∇p

(
gαβ q

α uβ
)
O
=

1

V 2

3∑
I=1

qIO (∇p u)
I
O .

(5.13)
We have

(∇pu)
I
O =

(
pρuI ;ρ

)
O =

(
pρuI ,ρ

)
O +

(
pρ

{
I
0ρ

}
u0

)
O

, (5.14)

uI = 0 everywhere in the coordinates of (5.6) , (5.15){
I
00

}
= F 2V,t

V
(V V,tI −V,t V,I ) , (5.16){

I
0J

}
= −V,t

V
δIJ . (5.17)

From here
(∇p u)

I
O = p0 F (V V,tI −V,t V,I )− pI/F . (5.18)

Finally, using (5.12)

(∇p u)
q
O =

p0 F

V 2

3∑
I=1

qIO (V V,tI −V,t V,I ) . (5.19)
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In the signature (− + + +), u0 = −FV,t /V and pσuσ = −p0FV,t /V , so

1

pσuσO
(∇pu)

q
O = − 1

V V,t

3∑
I=1

qIO (V V,tI −V,t V,I ) . (5.20)

For the acceleration vector (5.11), we have

wq = gαβq
αwβ =

1

V V,t

3∑
I=1

qIO (V V,tI −V,t V,I ) , (5.21)

so (5.5) is fulfilled. But we recall: the Stephani metric still has to obey
the remaining equations in the set (4.2). So far, we have only made use of
(4.5), which is a necessary condition for (4.2), but is not equivalent to (4.2).
Unfortunately, the explicit form of (4.2) is complicated and the author was
not able to simplify it to a readable form. Therefore, we will rely on the
observation made in the first paragraph of Section 4: the spacetimes that
are drift-free in the KK sense are necessarily drift-free also in the HP sense.
What the HP criterion implies for the expanding Stephani metric is shown
in Section 7.

We now repeat the same consideration with the expansion-free Stephani
metric [15], still in the (− + + +) signature and in the notation of Ref. [17]1

ds2 = −D2dt2 +
dr2

1 +Kr2
+ r2

(
dϑ2 + sin2 ϑdφ2

)
, (5.22)

D = rV + E(t)
√

1 +Kr2 + s , (5.23)
V = A(t) sinϑ cosφ+B(t) sinϑ sinφ+ C(t) cosϑ , (5.24)

where s = 1 or 0, K is an arbitrary constant, A,B,C, and E are arbitrary
functions of t, and (x0, x1, x2, x3) = (t, r, ϑ, φ). For this metric, we have

uα =
1

D
δα0 , (5.25)

w0 = 0 , w1 = g11
D,r
D

=
1 +Kr2

D

(
V +

Er√
1 +Kr2

)
, (5.26)

w2 =
V,ϑ
Dr

, w3 =
V,φ

Dr sin2 ϑ
. (5.27)

As before, q0 = 0 and pαqα = 0 implies an equation similar to (5.12), but it
will not be useful this time. The projection of wα on qα is

wq = gαβq
αwβ = q1

D,r
D

+ q2
rV,ϑ
D

+ q3
rV,φ
D

. (5.28)

1 This expansion-free metric is not interesting for cosmology, and this discussion is
added only for completeness. It has no consequences for the main topic of this paper.
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Here, we have pσu
σ = p0u0 = −Dp0 and

(∇pu)
1
O = g11p0D,r , (5.29)

(∇pu)
2
O = p0

V,ϑ
r

, (∇pu)
3
O = p0

V,φ

r sin2 ϑ
, (5.30)

and with this, wq = − (∇pu)
q
O /pσu

σ, which agrees with (5.5). Still, this
metric obeys the HP criterion P5 for drift absence (see Section 7) only in
the special cases of E = 0, K = 0, and V = 0; the last one is the de Sitter
metric.

For completeness, in Appendix B, it is shown that the expanding Stephani
metric obeys Eq. (4.4) with f = 0.

6. Conditions for drift absence in the Szekeres metrics

Let us now verify whether (5.5) can hold in any of the Szekeres metrics.
Since wα = 0 in them, the cosmic velocity field should obey

(∇pu)
A
O = 0 . (6.1)

The general class I Szekeres metric [3] in the signature (− + + +) is

ds2 = −dt2 +
F 2

ε− k(z)
dz2 +

(
Φ

E

)2 (
dx2 + dy2

)
, (6.2)

where (x1, x2, x3) = (z, x, y), ε = ±1, 0, and

E def
=

S

2

[(
x− P

S

)2

+

(
y −Q

S

)2

+ ε

]
, (6.3)

F = Φ,z −ΦE ,z /E , (6.4)

P (z), Q(z), S(z), and k(z) are arbitrary functions and Φ(t, z) is determined
by the (generalised Friedmann) equation

Φ,t
2 = −k(z) +

2M(z)

Φ
− 1

3
ΛΦ2 , (6.5)

M(z) being one more arbitrary function and Λ being the cosmological con-
stant. The source in the Einstein equations is dust, with the mass density

κρ =
2 (M,z −3ME ,z /E)

Φ2F
. (6.6)
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The 2-metric (Φ/E)2
(
dx2 + dy2

)
is that of a 2-dimensional surface of

constant curvature. With ε = +1, it is a sphere, with ε = 0, it is flat
(but not necessarily a Euclidean plane [18]), with ε = −1, its curvature is
negative. The spheres are in general nonconcentric. The Szekeres metrics
corresponding to the 3 values of ε are called, respectively, quasi-spherical,
quasi-plane, and quasi-hyperbolic (or quasi-pseudospherical). For more in-
formation about the possible Szekeres geometries, see Refs. [18–21].

The Lemaître–Tolman limit of (6.2)–(6.6) is ε = +1 and P,Q, S being
constant, in the Friedmann limit k/M2/3 = constant and the function tB(z)
that appears in the solution of (6.5) is also constant.

Now, we proceed in the same way as in Section 5. In the Szekeres metrics

uα = δα0, wα = 0, and (∇pu)
α =

{
α
0ρ

}
pρ, so

(∇pu)
0 = 0 , (∇pu)

1 = p1F,t /F , (6.7)
(∇pu)

2 = p2Φ,t /Φ , (∇pu)
3 = p3Φ,t /Φ . (6.8)

The equation qαuα = 0 at O implies q0O = 0, while qαpα = 0 means

g11 q
1 p1 + g22 q

2 p2 + g33 q
3 p3 = 0 . (6.9)

Using (6.9), we find

(∇pu)
q = gαβ q

α (∇pu)
β = g11 q

1 p1 (F,t /F − Φ,t /Φ) . (6.10)

The geodesic equations prohibit p1 = 0 on an open interval of any ray,
this can happen only at isolated points (otherwise the geodesic would be
timelike) [4]. The symbol qα represents both tetrad vectors eAα which span
a 2-dimensional tangent plane to the spacetime. Thus, q1 = 0 can happen
for one of them, but not for both at the same point. The locus of g11 = 0,
if it exists, is a removable coordinate singularity or a special location called
neck [3]. Thus, (∇pu)

q = 0 can hold for all comoving emitter–comoving
observer pairs only when F,t /F−Φ,t /Φ, which implies Φ = β(z)a(t), β and a
being arbitrary functions. Such a form of Φ ensures that shear of the cosmic
velocity field is zero, but consistency with (6.5) requires that in addition
β/M1/3 and k/M2/3 are both constant. In this limit, the Szekeres metrics
reduce to the Friedmann models represented in untypical coordinates. Thus,
the Szekeres metrics obey (5.5) only in the Friedmann limit.

For the class II Szekeres (SII) metrics, the result is analogous: (6.1)
implies zero shear, and in this limit, the Friedmann metric results. The
formulae defining the SII metric are long and numerous (they can all be
found in [3]), so quoting them to demonstrate this simple result would unduly
expand this paper. Readers are asked to believe or verify.
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We proved that the Szekeres metrics cannot obey (5.5) except in the
Friedmann limit. But (5.5) is a necessary condition for the absence of drift.
Thus, the final conclusion is that the Szekeres metrics become drift-free in
the KK sense only in the Friedmann limit. This is consistent with Ref. [4].

7. Comparison with the results of Ref. [11]

Spacetimes with zero drift (called there parallax-free world models) were
discussed by Hasse and Perlick (HP) [11]. They did not consider the Einstein
equations, they assumed only that a unit timelike vector field u exists that
is tangent to the world lines of observers comoving with the cosmic matter.
They defined zero drift as follows: A world model (M, g, u) (where M is the
spacetime manifold and g is the metric) is parallax-free if and only if, for
any three observers a0, a1, and a2, the angle under which a1 and a2 are seen
by a0 remains constant over time.

Then they proved that this definition is equivalent to 6 other conditions,
of which we quote only the following four:

P2: If a0 sees a1 and a2 in the same spatial direction at one instant, then
a1 and a2 will stay in the same spatial direction at all instants.

P3: The vector field u is proportional to a conformal Killing field.

P4: There is some scalar function f on M such that

£
u
gαβ = −2uρ f,ρ gαβ + uα f,β +uβ f,α . (7.1)

P5: uα is shearfree and the one-form ω defined by

c2ω
def
= u̇αdx

α − 1

3
θ uα dx

α , (7.2)

where u̇α
def
= uα;ρ u

ρ and θ
def
= uρ;ρ, satisfies dω = 0.

We now verify P2–P5 in the Stephani metric (5.6)–(5.7).
A conformal Killing vector field kα obeys, by definition

kρgαβ,ρ + kρ,α gρβ + kρ,β gαρ = µ gαβ , (7.3)

where µ is a scalar function2. The comoving observer velocity field in the
metric (5.6)–(5.7) is given by (5.10), so

kα =
V

ϕFV,t
δα0 (7.4)

2 All the partial derivatives in (7.3) can be replaced by covariant derivatives because
the terms containing the Christoffel symbols cancel out. Then (7.3) assumes the more
familiar form kα;β + kβ;α = µgαβ .
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should obey (7.3) in those subcases of the Stephani metric that are parallax-
free by criterion P3; ϕ is a function to be determined. The labels of the
coordinates will be (x0, x1, x2, x3) = (t, x, y, z).

With (5.6) and (7.4), the components (I, I), I = 1, 2, 3, of (7.3) imply

µ = − 2

ϕF
, (7.5)

and the components (0, I) of (7.3) imply

k0 =
V

ϕFV,t
= G(t) , (7.6)

where G(t) is an arbitrary function. The component (0, 0) of (7.3) now is

F
V,t
V

(
V,t
V

− ϕ,t
ϕ

)
= 0 . (7.7)

The metric (5.6) does not allow the limit FV,t= 0, so (7.7) implies

ϕ = V/γ(x, y, z) , (7.8)

where γ is a function of x, y, and z to be determined. Now, (7.6) becomes

V,t=
1

F (t)G(t)
γ . (7.9)

This implies

V,tt
V,t

= −(GF ),t
GF

def
= α(t) =⇒ V,tt= α(t)V,t . (7.10)

With V given by (5.7), the above becomes a quadratic equation in x, y, z
with coefficients depending on t. We discard the trivial case k = 0, which is
the spatially flat RW metric. The coefficients of the various powers of x, y,
and z in (7.10) must cancel out separately. The coefficients of x2, y2, and z2

cancel out when (k/R),t= 0 (we consider this case further on) or

α = (k/R),tt /(k/R),t . (7.11)

For now, we follow (7.11) and assume, for the beginning, x0,t ̸= 0 ̸= y0,t,
z0,t ̸= 0. Then, the remaining equations in (7.10) imply

x0,tt
x0,t

=
y0,tt
y0,t

=
z0,tt
z0,t

=
(k/R)tt
(k/R)t

− 2
(k/R)t
k/R

. (7.12)
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Now the terms linear in x, y, z cancel out in (7.10). The solutions of (7.12) are

x0 = C1R/k +D1 , y0 = C2R/k +D2 , z0 = C3R/k +D3 . (7.13)

The cases x0,t = 0, y0,t = 0, and z0,t = 0 are contained in (7.13) as the
subcases C1 = 0, C2 = 0, and C3 = 0, respectively. When C1=C2=C3=0,
the metric (5.6) becomes spherically symmetric, but not identical with
Robertson–Walker as long as k,t ̸= 0.

The last equation of (7.10) not yet taken into account defines R; it is(
1

R

)
,tt+

k

2R

(
x0,t

2 + y0,t
2 + z0,t

2
)
=

(k/R)tt
(k/R)t

(
1

R

)
,t , (7.14)

and its solution is

1

R
= −1

4

C1
2 + C2

2 + C3
2

k/R
+ E1

k

R
+ E2 , (7.15)

where E1 and E2 are arbitrary constants and k(t) remains arbitrary (but
̸= 0). With (7.13) and (7.15), Eq. (7.9) is fulfilled and

1

FG
=

(
k

R

)
,t , γ = E1 +

1

4

[
(x−D1)

2 + (y −D2)
2 + (z −D3)

2
]
.

(7.16)
The k ̸= 0 Robertson–Walker models are contained in (7.15) as the

subcase C1 = C2 = C3 = 0, E1 = 1/k, E2 = 0 — then (7.15) becomes an
identity and does not determine R(t), which remains arbitrary.

With (7.13) and (7.15) fulfilled, the Stephani metric becomes axially
symmetric and coincides with the subcase found in Ref. [7] to have all light
paths repeatable (see Appendix A to [7], case 1.2.1.2). This shows that the
criteria of zero drift of [7] and [11] coincide for the Stephani metric (5.6)–
(5.7). (See Section 8 — the two criteria coincide in general.)

In the case (k/R),t= 0 that was left aside at (7.11), Eq. (7.10) implies

x0,tt = αx0,t , y0,tt = αy0,t , z0,tt = αz0,t , (7.17)(
1

R

)
,tt+

k

2R

(
x0,t

2 + y0,t
2 + z0,t

2
)
= α(t)

(
1

R

)
,t , (7.18)

This subcase is also axially symmetric, but was not displayed in [7].
Now we verify that HP’s condition P4, i.e., Eq. (7.1), is equivalent to

P3. Written out explicitly, (7.1) says

uρgαβ,ρ + uρ,α gρβ + uρ,β gαρ = −2uρf,ρ gαβ + uαf,β +uβf,α . (7.19)
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We substitute
f = lnϕ , (7.20)

and then (7.19) can be rewritten as

uρ

ϕ
gαβ,ρ +

(
uρ

ϕ

)
,α gρβ +

(
uρ

ϕ

)
,β gαρ = −2uρf,ρ gαβ , (7.21)

which shows that uα/ϕ is a conformal Killing field, just as in HP’s condition
P3. If we repeat for (7.21) the reasoning previously applied to (7.3), then we
will find that 2uρϕ,ρ /ϕ2 = 2u0V,t /(ϕV ) = 2/(ϕF ). Thus indeed P4 applied
to the expanding Stephani metric is equivalent to P3.

HP’s condition P5, i.e., dω = 0 for ω given by (7.2), is satisfied nearly
trivially for the subcase of the Stephani metric given by (7.13)–(7.15). To see
this, one must use θ = −3/F , u̇0 = 0, u̇I = −V,tI /V,t+V,I /V , I = 1, 2, 3,
and (7.10).

8. Comparison with the results of Refs. [4] and [7]

In the KB paper [4], the zero-drift condition (called there the condition
for repeatable light paths) was that all light rays sent from any fixed co-
moving emitter to any fixed comoving observer intersect the same set of
intermediate world lines of cosmic matter. This is clearly equivalent to HP’s
condition P2 (see Section 7). Consequently, it is not surprising that the HP
and KB criteria of zero drift applied to the Stephani metric selected the
same subcase (7.13)–(7.15), see Ref. [7].

In the language of Ref. [12], the KB = HP definitions mean that the
world lines of cosmic matter lie in the surfaces P2 tangent to the observation
time vector field Xµ and to the geodesic field pµ, and actually are everywhere
tangent to the field Xµ. The first of (3.7) must hold at the initial point of
every past-directed ray, the second of (3.7) must hold all along that ray.

The condition (4.5) (which follows from (5.5) via (4.1)), together with
the requirement that the metric obeys the Einstein equations with a perfect
fluid source, leads to the conclusion that the spacetime must be conformally
flat. The conformally flat perfect fluid metrics are explicitly known, they
are the Stephani metrics [6, 15], see our Section 5. So, it was natural to
verify whether the reverse implication also occurs. Indeed, it was proved
in Section 5 that the Stephani metric in its full generality obeys (5.5), and
then, in Appendix B, that it obeys (4.4). However, as noted below (4.5),
Eq. (4.5) is only a necessary condition for the absence of the drift in the KK
sense — it does not represent the whole information contained in (4.2). The
perfect fluid metric that is drift-free in the KK sense is the subcase of the
Stephani solution given by (7.13)–(7.15).
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Let us recall what was said at the beginning of Section 4: When δOr
A=0,

the whole 4-dimensional δOrµ = 0. Then, angles between the directions to
any pair of light sources will remain constant in observer’s time. This means
that the spacetimes that are drift-free in the KK sense are necessarily drift-
free also in the HP sense.

The relations between the KK, HP, KB approaches, and the Stephani
metric are briefly summarised in Fig. 2. Here are the explanations of the
abbreviations used in Fig. 2:

— EEPF = Einstein equations with perfect fluid source.

— Stephani metric = the metric given by (5.6)–(5.7).

— The criteria for absence of drift:

— GKK = the general Korzyński–Kopiński (2018) criterion (3.15)
with δOr

A = 0.

— KK [Eq. (4.4)] = the conclusion (4.4) from the KK criterion.

— KK [Eq. (5.5)] = the conclusion (5.5) from the KK criterion.

— HP = the set of Hasse–Perlick (1988) equivalent criteria.

— KB = the Krasiński–Bolejko (2011) criterion.

— AXSM = the axially symmetric subcase of the Stephani metric
given by (5.6)–(5.7) with (7.13)–(7.15).

EEPF
GKK [Eq. (3.15)]

KK [Eq. (4.4)]

KK [Eq. (5.5)]

Stephani metric

HP KB
AXSM

EEPF
GKK [Eq. (3.15)]

KK [Eq. (4.4)]

KK [Eq. (5.5)]

Stephani metric

HP KB
AXSM

EEPF
GKK [Eq. (3.15)]

KK [Eq. (4.4)]

KK [Eq. (5.5)]

Stephani metric

HP KB
AXSM

Fig. 2. Relations between the results reported in this paper. Arrows show implica-
tions. See the text for explanations of the abbreviations.

It is simple to verify that HP’s condition P2 of Section 7, i.e., the exis-
tence of a conformal Killing field collinear with the velocity field uα = δα0,
imposed on the class I Szekeres metric, implies zero shear, i.e., the Fried-
mann limit. Thus, for the Szekeres metrics of class I, all three approaches
give the same result: the position drift vanishes for all comoving observer–
comoving emitter pairs only in the Friedmann limit.
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9. Summary and conclusions

Light rays proceeding through the Universe cross evolving condensations
and voids, where the cosmic matter may move with shear and rotation. All
those encounters cause deflections of the rays and, in general, each angle of
deflection changes with time. As a consequence, a typical observer should see
the direction to each given light source change (in practice, very slowly) with
time. This effect is referred to as position drift [12]. A few teams of authors
noted the necessity of taking this drift into account, from the point of view of
both theory [4, 7, 8, 11–14] and observations [22]. The theoretical approaches
were by two methods: checking whether light rays reaching the observer
proceed from a given light source through always the same intermediate
world lines of cosmic medium (the HP [11] and KB [4] approaches) and
calculating the change of direction toward a given source with respect to a
reference plane (the Fermi–Walker derivative of the direction vector along
the observer world line, the KK [12] approach). The aim of the present
paper was to compare the methods and results of these three approaches. It
turned out that the HP and KB criteria of zero drift are equivalent, and are a
necessary condition for the KK criterion to apply. The expanding Stephani
metric is drift-free by the HP = KB criterion when its metric functions
obey the additional conditions (7.13)–(7.15). With these conditions fulfilled,
it becomes axially symmetric and contains the general Robertson–Walker
metric (4.12) as a still more special case.

In detail, these are the results of the present paper.
Sections 1–3 contain the motivation (Section 1), the formulae for basic

quantities expressed in the semi-null tetrad defined by the observer velocity
and a light ray (Section 2), and a summary of the KK approach (Section 3).

In Section 4, it is shown that if the spacetime metric obeys the Einstein
equations with a perfect fluid source (this assumption underlies all relativis-
tic cosmological models), then the necessary condition for zero position drift
by the KK definition for all comoving observers is conformal flatness of the
metric. Details of the calculation are given in Appendix A.

The most general conformally flat perfect fluid solutions of the Einstein
equations are explicitly known, they are the Stephani metrics [6, 15]. In
Section 5, it is shown that the general Stephani metric obeys Eq. (5.5),
which is a necessary condition for zero drift by the KK definition, and in
Appendix B, it is shown that the general Stephani metric also obeys another
necessary condition for KK zero drift, namely Eq. (4.4).

In Section 6, it is shown that the Szekeres metrics [1–3] become drift-free
in the KK sense only in the Friedmann limit.
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In Section 7, it is shown that the KB condition of zero drift [4] coincides
with the HP condition [11]. It is also shown that the HP condition imposed
on the Stephani metric [6, 15] leads to the same subcase as the one identified
as drift-free in Ref. [7].

Finally, in Section 8, the relations between the HP, KB, and KK ap-
proaches are compared, discussed and explained, and the relations between
the various results of this paper are shown in a graphic diagram.

For some calculations, the computer algebra system Ortocartan [23, 24]
was used. I am grateful to the referee for pointing out an incompleteness of
the first version of this paper.

Appendix A

Full implications of Eq. (4.11)

All indices appearing in this appendix will be tetrad indices, so for trans-
parency the hats above them are omitted.

Equation (4.11) was derived in the tetrad adapted to that null vector
field pα which is tangent to the family of null geodesics connecting a fixed
light emitter and a fixed observer, both comoving with the cosmic fluid. In
that tetrad, the frame components of pα are pi = δi3, as in (2.17).

Now consider another null vector qi tangent to another ray reaching the
same observer O. With the tetrad metric given by (2.4)–(2.6), the condition
for qi to be null is

0 = ηijq
iqj =

(
q0
)2

+ 2uρ p
ρ q0 q3 −

(
q1
)2 − (

q2
)2

, (A.1)

and we wish to find all implications of

CA
ij0 q

i qj = 0 (A.2)

for all qi obeying (A.1).
By virtue of (4.11), we have

C0313 = C0323 = 0 . (A.3)

Equation (4.11) is (A.2) applied to qi = pi = δi3, which is the only
nontrivial solution of (A.1) with q0 = 0. When q0 ̸= 0, at least one other
component of qi must be nonzero. Let us begin with the case

q1 = q2 = 0 , q0 = −2uρp
ρq3 . (A.4)
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In consequence of (4.11), Eq. (A.2) becomes in this case CA
030q

0q3 = 0, so

C0103 = C0203 = 0 . (A.5)

Now let us take
q1 = q3 = 0 , q0 = ±q2 ̸= 0 . (A.6)

Then (A.2) becomes (
q2
)2 (±CA

020 + CA
220

)
= 0 , (A.7)

and this must hold for both signs. Consequently,

C0102 = C0202 = C0212 = 0 . (A.8)

Now we take
q2 = q3 = 0 , q0 = ±q1 ̸= 0 (A.9)

and use this in (A.2) (
q1
)2 (±CA

010 + CA
110

)
= 0 . (A.10)

From here, the following new equations result:

C0101 = C0112 = 0 . (A.11)

We take now q2 = 0, all other qi ̸= 0. Using the information about Cijkl

gained up to now, the equation CA
ij0q

iqj = 0 reduces to

q1q3
(
CA

310 + CA
130

)
= 0 , (A.12)

which implies CA310 + CA130 = 0, and then

C0113 = 0 , (A.13)
−C0123 + C0312 = 0 . (A.14)

Now let q1 = 0, all other qi ̸= 0. Using what we know about Cijkl, we get

q2q3
(
CA

320 + CA
230

)
= 0 , (A.15)

and lowering the index A = 1, 2, we get from here

C0223 = 0 , (A.16)
C0213 + C0312 = 0 . (A.17)
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Now (A.14) and (A.17) imply

C0123 = −C0213 . (A.18)

Let us now use the identity Cijkl + Ciklj + Ciljk = 0:

C0123 − C0213 + C0312 = 0 . (A.19)

Together with (A.14) and (A.17), this implies

C0123 = 0 , (A.20)

and then (A.18) with (A.17) imply

C0213 = C0312 = 0 . (A.21)

In further calculations, the following formulae will be needed (in the last
one, we made use of Eqs. (A.5)–(A.3) which showed that C0Akl = 0 for both
A and all k, l):

C0A
kl =

1

uρpρ
CA3kl , C03

kl = − 1

(uρpρ)
2 C03kl ,

C12
kl = C12kl , CA3

kl =
1

(uρpρ)
2 CA3kl . (A.22)

Now we use Cij
kj = 0. From C0j

0j = 0, using (A.16) and (A.13), we get

C0303 = 0 . (A.23)

From C0j
1j = 0, using (A.3), we get

C1223 = 0 . (A.24)

From C0j
2j = 0, using (A.3), we get

C1213 = 0 . (A.25)

From C0j
3j = 0, we get

C1313 + C2323 = 0 . (A.26)

From C1j
1j = 0, we get

C1212 +
1

(uρpρ)
2 C1313 = 0 . (A.27)
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From C1j
2j = 0, using (A.21), we get

C1323 = 0 . (A.28)

From C2j
2j = 0 using (A.16), we get

C1212 +
1

(uρpρ)
2 C2323 = 0 . (A.29)

From (A.27) and (A.29), we see that

C1313 = C2323 . (A.30)

From C3j
3j = 0 we get, using (A.23),

C1313 + C2323 = 0 . (A.31)

Together with (A.30) this means

C1313 = C2323 = 0 , (A.32)

and then (A.29) implies
C1212 = 0 . (A.33)

At this point, we have shown that all Cijkl = 0. The remaining trace
equations bring no new information. □

Appendix B

The expanding Stephani metric obeys Eq. (4.4) with f = 0.

With (5.6)–(5.7), every null vector must obey

D2
(
p0
)2

=
1

V 2

[(
p1
)2

+
(
p2
)2

+
(
p3
)2]

, D
def
= FV,t /V . (B.1)

The only nonzero components of the Riemann tensor are those given below,
plus those related to them by the simple indicial symmetries

R0101 = R0202 = R0303 =
1

V 2

(
C2D2 − FCC,tD

) def
= A , (B.2)

R1212 = R1313 = R2323 = −C2/V 4 . (B.3)

We recall that the cosmic velocity field uα (given by (5.10)) has only the u0

component, and so

Xα =
uα

1 + z
=

Buα

pσuσ
=

Bu0

p0u0
δα0 , B

def
= (pσu

σ)O (B.4)
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(the B is constant along each ray, but different on different rays), and further

Xα =
B

p0
δα0 =

B

D2p0
δα0 . (B.5)

Writing (4.4) with the index µ = 0, we obtain

(fg +∇pg) p
0 =

1

D2
R0αβ0 pαpβ

B

D2p0
. (B.6)

In view of (B.2), this is equivalent to

1

B
(fg +∇pg)

(
p0
)2

= − A

D4

[(
p1
)2

+
(
p2
)2

+
(
p3
)2]

, (B.7)

and then (B.1) gives

(fg +∇pg) /B = −AV 2/D2 = CC,t V/V,t−C2 . (B.8)

This defines (fg +∇pg) /B in terms of the metric functions. The remaining
3 equations in (4.4) are either fulfilled identically or just duplicate (B.8). As
an example, let us take (4.4) with µ = 1

(fg +∇pg) p
1 = R1

αβ0p
αpβ B/

(
D2p0

)
. (B.9)

Using (B.2)–(B.3), the only nonzero terms in (B.9) are those with α = 0,
β = 1, so

1

B
(fg +∇pg) p

1 = −
(
AV 2/D2

)
p1 . (B.10)

If p1 = 0, then (B.10) is an identity; if p1 ̸= 0, then (B.10) duplicates (B.8).
For the next equations, we will need the expressions for the following

Christoffel symbols:{
I
00

}
= V 2DD,I ,

{
I
0J

}
= −D

F
δIJ , (B.11){

0
0µ

}
=

D,µ
D

,

{
0
IJ

}
= − 1

FV 2D
δIJ . (B.12)

Now let us consider Eq. (4.1) for the expanding Stephani metric. Its
spatial components, µ = I = 1, 2, 3, in view of (B.5), are equivalent to

V 2D,I /D = gF p
I , gF

def
= g/B + 1/

(
FDp0

)
. (B.13)

Using (B.1), this implies

g2F

[(
p1
)2

+
(
p2
)2

+
(
p3
)2]

=
V 4

D2

(
D,x

2 +D,y
2 +D,z

2
)
= g2FV

2D2
(
p0
)2

.

(B.14)
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Using (B.11)–(B.13), (B.1), (B.5), and pρp0,ρ= −
{

0
σρ

}
pσpρ, we get from

the µ = 0 component of (4.1)

pID,I
D2p0

− 1

F
=

f

Dp0
+

g

B
Dp0 . (B.15)

Using (B.13) and (B.14), and again (B.1), this implies

f = 0 , (B.16)

so (4.1) and (4.4) take the simpler form

∇pX
µ = gpµ , (B.17)

(∇pg) p
µ = Rµ

αβνp
αpβXν . (B.18)
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