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The locus of 𝜃
def
= 𝑘𝜇 ;𝜇 = 0 for bundles of light rays emitted at noncentral points is

investigated for Lemaître–Tolman (L–T) models. The three loci that coincide for a central
emission point: (1) maxima of 𝑅 along the rays, (2) 𝜃 = 0, (3) 𝑅 = 2𝑀 are all different for
a noncentral emitter. If an extremum of 𝑅 along a nonradial ray exists, then it must lie in the
region 𝑅 > 2𝑀 . In 2𝑀 < 𝑅 ≤ 3𝑀 it can only be a maximum; in 𝑅 > 3𝑀 both minima and
maxima can exist. The intersection of (1) with the equatorial hypersurface (EHS) 𝜗 = 𝜋/2 is
numerically determined for an exemplary toy model (ETM), for two typical emitter locations.
The equation of (2) is derived for a general L–T model, and its intersection with the EHS in the
ETM is numerically determined for the same two emitter locations. Typically, 𝜃 has no zeros
or two zeros along a ray, and becomes +∞ at the Big Crunch (BC). The only rays on which
𝜃 → −∞ at the BC are the radial ones. Along rays on the boundaries between the no-zeros
and the two-zeros regions 𝜃 has one zero, but still tends to +∞ at the BC. When the emitter is
sufficiently close to the center, 𝜃 has 4 or 6 zeros along some rays (resp. 3 or 5 on the boundary
rays). For noncentral emitters in a collapsing L–T model, 𝑅 = 2𝑀 is still the ultimate barrier
behind which events become invisible from outside; loci (1) and (2) are not such barriers.

Keywords: general relativity, cosmological models, light propagation, horizons.

1. Motivation and background

We are interested in the outer boundary of a set whose every point lies in
a trapped surface (the latter is a 2-surface whose family of outgoing orthogonal
light rays has nonpositive expansion scalar). With a slight abuse of the original
definition [1] we will refer to this as the apparent horizon (AH).

In the Lemaître [2]–Tolman [3] (L–T) models the AH has been so far considered
only for bundles of light rays emitted at the world line of the central observer
[4, 5]. In this case, the AH can be defined in two ways:

(1) As the locus where the surface areas of the light fronts of the bundles achieve
maxima. At the same locus the areal radius 𝑅 of the light front becomes maximum.

(2) As the locus where the expansion scalars 𝜃
def
= 𝑘𝜇;𝜇 of such bundles become

zero (𝑘𝜇 is the vector field tangent to the rays).
Both these definitions determine the same hypersurface 𝑅 = 2𝑀 .
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Fig. 1. Left panel: Profiles of the future apparent horizon AH of a comoving observer O and of the future
light cone LC of O’s present instant in the collapsing Friedmann model (1.1). Right panel: The same situation
in the (𝑡 , 𝑅) variables where 𝑅 = 𝑟𝑆 (𝑡) . At the AH 𝑅 becomes maximum along the rays. See the text for
more explanation.

This created the impression that the AH so defined is common to all light
emitters. However, in Friedmann models [6], which are the spatially homogeneous
limits of L–T models, each observer is central because of the homogeneity and
each one has a differently located AH. The exemplary model used for Fig. 1 has
the metric

𝑑𝑠2
= 𝑑𝑡2 − 𝑆2(𝑡)

[

𝑑𝑟2 + 𝑟2
(

𝑑𝜗2 + sin
2 𝜗𝑑𝜑2

)]

(1.1)

with 𝑆(𝑡) ∝ (𝑡BC − 𝑡)2/3, 𝑡BC is the Big Crunch time. In the left panel the (𝑡, 𝑟)
coordinates are comoving. The future light cone LC of the present instant of
observer 𝑂 hits the BC tangentially at 𝑟 values marked by the vertical strokes. In
the right panel the coordinates are 𝑡 and the areal radius 𝑅 = 𝑟𝑆(𝑡), the BC is
a single point and the AH profile is the pair of straight lines. The curves converging
at the BC are world lines of particles of the cosmic medium — in the left panel
they would be vertical straight lines. Such structures exist around every comoving
observer world line in any collapsing Friedmann model.

So, it was puzzling where the AH would be for a noncentral observer in an
L–T model. The present paper aims at answering this question. The loci of extrema
of 𝑅 and of 𝜃 = 0 in L–T models are here investigated for bundles of rays that
originate at noncentral events. Then, sets (1), (2) and (3) the locus of 𝑅 = 2𝑀
are all different1. This is illustrated using the explicit L–T toy-model (ETM), first
introduced in [4].

In Section 2, basic information about the L–T models is given. In Section 3,
the equations of null geodesics in these models are written out and prepared to
numerical integration. In Section 4, the equation defining a local extremum of the
areal radius 𝑅 along a light ray is discussed for a general L–T model. It is shown
that on nonradial rays an extremum can exist only in the 𝑅 > 2𝑀 region. If it

1 The loci of 𝜃 = 0 and of extremum of 𝐷𝑎 — the area distance from the origin O of the ray bundle —
do coincide [7]. But if O is not at the center of symmetry, then 𝐷𝑎 ≠ 𝑅 and their extrema split.
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occurs in 𝑅 < 3𝑀 , then it is necessarily a maximum. In 𝑅 > 3𝑀 both minima and
maxima are possible (but need not exist).

In Section 5 the loci of extrema of 𝑅 are discussed for the ETM. They are
numerically calculated for rays running in the equatorial hypersurface 𝜗 = 𝜋/2 (EHS),
in the recollapse phase of the model. On some nonradial rays 𝑅 monotonically
decreases to 0 achieved at the BC. On some other rays, 𝑅 has only maxima, on
still other ones it has both minima and maxima. The latter can happen when the ray
leaves the light source toward decreasing 𝑅 (which is impossible when the source
is at the center where 𝑅 = 0).

In Section 6, the equation of the locus of 𝜃 = 0 for a bundle of light rays in
a general L–T model is derived. Except on outward radial rays, it does not coincide
with the locus of an extremum of 𝑅. A method to numerically calculate 𝜃 along
a nonradial ray is given; an auxiliary nearby ray is needed for that.

In Section 7, the 𝜃 = 0 equation is numerically solved for rays running in the
EHS of the ETM used in Section 5. Typically, 𝜃 has no zero or two zeros along
a ray, and becomes +∞ at the Big Crunch (BC), so the ray bundle is infinitely
diverging at the BC. The only rays on which 𝜃 → −∞ at the BC are the radial
ones. Along rays on the boundaries between the no-zeros and the two-zeros regions
𝜃 has one zero, but still tends to +∞ at the BC. When the emitter is sufficiently
close to the center, 𝜃 has 4 or 6 zeros along rays passing near the center (resp.
3 or 5 on the boundary rays). The loci of 𝜃-zeros and temporal orderings of loci
(1)–(3) along various rays are displayed for exemplary emission points of the ray
bundles. A locus of 𝜃 = 0 may lie earlier or later than 𝑅 = 2𝑀 and than the
maximum of 𝑅, depending on the initial direction of the ray.

In Section 8 the results of the paper are summarised and discussed. One of the
conclusions is that the hypersurface 𝑅 = 2𝑀 still is an AH for noncentral emitters.
Namely, if 𝜃 = 0 occurs at a point 𝑝1 in the region 𝑅 > 2𝑀 , then the radial ray
sent outwards from 𝑝1 will proceed some distance toward larger 𝑅 — which means
that 𝑝1 is not yet locally trapped. On the other hand, if 𝜃 = 0 occurs at 𝑝2 in the
region 𝑅 < 2𝑀 , then events along this ray became invisible from outside before the
ray reached 𝑝2. Thus, in a collapsing L–T model, 𝑅 = 2𝑀 is the ultimate barrier
from behind which no light rays can get to the outside world; the loci of maximum
𝑅 and of 𝜃 = 0 are not such barriers.

2. Basic properties of the Lemaître–Tolman models

The L–T models [2, 3, 5] are spherically symmetric nonstatic solutions of the
Einstein equations with a dust source. Their metric is

𝑑𝑠2
= 𝑑𝑡2 − 𝑅,𝑟

2

1 + 2𝐸 (𝑟) 𝑑𝑟
2 − 𝑅2(𝑡, 𝑟) (𝑑𝜗2 + sin

2 𝜗𝑑𝜑2), (2.1)

where 𝑅(𝑡, 𝑟) is determined by the equation

𝑅,𝑡
2
= 2𝐸 (𝑟) + 2𝑀 (𝑟)/𝑅 + Λ𝑅2/3; (2.2)
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𝐸 (𝑟) ≥ −1/2 and 𝑀 (𝑟) are arbitrary functions, 𝑅,𝑟
def
= 𝜕𝑅/𝜕𝑟, 𝑅,𝑡

def
= 𝜕𝑅/𝜕𝑡, and

Λ is the cosmological constant. The mass-density is

𝜅𝜌 =
2𝑀,𝑟

𝑅2𝑅,𝑟
, where 𝜅

def
=

8𝜋𝐺

𝑐4
. (2.3)

In the following we assume Λ = 0. Then (2.2) can be solved in terms of elementary
functions [5]. We will use only an 𝐸 < 0 solution, in which

𝑅(𝑡, 𝑟) = 𝑀

(−2𝐸) (1 − cos 𝜂), (2.4)

𝜂 − sin 𝜂 =
(−2𝐸)3/2

𝑀
[𝑡 − 𝑡𝐵 (𝑟)] , (2.5)

where 𝜂 is a parameter and the arbitrary function 𝑡𝐵 (𝑟) determines the local Big
Bang (BB) instant at 𝑡 = 𝑡𝐵 (𝑟). This model is initially expanding and later collapses
to the final singularity (BC) at 𝑡 = 𝑡𝐶 (𝑟). Writing (2.5) at 𝜂 = 2𝜋 where 𝑡 = 𝑡𝐶 we
obtain

2𝜋 =
(−2𝐸)3/2

𝑀
[𝑡𝐶 (𝑟) − 𝑡𝐵 (𝑟)] , (2.6)

so of the four functions 𝑀 , 𝐸 , 𝑡𝐵 and 𝑡𝐶 only three are independent.
All the formulae above are covariant under the transformations 𝑟 = 𝑔(𝑟), so we

can give one of the three functions 𝐸 (𝑟), 𝑀 (𝑟) and (𝑡𝐵 (𝑟) or 𝑡𝐶 (𝑟)) a convenient
shape. In our exemplary toy model introduced in Section 4, it will be convenient
to take 𝑟 = 𝑀 (𝑟).2

The Friedmann models [6] are contained in the L–T class as the limit:

𝑡𝐵 = constant, |𝐸 |3/2/𝑀 = constant, (2.7)

and with 𝑀 = constant × 𝑟3 their most popular coordinate representation results.
Shell crossings (SCs), are loci at which neighbouring constant-𝑟 shells collide.

At a SC, 𝑅,𝑟 = 0 ≠ 1+ 2𝐸 ; they are curvature singularities. The conditions on 𝑀 , 𝐸
and 𝑡𝐵 that ensure the absence of SCs were given in [8], and will be used below.

3. Light rays in an L–T model

The tangent vectors 𝑘𝛼 = 𝑑𝑥𝛼/𝑑𝜆 to geodesics of the metric (2.1) obey

𝑑𝑘 𝑡

𝑑𝜆
+ 𝑅,𝑟 𝑅,𝑡𝑟

1 + 2𝐸
(𝑘𝑟 )2 + 𝑅𝑅,𝑡

[

(𝑘𝜗)2 + sin
2 𝜗 (𝑘 𝜑)2

]

= 0, (3.1)

𝑑𝑘𝑟

𝑑𝜆
+ 2

𝑅,𝑡𝑟

𝑅,𝑟
𝑘 𝑡 𝑘𝑟 +

(

𝑅,𝑟𝑟

𝑅,𝑟
− 𝐸,𝑟

1 + 2𝐸

)

(𝑘𝑟 )2

− (1 + 2𝐸)𝑅
𝑅,𝑟

[

(𝑘𝜗)2 + sin
2 𝜗 (𝑘 𝜑)2

]

= 0, (3.2)

2Such a choice of the radial coordinate is allowed in those ranges of 𝑟 where the function 𝑀 (𝑟 ) is
monotonic. In the model of Section 4 this problem does not arise as the range of 𝑀 is [0,∞) and no other
radial coordinate appears.
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𝑑𝑘𝜗

𝑑𝜆
+ 2

𝑅,𝑡

𝑅
𝑘 𝑡 𝑘𝜗 + 2

𝑅,𝑟

𝑅
𝑘𝑟 𝑘𝜗 − cos 𝜗 sin 𝜗 (𝑘 𝜑)2

= 0, (3.3)

𝑑𝑘 𝜑

𝑑𝜆
+ 2

𝑅,𝑡

𝑅
𝑘 𝑡 𝑘 𝜑 + 2

𝑅,𝑟

𝑅
𝑘𝑟 𝑘 𝜑 + 2

cos 𝜗

sin 𝜗
𝑘𝜗𝑘 𝜑

= 0, (3.4)

where 𝜆 is the affine parameter. The geodesics are null when

(

𝑘 𝑡
)2 − 𝑅,𝑟

2(𝑘𝑟 )2

1 + 2𝐸
− 𝑅2

[

(𝑘𝜗)2 + sin
2 𝜗 (𝑘 𝜑)2

]

= 0. (3.5)

Since 𝑅,𝑡 𝑘
𝑡 + 𝑅,𝑟 𝑘

𝑟 = 𝑑𝑅/𝑑𝜆, the general solution of (3.4) is

𝑅2 sin
2 𝜗𝑘 𝜑

= 𝐽0, (3.6)

where 𝐽0 is constant along the geodesic. The case 𝐽0 = 0 corresponds to two
situations:

(a) 𝜗 = 0, 𝜋; then the ray stays on the axis of symmetry, with undetermined 𝜑.
(b) 𝑘 𝜑 = 0 with 𝜗 (as yet) unspecified; then the ray stays in a constant-𝜑

hypersurface.
Using (3.6), the general solution of (3.3) is

𝑅4(𝑘𝜗)2 sin
2 𝜗 + 𝐽0

2
= 𝐶2 sin

2 𝜗, (3.7)

where 𝐶 is another constant along the geodesic. When 𝐶 = 0, the geodesic is radial.
Then 𝐽0 = 0 and either (a) 𝜗 = 0, 𝜋, or (b) 𝜗 is constant along the ray and 𝜑
is constant by (3.6). When 𝐶 = ±𝐽0 ≠ 0, the geodesic remains in the equatorial
hypersurface 𝜗 = 𝜋/2 (which is not flat even when 𝐸 = 0). For later reference let
us note the following:

The coordinates (𝜗, 𝜑) can be adapted to any single geodesic so that
it stays in the hypersurface 𝜗′ = 𝜋/2 in the new coordinates (𝜗′, 𝜑′). (3.8)

This is a consequence of spherical symmetry of the spacetime [5]. Eq. (3.7) implies

𝐶2 sin
2 𝜗 ≥ 𝐽0

2. (3.9)

For rays with 𝐽0 ≠ 0, Eq. (3.6) implies in addition

𝑘 𝜑 ≡ 𝑑𝜑

𝑑𝜆
→ ∞ when 𝑅 → 0. (3.10)

Thus, if |𝑑𝑟/𝑑𝜆 | < ∞ at the intersection with the BB or BC, then 𝑑𝜑/𝑑𝑟 −→
𝑡→𝑡𝐵

∞,

i.e. these rays meet the singularity being tangent to a surface of constant 𝑟.
Eqs. (3.3) and (3.4) are now solved. From (3.6) and (3.7) we get

(𝑘𝜗)2 + sin
2 𝜗 (𝑘 𝜑)2

= 𝐶2/𝑅4, (3.11)

and then (3.5) becomes
(

𝑘 𝑡
)2

=
𝑅,𝑟

2(𝑘𝑟 )2

1 + 2𝐸
+ 𝐶2

𝑅2
. (3.12)
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Eqs. (3.1)–(3.2), using (3.6)–(3.12), simplify to

𝑑𝑡/𝑑𝜆 = 𝑘 𝑡 , (3.13)

𝑑𝑘 𝑡

𝑑𝜆
=

[

(𝐶/𝑅)2 −
(

𝑘 𝑡
)2
] 𝑅,𝑡𝑟

𝑅,𝑟
− 𝐶2𝑅,𝑡

𝑅3
, (3.14)

𝑑𝑟/𝑑𝜆 = 𝑘𝑟 , (3.15)

𝑑𝑘𝑟

𝑑𝜆
=−2

𝑅,𝑡𝑟

𝑅,𝑟
𝑘 𝑡 𝑘𝑟 −

(

𝑅,𝑟𝑟

𝑅,𝑟
− 𝐸,𝑟

1 + 2𝐸

)

(𝑘𝑟 )2 + 𝐶2(1 + 2𝐸)
𝑅3𝑅,𝑟

. (3.16)

The initial data for (3.13)–(3.16) are 𝑡, 𝑟, 𝑘 𝑡 and 𝑘𝑟 at the initial point of the ray
(𝑡, 𝑟, 𝜗, 𝜑) = (𝑡𝑜, 𝑟𝑜, 𝜗𝑜, 𝜑𝑜). In numerical calculations, (3.12) will be used at every
step to correct the value of 𝑘 𝑡 found by integrating (3.13)–(3.16).

One more initial condition is achieved by rescaling 𝜆,

𝑘 𝑡 (𝑡𝑜) = ±1 (3.17)

(+ for future-directed, − for past-directed rays). With (3.17) we have from (3.12),

𝐶2 ≤ 𝑅2(𝑡𝑜, 𝑟𝑜)
def
= 𝑅𝑜

2; (3.18)

the equality occurs when 𝑘𝑟 (𝑟𝑜) = 0.
The following formulae [5] are useful in numerical calculations:

𝑅,𝑟 =

(

𝑀,𝑟

𝑀
− 𝐸,𝑟

𝐸

)

𝑅 +
[(

3

2

𝐸,𝑟

𝐸
− 𝑀,𝑟

𝑀

)

(𝑡 − 𝑡𝐵) − 𝑡𝐵,𝑟

]

𝑅,𝑡 , (3.19)

𝑅,𝑡𝑟 =
𝐸,𝑟

2𝐸
𝑅,𝑡 −

𝑀

𝑅2

[(

3

2

𝐸,𝑟

𝐸
− 𝑀,𝑟

𝑀

)

(𝑡 − 𝑡𝐵) − 𝑡𝐵,𝑟

]

, (3.20)

𝑅,𝑟𝑟 =

[

𝑀,𝑟𝑟

𝑀
− 2𝑀,𝑟 𝐸,𝑟

𝑀𝐸
+ 2𝐸,𝑟

2

𝐸2
− 𝐸,𝑟𝑟

𝐸

]

𝑅

+
[(

3

2

𝐸,𝑟𝑟

𝐸
− 9𝐸,𝑟

2

4𝐸2
+ 2𝑀,𝑟 𝐸,𝑟

𝑀𝐸
− 𝑀,𝑟𝑟

𝑀

)

(𝑡 − 𝑡𝐵) −
𝐸,𝑟

𝐸
𝑡𝐵,𝑟 − 𝑡𝐵,𝑟𝑟

]

𝑅,𝑡 ,

−𝑀

𝑅2

[(

3

2

𝐸,𝑟

𝐸
− 𝑀,𝑟

𝑀

)

(𝑡 − 𝑡𝐵) − 𝑡𝐵,𝑟

]2

. (3.21)

4. The extremum of 𝑅 along a ray

The following holds at an extremum of 𝑅(𝑡, 𝑟) along the curve tangent to 𝑘𝛼,

𝑑𝑅

𝑑𝜆
= 𝑅,𝑡 𝑘

𝑡 + 𝑅,𝑟 𝑘
𝑟
= 0. (4.1)

On future-directed curves 𝑘 𝑡 > 0, so 𝑅,𝑡 𝑘
𝑡 > 0 when the model expands and

𝑅,𝑡 𝑘
𝑡 < 0 when it collapses. When shell crossings and necks are absent, 𝑅,𝑟 > 0

[8]. Thus, solutions of (4.1) may exist only where 𝑅,𝑡 𝑘
𝑟 < 0. On a null geodesic,
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(4.1) implies, via (3.12)

𝑅,𝑡
2

[

(𝑅,𝑟 𝑘𝑟 )2

1 + 2𝐸
+ 𝐶2

𝑅2

]

= (𝑅,𝑟 𝑘𝑟 )2 . (4.2)

Using (2.2) with Λ = 0 in this we obtain
(

2𝑀

𝑅
− 1

)

(𝑅,𝑟 𝑘𝑟 )2 +
(

𝐶𝑅,𝑡

𝑅

)2

(1 + 2𝐸) = 0. (4.3)

Where 𝑅 < 2𝑀 , both terms in (4.3) are nonnegative, so (4.3) may hold only when
both are zero. The only physically meaningful situation when this happens is

𝑅,𝑟 = 1 + 2𝐸 = 0. (4.4)

This is a neck [5]. Apart from this locus, 1 + 2𝐸 > 0 must hold in order that
the signature is the physical (+,−,−,−). Other solutions of (4.3) do not exist with
𝑅 < 2𝑀 because.

(1) When 𝐶 = 0 = 𝑘𝑟 , the geodesic is timelike, while the locus of 𝐶 = 𝑅,𝑟 = 0 <
1 + 2𝐸 is a shell crossing which we assumed not to exist.

(2) 𝑅,𝑡 = 0 holds at maximum expansion (when 𝐸 < 0), but then 𝑅 ≥ 2𝑀 [5].
Thus, the solution of (4.3) is 𝑅 = 2𝑀 only on radial geodesics, where 𝐶 = 0. With
𝐶 ≠ 0, (4.3) can have solutions only where 𝑅 > 2𝑀 (see examples in Section 5).

Given the value of 𝐶 and an initial point 𝑝0, Eqs. (3.12)–(3.16) with (3.6)–(3.7)
define a single ray, and then each solution of (4.1)3 defines a point on that ray. When
the values of 𝐶 are changed with 𝑝0 fixed, those points draw a 2-surface 𝑆𝑝0

. When
𝑝0 is moved along an observer’s world line, the 𝑆𝑝0

surfaces form a hypersurface 𝐻
in spacetime which touches 𝑅 = 2𝑀 along radial rays, but elsewhere lies in
𝑅 > 2𝑀 . We will see in Section 6 that for a noncentral observer the hypersurface
𝐻 and the locus of 𝑘𝜇;𝜇 = 0 do not coincide, see Sections 5 and 7 for explicit
examples.

Now we calculate 𝑑2𝑅/𝑑𝜆2 from (4.1). To eliminate 𝑑𝑘 𝑡/𝑑𝜆 and 𝑑𝑘𝑟/𝑑𝜆 we use
(3.14) and (3.16). We also use the derivative of (2.2) with Λ = 0 by 𝑟 ,

𝑅,𝑡 𝑅,𝑡𝑟 =
𝑀,𝑟

𝑅
− 𝑀𝑅,𝑟

𝑅2
+ 𝐸,𝑟 . (4.5)

The end result is
𝑑2𝑅

𝑑𝜆2
= −𝑀,𝑟 𝑅,𝑟 (𝑘𝑟 )2

1 + 2𝐸
+ 𝐶2

𝑅3

(

1 − 3𝑀

𝑅

)

. (4.6)

For the model to be physical it is necessary that 𝜌 > 0 in (2.3), so 𝑀,𝑟 𝑅,𝑟 > 0

and the first term in (4.6) is nonpositive. The second term is negative (positive)
where 𝑅 < 3𝑀 (𝑅 > 3𝑀). Thus, 𝑑2𝑅/𝑑𝜆2 < 0 where 𝑅 ≤ 3𝑀 , and if a solution of
(4.1) exists then it is a maximum. Where 𝑅 > 3𝑀 , the sign of 𝑑2𝑅/𝑑𝜆2 depends

3On a given ray, (4.1) may have more than one solution or no solutions. See examples further on.
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on the balance between the two terms in (4.6), so both minima and maxima of 𝑅
may exist;4 see Section 5.

5. Extrema of 𝑅 along nonradial rays in an exemplary L–T model

To illustrate the conclusions of Section 4 we now consider a recollapsing L–T
toy model that has its Big Bang at 𝑡 = 𝑡𝐵 (𝑀) and its Big Crunch at 𝑡 = 𝑡𝐶 (𝑀),
where

𝑡𝐵 (𝑀) =−𝑏𝑀2 + 𝑡𝐵0, (5.1)

𝑡𝐶 (𝑀) = 𝑎𝑀3 + 𝑡𝐵0 + 𝑇0, (5.2)

with 𝑎 = 104, 𝑏 = 200, 𝑡𝐵0 = 5 and 𝑇0 = 0.1 being constants; the mass function 𝑀
is used as the radial coordinate [4, 5]; see footnote 2 in Section 2. This model
is spatially infinite and becomes spatially flat at 𝑀 → ∞; see Fig. 2. Its subspace
𝜗 = 𝜋/2 can be imagined by rotating any panel of Fig. 2 around the 𝑀 = 0 axis.
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Fig. 2. Left panel: The 𝑡 (𝑀 ) profiles of the Big Bang (BB), Big Crunch (BC), both 𝑅 = 2𝑀 sets and of the
future 𝑅 = 3𝑀 set in the L–T model given by (5.1)–(5.2). Right panel: Contours of constant 𝑅 written into
the left panel. The 𝑅 = 0 contour consists of the BB, the line 𝑀 = 0 and the BC. Values of 𝑅 increase from
left to right at steps of 0.002, from 0 to 0.04 on the rightmost contour.

4For radial geodesics 𝐶 = 0, so 𝑑2𝑅/𝑑𝜆2 < 0 and only maxima are possible.
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From (2.6) we obtain

𝐸 (𝑀) = −1

2

(

2𝜋𝑀

𝑡𝐶 − 𝑡𝐵

)2/3
= −1

2

(

2𝜋𝑀

𝑎𝑀3 + 𝑏𝑀2 + 𝑇0

)2/3
. (5.3)

In this model let us consider the locus of extrema of 𝑅 along bundles of
future-directed rays emitted from the observer world line at (𝑀, 𝜑) = (0.012, 0).
Figs. 3 and 4 show this locus for rays emitted at 16 points that run in the
𝜗 = 𝜋/2 hypersurface.5 The earliest emission point has 𝑡 = 5.075, the later ones are
Δ𝑡 = 0.0014 apart, the last one at 𝑡 = 5.096 is close below the 𝑅 = 2𝑀 hypersurface
which this observer would cross at 𝑡 = 5.0962668. For each emission point there
are 512 rays emitted in initial directions inclined by 𝜋/256 to each other. For more
details of this family of rays see Appendix A.
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Fig. 3. Left: Loci of 𝑅 maxima for 16 bundles of rays emitted from the observer world line at 𝑀 = 0.012 in
the model of (5.1)–(5.2), projected on a 𝑡 = constant surface. The rays lie in the 𝜗 = 𝜋/2 hypersurface. The
cross marks the (𝑀, 𝜑) = (0.012, 0) coordinates of the emitter. See the text for details. Right: The (𝑀, 𝑡)
coordinates of all 𝑅 maxima.

The left panel of Fig. 3 shows the projections of loci of 𝑅 maxima on a surface
of constant 𝑡 = 𝑡0. (In comoving coordinates, the projection does not depend on 𝑡0.
This is not an isometric image because a {𝑡 = constant, 𝜗 = 𝜋/2} surface in an

5If the emission point lies early enough, then some or all rays will escape to infinity; on them 𝑅 need not
have extrema. An example is the ray marked “out” in the left panel of Fig. 4.
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Fig. 4. Left: Projections of selected contours of 𝑅 maxima on the surface 𝜑 = 0. The line marked “out”
is a ray that escapes to 𝑅 = ∞ with no 𝑅 extrema. Right: Projections of the same contours on the surface
𝜑 = 𝜋/2, 3𝜋/2. See the text for more comments.

L–T model is not flat when 𝐸 ≠ 0, see (2.1).) There are no 𝑅 minima for these
emission points, and on rays which go off the initial point with 𝑘𝑟𝑜 ≤ 0 there are no
maxima either. The ring of 𝑅 maxima for the latest emission point coincides with
the center of the cross at the scale of the figure. The locus of all 𝑅 maxima is in
this case a curved cone with the vertex at the intersection of the observer world
line with the 𝑅 = 2𝑀 hypersurface. As predicted, all maxima occur at 𝑅 ≥ 2𝑀 —
the right panel of Fig. 3 shows this.

We considered rays running in the 𝜗 = 𝜋/2 hypersurface, but in view of comment
(3.8) this is not a great limitation. The whole bundle of rays emitted from a fixed
initial point consists of sub-bundles, each of which contains rays running in a different
𝜗′ = 𝜋/2 hypersurface where 𝜗′ is related to 𝜗 by a rotation around a point. So,
the complete projection of the whole set of 𝑅 maxima on a 3-dimensional space
of constant 𝑡 can be imagined by rotating the left panel of Fig. 3 around the 𝜑 = 0

semiaxis.
Fig. 4 shows the projections of odd-numbered rings 1, . . . , 15 of 𝑅 maxima

on the 𝜑 = 0 surface (left panel) and on the 𝜑 = 𝜋/2, 3𝜋/2 surface (right panel,
horizontal scale smaller than in Fig. 3). The rings are not plane curves. The
intersections of the lines in the left panel are artifacts of the projection; the only
true points of contact between 𝑅 = 2𝑀 and the maximum 𝑅 rings are on radial
rays. In the right panel, the continuous lines are intersections of the 𝑅 = 2𝑀 surface
with the planes of constant 𝑥 = 𝑀 cos 𝜑.

The locus of 𝑅 extrema in Figs. 3 and 4 has a simple shape because the
emitter world line at 𝑀 = 0.012 is far from the center and the earliest emission
point is sufficiently late. The geometry of this locus is more complicated when the
comoving emitter is closer to 𝑀 = 0. Consider the extrema of 𝑅 along bundles of
future-directed rays emitted at (𝑀, 𝜑) = (0.005, 0), still in the 𝜗 = 𝜋/2 hypersurface.
Here, as the emission instant progresses toward the future, the contours of 𝑅
extrema undergo an interesting evolution illustrated in Figs. 5 and 6. They show
the projections (along the cosmic dust flow lines) of the loci of 𝑅 extrema on
a 𝑡 = constant surface, for rays going off 21 initial points. In the main sequence
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of 18 emission points their 𝑡 coordinates change from 𝑡 = 5.05 at steps of 0.0025
to 𝑡 = 5.0925. The last point is just below the 𝑅 = 2𝑀 surface. In addition, there
are 3 emission points with 𝑡 = 5.053125 + 𝑗 × 0.000625, where 𝑗 = 0, 1, 2; the rays
emitted at them allow for a more detailed view of the evolution of the contours.

Fig. 5. The loci of 𝑅 maxima (continuous lines) and minima (dotted lines) along rays going off several emission
points on the (𝑀, 𝜑) = (0.005, 0) emitter world line, projected on a {𝑡 = constant, 𝜗 = 𝜋/2} surface along
the dust flow lines. See the text for details, and Fig. 6 for an enlarged view of the region around the tip of
the small arrow.
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214 A. KRASIŃSKI

comoving observer
world line

R = 2M

R = 2M

comoving observer
world line

R = 2M

R = 2M

comoving observer
world line

R = 2M

R = 2M

comoving observer
world line

R = 2M

R = 2M

5.04

5.06

5.08

5.1

5.12

5.14

5.16

5.18

5.2

5.22

Fig. 7. A 3d view of the loci of 𝑅 extrema on contours 1, 2, 6, . . . , 12.

At each initial point 512 rays were emitted, in regularly spaced initial directions
just as before. This time, along some rays 𝑅 has both minima and maxima. In
Fig. 5 the loci of maxima are the continuous lines, the loci of minima are the dots.
As the emission instant 𝑡 progresses, the loops at left shrink toward the center of
symmetry of the space at 𝑀 = 0. The loops at right shrink toward the emitter world
line. The long arrow marks the view direction in Fig. 7 (40◦ counterclockwise from
the 𝜑 = 3𝜋/2 semiaxis).

For the two earliest emission points, 𝑅 has a maximum along every ray, and
a minimum along rays going off at sufficiently large angles to the 𝜑 = 0 line. The
contours of minima are initially inside the contours of maxima, but approach each
other with progressing emission instant (contours 1 and 2 in Figs. 5 and 6). Near
to emission instant 1 of the additional sequence, the contours come into contact
(curves 3 in Fig. 6). For later emission times the extrema again form two disjoint
loops, but each one is outside the other and contains both maxima and minima. Up
to emission instant 9 of the main sequence, the Fortran program found at least two
𝑅 minima on the right-hand loops. For later emission times, 𝑅 minima exist only on
the left-hand loops. On rays that run between the loops 𝑅 decreases monotonically
to 0 at the BC.

As before, in view of comment (3.8), also here the projection of all 𝑅 extrema
on a 𝑡 = constant space can be imagined by rotating Fig. 5 around the 𝜑 = 0

semiaxis.
The contours of 𝑅 extrema are again not plane curves, Fig. 7 shows a 3d view

of a few of them; they all lie in the 𝑅 ≥ 2𝑀 region. The viewing direction is at
85◦ to the 𝑡 axis and at 40◦ counterclockwise from the 𝜑 = 3𝜋/2 half-plane.

In order to further visualise the conclusions of Section 4, Fig. 8 shows the 𝑡 (𝑀)
profiles along selected rays of the bundle that created contour 1 in Fig. 5. Rays
beyond # 144 have numbers 160 + 𝑗 × 16 with 𝑗 = 0, . . . , 6; their labels are omitted.
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Fig. 8. The graphs of 𝑡 (𝑀 ) along selected rays originating at (𝑀, 𝑡) = (0.005, 5.05) in the L–T model defined
by (5.1)–(5.3). The dots mark the (𝑀, 𝑡) coordinates of the maxima of 𝑅. On rays 128, . . . 256, 𝑅 has also
minima marked by ×s. Note that 2𝑀 ≤ 𝑅 < 3𝑀 for all maxima, and 𝑅 > 3𝑀 for all minima.

The dots mark the (𝑀, 𝑡) coordinates of the loci of 𝑅 maxima along the rays; at
each one 2𝑀 ≤ 𝑅 < 3𝑀 . The rightmost and leftmost rays are radial, and along
them 𝑅 is maximum where 𝑅 = 2𝑀 . Minima of 𝑅 exist only along Rays 128 and
following, their loci are marked by ×s. At each minimum 𝑅 > 3𝑀 .

Fig. 9 shows the projections of selected rays of the earliest-emitted bundle in
Fig. 5 on a 𝑡 = constant surface along the flow lines of the cosmic dust. The large

dots and the ×-s mark the (𝑥, 𝑦) def
= (𝑀 cos 𝜑, 𝑀 sin 𝜑) coordinates of the points

where 𝑅 is maximum and, respectively, minimum (some extrema are shown without
the rays on which they occur). All the extrema lie along contour 1 of Fig. 5. The
large circle is at 𝑅 = 2𝑀 on the outward radial Ray 0, where 𝑀 = 0.025058. Each
curve ends just before the ray would cross the BC. The vertical stroke marks 𝑀 = 0.
The thick arrow marks the view direction in Fig. 10. The meaning of the curve of
small dots will be explained in Section 7.

Fig. 9 visualises one more fact: the transition from nonradial to radial rays is
discontinuous. Nonradial rays meet the singularity tangentially to 𝑟 = constant rings
while the radial ones meet the singularity orthogonally to those rings.

The right-hand graph in Fig. 10 shows a 3-d image of selected rays from Figs.
8 and 9, and also of the 𝑅 = 2𝑀 hypersurface. It is a map of the 𝜗 = 𝜋/2
subspace of the L–T model (5.1)–(5.3) into a Euclidean space with coordinates
(𝑥, 𝑦, 𝑡) = (𝑀 cos 𝜑, 𝑀 sin 𝜑, 𝑡). The loop at left is the full ring of maxima of 𝑅,
i.e. it includes the 𝑥 < 0 half of the bundle (omitted in Fig. 9). The loci of 𝑅
maxima marked by large dots in the right graph lie along the left half of the loop,
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Fig. 9. Projections of selected rays of the earliest bundle in Fig. 5 on a surface of constant 𝑡 along the flow
lines of the cosmic dust. See the text for explanations.

which is further from the viewer. The viewing direction in both graphs, marked by
the arrow in Fig. 9, is at 85◦ to the vertical axis and at 10◦ clockwise from the
𝜑 = 3𝜋/2 half-plane.

6. The set 𝑘𝜇;𝜇 = 0 in a general L–T model

For rays with tangent vectors 𝑘𝜇 in the metric (2.1) we have, using (3.6),

𝜃
def
= 𝑘𝜇;𝜇 ≡

(√−𝑔𝑘𝜇
)

,𝜇 /
√−𝑔

=

√
1 + 2𝐸

𝑅2𝑅,𝑟 sin 𝜗

[(

𝑅2𝑅,𝑟 sin 𝜗𝑘 𝑡
√

1 + 2𝐸

)

,𝑡 +
(

𝑅2𝑅,𝑟 sin 𝜗𝑘𝑟
√

1 + 2𝐸

)

,𝑟 +
(

𝑅2𝑅,𝑟 sin 𝜗𝑘𝜗

√
1 + 2𝐸

)

,𝜗

]

. (6.1)

When 𝐶2 ≠ 𝐽0
2 > 0, (6.1) becomes, using (3.7) (𝜀1 = ±1 is the sign of 𝑘𝜗),

𝑘𝜇;𝜇 = 𝑘 𝑡 ,𝑡 +𝑘𝑟 ,𝑟 +
(

2
𝑅,𝑡

𝑅
+ 𝑅,𝑡𝑟

𝑅,𝑟

)

𝑘 𝑡 +
(

2
𝑅,𝑟

𝑅
+ 𝑅,𝑟𝑟

𝑅,𝑟
− 𝐸,𝑟

1 + 2𝐸

)

𝑘𝑟

+ 𝜀1𝐶
2 cos 𝜗

𝑅2
√︁

𝐶2 sin
2 𝜗 − 𝐽0

2
. (6.2)
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Fig. 10. Right graph: A 3d view of selected rays from Figs. 8 and 9 in the (𝑀 cos 𝜑, 𝑀 sin 𝜑, 𝑡) coordinate
space. The paraboloid-like surface is the 𝑅 = 2𝑀 locus. Left graph: A 3d view of the full ring of maxima
of 𝑅 along rays emitted at (𝑀, 𝜑, 𝑡) = (0.005, 0.0, 5.05) . See the text for details.

When 𝐶2 = 𝐽0
2 > 0, (3.7) implies 𝜗 = 𝜋/2 and 𝑘𝜗 = 0. Then the 𝑘𝜗 term in (6.1)

disappears, and the last term in (6.2) does not arise. This case can be formally
included in (6.2) using the convention that the limit of the last term at 𝐽0

2 → 𝐶2

is zero.
Using (3.11) and 𝑑𝑘𝑟/𝑑𝜆 = (𝑑𝑘𝑟/𝑑𝑡)𝑘 𝑡 + (𝑑𝑘𝑟/𝑑𝑟)𝑘𝑟 , Eq. (3.2) becomes

𝑘 𝑡 𝑘𝑟 ,𝑡 +𝑘𝑟 𝑘𝑟 ,𝑟 +2
𝑅,𝑡𝑟

𝑅,𝑟
𝑘 𝑡 𝑘𝑟 +

(

𝑅,𝑟𝑟

𝑅,𝑟
− 𝐸,𝑟

1 + 2𝐸

)

(𝑘𝑟 )2 − 𝐶2(1 + 2𝐸)
𝑅3𝑅,𝑟

= 0. (6.3)

Now, we differentiate by 𝑡 the null condition (3.12),

𝑘 𝑡 𝑘 𝑡 ,𝑡 −
𝑅,𝑟 𝑅,𝑡𝑟

1 + 2𝐸
(𝑘𝑟 )2 − 𝑅,𝑟

2

1 + 2𝐸
𝑘𝑟 𝑘𝑟 ,𝑡 +

𝐶2𝑅,𝑡

𝑅3
= 0. (6.4)

We multiply (6.3) by 𝑅,𝑟
2𝑘𝑟/(1 + 2𝐸), (6.4) by 𝑘 𝑡 and add. The result is

(𝑅,𝑟 𝑘𝑟 )2

1 + 2𝐸

[

𝑘𝑟 ,𝑟 +
𝑅,𝑡𝑟

𝑅,𝑟
𝑘 𝑡 +

(

𝑅,𝑟𝑟

𝑅,𝑟
− 𝐸,𝑟

1 + 2𝐸

)

𝑘𝑟
]

+ 𝐶2

𝑅3

(

𝑅,𝑡 𝑘
𝑡 − 𝑅,𝑟 𝑘

𝑟
)

+
(

𝑘 𝑡
)2
𝑘 𝑡 ,𝑡 = 0. (6.5)

We now calculate 𝑘 𝑡 ,𝑡 from (6.5) and substitute it in (6.2) obtaining

𝑘𝜇;𝜇 = 2
𝑅,𝑡

𝑅
𝑘 𝑡 + 2

𝑅,𝑟

𝑅
𝑘𝑟 + 𝜀1𝐶

2 cos 𝜗

𝑅2
√︁

𝐶2 sin
2 𝜗 − 𝐽0

2

+ 𝐶2

(𝑘 𝑡 )2 𝑅2

[

−𝑅,𝑡 𝑘
𝑡 − 𝑅,𝑟 𝑘

𝑟

𝑅
+ 𝑘𝑟 ,𝑟 +

𝑅,𝑡𝑟

𝑅,𝑟
𝑘 𝑡 +

(

𝑅,𝑟𝑟

𝑅,𝑟
− 𝐸,𝑟

1 + 2𝐸

)

𝑘𝑟
]

. (6.6)
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For the solutions of 𝑘𝜇;𝜇 = 0 in the collapse phase of the model there are four
cases:

(1) For outward radial rays 𝐶 = 0, so 𝑘𝜇;𝜇 = 2 (𝑅,𝑡 𝑘 𝑡 + 𝑅,𝑟 𝑘
𝑟 ) /𝑅. Then the loci

of 𝜃 = 0 and of maximum 𝑅 coincide and are at 𝑅 = 2𝑀 [5].
(2) For inward radial rays 𝜃 ≠ 0 all along. This follows from (6.6): on radial rays

𝐶 = 0, so 𝜃 = 0 would coincide with 𝑅,𝑡 𝑘
𝑡 + 𝑅,𝑟 𝑘

𝑟 = 0. But on an inward (𝑘𝑟 < 0)
future-directed (𝑘 𝑡 > 0) ray in the collapse phase (𝑅,𝑡 < 0) we have 𝑅,𝑡 𝑘

𝑡 +𝑅,𝑟 𝑘𝑟 < 0

all along because 𝑅,𝑟 > 0 (no shell crossings).6
(3) On nonradial rays (𝐶 ≠ 0), 𝑅,𝑡 𝑘

𝑡 + 𝑅,𝑟 𝑘
𝑟 = 0 does not fulfil 𝑘𝜇;𝜇 = 0

identically, so the locus of 𝜃 = 0 in general does not coincide with the locus of
extrema of 𝑅 (but see footnote 1 in Section 1; see also Figs. 14 and 21 for
exceptions). Then

(3a) For rays with 𝐽2 = 𝐶2, which stay in 𝜗 = 𝜋/2, solutions of 𝑘𝜇;𝜇 = 0 (when
they exist) determine a curve in a (𝑡, 𝑟) surface, and a surface in a (𝑡, 𝑟, 𝜑) space.

(3b) When 𝐶2 > 𝐽0
2, solutions of 𝑘𝜇;𝜇 = 0 determine a 2-surface in the (𝑡, 𝑟, 𝜗)

space, and the locus of 𝜃 = 0 is a 3-dimensional subspace of the L–T spacetime.
In case (3) the derivative 𝑘𝑟 ,𝑟 in (6.6) goes across the bundle. To calculate it

numerically two rays are needed: a 𝐺1 with a given 𝐶1/𝑅𝑜, and a nearby 𝐺2 with

𝐶2/𝑅𝑜
def
= 𝐶1/𝑅𝑜 + 𝐷. It must be calculated at constant 𝑡, 𝜗 and 𝜑, so for each

point 𝑝1 on 𝐺1 we find the point 𝑝2 on 𝐺2 with the same (𝑡, 𝜗, 𝜑), where 𝑟 = 𝑟2

and 𝑘𝑟 = 𝑘𝑟
2
. Then

𝑘𝑟 ,𝑟 ≈
𝑘𝑟

2
− 𝑘𝑟

1

𝑟2 − 𝑟1

. (6.7)

All other quantities in (6.6) are intrinsic to a single geodesic. In fact, nothing
depends on 𝜑 in (6.6), and in case (3a) nothing depends on 𝜗 either; then it
suffices to find a point on 𝐺2 with the same 𝑡. For more comments on (6.7) see
Appendix B.

At such points where 𝑟2 = 𝑟1 but 𝑘𝑟
2
≠ 𝑘𝑟

1
, |𝑘𝑟 ,𝑟 | → ∞ and may jump between

±∞. This may be a real effect or a numerical artefact. Note that a real jump of
𝑘𝑟 ,𝑟 may only be from −∞ to +∞, and the same is true for 𝜃 — see Appendix
C for a proof. This has a geometrical interpretation: the jump from 𝜃 = −∞ to
𝜃 = +∞ means that the ray bundle was refocussed to a point and then disperses;
the opposite is hard to imagine.

In case (3b), for each initial point and each given 𝐶, one has to consider the
bundle of rays with the same 𝐶 and all 𝐽0 allowed by (3.9). A graphical representation
of such an object would be a problem in itself, so, for this introductory study, we
shall consider the case (3a) only. But, in view of remark (3.8), in this way we
disallow only the auxiliary nearby rays with 𝐽0

2 < 𝐶2 because the (𝜗, 𝜑) coordinates
can be adapted to each sub-family of the main rays that proceed in the same
equatorial hypersurface.

6However, it may happen that an inward radial ray flies through the center 𝑀 = 0 and becomes outward
on the other side. On the outward segment, point (1) applies. See examples in Sections 5 and 7.
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7. The set 𝑘𝜇;𝜇 = 0 in the exemplary L–T model of Section 5

We first consider bundles of rays going off the same observer world line
(𝑀, 𝜑) = (0.012, 0) as in Figs. 3 and 4 — see Figs. 11 and 12. The origins of the
bundles are here at points 1, 4, 7, 10, 13 and 16 of the former set (here labelled
1, . . . , 6) and the additional point 7 at (𝑀, 𝑡) = (0.012, 5.1002). At point 7 𝑅 > 2𝑀
(for this observer 𝑅 = 2𝑀 is at 𝑡 = 5.09627). In each bundle there are 512 main rays
distributed in the same way as before. Let 𝐶/𝑅𝑜 = 𝑑1 for the main ray and 𝑑2 for
the auxiliary ray used to calculate 𝑘𝑟 ,𝑟 . The auxiliary rays have 𝑑2 = 𝑑1 +1/1024 for
main Rays 1–127 and 𝑑2 = 𝑑1 − 1/1024 for main Rays 128–255 (so each auxiliary
ray goes off at a larger angle to the 𝜑 = 0 semiaxis than the main ray.) The loci
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Fig. 11. Main panel: Loci of 𝜃 = 0 for rays emitted at 7 selected instants on the world line (𝑀, 𝜑) = (0.012, 0)
(marked by the vertical stroke) in the model (5.1)–(5.3), projected on a surface of constant 𝑡 . Inset: A closeup
view on the central blob. Labels refer to the emission instants. See the text for explanations.
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Fig. 12. A closeup view on the upper part of Fig. 11.

of 𝜃 = 0 for Rays 257–511 are found by inverting the 𝑦 = 𝑀 sin 𝜑 coordinates of
those on Rays 1–255.

For each emission point, 𝜃 has no zeros along several rays. For example, for
point 1 at 𝑡 = 5.075, there are no 𝜃 zeros on Rays 79–178 (and on their mirror-
images 334–433) and on the inward radial ray. On each outward radial ray, 𝜃 has
a single zero. On most remaining rays 𝜃 has two zeros. On each boundary ray
between those with two zeros and those with no zeros 𝜃 has a single zero. The
meaning of the symbols in Figs. 11 and 12 is: 1f = initial point 1, first zero of 𝜃,
1s = initial point 1, second zero of 𝜃, 2f = initial point 2, first zero, etc. The
inset in Fig. 11 shows the central blob enlarged; the numbers in it identify the
emission points. Rays with no 𝜃 zeros run between the blob and the long dotted
arcs. Fig. 12 shows where the arcs of first zeros (continuous lines) go over into
the arcs of second zeros (dotted lines), each single zero lies at their contact.

Fig. 13 shows the graphs of 𝜃 (𝑡) along selected rays emitted at point 1 and
along Ray 40 emitted at point 7 (the dotted line). There is a discontinuity between
Ray 0 (on which 𝜃 has one zero) and the first nonradial ray, on which 𝜃 has two
zeros. Then the changes proceed continuously up to Ray 255. Rays with a single
𝜃 = 0 are between 78 and 79, and again between 178 and 179. There is one more
discontinuity between the last nonradial ray and the inward radial Ray 256, on which
𝜃 < 0 all along. The vertical strokes mark the 𝑡 = 5.075 coordinate of point 1. The
dotted line shows that the 𝜃 (𝑡) profile is still similar when the emission point is in
the 𝑅 < 2𝑀 region. On all rays except the two radial ones, 𝜃 becomes very large
positive on approaching the BC, which means that the ray bundles diverge there.
On those nonradial rays where 𝜃 has no zeros, the bundle is diverging all the time
(𝜃 > 0, but not monotonic, see graphs 85 and 168).

Fig. 14 shows the 𝑡 coordinates of the loci of maximum 𝑅, of both 𝜃 = 0 and
of 𝑅 = 2𝑀 on all 256 rays emitted at point 1 with 𝑘 𝜑 ≥ 0. The ray-number 𝑗
is related to the angle 𝛼 𝑗 between the initial direction of the ray and the 𝜑 = 0

semiaxis by 𝛼 𝑗 = 𝑗𝜋/256. The 𝜃 = 0 curves intersect the 𝑅 = 2𝑀 curve at two
points, so there exist nonradial rays on which one locus of 𝜃 = 0 is at 𝑅 = 2𝑀 . The
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Fig. 14. The 𝑡 coordinates of various events on rays emitted at (𝑀, 𝑡) = (0.012, 5.075) .

dotted curve marked “BC" is the graph of 𝑡 at BC at that 𝑀 where the second
𝜃 = 0 occurred on the ray (not to be confused with 𝑡 at which the ray hits the
BC!). It demonstrates that the locus of the second 𝜃 = 0 approaches the BC when
𝛼 𝑗 → 0, 𝜋, so the loose ends of the dotted curves in Fig. 11 are near the BC. The
time-ordering of 𝜃 = 0 and 𝑅 = 2𝑀 in Fig. 14 changes from ray to ray. This has
physical consequences, to which we will come back in Section 8.

Fig. 15 shows the projections of the 𝜃 = 0 curves corresponding to emission
points 1, 3 and 5 on the 𝑦 = 𝑀 sin 𝜑 = 0 surface. The upper ends of both branches
of the 1s, 3s and 5s arcs are close to the BC. Fig. 16 shows the 𝑦 ≥ 0 halves of
the same 𝜃 = 0 curves as in Fig. 15, this time projected on 𝑥 = 𝑀 cos 𝜑 = 0 surface.
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Fig. 15. The 𝜃 = 0 curves corresponding to emission points 1, 3 and 5 from Fig. 11 projected on the
𝑦 = 𝑀 sin 𝜑 = 0 surface.
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𝑥 = 𝑀 cos 𝜑 = 0, 𝑦 ≥ 0 half-plane.

Since the three projections are somewhat entangled, Fig. 17 shows the curves for
emission points 3 and 5 separately, at the same scale as in the previous figures.
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Fig. 17. The 𝜃 = 0 curves for emission points 3 (at left) and 5 (at right) from Fig. 16. The first 𝜃 zeros are
to the left of the gap in each curve, the second zeros are to the right.
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Now we consider ray bundles emitted on the world line (𝑀, 𝜑) = (0.005, 0). The
instants of emission are at 𝑡 = 5.05 + 𝑘 × 0.0085, where 𝑘 = 0, 1, . . . , 5. (The latest
and earliest emission points are the same as for the ray bundles used in Fig. 5.)
At each of these instants, 512 rays are emitted in regularly spaced initial directions,
just as before.
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Fig. 18. The analogue of Fig. 11 with the origins of the ray bundles at (𝑀, 𝜑) = (0.005, 0) . The knot to the
left of 𝑀 = 0 is the locus of 3rd, 4th, 5th and 6th 𝜃 zeros on the earliest bundle of rays. See Fig. 20 and
explanations in the text.

This time, along some rays 𝜃 has 3 to 6 zeros. For example, in the bundle
emitted at point 1, 𝜃 has two zeros on Rays 1–104 and 177–196, no zeros on Rays
105–176, four zeros on Rays 197–206 and six on Rays 207–254. Three zeros exist
on a ray between 196 and 197 and 5 on one between 206 and 207. Ray 255 is
different: its 𝜃 (𝑡) profile is similar to curve 250 in Fig. 24, except that it begins
with 𝜃 < 0, so it has 5 zeros. Ray 256 passes through 𝑀 = 0 and becomes outward
on the other side, where 𝜃 has a single zero at 𝑅 = 2𝑀 . The reason of more 𝜃
zeros is that the emitter world line is now close to 𝑀 = 0, so some rays fly near
the center and later recede from it.

Fig. 18 shows the projections on a surface of constant 𝑡 of the loci of the first
two 𝜃 zeros on each ray for all emission points, and the loci of zeros # 3, . . . , 6
for emission point 1 (this is the knot left of 𝑀 = 0). The upper half of the largest
contour is shown in small dots in Fig. 9. The projection of the emitter world line
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Fig. 20. The knot in Fig. 18 enlarged. See the text for explanations.

is marked with the vertical stroke, the cross marks the center 𝑀 = 0. The meaning
of the labels is the same as in Fig. 11. Figure 19 shows a closeup view on the
central part of Fig. 18.

Fig. 20 shows the knot in Fig. 18 enlarged. This is the collection of loci of 𝜃
zeros # 3, . . . , 6 for emission point 1. The numbers label the consecutive zeros;
a “+” means that the ray on which the zero lies had 𝑘

𝜑
𝑜 > 0, a “−” means 𝑘

𝜑
𝑜 < 0.
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Projections of 3 rays on the plane of the figure are shown in addition, to clarify the
ordering of the zeros on the rays. Ray 197 is the first one with four 𝜃 zeros,7 Ray
207 is the first one with 6 zeros, Ray 254 is the last one with 6 zeros. The arcs
of 5th zeros (drawn in +-s and ×-s) and 6th zeros partly overlap in this projection.
The arrows point to the loci of the 5th and 6th 𝜃 zeros on Ray 207 and of the 6th
𝜃 zero on Ray 254 (Appendix D explains why the 6th zeros seem to lie beyond
the endpoints of the rays.)

Fig. 21 is analogous to Fig. 14. The loci of the 6th 𝜃 zeros approach the BC
when 𝛼 𝑗 → 𝜋. The dotted arc marked BC6 in the left panel of Fig. 22 contains
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Fig. 21. The analogue of Fig. 14 for the bundle of rays going off the point (𝑀, 𝑡) = (0.005, 5.05) . See
comments in the text.
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Fig. 22. Left: The lower right corner of Fig. 21 enlarged. See comments in the text. Right: Enlarged view on
the intersection region between 𝑅 = 2𝑀 and the third 𝜃 = 0.

7The image of Ray 197 is discontinued at 𝜑 ≈ 𝜋 to avoid clogging the picture.
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the 𝑡 coordinates of the BC at those 𝑀 where the rays pass the locus of the 6th
zero. The loci of second zeros approach the BC when 𝛼 𝑗 → 0. The arc of third zeros
is distinct from 𝑅 = 2𝑀 except at the single intersection point, see the right panel.

Fig. 23 shows profiles of 𝜃 (𝑡) along two rays with 4 𝜃 zeros. On the rays
with two 𝜃 zeros, the profiles of 𝜃 (𝑡) are similar, except that 𝜃 > 0 at the second
minimum, like on Ray 190. Somewhere between Rays 197 and 198 there is one
on which 𝜃 has 3 zeros.

Fig. 24 shows 𝜃 (𝑡) profiles along exemplary rays with six 𝜃 zeros. Between
Rays 206 and 207 there is one with 5 zeros. On Ray 220, to the right of the 4th
zero, 𝜃 has a jump from 31, 243 to −60, 253. This is interpreted as a continuous
change, too rapid to be faithfully followed by the Fortran program. The 𝑡 ≈ 5.1045

coordinate of this jump is marked with the vertical stroke; it is the locus of the
5th 𝜃 zero on this ray.
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Figs. 25 and 26 show selected curves from Fig. 18 projected on the 𝑦 = 𝑀 sin 𝜑 = 0

and 𝑥 = 𝑀 cos 𝜑 = 0 coordinate planes, respectively. They are the 𝜃 = 0 contours
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corresponding to emission points 1, 3 and 5 (set I) and the contours of zeros # 3,
. . . , 6 for emission point 1 (set II). The inset in Fig. 25 is a closeup view on
set II. The vertical bar is at the border between the loci of the 3rd and 4th zeros.
The loci of the 4th and 5th zeros partly overlap, the overlap zone is marked with
the horizontal bar. Fig. 26 shows the 𝑦 ≥ 0 half of set I and all of set II projected
on the 𝑥 = 𝑀 cos 𝜑 = 0 plane.

8. Summary and conclusions

The aim of this paper was to calculate the loci of maximum 𝑅 and of 𝜃 ≡ 𝑘𝜇;𝜇 = 0

for bundles of rays sent from noncentral events in L–T models (𝑘𝜇 is the tangent
vector field to the rays). It turned out that the apparent horizon (AH) of the central
observer, located at 𝑅 = 2𝑀 , still plays the role of the AH for noncentral observers,
at least in the exemplary model introduced in Section 5. The loci of (1) maximum 𝑅
and of (2) 𝜃 = 0 of noncentral observers do not play the role of one-way membranes
for light rays, while (3) 𝑅 = 2𝑀 does. This is a summary of the reasoning that led
to this conclusion:

Sections 1–3 introduced general preliminaries.
In Section 4, the equation defining a local extremum of the areal radius 𝑅 along

a light ray was derived and discussed for a general L–T model. It was shown that
on nonradial rays it can exist only in the 𝑅 > 2𝑀 region. If it occurs in 𝑅 < 3𝑀 ,
then it is a maximum. In 𝑅 > 3𝑀 both minima and maxima are possible (but may
not exist).

In Section 5 the results of Section 4 were applied to the exemplary toy model
(ETM) introduced in [4, 5]. The loci of 𝑅 extrema were numerically calculated for
rays originating at selected events on two exemplary noncentral cosmic dust world
lines in the recollapse phase of the model and running in the equatorial hypersurface
𝜗 = 𝜋/2 (EHS). On some nonradial rays 𝑅 simply decreases to 0 achieved at the
BC with no extrema. On some other rays, 𝑅 has only maxima, on still other ones
it has both minima and maxima. The latter can happen when the ray leaves the
light source toward decreasing 𝑅 (which is impossible when the source is at the
center where 𝑅 = 0).

In Section 6, the equation of the locus of 𝜃 = 0 for a bundle of light rays
in a general L–T model was derived. Except on outward radial rays, this locus
is different from that of an extremum of 𝑅. To calculate 𝜃 along a nonradial ray
numerically, an auxiliary nearby ray is needed because the derivative 𝑘𝑟 ,𝑟 in the
formula for 𝜃 goes across the bundle. On radial rays 𝜃 is determined by quantities
intrinsic to a single ray.

In Section 7, the results of Section 6 were applied to the discussion of 𝜃 along
rays running in the EHS of the same ETM that was used in Section 5. The origins
of the ray bundles here lie along the same two cosmic dust world lines as those
considered in Section 5. For a given initial point, 𝜃 has typically no zeros or two
zeros along a ray, and becomes +∞ at the Big Crunch (BC). The only rays on
which 𝜃 → −∞ at the BC are the radial ones. The other exceptional rays are those
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on the boundaries between the no-zeros and the two-zeros regions: along each of
them 𝜃 has one zero, but still tends to +∞ at the BC. When the emitter is close
to the center, 𝜃 has 4 or 6 zeros along rays passing by the center (resp. 3 or 5
on the boundary rays). The locus of the last 𝜃-zero approaches the BC when the
initial direction of the ray approaches radial.

The 𝜃 (𝑡) profile on outward radial rays starts positive, monotonically decreases,
goes through only one zero, and tends to −∞ at the BC. This signifies focussing
to a point at the BC. On inward radial rays, 𝜃 starts negative and monotonically
decreases to −∞ at the BC. On other rays, 𝜃 starts positive and initially decreases,
but then becomes increasing (after going through a minimum or more extrema) and
tends to +∞ on approaching the BC. This signifies an infinite divergence of the
rays near the BC.

Temporal orderings of loci (1)–(3) in the EHS of the ETM were determined.
The locus of 𝜃 = 0 may lie earlier or later than 𝑅 = 2𝑀 and than the maximum
of 𝑅, depending on the initial direction of the ray. These orderings have a physical
meaning. At a point where 𝜃 = 0 at 𝑡 = 𝑡𝜃=0 < 𝑡R=2M, an outward radial ray will go
some distance toward larger 𝑅. Points with 𝑡R=2M ≤ 𝑡 < 𝑡𝜃=0 had been isolated from
the outside world before 𝜃 became zero. This shows that for noncentral observers
the locus of 𝑅 = 2𝑀 rather than that of 𝜃 = 0 is a one-way membrane. Since the
locus of maximum 𝑅 has 𝑡maxR < 𝑡R=2M on all nonradial rays, points in the segment
𝑡maxR < 𝑡 < 𝑡R=2M are not yet isolated from the communication with the outside
world.

In Figs. 11 and 18, the intersections of trapped surfaces [9] with the 𝜗 = 𝜋/2
hypersurface would lie between the first and second zero of 𝜃. However, 𝜃 < 0 only
on finite segments of some rays. Thus, if the trapped surface were evolved into
the future along these rays, its intersection with 𝜗 = 𝜋/2 would become untrapped
after a finite time. Along many rays 𝜃 > 0 all the way. On those rays where
𝜃 < 0 for a while, it becomes positive eventually, going to +∞ on approaching
the BC. Moreover, there exist points on some rays where 𝜃 < 0 but 𝑅 > 2𝑀 ,
so they are visible from outside — see above and Figs. 14 and 21. All this
shows that the formation of a trapped surface is not the ultimate signature of
a black-hole-in-the-making in situations relevant to astrophysics.

So, finally, the hypersurface 𝑅 = 2𝑀 does have a universal meaning in a collapsing
L–T model: this is the apparent horizon for all observers that signifies the presence
of a black hole behind it. (This meaning of 𝑅 = 2𝑀 was identified by Barnes [10]
and Szekeres [11] by considering spherical trapped surfaces surrounding the center
of symmetry and the origin, respectively.) Events in the region 𝑅 < 2𝑀 are cut off
from communication with the 𝑅 > 2𝑀 part of the spacetime. See [4] for an example
of how an L–T model (actually, of the same family as in Section 5) can be applied
to the description of a formation of a black hole inside a spherical condensation of
dust. This conclusion shows that the transition from an L–T model to the Friedmann
(F) limit is discontinuous in one more way: the individual AHs of noncentral
observers appear abruptly. (The other discontinuity is the abrupt disappearance of
blueshifts in the F limit, first pointed out by Szekeres in another paper [12].)
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A. Details of Fig. 3

Rays 0 and 256 are radial (outward and inward, respectively); on them 𝐶 = 0.
Rays 1 to 127 have 𝐶 > 0 and 𝑘𝑟𝑜 > 0 at the initial points, Ray 128 has 𝐶 > 0

and 𝑘𝑟𝑜 = 0, Rays 129 to 255 have 𝐶 > 0 and 𝑘𝑟𝑜 < 0. Rays 257 to 511 are mirror
images of 1–255.

The exact values of 𝑘𝑟𝑜 are determined by 𝐶/𝑅𝑜 via (3.12). The maximum
|𝐶 |/𝑅𝑜 = 1 is on Rays 128 and 384. On Rays 0–128, 𝐶/𝑅𝑜 = 𝑗/128 where
𝑗 = 0, 1, . . . , 128. On Rays 128–512, 𝐶/𝑅𝑜 = 𝑖/128 where 𝑖 = 128, 127, . . . , 1, 0. The
loci of maxima of 𝑅 on Rays 257–511 need not be calculated separately, they are
found by inverting the signs of 𝑦 = 𝑀 sin 𝜑 of the loci found for Rays 1–255.

B. Numerical calculation of 𝑘𝑟 ,𝑟 in (6.7)

At the initial point, both geodesics referred to in (6.7) begin with 𝑟2 = 𝑟1, but
𝑘𝑟

2
≠ 𝑘𝑟

1
. Consequently, the initial 𝑘𝜇;𝜇 = ∞, so the calculation is started at step 2.

The following method was used to find 𝑝2 on 𝐺2 with the same 𝑡 = 𝑡1 as 𝑝1

on 𝐺1:
First, the path of the auxiliary nearby ray 𝐺2 is calculated, thereby the collection

of values of 𝑡𝑛, 𝑟𝑛 and 𝑘𝑟𝑛, 𝑛 = 1, . . . , 𝑁 , along 𝐺2 is found.
Given 𝑡 at 𝑝1 on 𝐺1 we find the largest 𝑡𝑛 ≤ 𝑡 on 𝐺2, and the corresponding

𝑟𝑛 and 𝑘𝑟𝑛 on 𝐺2. Then we extrapolate to 𝑡 by

𝑟2 = 𝑟𝑛 +
𝑟𝑛+1 − 𝑟𝑛

𝑡𝑛+1 − 𝑡𝑛
(𝑡 − 𝑡𝑛) , (B.1)

and similarly for 𝑘𝑟 . The 𝑟2 and 𝑘𝑟
2

are then used in (6.7).

C. The sign of an infinite jump of 𝑘𝑟 ,𝑟 and 𝜃

This is the proof that an infinite jump of 𝑘𝑟 ,𝑟 and 𝜃 on a light ray can only
be from −∞ to +∞. We assume that −∞ < 𝑘𝑟 < +∞ all along the ray. In (6.6)
𝑘𝑟 ,𝑟 is multiplied by a nonnegative coefficient, so the sign of an infinite jump in
𝜃 must be the same as that in 𝑘𝑟 ,𝑟 .

Suppose that 𝑘𝑟 ,𝑟 > 0 at a point where 𝑟2 ≈ 𝑟1. Then either 𝑟2 > 𝑟1 and 𝑘𝑟
2
> 𝑘𝑟

1

or 𝑟2 < 𝑟1 and 𝑘𝑟
2
< 𝑘𝑟

1
. In the first case, 𝑟2 increases faster along the ray than 𝑟1,

so, as long as both inequalities hold, 𝑟2 − 𝑟1 ≠ 0. In the second case 𝑟2 decreases
faster than 𝑟1, with the same conclusion. In both cases |𝑘𝑟 ,𝑟 | < ∞.

Now suppose that 𝑘𝑟 ,𝑟 < 0 at 𝑟2 ≈ 𝑟1. Then either 𝑟2 > 𝑟1 and 𝑘𝑟
2
< 𝑘𝑟

1
or 𝑟2 < 𝑟1

and 𝑘𝑟
2
> 𝑘𝑟

1
. In the first case, 𝑟1 increases faster along the ray than 𝑟2, so may

catch up with 𝑟2. In the second case the roles of 𝑟1 and 𝑟2 are reversed and the
same conclusion follows. In both cases 𝑘𝑟 ,𝑟 will jump from −∞ to +∞. �

D. A comment on Fig. 20

In Fig. 20, on Rays 207 and 254 the last dot marking the 6th zero of 𝜃 lies
beyond the end of the ray projection. Here is the reason of the spurious paradox:
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for the ray paths, one in 100 calculated data points is shown in the figure. This
is because the program drawing the graphs could not handle the large numbers of
data points that were actually calculated (several ×105 in some cases). So, these last
points indeed do lie on the calculated ray paths, only the paths were not interpolated
to them in the figure.
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