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Mimicking acceleration in the constant-bang-time Lemâıtre – Tolman model:

Shell crossings, density distributions and light cones
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The Lemâıtre – Tolman model with Λ = 0 and constant bang time that imitates the luminosity
distance – redshift relation of the ΛCDM model using the energy function E alone contains shell
crossings. In this paper, the location in spacetime and the consequences of existence of the shell-
crossing set (SCS) are investigated. The SCS would come into view of the central observer only at
t ≈ 1064T to the future from now, where T is the present age of the Universe, but would not leave
any recognizable trace in her observations. Light rays emitted near to the SCS are blueshifted at
the initial points, but the blueshift is finite, and is overcompensated by later-induced redshifts if the
observer is sufficiently far. The local blueshifts cause that z along a light ray is not a monotonic
function of the comoving radial coordinate r. As a consequence, the angular diameter distance DA

and the luminosity distance DL from the central observer fail to be functions of z; the relations
DA(z) andDL(z) are multiple-valued in a vicinity of the SCS. The following quantities are calculated
and displayed: (1) The distribution of mass density on a few characteristic hypersurfaces of constant
time; some of them intersect the SCS. (2) The distribution of density along the past light cone of
the present central observer. (3) A few light cones intersecting the SCS at characteristic instants.
(4) The redshift profiles along several light cones. (5) The extremum-redshift hypersurface. (6) The
DA(z) and DL(z) relations. (7) The last scattering time and its comparison with the ΛCDM last
scattering epoch.
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I. MOTIVATION AND OVERVIEW

In Ref. [1] it was shown how the luminosity distance –
redshift relationDL(z) of the ΛCDM model is duplicated
in the Lemâıtre [2] – Tolman [3] (L–T) model with Λ = 0,
constant bang-time function tB and the energy function
E mimicking accelerated expansion on the past light cone
of the present central observer (PCPO). This model was
first introduced in Ref. [4], and further investigated in
Ref. [5]. Numerical calculations in Ref. [1] revealed
that this model necessarily contains shell crossings in the
region whose boundary intersects the PCPO at z = zsc ≈
6.938. This is far enough to avoid any problems with the
observations of the type Ia supernovae [6–8], the farthest
of which are at zfar = 1.914 [8]. The shell crossings can be
removed from the model by matching it to a background
(Friedmann, for example), at the radial coordinate r =
rm, where the redshift corresponding to rm at the PCPO
is smaller than zsc, but larger than zfar [1].

In the present paper, the position of the shell-crossing
set (SCS) relative to the PCPO in that L–T model, and
the consequences of its existence, are investigated. The
SCS lies so far to the future of the present time that it has
no influence on any observations that the present central
observer could have carried out until now (see below).
Consequently, even if not removed, the shell crossing is

∗Electronic address: akr@camk.edu.pl

invisible for her. However, the position of the SCS in
spacetime is a consequence of the values of parameters
of this particular model. With a different shape of the
E(r) function, perhaps even with different values of the
Ω parameters, the SCS might appear early enough to
be visible to the present observer. In such a model, the
findings about the redshift profiles presented here will
become relevant for the present-day astrophysics.

Sections II and III provide the basic formulae for ref-
erence, extracted from Ref. [1]. In Sec. IV, the profile
and properties of the PCPO are presented. The location
of the SCS in spacetime is determined in Sec. V.

In Sec. VI, the distributions of mass density on a
few characteristic hypersurfaces of constant time are dis-
played; some of them intersect the SCS. The distribution
at the present time is, in agreement with common ex-
pectation [9, 10], that of a void, but with a cusp rather
than a smooth minimum at the center.1 In Sec. VII, the
distribution of density along the PCPO is displayed.

In Sec. VIII, the earliest ray emitted at the SCS that
will reach the central observer is determined. The ob-
server will receive it at approximately 1064 T in the fu-
ture, where T = 13.819 × 109 y is the observationally
determined present age of the Universe [13]. Two other
light cones that intersect the SCS are calculated and dis-

1 In some papers [11] such a cusp was (mis)named a “weak singu-
larity”, although in truth there is no singularity there [12].
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played. As expected, in the comoving coordinates they
are horizontal at the intersection points.
In Sec. IX, redshift profiles along several past light

cones reaching the central observer are displayed. It is
noted that on rays passing near the SCS the function
z(r) has a local maximum at a certain r and becomes
decreasing for larger r. This means that rays emitted
near or at the SCS are blueshifted at the initial points,
but the blueshifts are finite and are overcompensated by
redshifts accumulated later along the ray. At the inter-
section of a light cone with the SCS, the redshift profile
has no recognizable mark.
In Sec. X, the location of the extremum-redshift hy-

persurface (ERH) in spacetime is determined and dis-
played. (Along some rays, the maximum of z(r) is fol-
lowed by a minimum. The maxima and minima lie on the
ERH.) In Sec. XI, the relationsDA(z) and DL(z) are dis-
played, where DA and DL are the angular-diameter dis-
tance and luminosity distance from the central observer.
These relations become double- or even triple-valued in
the blueshift-generating region.
In Sec. XII, the timing of the last scattering in the

L–T model discussed here is compared to that in the
ΛCDM model. The time difference is small and finds a
neat intuitive explanation.
Section XIII presents the final summary of the results.

II. BASIC FORMULAE

This is a brief summary of basic facts about the L–
T model, included here mainly in order to define the
notation and conventions. For extended expositions see
Refs. [14, 15].
The metric of the model considered here is

ds2 = dt2 − R,r
2

1 + 2E(r)
dr2 −R2(t, r)(dϑ2 + sin2 ϑ dϕ2),

(2.1)
where E(r) is an arbitrary function, and R(t, r) obeys

R,t
2 = 2E(r) + 2M(r)/R, (2.2)

with M(r) being another arbitrary function.
In the present paper, only the case E > 0 will be con-

sidered. Then the solution of (2.2) is

R(t, r) =
M

2E
(cosh η − 1),

sinh η − η =
(2E)3/2

M
[t− tB(r)] . (2.3)

The function tB(r) is constant in the model considered
here. The r-coordinate is chosen so that

M = M0r
3, (2.4)

and the remaining freedom of rescaling r is used to take
M0 = 1 in numerical calculations. The pressure is zero,

and the mass density is

κρ =
2M,r

R2R,r
, κ

def
=

8πG

c2
. (2.5)

Past radial null geodesics obey the equation

dt

dr
= − R,r

√

1 + 2E(r)
. (2.6)

The redshifts z(r) of the light sources lying along this
light cone obey [16], [14]

1

1 + z

dz

dr
=

[

R,tr√
1 + 2E

]

ng

. (2.7)

The luminosity distance between the central observer
and the light sources lying along tng(r) is

DL(z) = (1 + z)2R (tng(r), r) . (2.8)

The particular solution of (2.2) considered in this paper
arose from the requirement that the DL(z) given above
coincides with that calculated from the ΛCDM model,

DL(z) =
1 + z

H0

∫ z

0

dz′
√

Ωm(1 + z′)3 +ΩΛ

, (2.9)

where H0 is the value of the Hubble parameter at the
present time. It is related to the Hubble constant [13]

H0 = 67.1 km/(s×Mpc) (2.10)

by

H0 = H0/c. (2.11)

The two dimensionless parameters

(Ωm,ΩΛ)
def
=

1

3H0
2

(

8πGρ0
c2

,−Λ

)∣

∣

∣

∣

t=to

(2.12)

obey Ωm +ΩΛ ≡ 1; ρ0 is the present mean mass density
in the Universe. Their values

(Ωm,ΩΛ) = (0.32, 0.68) (2.13)

also come from observations [13].
The requirement that the two expressions for DL(z),

(2.8) and (2.9), are equal along the radial null geodesic
reaching the central observer by now determines the func-
tions E(r), t = tng(r) obeying (2.6) and z(r) obeying
(2.7). They were numerically calculated in Ref. [1] (see
Sec. IV, Fig. 2 for E(r) and Fig. 1 for tng(r)).
The apparent horizon (AH) of the central observer is a

locus where R, calculated along the null geodesic given by
(2.6), changes from increasing to decreasing, i.e., where
(d/dr)R(tng(r), r) = 0. With Λ = 0, the general equation
implicitly determining the function t(r) along the AH is

R(t, r) = 2M(r). (2.14)
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In the model considered here, the values of r and z at
the intersection of the PCPO with the AH are [1]2

rAH = 0.3105427968086945, (2.15)

zAH = 1.582430687623614. (2.16)

Since we consider here an L–T model with constant
tB, light emitted at the Big Bang (BB) will be infinitely
redshifted, as in the Robertson – Walker (RW) models
[17], [18], [14].
The numerical units used here were introduced in Ref.

[19]. They are the numerical length unit (NLU) = the
numerical time unit (NTU) related to the usual units by

1 NTU = 1 NLU = 3× 104 Mpc

= 9.26× 1023 km = 9.8× 1010 y. (2.17)

In the above,

c ≈ 3× 105km/s (2.18)

was taken for the speed of light, and the following values
of the conversion factors were used [20]:

1 pc = 3.086× 1013 km,

1 y = 3.156× 107 s (2.19)

In these units

H0 = 6.71 (NLU)−1, (2.20)

T = 13.819× 109 y = 0.141 NTU, (2.21)

where T is the age of the ΛCDM Universe [13].
The age in the model used here is somewhat different:

Tmodel = −tB = 0.1329433206844743 NTU. (2.22)

The mass associated to M0 = 1 NLU in (2.4) is

m0 ≈ 1.5× 1054 kg, (2.23)

but it will appear only via M0. The value of the gravita-
tional constant used in numerical calculations is [21]

G = 6.674× 10−11 m3/(kg× s2). (2.24)

III. USEFUL FORMULAE FOR NUMERICAL
CALCULATIONS

With tB = constant and M given by (2.4) we have [14]

R,r =

(

3

r
− E,r

E

)

R+

(

3

2

E,r
E

− 3

r

)

(t− tB)R,t . (3.1)

2 The numbers calculated for this paper by Fortran 90 are all at
double precision – to minimise misalignments in the graphs.

In order to avoid a permanent singularity at the center
of symmetry, the function E must be of the form [14]

2E(r) = r2[−k + F(r)], (3.2)

where F(r) must obey

lim
r→0

F = 0, (3.3)

and the constant k was determined in Ref. [1]:

k = −21.916458. (3.4)

Substituting (2.4) and (3.2) in (2.3) we obtain

R =
M0r

−k + F (cosh η − 1), (3.5)

sinh η − η =
(−k + F)3/2

M0

(t− tB) . (3.6)

Equations (3.5) – (3.6) determine R(t, r). The function
F(r) was numerically determined in Ref. [1].
From (3.1) and (2.7), using (2.2) and (3.2), we find:

dz

dr
=

1 + z
√

1 + r2(−k + F)

×
{

[

1 +
rF ,r

2(−k + F)

]√
−k + F

√

cosh η + 1

cosh η − 1

− 3

2

rF ,r (−k + F)

M0(cosh η − 1)2
(t− tB)

}

. (3.7)

The limit r → 0 of this is, using (3.3) and (3.6),

dz

dr
(0) =

√
−k

√

cosh η + 1

cosh η − 1

∣

∣

∣

∣

∣

r=0

, (3.8)

where η0
def
= η|r=0 is found by solving (3.6) at r = 0.

Since tB is given by (2.22), and the function F(r) is
given as a numerical table, the solution of (2.14) can be
numerically found in the form t = tAH(r) from (3.6), with
η(r) along the AH being found from (3.5) as follows:

ηAH(r) = ln
[

x(r) +
√

x2(r) − 1
]

, (3.9)

where

x(r)
def
= 1 + 2r2(−k + F). (3.10)

Substituting (3.2), (3.5) and (3.6) in (3.1) we obtain

R,r =

(

1− rF ,r
−k + F

)

M0

−k + F (cosh η − 1)

+
3

2

rF ,r√
−k + F

(t− tB)

√

cosh η + 1

cosh η − 1
. (3.11)

The limit r → 0 of this is

R,r (t, 0) =
M0

(−k)
(cosh η0 − 1). (3.12)



4

IV. THE PAST LIGHT CONE OF THE
PRESENT CENTRAL OBSERVER

To calculate the PCPO, z(r) had to be calculated first.
Since z → ∞ at the BB, the numerical calculation broke
down at r = rmax, with z = zmax, where [1]

(

rmax

zmax

)

=

(

1.045516839812362
9.1148372886058313× 10225

)

. (4.1)

The model extends from the center of symmetry up to
that flow line, at which the PCPO reaches the BB. In
practice this is the flow line corresponding to the rmax

given above. For r > rmax, the model is not determined.
Extensions into the range r > rmax are possible, but are
not constrained by (2.9), and are not considered here.
The numerically calculated profile t(r) of the PCPO is

reproduced in Fig. 1 (from Ref. [1]), together with the
profile of the AH calculated from (3.6) and (3.9) – (3.10).
The two profiles intersect at the point (r, t) = (rAH, tAH),
where rAH is given by (2.15) and [1]

tAH = −0.0966669255756665 NTU. (4.2)

The inset in Fig. 1 shows the AH up to the edge of the
model. The last point on it has the coordinates

(

redge
tedge

)

=

(

1.0455189100976430
1.2308128894377963

)

. (4.3)

This explains why the AH will not be seen in the graphs
corresponding to late times (see next sections).
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FIG. 1: The profiles t(r) of the past light cone of the present
central observer (the decreasing curve) and of the apparent
horizon (the increasing curve). The horizontal line is t = tB.
The inset shows the AH in the full range of r.

V. THE SHELL CROSSINGS

The shell crossing is a locus, whereR,r = 0 whileM,r 6=
0. As seen from (2.5), this is a curvature singularity, at
which the mass density becomes infinite, and changes
sign if R,r does. When tB = constant and E > 0, the
necessary and sufficient condition for the absence of shell

crossings is E,r > 0. However, the E(r) calculated in Ref.
[1], shown in Fig. 2, has a maximum at

r = rsc = 0.6293128978680214, (5.1)

and becomes decreasing for r > rsc. Thus, there are shell
crossings in the region r > rsc. The location of the SCS
was not determined in Ref. [1], and we shall do it here.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

FIG. 2: The function E(r) in the present model. The irregular
segment at the right end is caused by numerical fluctuations
in the neighbourhood of the Big Bang. The vertical stroke is
at r = rAH. Since E(r) becomes decreasing for r > rsc, given
by (5.1), there are shell crossings in that region.

The equation R,r = 0, using (3.11), can be written as

1

r
+

F ,r
−k + F

[

3
2
Q(η)− 1

]

= 0, (5.2)

where

Q(η)
def
=

sinh η − η

sinh3 η
(cosh η + 1)2. (5.3)

The function Q(η) has the following properties

Q(0) = 2/3, lim
η→∞

Q(η) = 1, (5.4)

dQ

dη
> 0 for 0 < η < ∞. (5.5)

The proof of (5.5) is given in the Appendix . Thus, Q is
monotonic in its full range.
On the SCS, r > rsc must hold. The calculation stops

at the rmax given by (4.1) because F(r) is undetermined
for r > rmax. Consequently, for every r ∈ (rsc, rmax),
(5.2) uniquely determines η(r). Then, t(r) along the SCS
is calculated from (2.3):

t(r) = tB +
M0

(−k + F)3/2
[sinh η(r) − η(r)]. (5.6)

From (5.2) one can see that at r = rsc, where E,r = 0,
we have Q = 1, i.e. η → ∞. Thus, the points of the SCS,
at which r = rsc, lie in the infinite future.
The profile of the SCS given by (5.6) is the upper U-

shaped curve in the right part of Fig. 3. The t(r) on it
decreases from t = +∞ at r = rsc to

t = tmin = 74.803824384008095 NTU (5.7)
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achieved at

r = rmin = 0.82084948116793433, (5.8)

and then increases with increasing r up to the edge of
the model given by (4.1). However, the numbers given in
(5.7) and (5.8), which emerged while calculating the t(r)
from (5.6), are meaningful only up to the fourth decimal
digit because of numerical fluctuations in the SCS profile.
They are shown, in the vicinity of r = rmin, in the inset in
Fig. 3. The SCS has very large fluctuations for r → rmax,
seen at the right margin of Fig. 3.
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FIG. 3: Main panel: See text for explanations. Inset: The
neighbourhood of r = rmin on the shell-crossing set. The cross
marks the point (r, t) = (rmin, tmin) given by (5.7) and (5.8).
The leftmost tic on the r-axis is at r = 0.82076, the rightmost
one is at r = 0.82094, the tics are separated by ∆r = 2×10−5.

Figure 3 shows the intersections of various hypersur-
faces with a fixed 2-space of constant ϑ and ϕ. To get
an idea about spatial relations, one should imagine Fig.
3 being rotated around the r = 0 axis – this would be
the intersections of those hypersurfaces with the 3-space
ϑ = π/2.
The main panel of Fig. 3 shows several other curves

that will be introduced in later sections. The lower U-
shaped curve is the extremum-redshift profile given by
(10.2) – (10.3). The lowest of the other four curves is the
profile of the light cone that hits the central observer at
t = 50 NTU; it will become clear in Sec. IX why it is
special. The remaining three curves are the profiles of
the past light cones of the central observer that intersect
the SCS at the times tmin, t2 and t3 given by (5.7), (5.10)
and (5.12). Note that all the light cones that intersect the
SCS are horizontal at the intersection points. At the scale

of this figure, the light cone from Fig. 1 seems to coincide
with the r-axis. The left vertical line marks r = rsc,
the right one is an artifact of numerical fluctuations as
r → rmax. The horizontal lines 1, 2 and 3 mark the
characteristic times explained below.
The time given by (5.7) can be written as

tmin ≈ 562.4T, (5.9)

where T is given by (2.21). Thus, since the SCS lies far
to the future of the light cone from Fig. 1, it has no influ-
ence on the past and present observations of the central
observer. It will influence her observations beginning at
t = tF , where tF is that instant, at which the light ray
issued at (r, t) = (rmin, tmin) hits the center r = 0. The
tF will be determined in Sec. VIII.
The horizontal lines marked “1”, “2” and “3” in Fig.

3 are at those values of t, at which the profiles of density
will be calculated in Sec. VI. The line marked “1”, is
tangent to the SCS at r = rmin. The line marked “2”, at

t = t2 = 100 NTU, (5.10)

has two points of intersection with the SCS profile. The
positions of those points can be read off from the table
of values of t(r) along the SCS, they are

r = r2a ≈ 0.722829 and r = r2b ≈ 0.967. (5.11)

The line marked “3” intersects the SCS at one point, with
the coordinates

t = t3 = 200 NTU, r = r3 ≈ 0.671732. (5.12)

VI. DENSITY DISTRIBUTIONS ON
HYPERSURFACES OF CONSTANT t

We will now calculate the density distributions in our
model along a few characteristic hypersurfaces. The
curves in all the figures in this section have large nu-
merical fluctuations at r → rmax that look like vertical
bars, these are ignored in the captions and explanations.
We first calculate the density at the time t = 0, where

the light cone of Fig. 1 has its vertex. To this end, we use
(2.2), (2.4), (3.2), (2.22) and t = 0 in (3.5) – (3.6) and in
(3.1) to calculate R(0, r) and R,r (0, r), then we substi-
tute the results in (2.5). The resulting graph of κρ(0, r) is
shown in the main panel of Fig. 4. This is a void profile,
in agreement with the conventional wisdom,3 but it has a
cusp rather than a smooth minimum at the center.4 The
hypersurface t = 0 does not intersect the SCS, so this

3 Many authors just reflexively use the term “void models” to de-
note L–T models mimicking accelerated expansion, see references
in Refs. [9, 10]. In general, this is not correct – as demonstrated
by the models of Refs. [9] and [1].

4 See footnote 1.
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FIG. 4: Main panel: The mass density (2.5) calculated along
the hypersurface t = 0 as a function of r. The quantity on the
vertical axis is κρ, measured in (NLU)−2. The left vertical bar
marks r = rAH, the right one marks r = rsc. Inset: Enlarged
view of the neighbourhood of r = rAH. The leftmost tic on
the horizontal axis is at r = 0.31046, the rightmost tic is at
r = 0.31064, the tics are separated by ∆r = 2 × 10−5. The
discontinuity is a consequence of numerical errors.

density is finite in the whole range. The inset in Fig. 4
shows an enlarged view of the neighbourhood of r = rAH.
The curve κρ(0, r) has a discontinuity at r = rAH caused
by numerical errors in calculating R and R,r. These er-
rors are consequences of inaccuracy in calculating E(r)
in the neighbourhood of r = rAH, reported in Ref. [1].
The central density in this profile is

κρ(0, 0) = 14.837453949082986 (NLU)−2, (6.1)

which corresponds to

ρ(0, 0) ≈ 0.93× 10−30 g/cm
3
. (6.2)

This is smaller than the present density in the ΛCDM
model, which can be calculated5 from (2.12) using (2.10),
(2.11) and (2.13):

κρ0 ≈ 43.075 (NLU)−2, (6.3)

ρ0 ≈ 2.7× 10−30g/cm3. (6.4)

Figure 5 shows the graph of κρ(tmin, r), where tmin

is the time, given by (5.7), at which the hypersurface
t = tmin is tangent to the SCS at the r = rmin, given
by (5.8). The density goes to infinity there, but stays
positive for r > rmin. The main panel shows the position
of the peak in density,6 the inset shows the values of κρ

5 The conversion to g/cm3 in (6.1) – (6.7) was done using (2.18)
for the velocity of light and (2.24) for the gravitational constant.

6 Because of numerical inaccuracies, no point on the line t = tmin

actually coincides with any point on the SCS. Therefore, at r =
rmin, the numerically calculated density becomes much larger
than elsewhere, but is still finite.
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FIG. 5: Main panel: The mass density (2.5) calculated along
the hypersurface t = tmin, given by (5.7), as a function of r.
The units on the vertical axis are the same as in Fig. 4. The
vertical bar at the top marks the value r = rmin, given by
(5.8). Inset: Enlarged view of the neighbourhood of the r-
axis. The right vertical bar marks r = rmin. What looks like
another bar at r = rAH is a numerical fluctuation.

in a vicinity of the r-axis. The central density is

κρ(tmin, 0) = 1.39237296085099607× 10−7(NLU)−2

=⇒ ρ(tmin, 0) ≈ 8.73× 10−39 g/cm
3
. (6.5)

Figure 6 shows the graph of κρ(t2, r), where t2 = 100
NTU. The hypersurface t = t2 intersects the SCS at two
values of r, given by (5.11). At r → r2a−, the density
goes to +∞ and becomes negative for r > r2a. At r →
r2b−, the density goes to −∞ and becomes positive for
r > r2b. The main panel shows the peaks, the inset shows
κρ in a vicinity of the r-axis. The central density is

κρ(t2, 0) = 5.83260001345375805× 10−8(NLU)−2

=⇒ ρ(t2, 0) ≈ 3.66× 10−39 g/cm
3
. (6.6)

Figure 7 shows the graph of κρ(t3, r), where t3 = 200
NTU. The hypersurface t = t3 intersects the SCS at r =
r3, given by (5.12). At r → r3−, the density goes to +∞
and becomes negative for r > r3. The main panel shows
the position of the peak in density, the inset shows κρ in
a vicinity of the r-axis. The central density is

κρ(t3, 0) = 7.29952961986280660× 10−9(NLU)−2

=⇒ ρ(t3, 0) ≈ 4.58× 10−40 g/cm3. (6.7)

The transitions between the situations shown in Figs.
4 – 7 occur in a nearly continuous way. At t < tmin, there
is no singularity in ρ(t, r). As t → tmin−, the density at
r = rmin goes to infinity, but stays positive on both sides
of rmin. When t increases above tmin, the two branches
of ρ(t, r) that go to +∞ move sideways away from rmin,
and a third branch appears that goes to −∞ at r → r2a+
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FIG. 6: Main panel: The mass density (2.5) as a function
of r, calculated along the hypersurface t = t2 = 100 NTU.
The units on the vertical axis are the same as in Fig. 4. The
vertical bars mark the values r = r2a and r = r2b. Inset:
Enlarged view of the neighbourhood of the r-axis. What looks
like a vertical bar is a numerical fluctuation at r = rAH.
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FIG. 7: Main panel: The mass density (2.5) as a function
of r, calculated along the hypersurface t = t3 = 200 NTU,
which intersects the SCS at the value of r given by (5.12).
The units on the vertical axis are the same as in Fig. 4. The
vertical bar marks the value r = r3. Inset: Enlarged view of
the neighbourhood of the r-axis.

and r → r2b−. The situation in Fig. 7 does not really
differ from that in Fig. 6; the second infinity in ρ has
simply moved out of the region covered by our model.

VII. THE DENSITY DISTRIBUTION ALONG
THE PAST LIGHT CONE OF THE PRESENT

OBSERVER

The hypersurface t = 0 contains events simultaneous
with (t, r) = (0, 0), so the density distribution on it is
unobservable at (0, 0). The observable quantity is the
density along the observer’s past light cone. It was cal-
culated from (2.5), where (2.4) was used for M(r) and
the numerical table for R(tng(r), r) was taken from Ref.
[1]. In calculating R,r (tng(r), r) from (3.1), eq. (3.2) was
used for E, eq. (2.2) was used for R,t, and the numeri-
cal tables for F(r) and tng(r) were taken from Ref. [1].
In order to test the numerical accuracy, the calculation
of κρ(tng(r), r) in the range r ∈ [0, rAH] was carried out
in two ways: forward from r = 0 and backward from
r = rAH, using the relevant tables for tng(r) from Ref.
[1]. Figure 8 shows κρ(tng(r), r) in four separate views.
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FIG. 8: The mass density (2.5) calculated along the light cone
of Fig. 1 as a function of r. The units of κρ are the same as
in Fig. 4. See text for explanations.

The main panel shows the graph of κρ in the range
r ∈ [0, 0.4]. At r = 0, the value of κρ is, of course,
the same as in (6.1). What looks like a vertical bar is a
numerical fluctuation at r = rAH. The curves calculated
forward from r = 0 and backward from r = rAH coincide
perfectly, not only at this scale (see below).
The inset in the main panel shows the same graph
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in the range r ∈ [0, 0.8]. With r approaching the rmax

given by (4.1), ρ(tng(r), r) goes to infinity very fast. The
numerical calculation broke down already at

r = rbd = 1.0296253299989211, (7.1)

with the largest value of κρ yet calculated being

κρbd = 1.49073211697326822× 1018 (NLU)−2. (7.2)

The lower left panel of Fig. 8 shows the neighbourhood
of r = 0 and is meant to demonstrate that the curve cal-
culated forward from r = 0 (the continuous line) agrees
perfectly with the one calculated backward from r = rAH

(the crosses) even at this scale. The fluctuation in the
first step is inherited from the numerical calculation of
F(r) in Ref. [1].
The lower right panel shows the neighbourhood of r =

rAH (marked with the vertical bar), and the fluctuation,
also inherited from F(r). Except for the segment r ∈
[rAH − ε, rAH + ε], where ε ≈ 4 × 10−5, the two parts of
the graph fit together satisfactorily.
The numerical tables for κρ(r) along the light cone,

discussed above, and for z(r), calculated in Ref. [1], were
then combined to produce the table for κρ(z). This does
not differ in shape from κρ(r), except that z → ∞ at
the BB, so the horizontal axis is stretched compared to
that in Fig. 8. The graph of κρ(z) is shown in Fig. 9.
The segment z ∈ [0, zAH], where zAH is given by (2.16),
and the numerical fluctuation at zAH, are squeezed to an
invisible size. The right end of the z-axis is at z = 1100,
which is close to the redshift at last scattering [22],

zls = 1089. (7.3)
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FIG. 9: The mass density (2.5) along the light cone of Fig. 1
as a function of z. The units of κρ are the same as in Fig. 4.

VIII. THE FUTURE OBSERVATIONS OF THE
SHELL CROSSINGS

As stated before, the SCS lies far to the future of the
PCPO from Fig. 1. In order to find out, at what time
the shell crossing will make itself seen for the central

observer, one must calculate the profile of that past light
cone of the central observer that is tangent to the SCS at
(r, t) = (rmin, tmin) given by (5.7) – (5.8). This was done
by numerical fitting, and the result is the third curve
from above in the left part of Fig. 3. It will reach the
central observer at

tF ≈ 149.965 NTU ≈ 1063.58T, (8.1)

where T is given by (2.21). This is the first instant, at
which the central observer will get a signal from the SCS.
See Sec. IX for more on this.
Since the equation of the SCS is R,r = 0, Eq. (2.6)

implies that a light ray intersecting the SCS must be hor-
izontal in the (t, r) coordinates at the intersection point.
The three uppermost rays in Fig. 3 illustrate this.
Let us now compare the travel times of two rays: one

that is emitted at the BB and reaches the central ob-
server at present (t = 0), and one that is emitted at the
minimum of the SCS and reaches the central observer at
t = tF . The first time is given by (2.22), the second one
is, from (5.7) and (8.1)

tF − tmin ≈ 75.161 NTU. (8.2)

Thus (tF − tmin)/Tmodel ≈ 565.12, which may seem sur-
prisingly large. A ray emitted from the minimum of the
SCS proceeds from rmin to the observer at r = 0, which
seems to be only part of the way from rmax given by (4.1)
to r = 0, and yet the journey of the later-emitted ray
lasts much longer than the present age of the Universe.
This difference is a consequence of the illusion created by
the comoving coordinates that we are using throughout
this paper. The values of r are constant along the flow
lines of the cosmic fluid and are not measures of distance
from the symmetry center. Such a measure is, for exam-
ple,

∫

R,rdr√
1+2E

calculated at constant t. In consequence

of expansion of the Universe, a particle at r = rmin is
farther from the center at t = tmin than at any t < tmin.
Thus, the ray emitted from r = rmin at the tmin given by
(5.7) has a much larger distance to cover before reaching
r = 0 than a ray emitted from the same rmin at the BB,
to reach the observer at t = 0.

IX. THE REDSHIFT PROFILES ALONG
VARIOUS LIGHT CONES

It is interesting to trace the behaviour of redshift along
various light rays. The profiles of z(r) shown in Fig. 10
were calculated by solving (3.7) along the rays reaching
the central observer at the times given below. The num-
bering begins at the upper edge of the figure from the left,
and continues along the right edge from top to bottom.

1. t = 0 NTU. This is z(r) along the ray emitted at
the BB that reaches the central observer at present.
It was calculated in Ref. [1] from the input data
defining the model, and now re-calculated by solv-
ing (3.7). Tables I and II show the precision with
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FIG. 10: Graphs of z(r) along the rays reaching the central
observer at various times from t = 0 NTU to t ≈ 394.3 NTU.
See text for details. Inset: Enlarged view of the right part
of curve # 4 from the main graph. It clearly shows that z(r)
along this ray has a local maximum and a local minimum at
(r, z) given by (9.1) and (9.2).

which the two results (dis-)agree. For Table II the
initial values of r and z are given by (2.15) and
(2.16). Wherever the difference is nonzero, the
now-calculated z(r) is greater.

2. t = 1 NTU.

3. t = 5 NTU.

4. t = 50 NTU. This ray and the next three are shown
in Fig. 3.

5. t ≈ 149.965 NTU. This is z(r) along the ray emitted
from the SCS at (r, t) = (rmin, tmin) given by (5.7)
– (5.8).

6. t ≈ 199.083 NTU. This is z(r) along the ray that
intersects the SCS at t = t2 = 100 NTU.

7. t ≈ 394.314 NTU. This is z(r) along the ray that
intersects the SCS at t = t3 = 200 NTU.

A few facts about the graphs in Fig. 10 are noteworthy:
1. On curves # 1 to 3, z(r) is monotonically increasing

along the past light cones.
2. On curve # 4, whose corresponding light cone comes

near the SCS, but does not intersect it (see Fig. 3 –
this is the lowest of the four light cone profiles shown

TABLE I: Differences between the two z(r) functions on ray
1 when (3.7) is integrated from r = 0

At the difference is

r close to 0 0 (perfect agreement

down to ∆r = 10−6)

r close to rAH ∆z = 1.2× 10−4

r = 0.7, where z ≈ 10.4 ∆z = 2.7× 10−3

r = 1.01, where z ≈ 1050 ∆z ≈ 7

TABLE II: Differences between the two z(r) functions on ray
1 when (3.7) is integrated from r = rAH

At the difference is

r close to rAH 0 (perfect agreement

down to ∆r = 10−6)

r = 0.7 ∆z = 2.2× 10−3

r = 1.01 ∆z ≈ 3.8

there), z(r) goes through a maximum and then through
a minimum before the ray escapes through the edge of
the model. The coordinates of these extrema are

(

r

z

)

4max

=

(

0.71831446207852601

0.98188047082901109

)

, (9.1)

(

r

z

)

4min

=

(

0.92427265264269520

0.97631849413594207

)

. (9.2)

3. On curves # 6 to 8, z(r) goes through a maximum,
and then keeps decreasing up to the edge of the model
given by (4.3). The coordinates of these maxima are:

(

r

z

)

5max

=

(

0.65078589679780396

0.95958866411532251

)

, (9.3)

(

r

z

)

6max

=

(

0.64511331512911863

0.95709853786786281

)

, (9.4)

(

r

z

)

7max

=

(

0.63704541339084608

0.95340148625320642

)

. (9.5)

These maxima do not occur at the intersections of the
corresponding light cones with the SCS. At the SCS, z(r)
is already decreasing, which means that light passing near
an SCS acquires local blueshifts. The redshift profiles
remain smooth at those intersections and do not display
any special behaviour there.
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X. THE EXTREMUM-REDSHIFT
HYPERSURFACE

Figure 10 shows that on the light cones that come near
to the SCS, the redshift begins to decrease on approach-
ing the SCS, and, at the intersection of the light cone
with the SCS, dz/dr < 0. Thus, light emitted close to
the SCS displays local blueshifts, and this is an analogy
to the behaviour of light in a vicinity of a nonconstant BB
[17, 18], [14]. The difference is that blueshifts generated
at the nonconstant BB are seen as infinite by all later
observers, while those generated at the SCS are finite,
and, as the graphs in Fig. 10 demonstrate, are swamped
with excess by redshifts built up later if the observer is
far enough to the future. The central observer sees the
light from the SCS being redshifted.
The location of the hypersurface, at which blueshifts

go over into redshifts along radial rays, is observer-
independent and can be calculated from (2.7). At that
hypersurface, which we will call the extremum-redshift
hypersurface, we have dz/dr = 0, so R,tr = 0. We find
from (3.11):

R,tr =

[√
−k + F +

rF ,r

2
√
−k + F

]

sinh η

cosh η − 1

− 3

2

rF ,r√
−k + F

sinh η − η

(cosh η − 1)2
. (10.1)

For numerical solving, the equation R,tr = 0 can be writ-
ten in a form similar to (5.2) – (5.3):

1

r
+

F ,r
2(−k + F)

[1− 3P (η)] = 0, (10.2)

where

P (η)
def
=

sinh η − η

sinh η(cosh η − 1)
. (10.3)

We have P (0) = 1/3, limη→∞ P (η) = 0 and dP/dη < 0
for all η > 0. Hence, P (η) is monotonic in the full range
of η, and, if a solution of (10.2) exists, then it is unique.
Having found η for a given r, we then calculate t(r) on

the ERH from (5.6). The profile of the ERH is the lower
U-shaped curve in Fig. 3.
Using (5.2) to eliminate F ,r, we find that at the SCS

R,tr = −3

2

√
−k + F(η cosh η + 2η − 3 sinh η)

(cosh η − 1)2(3
2
Q− 1)

. (10.4)

By (5.4) – (5.5) we have 3
2
Q− 1 > 0 for all η > 0, and it

is easy to verify that also η cosh η + 2η − 3 sinh η > 0 for
all η > 0. Therefore (10.4) shows that R,tr < 0 at the in-
tersection of a radial light ray with the SCS, which, using
(2.7), means dz/dr < 0. Hence, light emitted from the
SCS is blueshifted in a vicinity of the emission point. But
the R,tr given by (10.4) is finite al all η > 0 (including
η → ∞, where R,tr = 0), so the blueshift is also finite.
The points on the light-cone profiles that correspond

to the extrema in z listed in (9.1) – (9.5) should all lie on

the ERH. They do, but with a rather modest numerical
precision. The t-coordinates of the points on the ERH
are smaller than the corresponding t-s on the light cones
by ≈ 0.13 NTU in the case of both extrema on curve #
4 and of the maximum on curve #7, and by ≈ 0.14 NTU
in the other two cases.

We called the hypersurface given by (10.2) – (10.3) an
extremum (rather than maximum) redshift hypersurface
because, as seen from Fig. 10, on ray # 4 that inter-
sects this hypersurface twice, the redshift profile has a
maximum at one intersection point and a minimum at
the other. Generally, redshift profiles have maxima on
the “inside” branch of the ERH (the one closer to the
center) and minima on the “outside” branch. On a ray
tangent to the ERH, the redshift profile has an inflection
at the point of tangency.

The appearance of local blueshifts is a signal that the
ray (followed back in time) is approaching the SCS. How-
ever, the blueshifts, being only local and being overcom-
pensated by redshifts along the later part of the ray, may
not be noticed by the future central observer, unless she
is able to determine the location of the light signal along
the light cone independently of the value of z, and with
a sufficient precision. But even if she is, the precise mo-
ment of crossing the SCS leaves no recognizable mark in
the redshift profile – z(r) is smooth at the intersection of
the ray with the SCS.

Note also that there are local blueshifts on curve #
4 in Fig. 10, even though the corresponding ray never
intersects the SCS – it just passes nearby. So, locating
an SCS by observations is going to be a difficult problem.

XI. THE DA(z) AND DL(z) RELATIONS ON
RAYS INTERSECTING THE ERH

Quantities that are in principle observable, like the an-
gular diameter distance from the central observer DA

(which is equal to the function R(tng(r), r) appearing in
(2.8)) or the luminosity distance from the central ob-
server DL (given by (2.8)), are usually expressed as func-
tions of redshift. The peculiar behaviour of redshift on
rays passing near the SCS (z(r) being non-monotonic)
causes an even more peculiar behaviour of DA(z) and
DL(z): where z(r) is not monotonic, the relations DA(z)
and DL(z) fail to be single-valued (and therefore cannot
be called functions). This is illustrated in Figs. 11 and 12
that show these two relations along rays # 4 and 7 from
Fig. 10. Along ray # 4 in the neighbourhood of the SCS,
three values of DA and three values of DL correspond to
a single value of z. Along ray # 7 in the neighbour-
hood of the SCS, the relations DA(z) and DL(z) become
double-valued.
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FIG. 11: Main panel: The relations DA(z) (lower curve)
and DL(z) (upper curve) along ray # 4 from Fig. 10 (this is
the lowest ray in Fig. 3 that intersects the extremum-redshift
profile twice). Insets: The upper ends of the curves from
the main panel, where the relations DL(z) (left inset) and
DA(z) (right inset) become triple-valued. The nearly straight
segments at the upper edges of the graphs are numerical fluc-
tuations at the edge of the model.

XII. THE RECOMBINATION EPOCH

It is interesting to compare some of the characteristics
of the model discussed here with those of the ΛCDM
model. The metric of the ΛCDM model is [1]

ds2 = dt2 − S2(t)
[

dr2 + r2(dϑ2 + sin2 ϑ dϕ2)
]

(12.1)

with

S(t) =

(

−6M0

Λ

)1/3

sinh2/3
[
√
−3Λ

2
(t− tBΛ)

]

, (12.2)

where M0 = 1 NLU, tB is given by (2.22), and Λ is
calculated from (2.10) – (2.13), (2.18) and (2.24) to be

− Λ = 3ΩΛH0
2 = 91.849164 (NLU)−2. (12.3)

We assume

trec − tB = 3.8× 105 y = 3.88× 10−6 NTU (12.4)

for the time of last scattering [23]7 in the ΛCDM model.

7 In fact, the last scattering was not an instant strictly localizable
in time, but a process that lasted some time (see e.g. Ref. [24]).
However, most astrophysical papers do not take this into account.
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FIG. 12: The analogue of Fig. 11 along ray # 7 from Fig. 10
(this is the highest ray in Fig. 3). Now the relations DL(z)
and DA(z) become double-valued close to the shell crossing.

The mass density in all p = 0 RW models obeys [14]

κρ = C0/S
3(t), (12.5)

where C0 is a constant. Therefore, taking (6.4) for the
present mass density, (2.21) for the current value of t−tB ,
and (12.4) for the value of t − tB at last scattering, we
calculate the mass density ρls at last scattering to be

κρls = κρ0
S3(T )

S3(trec − tB)
(12.6)

= 88089589221.4818≈ 88× 109 (NLU)−2.

We will now assume that the last scattering in the L–T
model occurs at the same density; the last scattering time
will thus depend on r. This is an approximate method
of determining (trec − tB); for a more precise method see
Refs. [25] and [26].
A density approximately equal to (12.6),8 namely

κρLTLS = 88017457848.852432, (12.7)

is attained along the PCPO at the redshift

zLTLS = 1054.891484271654, (12.8)

8 The values that follow were read off from the numerical tables
used to draw the figures in this paper.
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not much different from (7.3). This happens at

rLTLS = 1.010092188377007, (12.9)

and this corresponds to the time along the PCPO

tLTLS = −0.1329399592464457, (12.10)

which is later than the BB by

τ = 3.3614380286×10−6 NTU ≈ 3.2942×105 y. (12.11)

The difference between (12.11) and (12.4) has a simple
intuitive explanation (see Fig. 13, copied from Ref. [1]).
In any L–T model, every constant-r shell evolves by eq.
(2.2), which is the same as the Friedmann equation, ex-
cept that here E(r) is different for every shell, and so is
M(r). The Friedmann curvature index kF is related to
E by 2E = −kF r

2, so, by (3.2), we have

kF (r) = k −F(r), (12.12)

i.e. it is different for every shell. As Fig. 13 shows,
|kF | is largest at r = 0 and monotonically decreasing,
so the matter shells closer to r = 0 expand according
to a “faster” Friedmann equation than the more distant
ones. Also, they expand faster than the corresponding
ΛCDM shells, as can be seen by comparing (2.21) with
(2.22) and (6.1) with (6.3): the central region of the L–T
model produced a lower density than ΛCDM in a shorter
time. Consequently, the density required for recombina-
tion must have been achieved in a shorter time, too.
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FIG. 13: Graph of the function (−kF (r)) ≡ | − k + F|. The
vertical stroke is at r = rAH.

XIII. FINAL SUMMARY

The L–T model considered here duplicates the lumi-
nosity distance vs. redshift relation DL(z) of the ΛCDM
model using the energy function E(r) alone. Its existence
was proved first in Ref. [4], and then, by a more precise
method, in Ref. [5]. It was explicitly (numerically) con-
structed in Refs. [5] and (in different coordinates) [1]. It
turned out that this model necessarily contains a region
where shell crossings occur [1]. This region is far enough
from the central observer to cause no problems with the

interpretation of observations of the type Ia supernovae
– its inner boundary intersects the past light cone of the
present observer at z ≈ 6.9. Therefore, it can be re-
moved from the spacetime by matching the L–T model
to a Friedmann background, without harming the usabil-
ity of the model for explaining the DL(z) function. This
much was proven in Ref. [1].
Here, the consequences of existence of the shell cross-

ings were investigated. They are interesting from the
point of view of geometry. They might become mean-
ingful also for cosmology if a qualitatively similar model
with different numerical parameters emerges from some
other research. In such a model, the SCS might appear
early enough to be visible for the present observer.
The model extends from the center of symmetry up

to a finite distance (Sec. IV). The edge of the model is
formed by the world lines of those cosmic matter particles
that were ejected from the Big Bang at its contact with
the past light cone of the present central observer. The
model can be extended by matching it to either another
L–T model or to a Friedmann model, but the extensions
are arbitrary – they are not constrained by the DL(z)
relation that defined our model, and were not considered
in this paper.

The earliest point of the shell-crossing set is at t =
tmin ≈ 74.8 NTU ≈ 562.4T to the future from now, where
T = 13.819 × 109 y = 0.141 NTU is the present age of
the Universe (Sec. V). The signal sent from that point
would reach the central observer at tF ≈ 149.965 NTU ≈
1063.58T to the future from now (Sec. VIII).
Mass density distributions along a few hypersurfaces of

constant t, and along the past light cone of the present
central observer were numerically calculated (Secs. VI
and VII). As expected, the density goes to infinity wher-
ever such a hypersurface touches or intersects the SCS.
Characteristic examples of light rays that intersect the

SCS were calculated (Sec. VIII). As expected, in the
comoving coordinates they are horizontal at the inter-
section points. Then, redshift profiles along several light
rays were calculated, including those mentioned above
(Sec. IX). It turned out that on rays passing near the
SCS, redshift acquires a maximum before the ray crosses
the SCS, and at the intersection with the SCS the func-
tion z(r) is already decreasing. It is surprising that the
intersection with the SCS leaves no recognizable trace
in the redshift profile: it is smooth there, and has no
extremum. Thus, an observer placed down a light cone
from the SCS would not notice any sign of the mass den-
sity being infinite there.

The extremum-redshift hypersurface, on which the
redshift profiles acquire maxima and minima, was de-
termined in Sec. X. Rays that cross the ERH display
local blueshifts on the other side of it. In particular,
they are blueshifted when emitted at the SCS. However,
the blueshifts are finite, and become overcompensated by
redshifts before the ray reaches the central observer.

The relations DA(z) and DL(z) along two rays (one
passing near, the other crossing the SCS) were displayed
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in Sec. XI (DA is the angular diameter distance and DL

is the luminosity distance from the central observer). In
consequence of the blueshifts generated in a vicinity of
the SCS, these relations become double- or triple-valued
near the SCS.
Finally, the end-instant of the recombination epoch

along the radial ray reaching the central observer at
present was calculated for the model considered here. It
occurs at t ≈ 3.29×105 y after the Big Bang, vs. 3.8×105

y in the ΛCDM model. The difference finds a simple ex-
planation in the profile of the E(r) function; details are
given in Sec. XII.
It is hoped that the investigation presented here will be

useful if a model with a shell crossing within the view of
the present observer emerges from some future research.

Appendix: The proof of (5.5)

The function Q(η) of (5.5) can be written as

Q(x) =
cosh2 x

sinh2 x
− x coshx

sinh3 x
, where x

def
= η/2. (A.1)

Then

dQ

dx
=

L(x)

sinh4 x
, (A.2)

where

L(x)
def
= − 3 sinhx coshx+ 2x sinh2 x+ 3x. (A.3)

The L(x) has the following properties

L(0) = 0, (A.4)

dL/dx = −3 cosh2 x− sinh2 x+ 4x sinhx coshx+ 3,

(A.5)

(dL/dx)(0) = 0, (A.6)

d2L/dx2 = −4 sinhx coshx+ 4x(sinh2 x+ cosh2 x),

(A.7)

(d2L/dx2)(0) = 0, (A.8)

d3L/dx3 = 16 sinhx coshx > 0 for all x > 0. (A.9)

Equations (A.4) – (A.9) considered in reverse order imply
that L(x) > 0 for all x > 0, so dQ/dη = 2dQ/dx > 0 for
all η > 0. �
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[2] G. Lemâıtre, Ann. Soc. Sci. Bruxelles A53, 51 (1933);

English translation (as a Golden Oldie): Gen. Relativ.

Gravit. 29, 637 (1997).
[3] R. C. Tolman, Proc. Nat. Acad. Sci. USA 20, 169 (1934);

reprinted as a Golden Oldie: Gen. Relativ. Gravit. 29,
931 (1997).

[4] H. Iguchi, T. Nakamura and K. Nakao, Progr. Theor.

Phys. 108, 809 (2002).
[5] C.-M. Yoo, T. Kai and K. Nakao, Progr. Theor. Phys.

120, 937 (2008).
[6] A. G. Riess et al., Astron. J. 116, 1009 (1998).
[7] S. Perlmutter et al., Astrophys. J. 517, 565 (1999).
[8] D. O. Jones et al., Astrophys. J. 768, 166 (2013).
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Gen. Rel. Grav. 42, 2453 (2010).
[13] Planck collaboration, Planck 2013 results. XVI. Cosmo-

logical parameters. arXiv:1303.5076; accepted for Astron-

omy and Astrophysics
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