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In the Lemâıtre – Tolman (L–T) models that have nonconstant bang-time function tB(r), light
emitted close to those points of the Big Bang where dtB/dr 6= 0 is blueshifted at the receiver
position. The blueshifted rays are expected to perturb the temperature of the cosmic microwave
background radiation along the lines of sight of the present central observer. It is shown here
that, in a general L–T model, the tB(r) can be chosen so that the blueshift-generating region
is hidden before the recombination time, where the L–T model does not apply. The rest of the
paper is devoted to investigating blueshifts in one specific L–T model, called L–T(tB) – the one
that duplicates the luminosity distance vs. redshift relation of the ΛCDM model using nonconstant
tB(r) alone. The location of the blueshift-generating region in the L–T(tB) spacetime is determined.
Profiles of redshift/blueshift along several rays intersecting the past light cone of the present central
observer are calculated. The L–T(tB) model matched to Friedmann is considered, and profiles
of redshift/blueshift in such a composite model are calculated. The requirement of invisibility of
blueshifts makes the L–T(tB) model astrophysically unacceptable if it should apply back to the
recombination time, but does not “rule out” a general L–T model – it only puts limits on dtB/dr.
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I. MOTIVATION AND BACKGROUND

It was argued [1] that the Lemâıtre [2] – Tolman [3]
(L–T) models with nonconstant bang-time function tB(r)
are “ruled out” because of spectral distortions of light re-
ceived by the present central observer that such tB would
cause. The spectral distortions are expected to arise
when blueshifted rays emitted close to those points of
the Big Bang (BB) where dtB/dr 6= 0 intersect the past
light cone of the present central observer (PCPO). Inves-
tigating the blueshifts and possible spectral distortions
caused by them is a valid research problem. However,
although Ref. [1] arose out of criticism of the so-called
“void models of acceleration”, the particular L–T model
considered there did not correspond to any real situation
in the Universe (see Appendix A).1

In the present paper, the blueshifts are investigated in
a general L–T model, and in the model that was derived
in Ref. [4] by the method introduced in Ref. [5]. In the
latter, called here the L–T(tB) model, the accelerated
expansion of the Universe is simulated using a suitably
(numerically) constructed nonconstant tB(r), with the
other L–T free function, E(r), having the same form as
in the Friedmann model: E = −kr2/2, where k is a
constant. The equations that ensure the simulation imply

∗Electronic address: akr@camk.edu.pl
1 The author of Ref. [1] claimed that he ruled out L–T models
“with significant decaying mode contribution today”. But the
further comments leave the reader with the impression that the
whole L-T class was killed, even though the assumptions actu-
ally made (E = 0 and a specific tB(r) profile) were strongly
restricting.

a unique value of k < 0, see Sec. II.

In an L–T model with nonconstant tB, blueshifts are
generated only close to the BB [6, 7]. Observers who
carry out their observations far from the BB see light
from nearby objects being redshifted. However, light rays
emitted from the BB at those points, where dtB/dr 6= 0,
behave in a peculiar way. When a radially directed ray
of this class is followed back in time beginning at a late-
epoch observer, the redshift along it at first increases
from zero, but reaches a maximum, then decreases to be-
come negative (i.e. to turn to blueshift) at some point,
to finally become −1 at the contact with the BB. The
value z = −1 is referred to as infinite blueshift [6, 7], see
Sec. II. The locus, where the redshift along radial rays
acquires a maximum, will be termed maximum-redshift
hypersurface (MRH). The locus, where the observed red-
shift along these rays turns to blueshift, will be termed
zero-redshift hypersurface (ZRH).

To display blueshift to the observer, a ray must build
up a sufficiently large blueshift before it intersects ZRH,
in order to offset the redshift accumulated in the later
part of the path. Thus, along any ray, the MRH is later
than the ZRH. Along radial rays, the MRH is observer-
independent (see Sec. IV).

The ZRH is defined only with respect to a given family
of observers, and is different for each family. If ZRH is
closer to the BB than the last-scattering hypersurface,
then the blueshifts are hidden in the pre-recombination
era, where the zero-pressure L–T models do not apply.
This is why it is important to locate the ZRH in space-
time, relative to those events, where spectral distortions
would be observable; namely, events along the ray emit-
ted from the last-scattering hypersurface that reaches the
central observer at present.

http://arxiv.org/abs/1409.5377v2
mailto:akr@camk.edu.pl
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An L–T metric is never meant to be a global model
of the whole Universe. Any given L–T metric is always
meant to model a limited part of our spacetime. It should
be matched to a background metric modelling the rest
of the Universe, for example a Friedmann metric. In
the case of the L–T models that simulate accelerated ex-
pansion, it makes sense to apply them only out to such
distances, at which the type Ia supernovae (SNIa) are
observed. At present, the largest redshift observed for a
type Ia supernova is z ≈ 1.9 [8]; for the supernovae in-
cluded in the two original projects [9, 10], the largest z
was 0.83 [10].

The plan of the paper is as follows. Section II recalls
basic properties of the L–T models. In Sec. III, it is
shown that in a general L–T model, |dtB/dr| can always
be made sufficiently small to hide the blueshifts in the
pre-recombination epoch, where the assumption of zero
pressure is not realistic, so the L–T model cannot apply.

The rest of the paper is devoted to the L–T(tB) model
only. In Sec. IV, the MRH of the central observer is
determined and displayed. In Sec. V, the profiles of red-
shift are calculated along a few characteristic radial rays
intersecting the PCPO. In Sec. VI, the L–T(tB) model
is matched to the Friedmann model across the matter
world-tube that intersects the PCPO at z = 0.83, and
profiles of redshift/blueshift along a few characteristic
light cones are displayed. Section VII contains conclu-
sions and a summary. In Appendix A, deficiencies of the
model used in Ref. [1] are presented.

II. THE LEMAÎTRE – TOLMAN MODELS

This is a summary of basic facts about the L–T models.
For extended expositions see Refs. [11, 12].

A. General facts

The numbering of the coordinates will be (x0, x1, x2,
x3) = (t, r, ϑ, ϕ) and the signature will be (+−−−). The
metric of the model is

ds2 = dt2 − R,r
2

1 + 2E(r)
dr2 −R2(t, r)(dϑ2 + sin2 ϑ dϕ2),

(2.1)
where E(r) is an arbitrary function. The source in the
Einstein equations is dust, i.e. a pressureless fluid. The
(geodesic) velocity field of the dust is

uα = δα0. (2.2)

The function R(t, r) is determined by

R,t
2 = 2E(r) + 2M(r)/R, (2.3)

M(r) being another arbitrary function; we neglect the
cosmological constant. Throughout this paper only ex-
panding models (R,t > 0) will be considered. The solu-
tions of (2.3) may be written as follows:

When E > 0:

R(t, r) =
M

2E
(cosh η − 1),

sinh η − η =
(2E)3/2

M
[t− tB(r)] ; (2.4)

When E = 0:

R(t, r) =

{

9

2
M(r) [t− tB(r)]

2

}1/3

; (2.5)

When E(r) < 0:

R(t, r) = −M

2E
(1 − cos η),

η − sin η =
(−2E)3/2

M
[t− tB(r)] ; (2.6)

where tB(r) is one more arbitrary function called the
bang time. The Big Bang occurs at t = tB(r).

The mass density is

κρ =
2M,r

R2R,r
, κ

def
=

8πG

c2
. (2.7)

Equations (2.1) – (2.7) are covariant with the transfor-
mations r → r′ = f(r), which may be used to give one of
the functions (M,E, tB) a handpicked form, in the range
where it is monotonic. In this paper, M,r > 0 is assumed,
and the following choice of r is made:

M = M0r
3, (2.8)

where M0 > 0 is an arbitrary constant. The transforma-
tions r = Cr′, with C = constant, are still allowed, and
they redefine M0 by M0 = M ′

0/C
3. So, we can assume

M0 = 1. Note that M0 has the dimension of length and
represents mass, so the choice of its value amounts to
choosing a unit of mass – see Sec. II C.

A radial null geodesic is determined by the equation

dt

dr
= ± R,r

√

1 + 2E(r)
, (2.9)

where “+” applies to future outward-directed and past
inward-directed geodesics, and “−” to the remaining
ones. The solution of (2.9) is denoted t = tng(r). The
redshift z(r) along tng(r) is given by [13], [12]

1

1 + z

dz

dr
=

[

R,tr√
1 + 2E

]

ng

. (2.10)

At the contact with the BB, null geodesics displayed
in the comoving coordinates have horizontal tangents at
those points, where dtB/dr = 0, and have vertical tan-
gents elsewhere. In the first case, z → ∞ at the BB;
in the second case, z = −1 at the BB, which is referred
to as infinite blueshift [6, 7]. Indeed, z < 0 means that
(frequency observed) > (frequency at emission), so (fre-
quency observed) → ∞ when z → −1 and the frequency
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emitted is finite. However, it should be noted that a
vertical tangent to a light ray at the BB, in comoving co-
ordinates, means that matter particles are ejected from
the BB with the velocity of light, i.e., a comoving ob-
server at the BB would see zero frequency of the emitted
light. So, some interpretation work is required to decide
what an infinite blueshift actually means: magnifying a
finite frequency to an infinitely hard blow at the observer,
or shifting an unobservably soft radiation to the visible
range. In all the Friedmann models (which are subcases
of L–T), since tB is constant, z is infinite at the BB.

In a general L–T model we have ([12], eqs. (18.104)
and (18.112)):

R,r =

(

M,r
M

− E,r
E

)

R (2.11)

+

[(

3

2

E,r
E

− M,r
M

)

(t− tB) − tB,r

]

R,t

when E 6= 0, and

R,r =
M,r
3M

R−
√

2M

R
tB,r (2.12)

when E = 0.
Given a past-directed tng(r) and z(r), the luminosity

distance DL(z) of a light source from the central observer
is [14, 15]

DL(z) = (1 + z)2R (tng(r), r) . (2.13)

The model of Refs. [5] and [4], further investigated here,
was constructed so that DL(z), calculated along the
PCPO, is the same as in the ΛCDM model:

DL(z) =
1 + z

H0

∫ z

0

dz′
√

Ωm(1 + z′)3 + ΩΛ

, (2.14)

where H0 is related to the Hubble “constant” H0 by
H0 = H0/c, and (Ωm,ΩΛ) = (0.32, 0.68) are parameters
defined by observations [16]; see Sec. II C.

Note that the duplication of DL(z) occurs only along
a single light cone. Observations that are sensitive to the
dynamics of the model, for example redshift drift [17],
could distinguish between the ΛCDM and L–T models
having the same DL(z) at present.

The Rng(r)
def
= R (tng(r), r) in (2.13) is the angular di-

ameter distance, and it is not an increasing function of r.
At the intersection with the hypersurface t(r), implicitly
determined by the equation [18]

R = 2M, (2.15)

the function Rng(r) acquires a maximum, and becomes
decreasing for greater r. The hypersurface determined
by (2.15) is called apparent horizon (AH). It is a diffi-
cult obstacle to numerical calculations because several
quantities become 0/0 there, see Refs. [4, 19] and further
references cited in them. Traces of those difficulties will

appear here in a few graphs as numerical instabilities.
The values of r and z at the intersection of the PCPO
with the AH in the L–T(tB) model are [4]

(

r
z

)

AH

=

(

0.3105427968086945
1.582430687623614

)

. (2.16)

For technical reasons, the t(r) and z(r) curves cross-
ing the point r = rAH were calculated separately in the
ranges r < rAH and r > rAH, as explained in Refs. [4]
and [19]. Therefore, they are differently coloured in each
of these ranges.

B. The L–T model with 2E = −kr2 that obeys
(2.14)

This is the L–T(tB) model. In it we have [4]

2E = −kr2, (2.17)

where k < 0 is a constant. This E is the same as in
the k < 0 Friedmann model. Numerical fitting of the
solution of (2.10) to the values of (r, z) at (0, 0) and at
the AH determined the value of k [4],

k = −4.7410812. (2.18)

From (2.9) and (2.17) we have on a light cone

dt

dr
= ± R,r√

1 − kr2
. (2.19)

Using (2.8) and (2.17) we get from (2.11)

R,r =
R

r
− rtB,r

√

2M0r

R
− k. (2.20)

With (2.17), eqs. (2.4) become

cosh η = 1 − kR

M0r
, (2.21)

t− tB =
M0

(−k)3/2
(sinh η − η). (2.22)

Using (2.17) and (2.20) – (2.22), the set of equations
{(2.19), (2.22), (2.10)} was numerically solved in Ref.
[4] for t(r), tB(r) and z(r) along the PCPO. The tables
representing those solutions will be used here.

The L–T(tB) model is determined around the center of
symmetry up to those worldlines of dust that leave the
BB at its contact with the PCPO. Extensions beyond
the world-tube composed of those worldlines are possible,
but are not determined by (2.13) – (2.14) and are not
considered here. This model need not be used in this full
range. A subset can be cut out of it and matched to a
background model along a narrower world-tube.
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C. The numerical units

The following values are assumed here:

(Ωm,ΩΛ, H0,M0) = (0.32, 0.68, 6.71, 1) (2.23)

the first two after Ref. [16]. The H0 is related to the
Hubble constant H0 [16] by

H0 = cH0 = 67.1 km/(s × Mpc), (2.24)

so H0 is measured in 1/Mpc. Consequently, choosing
a value for H0 amounts to defining a numerical length
unit (NLU). Our time coordinate is t = cτ , where τ is
measured in time units, so t is measured in length units.
So it is natural to take the NLU also as the numerical
time unit (NTU). Taking for the conversion factors [20]

1 pc = 3.086 × 1013 km,

1 y = 3.156 × 107 s, (2.25)

the following relations result:

1 NTU = 1 NLU = 3 × 104 Mpc

= 9.26 × 1023 km = 9.8 × 1010 y. (2.26)

The age of the Universe inferred from observations is [16]

T = 13.819 × 109 y = 0.141 NTU. (2.27)

As already mentioned below (2.8), M0 represents mass,
but has the dimension of length (M0 = Gm0/c

2, where
m0 is measured in mass units). The choice M0 = 1 NLU
made in (2.23) implies the mass unit M0c

2/G ≈ 1054 kg,
but it will not appear in any other way than via M0.

III. THE MAXIMUM-REDSHIFT
HYPERSURFACE IN A GENERAL L–T MODEL

Consider a radial light ray tng(r) reaching a comoving
observer at a sufficiently late time (below, it will become
clear what “sufficiently late” means). When we follow
that ray back in time and calculate the redshift z(r) along
it, then, initially, z increases from z = 0 at the observa-
tion event. However, if the ray was emitted at the BB at
such a point, where dtB/dr 6= 0, then z(r) will reach a
maximum somewhere in the past, and will then decrease,
to become z = −1 at the intersection of the ray with the
BB. The maximum redshift is achieved where dz/dr = 0,
i.e., from (2.10), where R,tr = 0. The hypersurface de-
termined by R,tr = 0 is observer-independent; this is the
MRH described in Sec. I. From (2.11), using (2.3), we
have

R,tr =
E,r
2E

R,t−
M

R2

(

3

2

E,r
E

− M,r
M

)

(t− tB)

+
M

R2
tB,r (3.1)

when E 6= 0, and

R,tr =

(

M,r
3M

+

√
2M

R3/2
tB,r

)

R,t (3.2)

when E = 0. From now on, the cases E > 0 and E < 0
have to be considered separately.

E > 0

Using (2.3), (2.4) and (3.1), the equation R,tr = 0 is
rewritten as

(t− tB)

[

E,r
2E

F1(η) +
3

r

]

= −tB,r, (3.3)

where

F1(η)
def
=

sinh η(cosh η − 1)

sinh η − η
− 3. (3.4)

The conditions for no shell crossings in the case E > 0
are [21], [12]

E,r > 0, tB,r < 0. (3.5)

Hence, in a region with no shell crossings,2 the right-hand
side of (3.3) is positive, and so is the coefficient of F1(η).
We also have

F1(η) > 0, dF1/dη > 0 (3.6)

for all η > 0. From this follows

Lemma 3.1

For every ε > 0 there exists a δ > 0 such that t− tB < ε
if |tB,r| < δ.

The proof is given in Appendix B.
Consequently, by choosing |tB,r| sufficiently small, t

can be made arbitrarily close to tB; in particular, earlier
than the recombination time. Thus, the MRH can be
hidden in the pre-recombination epoch, where the zero-
pressure L–T models cannot apply, and blueshifts will
not arise in the L–T region.

Note that (3.3) – (3.6) imply that the MRH does not
exist if tB,r = 0 everywhere. (Formally, (3.3) implies
then t = tB, but we know from elsewhere [6, 7] that in
this case z → ∞ at the BB, so dz/dr → ∞, too.) This
holds, for example, in the L–T model of Ref. [19].

2 It has to be recalled that in the L–T model that reproduces (2.14)
with tB,r ≡ 0, a region with shell crossings does exist [19, 22].
This is why we cannot assume that the whole model is free of
shell crossings; it is to be expected that shell crossings will also
exist when

∣

∣tB,r

∣

∣ is small but nonzero.
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E = 0

Then, using (3.2), the equation R,tr = 0 implies

R = 21/3M0r
5/3 (−tB,r)

2/3
. (3.7)

The no-shell-crossing condition here is tB,r < 0. Thus,
by choosing |tB,r| sufficiently small, we can make R ar-
bitrarily close to zero, i.e. to the BB. So, again, the
blueshifts can be removed from the L–T region.3

E < 0

Using (2.6) and (3.1) and assuming 0 ≤ η ≤ π (the
Universe is expanding), R,tr = 0 is rewritten as

(t− tB)

[

E,r
2E

G1(η) +
3

r

]

= −tB,r, (3.8)

where

G1(η)
def
=

sin η(1 − cos η)

η − sin η
− 3. (3.9)

In this case, the analogue of Lemma 3.1 cannot be proved,
since the function G1 is negative and decreasing for all
0 < η < π, while the no-shell-crossing conditions do not
imply a unique sign for E,r /E.4 So, this case was con-
sidered for completeness only. It is known [19] that with
tB,r ≡ 0 the relation (2.13) – (2.14) can be duplicated in
an L–T model only with E > 0 at all r > 0. Thus, it is
to be expected that the model with E < 0 at r > 0 will
be inapplicable also when |tB,r| is small but nonzero.

IV. THE MAXIMUM-REDSHIFT
HYPERSURFACE IN THE L–T(tB) MODEL

In the L–T(tB) model, the nonconstant tB(r) is
uniquely (numerically) determined by (2.10), so dtB/dr
is also fixed. Consequently, the method of removing
blueshifts from the L–T epoch, presented in Sec. III, can-
not be applied here. As will be seen, blueshifts in this
model occur later than the recombination epoch in a large
region around the center. A radical solution of the prob-
lems with blueshifts would be to assume that the L–T(tB)
model applies only as far back in time as dz/dr > 0 along
radial rays. However, it is useful to know exactly where
the blueshift-generating region is located and how the
blueshifts would make themselves visible to a late-time
observer in this model. These questions will be dealt with
in the remaining part of this paper.

3 But the model with E = 0 cannot obey (2.14) [4].
4 Since E(0) = 0 must hold in order to avoid a permanent central
singularity [12], and E(r) < 0 at r > 0 by assumption in this
case, the consequence is E,r < 0 in a vicinity of r = 0, i.e.,
E,r /E > 0 for small r. However, this argument does not hold
for large r. The no-shell-crossing conditions require only that

tB,r < 0 and 2π
(

3
2

E,r
E

−
M,r
M

)

−
(−2E)3/2

M
tB,r < 0 [12].

As in Sec. III, the location of the MRH in spacetime is
determined by the equation R,tr = 0. However, caution
is required in interpreting the solution. Equation (2.10)
shows that R,tr might vanish also at those points, where
z → ∞. See below for more on this.

Using (2.20) for R,r, the equation R,tr = 0 is

√

2M0r

R
− k = −M0r

3tB,r

R2
, (4.1)

where (2.3), (2.17) and (2.8) were used to eliminate R,t.
With tB,r < 0 and k < 0, (4.1) is solvable and implicitly
defines (via R(t, r)) the t(r) function along the MRH.

For numerical handling, it is more convenient to square
(4.1) and substitute for R from (2.21), obtaining

x4 + x3 + k3
(

rtB,r

4M0

)2

= 0, (4.2)

where

x
def
= sinh2(η/2). (4.3)

Where r > 0 and tB,r < 0, the solution of (4.2) obeys

0 < x < xmax
def
= − k

(

rtB,r

4M0

)2/3

. (4.4)

However, (4.2) implies x = 0 at those r, where tB,r = 0.
This means η = 0, i.e. R = 0. This is the BB, where
z → ∞. The conclusion is that the MRH does not exist
along those rays that hit the BB where tB,r = 0. Also,
(4.2) implies x = 0 at r = 0. The point determined by
x = 0 (=⇒ η = 0) and r = 0 is the central point of the
BB, where R = 0. But (4.2) was obtained from (4.1)
by squaring and multiplying by R4. Consequently, the
solution of (4.1) is not determined at r = 0, although the
limit r → 0 of the solution found at r > 0 may exist.

Having found (numerically) x(r), and thus also η(r)
from (4.3), we find t(r) on the MRH from (2.4):

tMRH(r) = tB(r) +
M0

(−k)3/2
{sinh[η(r)] − η(r)}. (4.5)

Equation (4.2) was derived assuming that the null
geodesics, on which z(r) is calculated, are radial. But
it makes no reference to the initial point of the geodesic
arc. Consequently, the MRH is observer-independent.
The maximal value of redshift will depend on the initial
point, where z = 0, but the location of the maximum
will not: the maximum along a given geodesic will occur
always at the same r.

In order to use (4.5), we need to know the function
tB(r). It was numerically calculated in Ref. [4], but only
up to r ≈ 1.05584 (corresponding to tB ≈ −0.139454
NTU), which is not sufficient for the present purpose.
Consequently, it had to be re-calculated and extended,
and the way of extending needs an explanation.
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The numerical step was ∆r ≈ 5 × 10−6. Beginning at

r
def
= rc = 1.4131983072777050, (4.6)

the numerically calculated tB became constant,

t
def
= tBc = −0.13945554689046649 NTU, (4.7)

and this value was maintained from step n = 221923
for the next 1757 steps (the calculation broke down at

r
def
= rf = 1.4219332552803152, with the Fortran program

saying that tB = NaN for all r > rf ). So, it was assumed
that tB(r) = tBc at the contact with the PCPO, and the
tB(r) curve was extended “by hand” as the straight line
t = tBc. The extended graph of tB(r) is shown in Fig. 1
together with tMRH(r). Given the table of values of tB(r),
the tB,r(r) needed to solve (4.2) is easy to calculate.

-0.14

-0.135

-0.13

-0.125

-0.12

-0.115

-0.11

0 0.2 0.4 0.6 0.8 1 1.2 1.4

t

r

t

r

-0.139456

-0.139454

-0.139452

-0.13945

-0.139448

-0.139446

-0.139444

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

FIG. 1: Main panel: The functions tB(r) (lower curve) and
tMRH(r). The tB(r) acquires the constant value tBc given by
(4.7) on approaching the right end. Inset: Closeup view of
the region, where tB(r) (the lowest curve) and tMRH(r) (the
curve with the uppermost left end) become tangent. The third
curve is the trec(r) of (4.8). See text for more explanation.

The inset in Fig. 1 includes the graph of the recombi-
nation time, given approximately by [23]

trec(r) − tB(r) = 3.8 × 105 y = 3.88 × 10−6 NTU. (4.8)

This will be used for illustration only. The correct trec(r)
would have to be calculated by determining the t − tB,
at which the density in our model becomes equal to the
density at recombination in the ΛCDM model. How-
ever, this more exact calculation would introduce only a
small correction to (4.8), which would not substantially
improve the usefulness of it. As further calculations will
show, along most rays both the MRH and the ZRH will
occur much later than the time given by (4.8). At the
scale of the main panel of Fig. 1, the graph of trec(r) is
indistinguishable from the graph of tB(r).

The following facts about Fig. 1 need to be noted:
1. The right end of the graphs is at r = 1.422. This

is where z(r) along the PCPO was found to be unman-
ageably large (z ≈ 1.6237×10229) [4], signaling the near-
contact of the PCPO with the BB.

2. The trec(r) and tMRH(r) curves intersect at r
def
= rx

≈ 1.107817. For r > rx, the MRH is earlier than the
hypersurface of last-scattering, and thus becomes astro-
physically irrelevant, as the L–T model is inadequate for
describing the epoch t < trec(r).

3. The redshift corresponding to rx is zx ≈ 57.88. This
is much larger than zfar = 10 [24], the largest observed
redshift apart from CMB.

V. LIGHT RAYS INTERSECTING THE PAST
LIGHT CONE OF THE PRESENT CENTRAL

OBSERVER

The profile of the PCPO calculated in Ref. [4] is shown
in the main panel of Fig. 2. It becomes tangent to the
tB(r) at r ≈ 1.42182. We will now determine the in-
tersections with the ZRH for rays received by observers
sitting on the PCPO at a few characteristic positions.

A. Ray B

Consider the observer Ob (“b” for “border”) who in-
tersects the PCPO at z = zfSN = 1.9. As noted above,
this is the largest observed redshift corresponding to a su-
pernova of type Ia [8]. The functions z(r), t(r) and R(r)
along the PCPO were calculated in Ref. [4]. In their ta-
bles of values, the z nearest to zfSN and the corresponding
r, t and R at the PCPO are

zb = 1.900028454789241, (5.1)

rb = 0.3486128555616366, (5.2)

tb = −0.10726235253032952, (5.3)

Rb = 0.0594055585753355889. (5.4)

Equations (5.2) and (5.3) define the initial conditions for
the outgoing radial light ray that Ob receives at the mo-
ment of intersecting the PCPO. It was calculated back-
ward from this event and will be called ray B. It is the
increasing curve in Fig. 2.

Figure 3 shows the graph of z(r) along ray B. The
numerical calculation broke down near the singularity,
so the value of z at t = tB could not be calculated, but it
is known to be −1 there [6, 7]. The nearest value to −1
that was yet calculated was z = −0.85255346539197885,
achieved at r = 0.17430456376783951. The right end of
the graph is at the rb given by (5.2), where the initial
value on ray B was z = 0.

The maximal redshift along this ray is z =
0.63536180471132442, achieved at

(

r
t

)

bmax

=

(

0.19233778370400151
−0.12814671882472262

)

. (5.5)

This maximum fits on the tMRH(r) curve from Fig. 2 up
to better than 2 × 10−7 NTU = 19 600 y.
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FIG. 2: Main panel: The uppermost curve is the profile
of the past light cone of the present central observer. The
other two decreasing curves are those from the main panel
of Fig. 1. The increasing curve is ray B. See text for more
explanation. Inset: Magnified view of the neighbourhood
where z < 0 along ray B. The two decreasing lines are tB(r)
(lower) and trec(r) of (4.8). The increasing curve is ray B.
The cross marks the point where z = 0. The tMRH profile is
far above the upper margin.
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point at the past light cone of the present central observer
(upper curve) and from the initial point at the intersection of
ray B with r = rAH. The vertical bar marks r = rbmax given
by (5.5). More explanation in the text.

For illustration, Fig. 3 contains also the graph of red-
shift along ray B, with the initial value z = 0 not at
the PCPO, but at the intersection of ray B with the line
r = rAH. As predicted, the second maximum is at a
different z, but at r′, for which |r′ − rbmax| ≈ 3 × 10−6.

B. Ray OB

Consider the second observer Oob (for “old border”)
intersecting the PCPO at zob = 0.83, which is the largest

SNIa redshift measured in the twin projects that first
reported the accelerated expansion [10]. Again, from the
z(r), t(r) and R(r) tables in Ref. [4] we find the z nearest
to zob, and the corresponding r, t and R on the PCPO:

zob = 0.8300015499642085, (5.6)

rob = 0.19751142662007609, (5.7)

tob = −0.0743328307281575784, (5.8)

Rob = 0.0540017311248809709. (5.9)

The ray emitted at the BB and received by Oob at the
event given by (5.7) – (5.8) will be denoted OB and is
shown in Fig. 4, together with the other curves from Fig.
2. Ray OB goes into the past from the PCPO, reaching
the center r = 0 at t = −0.11014300011521007 NTU. It
goes to the other side of the center, but its continuation
beyond r = 0 is drawn in mirror-reflection.
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FIG. 4: Main panel: The uppermost and the two lowest
curves are those from Fig. 2. The two solid arcs at left rep-
resent ray OB. The dotted arc at right is ray B. See text for
more explanation. Inset: Magnified view of the neighbour-
hood where z < 0 along ray OB. The two lowest lines are the
same as in the inset in Fig. 2. The third curve is ray OB. The
cross marks the point where z = 0. The profile of the MRH
is again way above the upper margin.

Figure 5 shows the graph of z(r) along ray OB. The
graph begins at the rob given by (5.7), where z = 0, and
proceeds to the left. The curve z(r) hits the center with
z = 1.2266046302084745 and goes to the left side of the
z-axis, but, as before, the figure shows the mirror-image
of the continuation. From this point on, z(r) increases
to the maximum z = 3.0946480957646290 attained at

(

r
t

)

obmax

=

(

0.16821171418720421
−0.12662412927673727

)

. (5.10)

The tobmax given above agrees with the correspond-
ing t on the tMRH(r) curve to better than 10−6 NTU
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= 9.8 × 104 y. Beyond this maximum, z(r) de-
creases to z = −0.85628254978650187 attained at r =
0.22100398884102759.

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1 0.15 0.2

z

r

z

r

FIG. 5: Redshift z(r) along ray OB.

Note that the redshift in Fig. 5 becomes negative at
r ≈ 0.2208, which is larger than the rob, given by (5.7).
Thus, if our L–T model were matched to a Friedmann
background at r between rob and 0.2208, the ray (fol-
lowed back in time) would enter the Friedmann region
with the redshift still being positive, and would start
building up more-positive redshifts from then on. See
more on this in Sec. VI.

It is interesting that all the qualitative properties of
blueshift described here (blueshift being infinite when
dtB/dr 6= 0 at the contact of the ray with the BB, being
visible to all observers along the blueshifted ray, perturb-
ing the CMB spectrum) were mentioned without proof
by Szekeres already in 1980 [6]; he even drew the MRH
profile for E = 0 and tB(r) = 1/

(

1 + r2
)

.

C. Ray N

The third observer, On (for “near”), is placed at such
r that the ray she receives at the intersection with the
PCPO is emitted from the BB where the function tB is
flat. The placement of On was determined by trial and
error. Its initial data at the PCPO are

zn = 0.02000194389343255, (5.11)

rn = 0.00653692577372784, (5.12)

tn = −0.00293913865628162, (5.13)

Rn = 0.002910104748843882. (5.14)

The ray emitted at the BB and received by On at
the event given by (5.12) – (5.13) will be denoted N
and is shown in Fig. 6. Similarly to ray OB, ray
N, followed from the initial point given by (5.12) –
(5.13) into the past, first reaches the center at t =
−0.00581492733951897989 NTU, then continues on the

other side of the center, hitting the BB at
(

r
t

)

nBB

=

(

1.3401983891580524
−0.13945554652960040

)

. (5.15)

At the contact of ray N with the BB, tB is constant up
to better than ∆tB = 10−6 NTU = 9.8 × 104 y.
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FIG. 6: Main panel: The uppermost and the two lowest
curves are those from Fig. 2. The arc that nearly coincides
with the cone profile is ray N. See text for more explanation.
Inset: The neighbourhood, where ray N hits the BB. The
curves, counted from top to bottom at the left edge, are ray
N, tMRH(r) and tB(r). The recombination time is ≈ 3 ×

10−6 NTU above the upper edge of the graph. Redshift never
becomes negative along ray N, and becomes very large near
the BB, see Fig. 7. More explanation in the text.
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The redshift along ray N is shown in Fig. 7. The only
point along ray N where z = 0 is the initial point at the
PCPO. Following ray N to the past, z attains the value
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0.0200723615789212863 at r = 0, then increases up to
the maximum z ≈ 7676.412, attained at

(

r
t

)

nmax

=

(

1.3388618129278465
−0.13945554652960040

)

. (5.16)

Then a numerical instability causes z to go down at larger
r. This is because, at the level of precision assumed here,
where ray N hits the BB, the tB is “not constant enough”
for z to go to infinity. Were On placed nearer to the
center, ray N would be indistinguishable from the PCPO.

The transition from rays emitted at nonconstant tB
to those emitted at constant tB is discontinuous. Be-
ginning with the situation shown in Fig. 5 and moving
the observer ever closer to the center, the redshift pro-
file changes as follows: the initial point where z = 0
moves closer to the r = 0 axis, the point of crossing the
r = 0 line moves down, the maximum of z(r) moves up
and to the right, and the final segment of z(r) that goes
down becomes ever steeper, approaching vertical. If the
observer is close enough to the center, so that the ray
(followed back in time) hits the BB where tB is exactly
constant, z(r) goes to infinity at the contact with the
BB, and the final steep segment of the curve disappears.
Figure 8 shows a graph of z(r) intermediate between the
situations in Figs. 5 and 7.
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FIG. 8: Redshift z(r) along a ray received by an observer
placed between Oob and On. See explanation in the text.
The inset shows z(r) near r = 0.

VI. THE L–T(tB) MODEL MATCHED TO
FRIEDMANN

Now we come back to the remark made in the para-
graph after (5.10). The necessary and sufficient condition
for matching an L–T to a Friedmann model [12] is that
at the boundary hypersurface the functions M(r), E(r)
and tB(r) go over in a continuous (not necessarily dif-
ferentiable) way into their Friedmann counterparts. Our
functions M(r) and E(r) have Friedmannian forms from
the beginning. So, it is enough to assume that tB(r) be-

comes constant at the boundary value of r.5 As stated in
the aforementioned remark, the r at the boundary should
be between the rob given by (5.7) and r = 0.2208. So we
choose the intermediate value rF, where

(

r
tB

)

F

=

(

0.2100014577175866
−0.1325224690059549

)

. (6.1)

The time on the PCPO at this boundary is

tF = −0.0778299400591163509 NTU. (6.2)

From the tables of values of t(r) and z(r) along ray OB
we find that at the rF given above we have

(

t
z

)

OB F

=

(

−0.13144220116062100
2.2425612667236408

)

. (6.3)

Ray OB is now continued through r = rF into the Fried-
mann region, with the above as the initial data for it.

In the Friedmann region, (2.9) simplifies to

dt

dr
= ± S(t)√

1 − kr2
, (6.4)

where S(t)
def
= R/r. Using (2.4), (2.8) and (2.17), this

can be integrated with the result

η(r) + C = ± ln
(√

−kr +
√

1 − kr2
)

, (6.5)

where η(r) is the same as in (2.4) and C can be found
from the initial condition

ηF + C = ±
[

ln
(√

−kr +
√

1 − kr2
)]

F
, (6.6)

with rF given by (6.1), and ηF calculated from (2.4):

sinh ηF − ηF =
(−k)3/2

M0
(tF − tBF) . (6.7)

The tF and tBF are given by (6.1) and (6.3).
So, the construction of the Friedmann light cone and

the calculation of redshift along it goes as follows. The
consecutive values of r are taken from the same table as
in the previous calculations. Given the value of r, the
η(r) is calculated from (6.5) using (6.6) for C, then t(r)
and S(t(r)) along the light cone are calculated from (2.4)
using (2.8), (2.17) and (6.1). Finally, with S(t(r)) known,
the redshift along the light cone is calculated from [12]

1 + z(r) = zF + SF/S(t(r)). (6.8)

Figure 9 shows the continuation of tB(r) (the lowest
line) and of ray OB through the boundary of the L–T and

5 The model we consider already coincides with Friedmann for
r > rc, where rc is given by (4.6). But to make the intended
point, we need to match it to Friedmann at rF given by (6.1).
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and of ray OB into the Friedmann region. The vertical line
marks the L–T/Friedmann boundary at r = rF given by (6.1).
The descending line that ends at the boundary is the profile
of the MRH. Inset: The contents of the main panel shown to-
gether with the complete past light cone of the present central
observer extended into the Friedmann region.

Friedmann regions.6 The line that ends at the boundary
is the MRH; it does not exist in the Friedmann region
because there the maximal redshift is infinite.

Figure 10 shows the continuation of z(r) from Fig. 5
through the boundary of the L–T and Friedmann regions.
The function z(r) was decreasing in the L–T region close
to its boundary, but becomes increasing in the Friedmann
region, and increases until it becomes too large to handle
by the Fortran program. This happens at

(

r
z

)

large

=

(

0.43753244000885227
11861354545.253244

)

. (6.9)

This is, not accidentally, the same rlarge at which the con-
tinuation of ray OB into the Friedmann region becomes
tangent to the constant-tB line.

The matching of the L–T and Friedmann models does
not solve the problem of blueshifts. The PCPO con-
tinued into the Friedmann region would still encounter
blueshifted rays emitted in the L–T(tB) region. Figure
11 shows one such exemplary ray. It was calculated in
two stages:

1. Equations (6.5) – (6.8) (with the + sign in (6.5) –
(6.6)) were used to calculate t(r) and z(r) back in time

6 Ray OB, tB(r) and z(r) can be made differentiable at r = rF
by inserting an interpolating arc between the tB(r) of the L–T
region and the constant tB of the Friedmann region. The general
matching conditions do not require this [12].
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FIG. 10: Continuation of z(r) from Fig. 5 into the Friedmann
region. The redshift becomes too large to handle at r = rlarge
given by (6.9).

from the initial point at the PCPO, with the coordinates

(

r
t

)

ei

=

(

0.3000029697185931
−0.0958721393954025947

)

. (6.10)

The ray reached the L–T/Friedmann boundary at

(

r
t

)

eF

=

(

0.2100014577175866
−0.10919095912654034

)

(6.11)

with the redshift

zeF = 0.37819933974218056. (6.12)

2. Using (6.11) – (6.12) as initial data, (2.9) – (2.10)
(again with the + sign) were integrated to determine the
continuation of t(r) and z(r) into the L–T region. The
proximity of the singularity did not allow t(r) to end
up with a vertical tangent, and the t(r) curve actually
overshot the BB (as can be seen on close inspection of
the inset in Fig. 11). Its end point is at

(

r
t

)

ee

=

(

0.0997339231053535613
−0.12458819154593222

)

(6.13)

with the last z yet calculated being

zee = −0.8051202078031556. (6.14)

In addition to this ray, the main panel in Fig. 11 shows
the PCPO (the uppermost curve) and tB(r) (the lowest
curve), both continued into the Friedmann region. The
third decreasing line is the MRH profile, and the vertical
line marks the L–T/Friedmann boundary.

The inset in Fig. 11 shows the final segment of the
boundary-crossing ray, on which z(r) becomes negative.
The coordinates of the point, at which z = 0 are

(

r
t

)

ez0

=

(

0.099836402226740395
−0.12454907240930377

)

. (6.15)
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FIG. 11: Main panel: The L–T(tB) model matched to Fried-
mann across r = rF, and the ray crossing the boundary that
displays blueshift in the Friedmann region. See text for more
explanation. Inset: The boundary-crossing ray in the neigh-
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the point on the ray where z = 0. The maximum-redshift
hypersurface is far above the upper margin.

The profile of z(r) along this ray is shown in Fig. 12.
The coordinates of the maximum in z are

(

r
t

)

emax

=

(

0.11435427775654181
−0.12276948639632553

)

(6.16)

and the maximal value of z is

zemax = 0.88302700024316949. (6.17)

The point given by (6.16) lies on the MRH profile up
to better than ∆t = 3.6 × 10−8 NTU = 3528 y (the r
coordinates agree by construction).
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FIG. 12: The redshift along the boundary-crossing ray from
Fig. 11. The vertical bar marks r = rF given by (6.1).

Comparing such a composite model with observations
might be difficult. As seen from Fig. 10, the redshift

along ray OB increases with r only up to a maximum at-
tained at robmax given by (5.10), then decreases with in-
creasing r up to the L–T/Friedmann boundary, and then
starts to increase again. In astronomy, it is assumed that
redshift is a monotonically increasing function of distance
(and of look-back time); in fact, redshift is routinely used
as a measure of distance to objects far from the observer.
To test this model, a method of determining distance
independent of redshift would have to be introduced.

VII. CONCLUSIONS

In a general L–T model with nonconstant tB(r), choos-
ing tB nearly constant (i.e., with a sufficiently small
|dtB/dr|), one can move the maximum-redshift hyper-
surface (MRH) to times earlier than recombination. At
those times, the zero-pressure L–T model cannot describe
the Universe. Consequently, no blueshifts will be ob-
served in the after-recombination epoch (Sec. III).

The rest of the paper is devoted to investigating
blueshifts in one particular L–T model, called L–T(tB).
It is the one derived in Ref. [4], in which the ΛCDM func-
tion DL(z) is duplicated using nonconstant tB alone; the
E(r) = −kr2/2 with k given by (2.18) is the same as in a
Friedmann model. In Sec. IV, the MRH is determined for
this model. In Sec. V, the redshift/blueshift profiles along
three characteristic rays in this model are calculated and
displayed. In Sec. VI, the L–T(tB) model matched to
Friedmann is investigated. The matching hypersurface is
chosen so that the L–T(tB) region encompasses all the
type Ia supernovae of the original project [9, 10]. This
matching does not solve the problem of blueshifts be-
cause observers in the Friedmann region would receive
blueshifted rays emitted from the nonconstant Big Bang
in the L–T(tB) region.

The final verdict on the L–T(tB) model is thus: if we
insist on applying it all the way back to the recombination
time, then blueshifted rays will inevitably cross the past
light cone of the present central observer at sufficiently
large z. In the example shown in Fig. 11, blueshifts
would be present beyond z ≈ 1.50087. But this argument
does not “rule out” general L–T models with nonconstant
tB, as shown in Sec. III.

To the attempts at discrediting the usefulness of the L–
T model (or more general ones) for cosmology, one can
give a philosophical answer: objects existing in Nature
do not fulfil mathematical assumptions with perfect pre-
cision. Assumptions such as spherical symmetry, axial
symmetry, isolated body, free fall, ideal gas, incompress-
ible fluid, are in reality fulfilled only up to some degree of
approximation. Why should the Universe be an excep-
tion and arise in an exactly simultaneous Big Bang, when
the theory allows the BB to be extended in (comoving)
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time?7 Anticipating more general solutions of Einstein’s
equations, one should even expect the most general BB
time to be a function of all three spatial variables, possi-
bly limited in generality by the constraint equations.

We generally agree that the Nature acts through math-
ematics. If so, then it is reasonable to assume that it
takes the tools from a generic set, e.g., not a constant
function when nonconstant ones are admissible, not a
function of 2 variables when 3 are possible, etc. Would
Nature ignore all this freedom in order to keep the infla-
tion hypothesis still alive and mainstream astronomers
feeling safe with their current knowledge?

Appendix A: Remarks about Ref. [1]

A comment on the terminology must be made here.
The accelerated expansion of the Universe is not an ob-
served phenomenon. What is observed are redshifts and
apparent brightnesses of the SNIa. In the papers that
first reported accelerated expansion [9, 10], these obser-
vations were interpreted using exclusively the Friedmann
models. Within this class of models, the best fit between
the model parameters and the observations is achieved
when the curvature index k is zero, and the cosmologi-
cal constant Λ has a value that is responsible for approx.
70% of the present energy-density of the Universe (the
current figure is 68% [16]). The accelerated expansion,
driven by Λ, is thus a model-dependent element of inter-
pretation of observations.

The earliest attempt at re-interpreting these obser-
vations using a less simplistic model introduced a void
around the center of symmetry [25–27] (a lower-density
Friedmann region surrounded by a higher-density Fried-
mann background). This pioneering experiment caused
that the term “void models of acceleration” is now just
reflexively used by many authors to denote attempts at
explaining the SNIa observations using models with inho-
mogeneous matter distribution. This term is misleading
and, in fact, incorrect: several such models contain con-
densations instead of voids around the center; see, for
example, Refs. [28] and [19].

The critical remarks presented below concern the con-
crete L–T model chosen by the author as a basis for his
considerations, but not the technical details of Ref. [1].

1. The author of Ref. [1] chose for his investigation the
L–T model with

E = 0 and tB(r) = ae−(r/L)2, (A1)

where a and L are constants. The choice E = 0, justi-
fied by the desire to consider only the “decaying mode” of
perturbation of homogeneity, was too special – see points
2 and 4 below. The choice of tB(r) was not justified;

7 By the way, why should it be exactly homogeneous in the large
and exactly spatially flat in addition?

it was “convenient”. Then, the author proved that the
model defined by (A1) does not pass the observational
test of spectral distortions of the light reaching the cen-
tral observer, and used this as a basis for a far more gen-
eral claim that “models with significant decaying mode
contribution today can be ruled out on the basis of the
expected cosmic microwave background spectral distor-
tion”. This leap from the failure of one handpicked ex-
ample containing two arbitrary constants to the dismissal
of the whole class labelled by two arbitrary functions of r
is a logical error. By the same logic, one could “rule out”
the Robertson – Walker models because one of them (the
Einstein Universe) is static, and so “inconsistent with
various observations”. What Ref. [1] proved was only
the fact that (A1) is not an acceptable choice.

2. To consider the L–T model with a “pure decaying
mode” in connection with “void models of acceleration”,
the function tB(r) must duplicate the DL(z) of (2.14) or
another function fitted to the SNIa observations. Thus,
it cannot be freely chosen. In Ref. [4] it was proven that,
assuming E/M2/3 = −k constant (see point 4 below for
justification), the function DL(z) is duplicated only when
tB(r) has a unique shape different from (A1), while k =
−4.7410812. Consequently, the model (A1) is unrelated
to the “void models of acceleration”.

3. The “decaying mode” was chosen for a kill because
the author was convinced that the “pure growing mode”
had been ruled out already before. Isolating the grow-
ing and decaying modes for separate investigations is not
productive – see the remarks in Ref. [4]. As shown in
Sec. III here, a combination of the two modes allows us
to avoid the problem with blueshifts completely.8 The
vocabulary of growing and decaying modes is borrowed
from investigations in linearized Einstein equations and is
not useful in the exact theory. Within the exact theory,
it is more instructive to deal with quantities that have
direct physical meaning, for example, with density or ve-
locity distributions at different hypersurfaces of constant
time [18, 29, 30].

4. Even so, the “pure decaying mode” is not correctly
defined in Ref. [1]. The increasing perturbations of homo-
geneity are not generated by “small-amplitude variations
in spatial curvature”, but by variations, not necessarily
small, in the function E/M2/3. Thus, to isolate a pure
decaying mode, one must assume E/M2/3 = constant, as
was done in Refs. [4, 5, 31] and [32], and not E = 0, as
did the author of Ref. [1].

5. With tB(r) given by (A1), the function dtB/dr is
nonzero for all r (unlike in Ref. [4] and in the present
paper, where dtB/dr becomes exactly zero at a finite
r). Therefore, even the primary CMB ray, along which
spectral distortions are calculated in Ref. [1], will reach

8 As proved in Ref. [4], when E = 0, the DL(z) relation of the
ΛCDM model cannot be reproduced. This case was included in
Sec. III for completeness only.
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the present central observer with a blueshift, unless the
values of a and L are suitably chosen. The intersection
of this ray with the ZRH can be pushed to before the
recombination epoch by choosing L sufficiently small, but
Ref. [1] does not say whether this was actually taken care
of. Without this, one considers blueshifts being distorted
by blueshifts.

Appendix B: The proof of Lemma 3.1

Let −tB,r = ε > 0 at a given r (from (3.5)). We shall
prove that t → tB when ε → 0.

In constructing the proof it must be remembered that,
given tB(r), the function E(r) is determined by (2.13) –
(2.14). Consequently, when |tB,r| is decreased at a given
r, we have to take into account that E,r /(2E) in (3.3)
will thereby also change, and we do not know how.

Going from −tB,r = ε > 0 to a lower value −tB,r =
ε2 > 0 causes the product on the left-hand side of (3.3)

to also decrease. If it is (t − tB) that decreases, then
the thesis is proved. If it is the other factor that de-
creases, then, in a region with no shell crossings, it may
not become smaller than 3/r. This is because F1(η) > 0
(from (3.6)), E > 0 (by assumption in this case) and
E,r > 0 (when there are no shell crossings), while 3/r is
independent of tB,r: the value of r only depends on the
point at which the whole analysis is done. Since we can

make (−tB,r) arbitrarily small, and
[

E,r
2E F1(η) + 3

r

]

has

the lower bound 3/r, decreasing (−tB,r) will eventually
cause (t− tB) to decrease, too. �

This proof fails when shell crossings are present (E,r <
0) – see the footnote in the paragraph below (3.5).
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[14] M.-N. Célérier, Astronomy and Astrophysics 353, 63
(2000).
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