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I. MOTIVATION

Continuing the research started in Refs. [1] and [2],
the geometry of the quasi-hyperbolic Szekeres models is
investigated. Unlike the quasi-spherical Szekeres mod-
els that have been extensively investigated [3] – [20] and
are rather well understood by now, the quasi-plane and
quasi-hyperbolic models are still poorly explored. This
situation has somewhat improved recently: in Ref. [1] a
preliminary investigation of the geometry of both these
classes was carried out, and in Ref. [2] it was shown that
the physical interpretation of the plane symmetric mod-
els becomes clearer when a torus topology is assumed for
the orbits of their symmetry.

The present paper is an attempt to understand the ge-
ometry of the quasi-hyperbolic model. In Sec. II, the
full set of the β,z ̸= 0 Szekeres solutions is presented.
In Sec. III limitations for the arbitrary functions in the
quasi-hyperbolic models are discussed that result from
the spacetime signature and from the evolution equa-
tion. It is also shown that a set where the mass func-
tion is zero is allowed to exist. In Sec. IV, it is repeated
after Ref. [2] that the quasi-hyperbolic Szekeres mani-
fold is all contained within an apparent horizon, i.e., is
globally trapped. In Sec. VI, the geometry of various
2-dimensional surfaces in the hyperbolically symmetric
subcase is investigated and illustrated with graphs. In
Sec. VII, it is shown what deformations to the surfaces
of constant t and φ ensue in the general quasi-hyperbolic
case. In Secs. VIII – XI various properties of the mass
function in the quasi-spherical models are discussed, in
order to prepare the ground for an analogous discussion
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of the quasi-hyperbolic case. This last task is carried out
in Secs. XII and XIII. The purpose of this was to iden-
tify the volume in a space of constant t, which could be
related to the mass M(z). This goal was not achieved
as intended, but it was shown that M(z) determines the
density of rest mass averaged over the space of constant
time. Section XIV is a summary of the results.

The aim of this paper is to advance the insight into the
geometry of this class of spacetimes. This is supposed to
be the next step after the exploratory investigation done
in Ref. [1].

II. INTRODUCING THE SZEKERES
SOLUTIONS

This section is mostly copied from Ref. [2], mainly in
order to define the notation.

The metric of the Szekeres solutions is

ds2 = dt2 − e2αdz2 − e2β
(
dx2 + dy2

)
, (2.1)

where α and β are functions of (t, x, y, z) to be deter-
mined from the Einstein equations with a dust source.
The coordinates of (2.1) are comoving, so the velocity
field of the dust is uµ = δµ0, and u̇µ = 0.

There are in fact two families of Szekeres solutions,
depending on whether β,z = 0 or β,z ̸= 0. The first family
is a simultaneous generalisation of the Friedmann and
Kantowski – Sachs [21] models. Since so far it has found
no useful application in astrophysical cosmology, we shall
not discuss it here (see Ref. [17]), and we shall deal only
with the second family.

After the Einstein equations are solved, the metric
functions in (2.1) become

eβ = Φ(t, z)eν(z,x,y),

eα = h(z)Φ(t, z)β,z ≡ h(z) (Φ,z +Φν,z ) , (2.2)
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e−ν = A(z)
(
x2 + y2

)
+ 2B1(z)x+ 2B2(z)y + C(z),

where Φ(t, z) is a solution of the equation

Φ,t
2 = −k(z) +

2M̃(z)

Φ
+

1

3
ΛΦ2, (2.3)

while h(z), k(z), M̃(z), A(z), B1(z), B2(z) and C(z) are
arbitrary functions obeying

g(z)
def
= 4

(
AC −B1

2 −B2
2
)
= 1/h2(z) + k(z). (2.4)

The mass density ρ is

κρc2 =

(
2M̃e3ν

)
,z

e2β (eβ) ,z
; κ = 8πG/c4. (2.5)

This family of solutions has in general no symmetry,
and acquires a 3-dimensional symmetry group with 2-
dimensional orbits when A, B1, B2 and C are constant
(then ν,z = 0). The sign of g(z) determines the geometry
of the surfaces of constant t and z and the symmetry of
the ν,z = 0 subcase. The geometry is spherical, plane or
hyperbolic when g > 0, g = 0 or g < 0, respectively.
With A, B1, B2 and C being functions of z, the surfaces
z = const within a single space t = const may have dif-
ferent geometries, i.e., they can be spheres in one part
of the space and surfaces of constant negative curvature
elsewhere, the curvature being zero at the boundary – see
a simple example of this situation in Ref. [1].1 The sign of
k(z) determines the type of evolution when Λ = 0: with
k > 0 the model expands away from an initial singularity
and then recollapses to a final singularity; with k < 0 the
model is ever-expanding or ever-collapsing, depending on
the initial conditions; k = 0 is the intermediate case with
expansion velocity tending to zero asymptotically.
The Szekeres models are subdivided according to the

sign of g(z) into quasi-spherical (with g > 0), quasi-plane
(g = 0) and quasi-hyperbolic (g < 0). The geometry of
the last two classes has, until recently, not been investi-
gated and is not really understood; work on their inter-
pretation was only begun by Hellaby and Krasiński [1],
and somewhat advanced for the quasi-plane models by
the present author [2]. The sign of g(z) imposes limita-
tions on the sign of k(z). For the signature to be the
physical (+−−−), the function h2 must be non-negative
(possibly zero at isolated points, but not in open subsets),
which, via (2.4), means that g(z)− k(z) ≥ 0 everywhere.
Thus, with g > 0 all three possibilities for k are allowed;
with g = 0 only the two k ≤ 0 evolutions are admissible
(k = 0 only at isolated values of z), and with g < 0, only
the k < 0 evolution is allowed.
The quasi-spherical models may be imagined as such

generalisations of the Lemâııtre – Tolman (L–T) model

1 In most of the literature, these models have been considered sep-
arately, but this was only for purposes of systematic research.

in which the spheres of constant mass are non-concentric.
The functions A(z), B1(z) and B2(z) determine how the
center of a sphere changes its position in a space t =
const when the radius of the sphere is increased [16].

Often, it is practical to reparametrise the arbitrary
functions in the Szekeres metric as follows [22]. Even
if A = 0 initially, a transformation of the (x, y) coordi-
nates can restore A ̸= 0, so we may assume A ̸= 0 with
no loss of generality [17]. Then let g ̸= 0. Writing

(A,B1, B2) =

√
|g|

2S
(1,−P,−Q), ε

def
= g/|g|, (2.6)

k = −|g| × 2E, M̃ = |g|3/2M, Φ =
√
|g|R,

we can represent the metric (2.1) as

e−ν√
|g|

def
= E def

=
S

2

[(
x− P

S

)2

+

(
y −Q

S

)2

+ ε

]
, (2.7)

ds2 = dt2 − (R,z −RE ,z /E)2

ε+ 2E(z)
dz2 − R2

E2

(
dx2 + dy2

)
.

(2.8)

When g = 0, the transition from (2.1) to (2.7) – (2.8) is
A = 1/(2S), B1 = −P/(2S), B2 = −Q/(2S), k = −2E,

M̃ = M and Φ = R. Then (2.7) – (2.8) applies with
ε = 0, and the resulting model is quasi-plane.

Equation (2.3), in the variables of (2.8), becomes

R,t
2 = 2E(z) +

2M(z)

R
+

1

3
ΛR2. (2.9)

From now on, we will use this representation. The for-
mula for density in these variables is

κρc2 =
2 (M,z −3ME ,z /E)
R2 (R,z −RE ,z /E)

. (2.10)

For ρ > 0, (M,z −3ME ,z /E) and (R,z −RE ,z /E) must
have the same sign. Note that the sign of both these
expressions may be flipped by the transformation z →
−z, so we may assume that

R,z −RE ,z /E > 0 (2.11)

at least somewhere. In this preliminary investigation we
assume that we are in that part of the manifold, where
(2.11) holds.

In (2.7) – (2.8) the arbitrary functions are indepen-
dent.2 However, (2.7) – (2.8) creates the illusion that
the values ε = +1, 0,−1 characterise the whole space-
time, while in truth all three cases can occur in the same
spacetime.

2 Equation (2.4) defines C =
√

|g|
[(
P 2 +Q2

)
/S + εS

]
/2.
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Within each single {t = const, z = const} surface, in
the case ε = +1, the (x, y) coordinates of (2.1) can be
transformed to the spherical (ϑ, φ) coordinates by

(x− P, y −Q)/S = cot(ϑ/2)(cosφ, sinφ). (2.12)

This transformation is called a stereographic projection.
For its geometric interpretation and for the correspond-
ing formulae in the ε ≤ 0 cases see Refs. [1] and [17].
The shear tensor for the Szekeres models is [17]

σα
β =

1

3
Σ diag (0, 2,−1,−1), where

Σ =
R,tz −R,t R,z /R

R,z −RE ,z /E
. (2.13)

Since rotation and acceleration are zero, the limit σα
β →

0 must be the Friedmann model [17, 23]. In this limit we
have

R(t, z) = r(z)S(t), (2.14)

and then (2.9) implies that

E/r2,M/r3 and tB(z) are all constant. (2.15)

However, with P (z), Q(z) and S(z) still being arbitrary,
the resulting coordinate representation of the Friedmann
model is very untypical. The more usual coordinates re-
sult when

P,z = Q,z = S,z = 0, (2.16)

and r(z) is chosen as the z′ coordinate. (We stress that
this is achieved simply by coordinate transformation, but
writing it out explicitly is an impossible task.) However,
(2.14) and (2.16) substituted in (2.8) give the standard
representation of the Friedmann model only when ε =
+1. With ε = 0 and ε = −1, further transformations are
needed to obtain the familiar form [1, 24, 25].
The above is a minimal body of information about the

Szekeres models needed to follow the remaining part of
this paper. More extended presentations of physical and
geometrical properties of these models can be found in
Refs. [1, 2, 16–19].

III. SPECIFIC PROPERTIES OF THE
QUASI-HYPERBOLIC MODEL

From now on we consider only the case Λ = 0, ε = −1
and only expanding models. The corresponding conclu-
sions for collapsing models follow immediately.
It was stated in Ref. [1] that the surfaces H2 of con-

stant t and z in (2.8) in the quasi-hyperbolic case ε = −1
consist of two disjoint sheets. This was a conclusion from
the fact that with ε = −1 the equation E = 0 has a so-
lution for (x, y) at every value of z, and every curve that
goes into the set E = 0 has infinite length. However, it
will be shown in Sec. VI that the two sheets are in fact

two coverings of the same surface, also in the general non-
symmetric case. Their spurious isolation is a property of
the stereographic coordinates used in (2.8).

Note that with ε = −1 (2.8) shows that for the signa-
ture to be the physical (+−−−)

E(z) ≥ 1/2 (3.1)

is necessary, with E = 1/2 being possible at isolated
values of z, but not on open subsets. We shall also assume

M(z) ≥ 0 (3.2)

for all z, since with M < 0 (2.9) would imply R,tt > 0,
i.e., decelerated collapse or accelerated expansion, which
means gravitational repulsion.

In consequence of (3.1), only one class of solutions of
(2.9) is possible in the quasi-hyperbolic case:

R =
M

2E
(cosh η − 1),

t− tB =
M

(2E)3/2
(sinh η − η). (3.3)

The second of the above determines η as a function of t,
with z being an arbitrary parameter, and then the first
equation determines R(t, z).

Equations (3.1), (3.2) and (2.9) with Λ = 0 imply that
R,t

2 > 0 at all z, i.e., there can be no location in the
manifold at which R,t = 0. In particular, there exists no
location at which R = 0 permanently. The function R
attains the value 0 only at t = tB , i.e., at the Big Bang.
We have, at all points where M > 0,

lim
t→tB

R(t, z) = 0, lim
t→tB

R,t (t, z) = ∞, (3.4)

but R > 0 at all values of z where t > tB . Thus, in
the quasi-hyperbolic model there exists no analogue of
the origin of the quasi-spherical model or of the center
of symmetry of the spherically symmetric model. (This
fact was demonstrated in Ref. [1] by a different method.)

However, a location z = zm0 at which M(zm0) = 0
is not prohibited, even though the parameter η in (3.3)
becomes undetermined when M = 0 ̸= E. Writing the
solution of (3.3) as

t− tB =
M

(2E)3/2

[√
4E2R2/M2 + 4ER/M (3.5)

− ln
(
2ER/M + 1 +

√
4E2R2/M2 + 4ER/M

)]
(where the log-term is the function inverse to cosh) we
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see that the limit of this as M → 0 is3

lim
z→zm0

(t− tB) =
R√
2E

∣∣∣∣
z=zm0

, (3.6)

and the same result follows from (2.9) with M = 0 = Λ.

Note that (3.6) implies R,t (t, zm0) =
√
2E (zm0) – an

expansion rate independent of time. This agrees with
Newtonian intuition – expansion under the influence of
zero mass should proceed with zero acceleration. At all
other locations, where M(z) > 0, the expansion rate

is greater than
√
2E(z), and tends to

√
2E(z) only at

R(t, z) → ∞. However, E(z) at z ̸= zm0 may be smaller
than E(zm0), so the expansion rate in the neighbourhood

of the M = 0 set may in fact be smaller than
√

2E(zm0).
Conversely, at a location where R,t = constant (with

Λ = 0), (2.9) implies that M = 0 (because R,t ̸= 0 in
consequence of E ≥ 1/2,M ≥ 0 and R ≥ 0).
The set where M = 0 may or may not exist in a given

quasi-hyperbolic Szekeres spacetime. It should be noted
that, if it exists, it is a 3-dimensional hypersurface in
spacetime, unlike the origin in the quasi-spherical mod-
els. The latter is a 2-dimensional surface in spacetime
and a single point in each space of constant t because in
the quasi-spherical case M = 0 implies R = 0 via the
regularity conditions.

IV. NO APPARENT HORIZONS

In Ref. [2] it was shown that a collapsing quasi-
hyperbolic Szekeres manifold is all contained within the
future apparent horizon, i.e., that it represents the inte-
rior of a black hole. This is consistent with the fact that
the corresponding vacuum solution (the hyperbolically
symmetric counterpart of the Schwarzschild solution) has
no event horizons and is globally nonstatic [1].
Here, we consider expanding models, and an adden-

dum is needed to the result reported above. Consider a
surface of constant t and z in (2.8), and a family of null
geodesics intersecting it orthogonally. As shown in Refs.
[2] and [16], the expansion scalar for this family is

kµ;µ = 2

∣∣∣∣R,z
R

− E ,z
E

∣∣∣∣ ( R,t√
2E − 1

+ e

)
, (4.1)

where e = +1 for “outgoing” and e = −1 for “ingoing”
geodesics;4 eq. (4.1) was adapted to ε = −1.

3 The result (3.6) shows that the argument used in deriving the
regularity conditions at the center for the Lemâıtre – Tolman
model in Ref. [26], and repeated in Sec. 18.4 of Ref. [17], was
incorrect. The value of the parameter η need not be determined
at the center. However, the resulting regularity conditions are
correct because they can be derived in a different way. Once we
know that R = 0, M = 0 and R ∝ M1/3 at the center, the
behaviour of E at the center follows from eq. (2.9).

4 Since the surfaces of constant t and z are infinite, this labeling is
purely conventional in this case, but the two families are distinct.

For an expanding model R,t > 0, and only past-
trapped surfaces can possibly exist, for which kµ;µ > 0.
Apart from shell crossings the first factor in (4.1) is pos-
itive everywhere. Hence, (4.1) implies

R,t√
2E − 1

+ e > 0. (4.2)

For e = +1, and with R,t > 0 that we now consider, this
is fulfilled everywhere. For e = −1 we get

R,t
2 > 2E − 1 ≥ 0 (4.3)

(the last inequality from (3.1)). With Λ = 0, (4.3) is also
guaranteed to hold everywhere, by (2.9), since M ≥ 0
and R ≥ 0. This means that every surface of constant t
and z in an expanding model is past-trapped at all of its
points. But then, every point of the Szekeres manifold
lies within one such surface. This, in turn, means that
every point of the Szekeres manifold is within a past-
trapped region. Therefore, the whole quasi-hyperbolic
expanding Szekeres manifold is within a past apparent
horizon.

The fact of being globally trapped is a serious limi-
tation on the possible astrophysical applications of the
quasi-hyperbolic model.

V. INTERPRETATION OF THE
COORDINATES OF (2.8)

In order to understand the geometry of (2.8), we begin
with the hyperbolically symmetric subcase, P,z = Q,z =
S,z = 0. It is most conveniently represented as

ds2 = dt2 − R,z
2dz2

2E − 1
−R2

(
dϑ2 + sinh2 ϑdφ2

)
. (5.1)

The two supposedly disjoint sheets of a constant-(t, z)
surface, in the coordinates of (2.8), are

sheet 1 :

(
x− P

S

)2

+

(
y −Q

S

)2

> 1,

sheet 2 :

(
x− P

S

)2

+

(
y −Q

S

)2

< 1. (5.2)

The transformation from sheet 1 to (5.1) is

(x, y) = (P,Q) + S coth(ϑ/2)(cosφ, sinφ), (5.3)

while the transformation from sheet 2 is

(x, y) = (P,Q) + S tanh(ϑ/2)(cosφ, sinφ). (5.4)

This shows that the two sheets are in truth two coordi-
nate coverings of the same surface. The direct coordinate
transformation between the two sheets is the inversion

(x− P, y −Q) =
S2(x′ − P, y′ −Q)

(x′ − P )2 + (y′ −Q)2
. (5.5)
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The circle separating the two sheets, (x − P )2 + (y −
Q)2 = S2, on which E = 0, corresponds to ϑ → ±∞
in the coordinates of (5.1). The center of this circle,
(x, y) = (P,Q), which is in sheet 2, is mapped by (5.4)
to ϑ = 0. The infinity, (x− P )2 + (y −Q)2 → ∞, which
is in sheet 1, is mapped by (5.3) also to ϑ = 0. These
relations are illustrated in Fig. 1.
There is no reason to allow negative values of ϑ in (5.1)

because, as both (5.3) and (5.4) show, the point of co-
ordinates (−ϑ, φ) coincides with the point of coordinates
(ϑ, φ + π), so the ranges ϑ ∈ [0,+∞) and φ ∈ [0, 2π)
cover the whole (ϑ, φ) surface.
Curves that go through ϑ = 0 are seen from (5.1) to

have finite length. At ϑ = 0 we have det (gαβ) = 0, but
the curvature scalars given in Appendix A do not depend
on ϑ, so ϑ = 0 is only a coordinate singularity.
The geometry of the (x, y) surfaces in (2.8) is the same

in the hyperbolically symmetric case and in the full non-
symmetric case with E ,z ̸= 0. In the (x, y) coordinates
of (2.8), ϑ = 0 corresponds to E = −1 in sheet 2, which
is clearly not a singularity, and to E → ∞ in sheet 1.
This seems to be a singularity in (2.8), but the curvature
scalars are not singular there, as shown in Appendix B.
Also the set E = 0 seems to be singular in (2.8), but the
same formulae in Appendix B show that it is nonsingular.
Hence, also in the general case there is no reason to treat
these two sheets as disjoint – they are two coordinate
coverings of the same surface.

VI. GEOMETRY OF SUBSPACES IN THE
HYPERBOLICALLY SYMMETRIC LIMIT

A. Hypersurfaces of constant z

A hypersurface z = z1 = constant has the curvature
tensor

3R0202 = 3R0303/ sinh
2 ϑ = RR,tt ,

3R2323 = R2 sinh2 ϑ
(
1−R,t

2
)
, (6.1)

where (x0, x2, x3) = (t, ϑ, φ). Consequently, it is flat
when R,t = ±1 and curved in every other case (also when
R,t = constant ̸= ±1). However, (2.9) implies that with
R,t = ±1 we have M = 0 and E = 1/2 (recall: we con-
sider only the case Λ = 0). Such a subset in spacetime (if
it exists) is a special case of a neck – see the explanation
to Fig. 10 later in this section.
The metric of a general hypersurface of constant z is

dsz1
2 = dt2 −R2(t, z1)

(
dϑ2 + sinh2 ϑdφ2

)
. (6.2)

To gain insight into its geometry, we first consider its sub-
space given by φ = φ0 = constant. The z1 is a constant
parameter within R and will be omitted in the formulae
below. The corresponding 2-dimensional metric is

dsz1,φ0

2 = dt2−R2(t)dϑ2 ≡
(

dt

dR

)2

dR2−R2dϑ2. (6.3)

This can be embedded in a flat 3-dimensional
Minkowskian space with the metric

dsM
2 = dT 2 − dX2 − dY 2 (6.4)

by

T =

∫ √
1 +

(
dt

dR

)2

dR,

X = R cosϑ, Y = R sinϑ. (6.5)

The embedding (6.5) projects a point of coordinates
(R, ϑ) and points of coordinates (R, ϑ + 2πn), where n
is any integer, onto the same point of the Minkowskian
space (6.4). However, these points do not coincide in
the spacetime (5.1) – the identification of (R, ϑ) with
(R, ϑ + 2π) is not allowed because the transformation
ϑ → ϑ+2π is not an isometry in (5.1). Thus, the surface
with the metric (6.3) is covered by the mapping (6.5) an
infinite number of times. This shows that a hyperboli-
cally symmetric geometry is a rather exotic and compli-
cated entity. We shall see this feature further on, while
considering other surfaces.

Using (2.9) with Λ = 0 we can write(
dt

dR

)2

=
R

2ER+ 2M
, (6.6)

and then the integral in (6.5) can be calculated explicitly:

T =
FG

2E
− M

E
√
2E(2E + 1)

ln
(√

2EF +
√
2E + 1G

)
+D,

(6.7)
where D is a constant and

F
def
=

√
(2E + 1)R+ 2M, G

def
=

√
2ER+ 2M. (6.8)

The constant D can be chosen so that T = 0 at R = 0.
Figure 2 shows the graph of the surface given by the para-
metric equations (6.5) as embedded in the 3-dimensional
space with the metric (6.4). It is not exactly a cone, the
curves T (R) do have nonzero curvature

d2T

dR2
=

M

FG3
, (6.9)

but it is so small everywhere that it would not show up
in a graph. Note that the vertex angle of this conical
surface is everywhere larger than π/4, since dT/dR > 1
from (6.5).

Suppose that we made T unique by choosing D as in-
dicated under (6.8). The vertex of the conical surface in
Fig. 2 corresponds to the Big Bang. If we want the image
in this figure to correspond to the history of the Universe
from the Big Bang up to now, then the upper edge of
the funnel should be at T (Rp), where Rp corresponds to
the present moment. But this Rp depends on the value
of z = z1. Consequently, the height of the funnel will be
different at different values of z.
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I

II

III

(ϑ, ϕ) (x,y)

Sheet 2

Sheet 1

ε = 0ϑ = ∞

ε = ∞

ϑ = 0

(x,y) = (P,Q)

I

II

III

(ϑ, ϕ) (x,y)

Sheet 2

Sheet 1

ε = 0ϑ = ∞

ε = ∞

ϑ = 0

(x,y) = (P,Q)

FIG. 1: Relations between the (ϑ, φ) and (x, y) maps of a constant-(t, z) surface in (2.8) and (5.1). The arrow marked by I corresponds
to the transformation (5.4) that maps the set ϑ = 0 to (x, y) = (P,Q). Arrow II shows that both (5.3) and (5.4) map ϑ → ∞ to the circle
E = 0. Arrow III corresponds to (5.3) that maps ϑ = 0 to E → ∞.

X

Y

T

X

Y

T

FIG. 2: The surface of constant z = z1 and constant φ = φ0

in a spacetime with the metric (5.1). The embedding is in a
Minkowskian 3-space with the metric (6.4). The vertex at R = 0
lies at the Big Bang. The circles represent the surfaces of constant t
and z in (5.1). This embedding is not a one-to-one representation,
the surface in the figure is covered with that of (6.3) an infinite
number of times – see explanation in the text.

Now we go back to (6.2) and consider a surface of con-
stant ϑ = ϑ0. Writing C0 = sinhϑ0 we can write the
2-metric as

dsz1,ϑ0

2 =

[
C0

2 +

(
dt

dR

)2
]
dR2−d (C0R)

2−(C0R)
2
dφ2,

(6.10)
and then the embedding equations are

T =

∫ √
C0

2 +

(
dt

dR

)2

dR

≡ C0

∫ √
1 +

R

2EC0
2R+ 2MC0

2 dR,

X = C0R cosφ, Y = C0R sinφ. (6.11)

Now there is no multiple covering because φ is a cyclic
coordinate also in spacetime, and the surface given by
(6.11) looks qualitatively similar to that in Fig. 2, except
that the presence of C0 introduces some flexibility. The
second line of (6.11) shows that the explicit expression
for T is (6.7) multiplied by C0, with (M,E) replaced by
C0

2(M,E). The radius of a circle of constant R is now
(C0R). The value of C0 is any in (−∞,+∞). When
C0 → 0, the surface degenerates to the straight line X =
Y = 0. In order that C0T in (6.7) allows a well-defined
limit C0 → 0, the constant D must have the form

D =
M lnC0

C0E
√
2E

(
2EC0

2 + 1
) +

D1

C0
, (6.12)

where D1 is another constant. Again, it may be chosen
so that C0T = 0 at R = 0.

From (6.11) we find

lim
C0→∞

dT

d(C0R)
= 1, (6.13)

so in the limit C0 → ∞ the surface (6.11) becomes ex-
actly a cone with the vertex angle π/4. However, with
C0 → ∞ the whole cone recedes to infinity, as can be
seen from (6.7) and (6.11): the vertex of the cone, which
is at R = 0, has the property limC0→∞ (C0T )|R=0 = ∞,
even with the value of D corrected as in (6.12).

Note that the image in Fig. 2 will not change qualita-
tively when we go over from the hyperbolically symmet-
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ric subcase (5.1) to the general (nonsymmetric) quasi-
hyperbolic case (2.7) – (2.8). Each hypersurface of con-
stant z in it is axially symmetric, and its metric can be
transformed to the form (6.2). Moreover, any surface of
constant z and y can have its metric transformed to the
form (6.3). The only change with respect to Fig. 2 is
that the cone-like surfaces, while still being axially sym-
metric, can have their vertex angles different at different
values of z.
For completeness, we now consider the special flat hy-

persurface with R,t = 1, M = 0 and E = 1/2 men-
tioned below (6.1). It can be all transformed to the 3-
dimensional Minkowski form. The transformation to the
Minkowski coordinates (τ,X, Y ) is

τ = R coshϑ, X = R sinhϑ cosφ,

Y = R sinhϑ sinφ. (6.14)

The surfaces of constant R are given by the equation

τ2 −X2 − Y 2 = R2. (6.15)

These are two-sheeted hyperboloids when R > 0 and a
cone when R = 0. They intersect the τ axis horizontally,
and all tend asymptotically to the cone R = 0 as X2 +
Y 2 → ∞ (see Fig. 3).

τ

R = 0

X

τ

R = 0

X

FIG. 3: An axial cross-section through the family of hyperboloids
given by (6.15).

The surface φ = 0 of (6.14) is depicted in Fig. 4. Note,
however, that Figs. 3 and 4 are graphs of a Lorentzian
space mapped into a Euclidean space, so geometrical re-
lations of (6.2) are not faithfully represented.

B. The R(t, z) curves

Where M > 0, we have R,tt < 0 from (2.9) with Λ = 0.
Consequently, R as a function of t must be concave. The
slopes of the curves R(t, z) at various z depend on E(z),

X

τ

R

FIG. 4: The subspace {z = constant, φ = 0} of the spacetime
(5.1) with R = t. The curves of constant X are the hyperbolae
τ2 − R2 = X2 (the one with X = 0 is the straight line τ = R).
The lines of constant τ are the circles X2 +R2 = τ2.

and their initial points at t = tB are determined by tB(z),
so both can vary arbitrarily when we proceed from one
value of z to another. Fig. 5 shows a 3-d graph of an
example of a family of R(t, z) curves corresponding to
different values of z.

z
R

t

t = t

M = 0

  B

FIG. 5: An exemplary collection of the R(t, z) curves for various
fixed values of z. The bang time curve t = tB(z) must be a de-
creasing function of z to avoid shell crossings [1]. The rightmost
line is straight, corresponding to M = 0. The other t(R) functions
in this figure are given by (3.5) with tB(z) = 2−0.5z2, M = z3 and
E = 0.5 + z3/2. The values of z change by equal increments from
0 at the rightmost curve to 1 at the leftmost curve. The curves
have M increasing with z (so |R,tt | is increasing as a function of
z) and E increasing with z (so R,t is increasing). Note that all
curves except the M = 0 one hit the t = tB set with R,t → ∞.
The horizontal curves are those of constant R; the values of R on
them change by equal increments from 0 on the lowest curve to 0.8
on the highest curve.
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C. Hypersurfaces of constant t

Formulae for the curvature of the spaces of constant t
in (2.7) – (2.8) are (from Ref. [1], in notation adapted to
that used here):

3R1212 = 3R1313

= −R (R,z −RE ,z /E) (E,z −2EE ,z /E)
(2E − 1)E2

,

3R2323 = −2ER2

E4
, (6.16)

where the coordinates are labeled as (x1, x2, x3) =
(z, x, y). Equations (6.16) show that a space of constant t
becomes flat when E = 0, but then it has the Lorentzian
signature (+ − −). Consequently, with the Euclidean
signature, these spaces can never be flat.
Now let us consider the surfaces H2 of constant t = t0

and φ = φ0 in (5.1). For the beginning we will assume
that R,z > 0 for all values of z in the region under inves-
tigation. Then we can write the metric of H2 as follows:

ds2
2 =

[dR(t0, z)]
2

2E − 1
+R2dϑ2. (6.17)

When E ≡ 1, this is the metric of the Euclidean plane
in polar coordinates (R, ϑ). With some other constant
values of E, this will be the metric of a cone (see be-
low). With other functional forms of E, it is the metric
of a rotationally symmetric curved surface on which ϑ
is the polar angular coordinate. We encounter here the
same phenomenon that was described in connection with
Fig. 2: in each case, a point of coordinates (R, ϑ) and
points of coordinates (R, ϑ + 2πn), where n is any inte-
ger, are projected onto the same point of the plane, cone
or curved surface, respectively. However, as before, these
points do not coincide in the spacetime (5.1). Examples
of embeddings of H2 in the Euclidean E3 are illustrated
in Fig. 6.
Note that with E = constant ̸= 1 other interesting

geometries come up. If we interpret ϑ as a polar coor-
dinate, then the ratio of a circumference of a circle R =
constant to its radius is 2π

√
2E − 1, which means that

the surfaces (6.17) are ordinary cones when 1/2 < E < 1,
and cone-like surfaces that cannot be embedded in a Eu-
clidean space when E > 1. With E being a function
of z, the cones and/or cone-like surfaces are tangent to
the (z, ϑ) surfaces at the appropriate values of z. Thus,
with E > 1, the (z, ϑ) surfaces cannot be embedded in
a Euclidean space. Whether this surface looks like the
smooth surface of revolution in the lower panel of Fig. 6,
or like a cone, depends on the behaviour of E(z) in the
neighbourhood of the axis R = 0. But attention: if the
value of t0 under consideration is such that t0 > tB(z)
for all z, then the set R = 0 is not contained in the space
t = t0. We will come back to this below. We can discuss
the embedding when we write the metric (6.17) as

ds2
2 =

2(1− E)

2E − 1
dR2 + dR2 +R2dϑ2. (6.18)

Z

X
Y

Z

X
Y

FIG. 6: Upper graph: A surface H2 of constant t and φ in the
metric (5.1) in the case when E ≡ 1. It is locally isometric to the
Euclidean plane, but points having the coordinates (R, ϑ+2πn) do
not coincide with the point of coordinates (R, ϑ), so the projection
of H2 covers the Euclidean plane multiply. The multiple covering
is depicted schematically. Lower graph: When E is not constant,
the embedding of a surface of constant t and φ in the Euclidean
space is locally isometric to a curved surface of revolution, with a
similar multiple covering, also shown schematically. The surface in
the figure is the paraboloid Z = R2 that results when E(z(R)) =
(2R2+1)/(4R2+1), where z(R) is the inverse function to R(t0, z).

Now it is seen that with 1/2 < E < 1 we can embed this
surface in the Euclidean space with the metric ds3

2 =
dX2 + dY 2 + dZ2 by

X = R cosϑ, Y = R sinϑ, Z = ±
∫ √

2(1− E)

2E − 1
dR,

(6.19)
while with E > 1 we can embed it in the Minkowskian
space with the metric ds3

2 = −dT 2 + dX2 + dY 2 by

X = R cosϑ, Y = R sinϑ, T = ±
∫ √

2(E − 1)

2E − 1
dR,

(6.20)
For later reference let us note, from (6.19), that

dZ/dR → 0 when E → 1 and |dZ/dR| → ∞ when
E → 1/2. This observation will be useful in drawing
graphs and interpreting them.

The surfaces on which t and ϑ are constant look similar
to the surfaces described above, with two differences:

1. The coordinate φ changes from 0 to 2π also in the
spacetime (5.1), so there is no multiple covering of the
surfaces in the Euclidean space.

2. The circumference to radius ratio is this time
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2π sinhϑ
√
2E − 1, so the transition from cones to cone-

like surfaces occurs at sinhϑ = 1/
√
2E − 1.

Now let us recall what was said in the paragraph con-
taining (3.4): R(t, z) becomes zero only at t = tB . At
any t > tB , R > 0 for all z, even at M = 0 as (3.6)
shows. Thus, the surfaces in Fig. 6 can extend down to
the axis R = 0 only if, at the given instant t = t1, the
function tB(z) attains the value t1 at some z = z1: then
t = tB at z = z1, so R(t1, z1) = 0. This is illustrated in
Fig. 7. If t2 > tB(z) at all z, then R(t2, z) is nowhere
zero. Let R0 > 0 be the smallest lower bound of R(t2, z);
then R(t2, z) ≥ R0 > 0 at all z, and the surface shown
in Fig. 6 has a hole of radius R0 around the axis. Since
R,t > 0, R0 is an increasing function of t, and the radius
of the hole increases with t. This is illustrated in Fig. 8.

t t = t        2

t = t       1

z  1

z

t  (z) B   

t t = t        2

t = t       1

z  1

z

t  (z) B   

FIG. 7: The hypersurface t = t1 has a nonempty intersection with
the Big Bang set t = tB(z). The function R(t1, z) attains the value
0 at z = z1, and the surface from Fig. 6 extends down to the axis
R = 0. At t = t2 we have t > tB at all values of z, so R(t2, z)
is nowhere zero and has a smallest lower bound R0 > 0. This
means that the corresponding surface from Fig. 6 will have a hole
of radius R0 around the axis. Since R,t > 0, the radius of the hole
increases with time, as shown in Fig. 8.

So far, we have considered R as an independent vari-
able within the space t = t0. Since it is a function of z,
the parameter along the radial direction in Figs. 6 and
8 is in fact the coordinate z. Now let us recall that R is
also a function of t and that at every z there exists such
a t (t = tB), at which R = 0. Thus, as we consider the
spaces t = t0 at consecutive values of t0, the surfaces de-
picted in those figures get gradually “unglued” from the
Big Bang set (which is represented by the axis of sym-
metry R = 0), and expand sideways. At the moment,
at which t0 begins to obey t0 > tB for all z, the surface
becomes completely detached from the axis and contin-
ues to expand sideways. This is when the hole mentioned
above first appears.
Let us also note the double sign in the definition of

Z, (6.19), which was not taken into account in Figs.
6 and 8. It means that each of those surfaces has its
mirror-image attached at the bottom. In summary, the
evolution of those surfaces progresses as shown in Fig.

FIG. 8: The surface of constant t and φ of (5.1), from the bottom
graph in Fig. 6, depicted at two instants t2 > tB (bottom graph)
and t3 > t2 (top graph). The multiple covering of the paraboloid
is no longer taken into account. The hole around the axis expands
along with the whole surface.

9. The functions used for this picture are M = 10|z|3,
E = 0.6+0.5e−|z|, tB = −103|z|+100. The time instants
are (t1, . . . , t6) = (1, 50, 100, 300, 500, 700).

Z

Y

expansion

  t1       t2       t3        t4       t5       t6

  t1       t2       t3        t4       t5       t6

FIG. 9: Evolution of the surface from the lower panel of Fig. 6.
The figure shows the axial cross-section of the surface at several
time instants, t1 < · · · < t6. The Big Bang goes off along the
Z axis, beginning at the top and at the bottom, and progressing
toward the middle. The instant t3 corresponds to the last moment
when the surface has no hole. Multiple covering not shown.

The nondifferentiable cusp at the plane of symmetry
is a consequence of the assumption R,z > 0: to avoid a
singularity in the metric (5.1), E > 1/2 must hold every-
where, and then (6.19) implies |dZ/dR| < ∞ everywhere.
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This means that the upper half of the surface cannot go
over smoothly into the lower half.

Let us now consider the case when R,z = 0 at some z =
zn. To prevent a shell crossing at zn, E(zn) = 1/2 must
also hold, so that limz→zn

(
R,z /

√
2E − 1

)
is finite. This

implies that R,z |zn = 0 for all t (i.e., that the extremum
of R is comoving), and then M,z = E,z = 0 at z = zn
from (2.9). This is an analogue of a neck – an entity well
known from studies of the Lemâıtre – Tolman model [17].
But, as remarked under (6.20), we have dZ/dR → ±∞
where E → 1/2. The evolution then looks like in Fig.
10. The functions used for drawing it are M = 102|z|3,
E = 0.5 + |z|3/2, tB = −103|z|2 + 100, and the time
instants are (t1, . . . , t6) = (1, 50, 100, 200, 300, 400).

Z

Y

expansion

   t1     t2       t3           t4          t5           t6 

   t1     t2       t3           t4          t5           t6 

FIG. 10: The analogue of Fig. 9 for the situation when R,z = 0 at
some z = zn (in the middle horizontal plane). Then the upper half
of each constant-(t, φ) surface goes over smoothly into the lower
half.

The minimum of R with respect to z need not exist in
any space of constant t. (By minimum we mean not only
a differentiable minimum similar to the one in Fig. 10,
but also a cusp at the minimal value like the one in Fig.
9.) It will not exist when the function tB(z) has no upper
bound, i.e., when the Big Bang keeps going off forever,
moving to ever new locations. In that case, the surfaces
shown in the upper half of Fig. 9 will never get detached
from the Big Bang set, only the vertex of each conical
surface will keep proceeding along the axis. In the special
case tB = constant, the whole surface of constant t and φ
gets “unglued” from the axis R = 0 at the same instant.
The image would look similar to Fig. 10, but there would
be no conical surfaces with the vertices progressing along
R = 0. The generators of the surface in the picture are in
general not vertical. They become vertical when R,z = 0
everywhere, i.e., when R = R(t), which can happen only
in the β,z = 0 family of Szekeres solutions that we do not
discuss here.

FIG. 11: Left: The view from above of the surface from the
lower panel in Fig. 6. The circles are images of the curves of
constant R (and thus of constant z). Right: An example of a
corresponding image in the general quasi-hyperbolic case. Now the
geodesic distance between the circles depends on the position along
the circle.

VII. SPACES OF CONSTANT t IN THE
GENERAL QUASI-HYPERBOLIC CASE

The main difference between the hyperbolically sym-
metric case, where E ,z = 0, and the full quasi-hyperbolic
case, where E ,z ≠ 0, is seen in (2.8). Consider two sur-
faces S1 and S2 such that t = t0 = constant on both,
z = z1 on S1 and z = z2 on S2. When E ,z = 0, the
geodesic distance between S1 and S2 along a curve of
constant (x, y) is the same for any (x, y). When E ,z ̸= 0,
this distance depends on (x, y) and varies as the func-
tions P (z), Q(z) and S(z) dictate. Figure 11, left panel,
shows an exemplary family of constant-R curves in a sin-
gle surface of constant t and φ with E ,z = 0. This is a
surface of constant t and (y/x) in the coordinates of (2.8)
– a contour map of the surface from the lower panel in
Fig. 6. With a general E(x, y, z) the geodesic distance
between the constant-R curves will depend on the posi-
tion along each curve, and the whole family would look
like in the lower panel of Fig. 11. 5

VIII. INTERPRETATION OF THE MASS
FUNCTIONS M(z) AND M(z) IN THE

QUASI-SPHERICAL CASE

In the quasi-spherical case, the function M(z) of (2.9),
by analogy with the Newtonian and the Lemâıtre – Tol-
man cases, is understood as the active gravitational mass

5 Fig. 11 is in fact deceiving. The curves shown there as circles
are images of infinite curves, as explained under (6.5), and each
image is covered an infinite number of times.
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inside the sphere of coordinate radius z. In fact, it is puz-
zling why it depends only on z when the mass density
(2.10) so prominently depends also on t, x and y. Some-
what miraculously, as shown below, the denominator in
(2.10) is canceled by the

√
−g11 term inside the inte-

gral
∫
ρ
√
|g3|d3x that determines the mass in a sphere.6

The term containing E ,z in the numerator gives a zero
contribution to the integral. This is consistent with the
fact, known from electrodynamics, that the total charge
of a dipole is zero (see Refs. [11, 17, 20] for the split-
ting of (2.10) into the monopole and the dipole part in
the quasi-spherical case). It is also consistent with the
result of Bonnor [8, 9] that the Szekeres solution can be
matched to the Schwarzschild solution.
The considerations of this and the next three sections

are intended to prepare the ground for an analogous in-
vestigation in the quasi-hyperbolic case further on. The
questions we seek to answer are: Can M still be inter-
preted as mass, and where does the mass M(z) reside
when a surface of constant z has infinite surface area?
Let us calculate, in the quasi-spherical case, the

amount of rest mass within the sphere of coordinate ra-
dius z at coordinate time t, assuming that z = z0 is
the center, where the sphere has zero geometrical radius
(see Ref. [16]). This amount equals M =

∫
V ρ

√
|g3|d3x,

where V is the volume of the sphere and ρ is the mass
density given by (2.10). Substituting for ρ and g3 we get

M =
1

4π

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ z

z0

du[
M,u (u)√
1 + 2EE2

− 3ME ,u√
1 + 2EE3

]
, (8.1)

where u is the running value of z under the integral. Note
that E is the only quantity that depends on x and y, it is
an explicitly given function, and so the integration over
x and y can be carried out:∫ +∞

−∞
dx

∫ +∞

−∞
dy

1

E2
= 4π,

∫ +∞

−∞
dx

∫ +∞

−∞
dy

E ,z
E3

= 0.

(8.2)
(The first of these just confirms that this is the surface
area of a unit sphere.) Using this in (8.1) we get

M =

∫ z

z0

M,u√
1 + 2E

(u)du, (8.3)

which is the same relation as in the LT model,7 and shows
that 1/

√
1 + 2E is the relativistic energy defect/excess

function (when 2E < 0 and 2E > 0 respectively).

6 g3 is the determinant of the metric of the 3-space t = constant
in (2.1).

7 For the quasi-spherical case also other integral relations are sim-
ilar to the ones in the L–T model, which is a consequence of the
fact that the dipole contribution vanishes after averaging over
x-y surface [27].

In the quasi-spherical case we are able to calculate the
integral with respect to x and y over the whole (x, y)
surface because its surface area is finite. Such a calcula-
tion cannot be repeated for the ε ≤ 0 cases because both
integrals analogous to (8.2) are infinite. Let us then con-
sider what happens with M and M when we calculate
the integrals in (8.2) over a part of the sphere.

IX. THE MASS IN THE SPHERICALLY
SYMMETRIC CASE

In nearly all the papers concerning the LT model and
the quasi-spherical Szekeres model it was assumed that
each space of constant t has its center of symmetry (in the
LT case) or origin (in the quasi-spherical Szekeres case),
where M = 0 and R = 0 at all times. We will assume the
same here, but this is an assumption. It is possible that
the center of symmetry is not within the spacetime in the
LT case, and the corresponding quasi-spherical Szekeres
generalization will then have no “origin”.8

For the beginning we will consider the spherically sym-
metric (Lemâıtre–Tolman) subcase, in which P,z = Q,z =
S,z = 0, so P = Q = 0 can be achieved by coordinate
transformations. Then E ,z ≡ 0 in (8.2). Now suppose
that we calculate the integral in the first of (8.2) over
a circular patch C of the sphere (circular in order that
no (x, y) dependence appears from the boundary shape).
The boundary of C is an intersection of the sphere with
a cone whose vertex is at the center of the sphere. Let
the vertex angle θ of the cone be π/n. This translates
to the radius of C in the original (x, y) coordinates being

u0 = S tan(π/2n)
def
= Sβ. Then we have in place of the

first of (8.2)∫
C

d2xy
1

E2
= 4π

u0
2

S2 + u0
2
≡ 2π [1− cos(π/n)]

≡ 4π
β2

1 + β2
. (9.1)

This tends to 4π when n → 1 (u0 → ∞). Note that
the final result does not depend on S – this happened
because we have chosen the coordinate radius in each
circle,

√
x2 + y2 = u0, to be a fixed multiple of S.

In the spherically symmetric case now considered, we
choose the same cone to define the circles of integration
in (9.1) in all surfaces of constant z. Instead of (8.3) we
get for the amount of rest mass within the cone, MC :

MC =
1

4π

∫
C

d2xy

∫ z

z0

du
M,u√

1 + 2EE2

8 The authors are aware of just one paper, in which LT models
without a center of symmetry were considered. These are the
“in one ear and out the other” and the “string of beads” models
of Hellaby [28], described also in Ref. [17]. In both of them,
M ̸= 0 throughout the space.
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=
β2

1 + β2

∫ z

z0

M,u√
1 + 2E

(u)du. (9.2)

The term of (8.1) that contained E ,u disappeared here in
consequence of the assumed spherical symmetry, but it
will not disappear when we go over to the general case,
and its contribution will have to be interpreted.

X. SYMMETRY TRANSFORMATIONS OF A
SPHERE IN THE COORDINATES OF (2.12)

In the spherically symmetric case rotations around a
point are symmetries of the space. In this case, if we
rotate the whole cone around its vertex to any other po-
sition, eq. (9.2) will not change. Each z = const circle
will then be rotated by the same angles to its new po-
sition, and the result of such a rotation will be a cone
isometric to the original one.
However, in the general, nonsymmetric case the

spheres z = constant are not concentric. Suppose we
build, in the general case, a surface composed of circles,
each circle taken from a different sphere. If we rotate
each sphere by the same angles, whatever surface existed
initially, will be deformed into a shape non-isometric to
the original one. We want to calculate the effect of such a
transformation, and for this purpose we need the formu-
lae for the O(3) rotations in the (x, y) coordinates. We
calculate them now.
The generators of spherical symmetry, in the ordinary

spherical coordinates, are [17]

J1 =
∂

∂φ
, J2 = sinφ

∂

∂ϑ
+ cosφ cotϑ

∂

∂φ
,

J3 = cosφ
∂

∂ϑ
− sinφ cotϑ

∂

∂φ
(10.1)

We transform these to the (x, y) coordinates of (2.12),
for the beginning with P = Q = 0, S = 1, by

x = cot(ϑ/2) cos(φ), y = cot(ϑ/2) sin(φ) (10.2)

and obtain

J1 = x
∂

∂y
− y

∂

∂x
,

J2 = 2xy
∂

∂x
+

(
1− x2 + y2

) ∂

∂y
,

J3 =
(
1 + x2 − y2

) ∂

∂x
+ 2xy

∂

∂y
. (10.3)

The transformations generated by J1 are rotations in the
(x, y) plane. To find the transformations generated by J3
we have to solve (see Ref. [17] for explanations):

dx′

dλ
= 1 + x′2 − y′

2
,

dy′

dλ
= 2x′y′, (10.4)

where λ is the parameter of the group generated by J3.
The general solution of this is

y′ = 1/U1, U1
def
= C +

√
C2 − 1 cos(2λ+D),

x′ =
[√

C2 − 1 sin(2λ+D)
]
/U1, (10.5)

where C and D are arbitrary constants of integration.
These have to obey the initial conditions (x′, y′)|λ=0 =
(x, y). After solving for C and D this leads to

x′ =
[
2x cos(2λ) +

(
1− x2 − y2

)
sin(2λ)

]
/U3

U3
def
= 1 + x2 + y2 +

(
1− x2 − y2

)
cos(2λ)

−2x sin(2λ),

y′ = 2y/U3. (10.6)

It is instructive to calculate the effect of the transfor-
mation (10.6) in the (ϑ, φ) coordinates of (10.2). Let
us then take a point of coordinates (x, y) = (x, 0), i.e.,
(ϑ, φ) = (ϑ, 0), and let us apply (10.6) to it. After a little
trigonometry we get

tan(ϑ′/2) =
1− cosϑ cos(2λ)− sinϑ sin(2λ)

sinϑ cos(2λ)− cosϑ sin(2λ)

≡ tan(ϑ/2− λ) =⇒ ϑ′ = ϑ− 2λ, (10.7)

i.e., (10.6) is equivalent to rotating the sphere around the
(ϑ, φ) = (π/2, π/2) axis by the angle (−2λ).

It can now be verified that the quantity:

I(x, y)
def
=

1 + x2 + y2

2y
≡ 1 + x′2 + y′

2

2y′
(10.8)

is an invariant of the transformation (10.6). The set I =
C is the circle x2 + (y − C)2 = C2 − 1.

An arbitrary circle of radius A and center at x = y = 0,
x2 + y2 = A2, is transformed by (10.6) into the circle[

x′ −
(
1 +A2

)
sin(2λ)

(1 +A2) cos(2λ) + 1−A2

]2

+ y′
2

=
4A2

[(1 +A2) cos(2λ) + 1−A2]
2 . (10.9)

The coordinate radius of the (x′, y′) circle is different
from the original radius A except when λ = 0, which is
the identity transformation. But the coordinate radius
is not an invariantly defined quantity. An invariant mea-
sure of the circle, its surface area, does not change under
the transformation (10.6), and neither does the invariant
distance between any two points, as we show below.

The Jacobian of the transformation (10.6) is

∂(x′, y′)

∂(x, y)
=

4

U3
2 . (10.10)

Together with (10.8) and (10.6) this shows that the sur-
face element under the integral (9.2), 4dxdy/E2, does not
change in form after the transformation. (This must be
so, since (10.6) is just a change of variables that does not
change the value of the integral.) Thus, (10.6) preserves
the area of any circle, as is appropriate for a symmetry.
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The invariant distance between the points (x, y) =
(0, 0) and (x, y) = (A, 0) (i.e., the invariant radius of
the original circle referred to in (10.9)) is, from (2.7) –
(2.8) with ε = +1, P = Q = 0, S = 1:∫ A

0

dx

1 + x2
= 2arctanA. (10.11)

The image under (10.6) of any point (x, 0) is (x1(x), 0),
where, from (10.6):

x1(x) =
2x cos(2λ) +

(
1− x2

)
sin(2λ)

1 + x2 + (1− x2) cos(2λ)− 2x sin(2λ)
.

(10.12)
Thus, the image of (0, 0) is (x0, 0), where

x0 =
sin(2λ)

1 + cos(2λ)
. (10.13)

The invariant distance between the images of (0, 0) and
of (A, 0) is then∫ x1(A)

x1(0)

dx1

1 + x1
2
= 2 arctan(x1)|x1(A)

x0
≡ 2 arctanA,

(10.14)
by employing the identity arctanα − arctanβ =
arctan [(α− β)/(1 + αβ)]. This certifies that the invari-
ant distance between the center of a circle and a point on
the circle is the same as the invariant distance between
their images (but the image of the center is no longer the
center of the image-circle, compare (10.9) and (10.13)).

The transformations generated by J2 result from those
for J3 by interchanging x′ with y′ and x with y; then
all the conclusions about invariant properties follow also
for these transformations, and, in consequence, for any
composition of (10.6) with them.

XI. THE MASS IN THE GENERAL
QUASI-SPHERICAL CASE

Now let us consider the general case, and integrals
analogous to (8.2), where the (x, y) integration extends
only over a circular subset of each sphere, the radius of
each circle being a fixed multiple of S. In the general
case, each sphere has a geometrically preferred center at
(x, y) = (P (z), Q(z)), and, for the beginning, we choose
the center of the disc of integration C at that point. As
before, the radius of each circle will be a fixed multiple

of S:
√
x2 + y2

def
= u0 = Sβ. This means, this time

the volume of integration will not be a simple cone, but
a ‘wiggly cone’ – the circles in the different z = const
surfaces will have their centers not on a straight line or-
thogonal to their planes, but on the curve given by the
parametric equations x = P (z), y = Q(z) that is not
orthogonal to the planes of the circles. The result (9.1)
still holds within each z = const surface, but the ana-
logue of the second integral in (8.1), calculated over the
interior of the ‘wiggly cone’ here, will no longer be zero.
Instead, introducing in each z = const surface the polar
coordinates x = P + u cosφ, y = Q+ u sinφ, we get

∫
C

d2xy
E ,z
E3

=

∫ 2π

0

dφ

∫ u0

0

udu
(S,z /2)

(
1− u2/S2

)
− 1

S (P,z u cosφ+Q,z u sinφ)

(S3/8) (1 + u2/S2)
3

≡ 8πSS,z

∫ u0

0

uS,z
(
S2 − u2

)
(S2 + u2)

3 du = 4πSS,z
u0

2

(S2 + u0
2)

2 = 4π
S,z
S

β2

(1 + β2)
2 . (11.1)

In agreement with (8.2) this goes to zero when u0 → ∞. Consequently, from (8.1), (9.2) and (11.1), the total mass
within the wiggly cone is

M =
β2

1 + β2

∫ z

z0

M,u√
1 + 2E

(u)du− 3
β2

(1 + β2)
2

∫ z

z0

MS,u

S
√
1 + 2E

(u)du. (11.2)

It contains a contribution from S,z that is decreasing with
increasing β, i.e., the greater volume we take, the less
significant the contribution from S,z gets. It will vanish
when the integrals extend over the whole infinite range
of x and y (in the limit β → ∞). This can be interpreted
so that in a wiggly cone the dipole components of mass
distribution do contribute to M – but less and less as the
volume of the cone increases. Thus, with such choice of
the integration volume M does not have an immediate

interpretation – but it becomes proportional to the mass
within the cone in the spherically symmetric limit.

As an example, consider the axially symmetric family
of spheres whose axial cross-section is shown in Fig. 12.
The circles are given by the equation(

x−
√
b2 + u2

)2

+ y2 = u2 , (11.3)

where b is a constant that determines the center of the
limiting circle of zero radius, while u is the radius of the
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circles. (The same family of spheres was used in Ref. [1]
to construct Szekeres coordinates for a flat space.) Figure
13, left graph, shows the initial wiggly cone constructed
for these spheres – the one referred to in (11.1) and (11.2).

We derived the transformation (10.6) in the coordi-
nates in which the constants (P,Q, S) were set to (0, 0, 1)
by coordinate transformations. With general values of
(P,Q, S), the result would be

x′ − P

S
=

[
2
x− P

S
cos(2λ) +

(
1− (x− P )2 + (y −Q)2

S2

)
sin(2λ)

]
/U4

y′ −Q = 2
y −Q

U4
,

U4
def
= 1 +

(x− P )2 + (y −Q)2

S2
+

[
1− (x− P )2 + (y −Q)2

S2

]
cos(2λ)− 2

x− P

S
sin(2λ). (11.4)

Now let z = z1 correspond to the base of the wig-
gly cone, where the values of the arbitrary functions are
P1 = P (z1), Q1 = Q(z1) and S1 = S(z1). Apply the
transformation (11.4) with (P,Q, S) = (P1, Q1, S1) to
each sphere intersecting the wiggly cone. In the base
z = z1 this will be a symmetry, in other spheres this will
not be a symmetry. One should in principle calculate
the effect of this transformation in other spheres on the
integrands in (9.2) and (11.1) to see what happens. But
then, (11.4) is merely a change of variables under the in-
tegral that does not change the value of the calculated
integral. Thus, eq. (11.2) applies independently of where
we choose the base of the wiggly cone, and its position
that we chose initially (each circle had its center in the
geometrically distinguished center of the (x, y) surface)
is only necessary to fix the relation between circles cor-
responding to different values of z.
The result of the transformation (11.4) applied to the

wiggly cone of the left graph in Fig. 13 is shown in the
same figure in the right graph.

XII. THE SYMMETRY TRANSFORMATIONS
IN THE HYPERBOLICALLY SYMMETRIC CASE

Before proceeding to the case of interest, let us con-
sider the hyperbolically symmetric subcase, in which
P,z = Q,z = S,z = 0, and so P = Q = 0 by a transfor-
mation of x and y. The symmetry group of the resulting
metric is a subgroup of that for the corresponding vac-
uum solution [1]:

ds2 = −
(
1 +

2m

R

)
dT 2 +

1

1 + 2m/R
dR2

− R2
(
dϑ2 + sinh2 ϑdφ2

)
. (12.1)

The full set of Killing vectors for this metric is

k1
α = δ0

α, k4
α = δ3

α,

k2
α = cosφδ2

α − cothϑ sinφδ3
α,

k3
α = sinφδ2

α + cothϑ cosφδ3
α, (12.2)

-10
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FIG. 12: An axial cross-section through the family of spheres given
by (11.3).

where (x0, x1, x2, x3) = (T,R, ϑ, φ). To find the symme-
tries explicitly, we have to transform (12.2) to the coor-
dinates of (2.8).

We are interested in the transformations within an
(x, y) surface, and those are generated by k2, k3 and k4.
The transformation from the (ϑ, φ) coordinates of (12.1)
to sheet 2 of the (x, y) coordinates of (2.8) is (5.4). The
inverse formulae are

φ = arctan(y/x),

coshϑ =
1 + x2 + y2

1− (x2 + y2)
,
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FIG. 13: Left graph: a wiggly cone constructed for the family of spheres shown in Fig. 12. The vertex angle for this cone is π/32.
Right graph: the result of the transformation (11.4) applied to the cone from the left graph. The initial cone is shown in thin lines. The
rest mass contained in the new wiggly cone is the same as it was in the initial cone. Dotted lines show the image of the initial cone that
would result if each circle of intersection of the original cone with a sphere were rotated by the same angle around the center of its sphere.

sinhϑ =
2
√
x2 + y2

1− (x2 + y2)
. (12.3)

We now transform the Killing fields (12.2) by (12.3). In
the (x, y) coordinates we get for the generators

J1 = x
∂

∂y
− y

∂

∂x
, (12.4)

J2 =
[
1 +

(
y2 − x2

)] ∂

∂x
− 2xy

∂

∂y
, (12.5)

J3 = −2xy
∂

∂x
+

(
1 + x2 − y2

) ∂

∂y
. (12.6)

The J1 generates rotations in the (x, y) surface. To find
the transformations generated by J2, we have to solve
the set

dx′

dλ
= 1 + y′

2 − x′2,
dy′

dλ
= −2x′y′, (12.7)

with the initial condition that at λ = 0 we have (x′, y′) =
(x, y). The general solution of this set is

y′ = 1/W1, W1
def
= − C +

√
C2 + 1 cosh(2λ+D),

x′ = (1/W1)
√
C2 + 1 sinh(2λ+D), (12.8)

where C and D are arbitrary constants to be determined
from x′(0) = x, y′(0) = y. They are

sinhD = 2x/W2, coshD =
(
x2 + y2 + 1

)
/W2,

W2
def
=

√
(x2 + y2 − 1)

2
+ 4y2,

C =
1

2y

(
x2 + y2 − 1

)
. (12.9)

So, finally

x′ = (1/W3)
[
2x cosh(2λ) +

(
1 + x2 + y2

)
sinh(2λ)

]
,

W3
def
= 1−

(
x2 + y2

)
+
(
1 + x2 + y2

)
cosh(2λ)

+2x sinh(2λ),

y′ = 2y/W3. (12.10)

The equations corresponding to (12.7) for the genera-
tor J3 result from (12.7) simply by interchanging x′ with
y′. The corresponding initial condition then results by
interchanging x with y. Thus, from (12.10) we can read
off the transformation generated by J3; it is

x′ = 2x/W4,

W4
def
= 1−

(
x2 + y2

)
+

(
1 + x2 + y2

)
cosh(2λ)

+2y sinh(2λ), (12.11)

y′ = (1/W4)
[
2y cosh(2λ) +

(
1 + x2 + y2

)
sinh(2λ)

]
.

Note that the (x′, y′) given by (12.10) also obey the
third equation in (12.9), so the quantity

I1
def
= =

1

2y

(
x2 + y2 − 1

)
(12.12)

is an invariant of the transformations (12.10). The cor-
responding invariant for (12.11) is

I2
def
= =

1

2x

(
x2 + y2 − 1

)
(12.13)

These facts are helpful in calculations, and so is the fol-
lowing identity that follows from (12.12)

x′2 + y′
2 − 1 ≡ 2

W3

(
x2 + y2 − 1

)
. (12.14)

The fact that I1 is an invariant of (12.10) means that
the transformation (12.10) maps the set I1 = C = con-
stant into itself for every C. This set is a circle of radius√
C2 + 1 and center in the point (x, y) = (0, C).
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The inverse transformation to (12.10) results from
(12.10) by the substitution λ → (−λ). This can be veri-
fied using the above identities.
These same identities can be used to verify that the

transformation (12.10) maps the circle x2+ y2 = A2 into
the following circle in the (x′, y′) coordinates[

x′ −
(
1−A2

)
sinh(2λ)

1 +A2 + (1−A2) cosh(2λ)

]2

+ y′
2

=
4A2

[1 +A2 + (1−A2) cosh(2λ)]
2 . (12.15)

The radius of this new circle equals the original radius,
A, only in two cases: λ = 0, which is an identity trans-
formation, or A = 1. In both cases, also the center of
the circle remains unchanged. The radius meant here is
a coordinate radius that has no invariant meaning. The
meaningful quantity is the geometric radius, which is the
invariant distance between the center of the circle and a
point on its circumference. It can be verified that the
invariant distance between any pair of points is the same
as the invariant distance between their images.
Below we present some remarks about the transforma-

tion (12.10). The same statements apply to (12.11).
The Jacobian of the transformation (12.10) is

∂(x′, y′)

∂(x, y)
=

4

W3
2 , (12.16)

which, together with (12.14), shows that the integrand in
the integral

∫
d2xy/E2 is form-invariant under this trans-

formation. In this integral, (12.10) is an ordinary change
of variables, and the area of integration in the (x′, y′)
variables will be an image of the original area under the
same transformation. This means that also the value of
this integral is an invariant of (12.10). Thus, if we choose
the region of integration to be a circle around a point, it

does not matter where the center of the circle is because
we can freely move the circle around the (x, y) surface by
symmetry transformations without changing its area.

XIII. THE MASS FUNCTION IN THE
QUASI-HYPERBOLIC CASE

In the quasi-hyperbolic case, the (x, y) surfaces are in-
finite, so they do not surround any finite volume. Thus,
unlike in the quasi-spherical case, we should not expect
the value of the mass function M(z) to correspond to
a mass contained in a well-defined volume. We should
rather observe the analogy to a solid cylinder of finite ra-
dius and infinite length in Newton’s theory, in which the
mass density depends only on the radial coordinate. Its
exterior gravitational potential is determined by a func-
tion that has the dimension of mass, whose value is pro-
portional to mass contained in a unit of length of the
cylinder.

We now proceed by the same plan as we did in the
quasi-spherical case. We can freely move a circle of inte-
gration around each (x, y) surface. We first consider the
hyperbolically symmetric case and we erect over a cho-
sen circle a solid column in the z direction that contains
a certain amount of rest mass. Then we go over to the
quasi-hyperbolic nonsymmetric space and erect a wiggly
column that contains the same amount of rest mass.

We will integrate over the interior of a circle in sheet 2
whose radius u0 is, for the beginning, unknown. We only
know that the radius must be smaller than S, so that
the integration region does not intersect the circle where
E = 0 (since, we recall, E = 0 is the image of infinity, and
the integral over a region that includes E = 0 would be
infinite). Thus, instead of (9.1) and (11.1) we have this
time

∫
U

d2xy
1

E2
=

∫ 2π

0

dφ

∫ u0

0

4uS2

(u2 − S2)
2 du = 4π

u0
2

S2 − u0
2
, (13.1)∫

U

d2xy
E ,z
E3

=

∫ 2π

0

dφ

∫ u0

0

−8uS2

(u2 − S2)
3

(
u cosφP,z +u sinφQ,z +u2S,z /(2S) + SS,z /2

)
du =

4πSS,z u0
2

(u0
2 − S2)

2 .

The first integral in (13.1) will be independent of S when
u0 is a fixed multiple of S:

u0 = βS, β < 1. (13.2)

Then ∫
U

d2xy
1

E2
= 4π

β2

1− β2
,

∫
U

d2xy
E ,z
E3

=
4π(S,z /S)β

2

(1− β2)
2 . (13.3)

Instead of (11.2) we now have:

M =
β2

1− β2

∫ z

z0

du
M,u (u)√
2E − 1

− β2

(1− β2)
2

∫ z

z0

du
3MS,u

S
√
2E − 1

. (13.4)
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The meaning of the limits of integration has to be
explained here. In the quasi-spherical case, and in the
spherically symmetric LT subcase, one usually assumes
that each space of constant t has its center of symmetry,
where M = 0 = R. As explained at the beginning of Sec.
IX, this is an additional assumption – the center of sym-
metry need not belong to the spacetime. But the center
of symmetry, or origin, is the natural reference point at
which the mass function has zero value. In the quasi-
hyperbolic case now considered, a similar role is played
by the set M = 0, so we will assume that this set exists.
Again, as mentioned earlier, this set is a 2-dimensional
surface in each space of constant t, and not a single point.
With this assumption made, z0 in (13.4) will be the

value of z at which M(z0) = 0. In addition, we assume
that (M,u /

√
2E − 1) and [S,u /(S

√
2E − 1)] are finite at

z = z0 and in a neighbourhood of z0, so that both inte-
grals in (13.4) tend to zero as z → z0.
These equations are very similar to the corresponding

ones in the quasi-spherical case, (11.1) – (11.2), so one
is tempted to interpret M , by analogy with that case, as
a quantity proportional to the active gravitational mass
contained within a solid (wiggly) tube with circular sec-
tions, the radius of a circular section at z = z1 being
βS(z1). The base of the tube is in the surface (t = t0 =
const, z), its coordinate height is (z − z0), and its top
is at (t, z) = (t0, z0). There is no problem with this in-
terpretation in the hyperbolically symmetric case, where
S,u = 0 and the second integral in (13.4) vanishes.
However, there is a significant difficulty when going

over to the quasi-hyperbolic case. In the quasi-spherical
case we were free to take the limit of the integral extend-
ing over the whole sphere, which was β → ∞. Here, the
integral over the whole hyperboloid would correspond to
β → 1, and in this limit all the integrals (13.1) – (13.4)
become infinite. Worse still, the contribution from the
dipole – the second integral in (13.4) – tends to infinity
faster than the monopole component (the first integral),
while in the spherical case increasing the area of integra-
tion caused decreasing the influence of the dipole.
We can do another operation on (13.4) that will shed

some light on the meaning of M . The volume of the
region containing the rest mass M is

V =

∫ z

z0

du

∫
U

d2xy
√
|g3(t, u, x, y)|, (13.5)

where g3 is the determinant of the metric of the 3-
dimensional subspace t = constant of (2.1), thus

V =

∫ z

z0

du

∫
U

d2xy
R2 (R,u −RE ,u /E)√

2E − 1E2
. (13.6)

This has the same structure as the integral representing
M. Since R and E do not depend on x and y, the inte-
gration with respect to (x, y) can be carried out, and by
(13.1) – (13.3) we get

V =
4πβ2

1− β2

∫ z

z0

R2R,u√
2E − 1

du

− 4πβ2

(1− β2)
2

∫ z

z0

R3S,u

S
√
2E − 1

du. (13.7)

For the ratio M/V we now calculate two consecutive lim-
its: first β → 1, to cover the whole of each z = constant
hyperboloid, and then z → z∞, where z∞ is the value
of z at which R → ∞, to cover the whole t = constant
space. After taking the first limit, we get

lim
β→1

M
V

=

[∫ z

z0

3MS,u

S
√
2E − 1

du

]/[
4π

∫ z

z0

R3S,u

S
√
2E − 1

du

]
.

(13.8)
Since in general (apart from special forms of the functions
involved) both the numerator and the denominator above
become infinite when z → z∞, we apply the de l’Hôpital
rule and obtain

lim
z→z∞

lim
β→1

M
V

= lim
z→z∞

3M

4πR3
. (13.9)

The l.h.s. of the above is the global average of rest mass
M per volume. The r.h.s. looks very much like the same
type of global average for the active gravitational mass
M , except that it is taken with respect to a flat 3-space.

A very similar result follows when we take z → z0
instead of z → z∞ in (13.8). Then both the numerator
and denominator tend to zero and we obtain

lim
z→z0

lim
β→1

M
V

= lim
z→z0

3M

4πR3
. (13.10)

On the l.h.s here we have a global average of M/V over
the (x, y) surface taken at the value of z at which M = 0.

Equation (13.10) results also when the integrals in
(13.4) – (13.8) are taken over the interval [z1, z2], where
z0 < z1 < z2 < z∞, and then the limit z2 → z1 is taken.

All the calculations in this section were done in sheet
2 of the (x, y) map. The corresponding results for sheet
1 are obtained by taking all integrals with respect to u
over the interval [u0,∞) (with u0 > S now) instead of
[0, u0], substituting 1/u0 for u0 in (13.1), and 1/β for β
(with the new β obeying β > 1) in (13.3), (13.4) and
(13.7). Equations (13.8) – (13.10) do not change.

The meaning of the limits on the r.h. sides of (13.9)
and (13.10) requires further investigation. Note that they
arise from the dipole contributions to mass and volume.

XIV. SUMMARY

The aim of this paper was to clarify the geometrical
structure of the quasi-hyperbolic Szekeres models [3, 4]
given by (2.7) – (2.9), and of the associated hyperbol-
ically symmetric dust model given by (5.1). The main
results achieved are the following:

1. Although there exists no origin, where R would be
zero permanently, a set where M = 0 can exist. At
this location, R,t is constant (section III).
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2. The whole spacetime is both future- and past- glob-
ally trapped (section IV).

3. The geometrical interpretation of the (x, y) coor-
dinates in a constant-(t, z) surface was clarified in
Sec. V. Contrary to an earlier claim [1], this sur-
face consists of just one sheet, doubly covered by
the (x, y) map.

4. The geometries of the following surfaces for the
metric (5.1) were shown in illustrations, all of them
in Sec. VI:

(a) z = constant, φ = 0 for (5.1) in Figs. 2 – 4.

(b) The collection of R(t, z) curves in Fig. 5.

(c) t = constant, φ = 0 for (5.1) in Figs. 6 and 8.

It turned out that the surfaces listed under (a) are
locally isometric to ordinary surfaces of revolution
in the Euclidean space (in special cases to a plane
and a cone) when E ≥ 1, but cover the latter an
infinite number of times. When 1/2 < E < 1,
they cannot be embedded in a Euclidean space even
locally. The values E ≤ 1/2 are prohibited by the
spacetime signature.

The time evolution of the surfaces under 3(c) was
illustrated in Figs. 9 and 10.

5. For the general metric (2.7) – (2.8), the geometry of
the surfaces t = constant, φ = 0 was investigated in
Sec. VII and shown in Fig. 11. The other surfaces
listed above are the same as in the hyperbolically
symmetric case (5.1).

6. In Secs. VIII – XI a detailed analysis was car-
ried out of the relation between the mass function
M(z) and the sum of rest masses in a volume M(z)
in the quasi-spherical Szekeres model. The func-
tion M(z) represents the active gravitational mass
within a sphere of coordinate radius z, while M(z)
is the sum of rest masses of particles contained in
the same volume:

M =

∫
V

√
|g3|ρd3x, (14.1)

where V is any volume in a space of constant t = t0,
g3 is the determinant of the metric in that space
and ρ is the mass density at t = t0. The relation
(8.3) follows in the limit when V is the volume of the
whole space t = t0. The calculations in Secs. VIII
– XI demonstrated how to calculate (14.1) within
various relevant volumes.

7. In Secs. XII and XIII calculations analogous to
those from Secs. VIII – XI were carried out for
the quasi-hyperbolic Szekeres models. The aim
was to interpret the function M(z) in this case by
identifying the volume in which the active gravi-
tational mass is contained. Integrals analogous to
(14.1) can be calculated, but the full analogy with

the quasi-spherical models follows only in the (hy-
perbolically) symmetric case. In the general case,
terms arising from the dipole component of the
mass distribution cause difficulties that were not
fully resolved. It has only been demonstrated that
the average value of M/V over the whole space
t = t0 is determined by the average value of M/V0,
where V0 is the flat space limit of V.
This problem requires further investigation, but it
is hoped that the results achieved here will be of
use for that purpose.

APPENDIX A: THE CURVATURE TENSOR FOR
THE METRIC (5.1)

The formulae given below are the tetrad components
of the curvature tensor for the metric (5.1). The tetrad
is the orthonormal one given by

e0 = dt, e1 =
R,z√
2E − 1

dz,

e2 = Rdϑ, e3 = R sinhϑdφ, (A1)

with the labeling of coordinates (t, r, ϑ, φ) =
(x0, x1, x2, x3). The components given below are
scalars, so any scalar polynomial in curvature compo-
nents will be fully determined by them. Since they do
not depend on ϑ, they have no singularity caused by any
special value of ϑ. �

R0101 =
2M

R3
− M,z

R2F
, (A2)

R0202 = R0303 =
1

2
R2323 = −M

R3
, (A3)

R1212 = R1313 =
M

R3
− M,z

R2F
. (A4)

The formulae in both appendices were calculated by
the algebraic program Ortocartan [29, 30].

APPENDIX B: THE CURVATURE TENSOR FOR
THE METRIC (2.8)

The formulae given below are the tetrad components
of the curvature tensor for the metric (2.8) with ε = −1.
The tetrad is the orthonormal one given by

e0 = dt, e1 =
F√

2E − 1
dz,

e2 =
R

E
dx, e3 =

R

E
dy, (B1)

with the labeling of coordinates (t, z, x, y) =
(x0, x1, x2, x3), where E is given by (2.7) and

F
def
= R,z −RE ,z /E . (B2)
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The components given below are scalars, so any scalar
polynomial in curvature components will be fully deter-
mined by them.

R0101 =
2M

R3
+

3ME ,z
R2EF

− M,z
R2F

, (B3)

R0202 = R0303 =
1

2
R2323 = −M

R3
, (B4)

R1212 = R1313 =
M

R3
+

3ME ,z
R2EF

− M,z
R2F

. (B5)

Note that these reproduce (A2) – (A4) when E ,z = 0.
We wish to find out whether the sets E = 0 and E → ∞

are curvature singularities. For this purpose it is useful
to introduce the coordinates (ϑ, φ) by (5.3). Since the
quantities (B3) – (B5) are scalars, we only need to sub-
stitute (5.3) in them. The two suspected sets become
ϑ → ∞ and ϑ = 0, respectively. After the transforma-
tion we have

E =
S

2 sinh2(ϑ/2)
, (B6)

E ,z =
S,z

2 sinh2(ϑ/2)

[
1− 2 cosh2(ϑ/2)

]

− coth(ϑ/2) (P,z cosφ+Q,z sinφ) . (B7)

The only quantity in (B3) – (B5) that depends on ϑ is
E ,z /(EF ). Using (B6) – (B7) we easily find

lim
ϑ→∞

E ,z
EF

=
1

R
, (B8)

lim
ϑ→0

E ,z
EF

=
1

R,z +RS,z /S
. (B9)

The loci where these can become infinite do not depend
on ϑ. Hence, ϑ → ∞ and ϑ = 0 are not curvature singu-
larities, and neither are E = 0 or E → ∞. �

Acknowledgements The research for this paper was
inspired by a collaboration with Charles Hellaby, initi-
ated in 2006 at the Department of Mathematics and Ap-
plied Mathematics in Cape Town. It was supported by
the Polish Ministry of Education and Science grant no N
N202 104 838.

[1] C. Hellaby and A. Krasiński, Phys. Rev. D77, 023529
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