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The set of differential equations obeyed by the redshift in the general �0 � 0 Szekeres spacetimes is

derived. Transversal components of the ray’s momentum have to be taken into account, which leads to a

set of 3 coupled differential equations. It is shown that in a general Szekeres model, and in a general

Lemaı̂tre-Tolman (L-T) model, generic light rays do not have repeatable paths (RLPs): two rays sent from

the same source at different times to the same observer pass through different sequences of intermediate

matter particles. The only spacetimes in the Szekeres class in which all rays are RLPs are the Friedmann

models. Among the proper Szekeres models, RLPs exist only in the axially symmetric subcases, and in

each one the RLPs are the null geodesics that intersect each t ¼ constant space on the symmetry axis. In

the special models with a 3-dimensional symmetry group (L-T among them), the only RLPs are radial

geodesics. This shows that RLPs are very special and in the real Universe should not exist. We present

several numerical examples which suggest that the rate of change of positions of objects in the sky, for the

studied configuration, is 10�6–10�7 arc sec per year. With the current accuracy of direction measurement,

this drift would become observable after approximately 10 years of monitoring. More precise future

observations will be able, in principle, to detect this effect, but there are basic problems with determining

the reference direction that does not change.
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I. THE MOTIVATION

The quasispherical Szekeres solutions have recently be-
gun to be taken seriously as cosmological models [1–7].
For this application, one has to know the equations obeyed
by the redshift. The corresponding equation for radial null
geodesics in the Lemaı̂tre-Tolman (L-T) model [8,9] was
derived long ago by Bondi [10], see also Ref. [11]. The
generalization to the Szekeres geometry is nontrivial be-
cause in general there are no radial geodesics in the latter
[12,13]. Consequently, the transversal components of the
ray’s momentum necessarily have to be taken into account,
and a set of 3 coupled differential equations is obtained.
These equations can then be applied to nonradial geodesics
in the L-T model.

The purpose of this paper is to derive the redshift
propagation equations in a general1 Szekeres model of
the �0 � 0 family [11], so that they can be numerically
solved and applied in various situations.

In Sec. II, the Szekeres models are introduced. In Sec. III
it is pointed out that the Bondi redshift equation for radial
null geodesics in the L-T model is in fact an approxima-
tion, the small parameter being the period of the electro-
magnetic wave. The same is true for the equations derived
here. In Sec. IV, the general equations of null geodesics in
Szekeres models are presented. In Sec. V, the set of redshift

equations for the Szekeres models is derived. In Sec. VI,
conditions are discussed under which light rays between a
given source and a given observer proceed through always
the same intermediate matter particles; such rays are
termed ‘‘repeatable light paths’’, RLPs. In Sec. VII, the
equations of Secs. V and VI are applied to general null
geodesics in the L-T model and in the associated plane-
and hyperbolically symmetric models. It is shown there
that in these models the only RLPs are the radial null
geodesics. Sec. IX is a brief summary of the results.

II. THE SZEKERES SOLUTIONS

The Szekeres solutions [14,15] follow when the metric

ds2 ¼ dt2 � e2�ðt;r;x;yÞdr2 � e2�ðt;r;x;yÞðdx2 þ dy2Þ; (2.1)

is substituted in the Einstein equations with a dust source,
assuming that the coordinates of (2.1) are comoving, so
that the velocity field is u� ¼ ��

0 (with ðx0; x1; x2; x3Þ ¼
ðt; r; x; yÞ).
There are two families of Szekeres solutions, depending

on whether �;r ¼ 0 or �;r � 0. The first family is a simul-
taneous generalization of the Friedmann and Kantowski-
Sachs [16] models. Since so far it has found no useful
application in astrophysical cosmology, we shall not dis-
cuss it here (see Ref. [11]). After the Einstein equations are
solved, the metric functions in the second family become

e� ¼ �ðt; rÞe�ðr;x;yÞ;
e� ¼ hðrÞ�ðt; rÞ�;r � hðrÞð�;r þ��;r Þ;

e�� ¼ AðrÞðx2 þ y2Þ þ 2B1ðrÞxþ 2B2ðrÞyþ CðrÞ;
(2.2)

*akr@camk.edu.pl
†Krzysztof.Bolejko@astro.ox.ac.uk
1General means not only quasispherical. The generalization to

cover the quasiplane and quasihyperbolic cases is immediate, so
it would not make sense to leave it out.
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where the function �ðt; rÞ is a solution of the equation

�;t
2 ¼ �kðrÞ þ 2MðrÞ

�
þ 1

3
��2; (2.3)

while hðrÞ, kðrÞ, MðrÞ, AðrÞ, B1ðrÞ, B2ðrÞ and CðrÞ are
arbitrary functions obeying

gðrÞ ¼def 4ðAC� B1
2 � B2

2Þ ¼ 1=h2ðrÞ þ kðrÞ: (2.4)

The mass density in energy units is

�� ¼ ð2Me3�Þ;r
e2�ðe�Þ;r

; � ¼ 8�G=c4: (2.5)

Whenever ðe�Þ;r ¼ 0 and ð2Me3�Þ;r � 0, a shell crossing
singularity occurs. It is similar to the shell crossing singu-
larity in the L-T models, but with a difference. In a quasi-
spherical model a shell crossing may occur along a circle,
or, in exceptional cases, at a single point, and not at a whole
surface of constant t and r, as was the case in the L-T
models.

As in the L-T model, the bang time function follows
from (2.3):

Z �

0

de�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kþ 2M=e�þ 1

3�
e�2

q ¼ t� tBðrÞ; (2.6)

The solutions of the above equation for � � 0 involve
elliptic functions and were first studied by Barrow and
Stein-Schabes [17].

As seen from (2.1) and (2.2), the Szekeres models are
covariant with the transformations r ¼ fðr0Þ, where fðr0Þ is
an arbitrary function.

The Szekeres metric has in general no symmetry, but
acquires a 3-dimensional symmetry group with
2-dimensional orbits when A, B1, B2 and C are all constant
(that is, when �;r ¼ 0).

The sign of gðrÞ determines the geometry of the
2-surfaces of constant t and r (and the symmetry of the
constant A, B1, B2 and C limit). The geometry of these
surfaces is spherical, planar or hyperbolic (pseudospheri-
cal) when g > 0, g ¼ 0 or g < 0, respectively. With A, B1,
B2 and C being functions of r, the surfaces r ¼ const
within a single space t ¼ const may have different geome-
tries, i.e. they can be spheres in one part of the space and
the surfaces of constant negative curvature elsewhere, the
curvature being zero at the boundary.

The sign of kðrÞ determines the type of evolution; with
k > 0 ¼ � the model expands away from an initial singu-
larity and then recollapses to a final singularity, with
k < 0 ¼ � the model is either ever-expanding or ever-
collapsing, depending on the initial conditions; k ¼ 0 is
the intermediate case corresponding to the ‘‘flat’’
Friedmann model (k ¼ 0 can also occur on a 3-surface as
the boundary between a region with k > 0 and another one

with k < 0). The sign of kðrÞ influences the sign of gðrÞ.
Since 1=h2 in (2.4) must be non-negative,2 we have the
following: With g > 0 (spherical geometry), all three types
of evolution are allowed, with g ¼ 0 (plane geometry), k
must be nonpositive (only parabolic or hyperbolic evolu-
tions are allowed), and with g < 0 (hyperbolic geometry),
k must be strictly negative, so only the hyperbolic evolu-
tion is allowed.
The Friedmann limit follows when �ðt; rÞ ¼ �1ðrÞSðtÞ.

No further specialization of the Szekeres functions is
needed; the limiting Friedmann model is represented in
the little-known Goode-Wainwright [18] coordinates, see
also Ref. [19].
The Szekeres models are subdivided according to the

sign of gðrÞ into the quasispherical (with g > 0), quasi-
plane (g ¼ 0) and quasihyperbolic (g < 0). Despite sug-
gestions to the contrary made in the literature, the
geometry of the latter two classes has not been investigated
at all and is not really understood; see Refs. [20,21] for
recent work on their interpretation. Only the quasispherical
model has been rather well investigated, and found useful
application in astrophysical cosmology. However, includ-
ing g � 0 in the redshift equations causes no complication,
so we consider here an arbitrary g.
The quasispherical model may be imagined as a general-

ization of the L-T model in which the spheres of constant
mass are made nonconcentric. The functions AðrÞ, B1ðrÞ
and B2ðrÞ determine how the center of a sphere changes its
position in a space t ¼ const when the radius of the sphere
is increased or decreased [22]. Still, this is a rather simple
geometry because all the arbitrary functions depend on one
variable, r.
It is often convenient to reparametrize the Szekeres

metric as follows [23]. Even if A ¼ 0 initially, a trans-
formation of the ðx; yÞ-coordinates can restore A � 0, so
we may assume A � 0 with no loss of generality [11].

Then let g � 0. Writing A ¼ ffiffiffiffiffiffijgjp
=ð2SÞ, B1 ¼

� ffiffiffiffiffiffijgjp
P=ð2SÞ, B2 ¼ � ffiffiffiffiffiffijgjp

Q=ð2SÞ, "¼defg=jgj, k ¼ jgjek
and � ¼ ffiffiffiffiffiffijgjp e�, we can represent the metric (2.2) as3

e�� ¼
ffiffiffiffiffiffi
jgj

q
E;

E ¼def ðx� PÞ2
2S

þ ðy�QÞ2
2S

þ "S

2
;

ds2 ¼ dt2 � ð�;r ��E;r =EÞ2
"� kðrÞ dr2 ��2

E2
ðdx2 þ dy2Þ;

(2.7)

21=hðrÞ can be zero at isolated points—it is then either a
coordinate singularity or a neck or belly—but not on open
intervals.

3The tildes were dropped in (2.7) and in all further text. The�

in (2.7) is in fact e� and the kðrÞ is ekðrÞ. The redefinitions imply,

via (2.4), C ¼ ffiffiffiffiffiffijgjp ½ðP2 þQ2Þ=Sþ "S�=2, h2 ¼ 1=½jgjð"� ekÞ�
and M ¼ ffiffiffiffiffiffijgjp 3 eM. The M used from now on is in fact eM.
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where, so far, " ¼ �1 (þ 1 for the quasispherical and�1
for the quasihyperbolic model). When g ¼ 0, the transition
from (2.2) to (2.7) is A ¼ 1=ð2SÞ, B1 ¼ �P=ð2SÞ, B2 ¼
�Q=ð2SÞ and � is unchanged.4 Then (2.7) applies with
" ¼ 0, and the resulting model is quasiplane.

The parametrization introduced above makes several
formulae simpler, mainly because the constraint (2.4) is
identically fulfilled in it. However, this parametrization
obscures the fact, evident in (2.1)–(2.4), that the same
Szekeres model may be quasispherical in one part of the
spacetime, and quasihyperbolic elsewhere, with the bound-
ary between these two regions being quasiplane; see an
explicit simple example in Ref. [20]. In most of the litera-
ture published so far, these models have been considered
separately, but this was either for purposes of systematic
research, or with a specific application in view that fixed
the sign of gðrÞ.

Equation (2.3), is formally identical to the Friedmann
equation, but with k andM depending on r, so each surface
r ¼ const evolves independently of the others. The solu-
tions �ðt; rÞ are the same as the corresponding L-T solu-
tions, and are unaffected by the dependence of the Szekeres
metric on the ðx; yÞ coordinates.

As defined by (2.2) and (2.3), the Szekeres models
contain 8 functions of r, of which only 7 are arbitrary
because of (2.4). The parametrization of (2.7) turns gðrÞ
to a constant parameter ", thus reducing the number to 6.
By a choice of r (still arbitrary up to now), we can fix one
more function (for example, by defining r0 ¼ MðrÞ). Thus,
the number of arbitrary functions that correspond to physi-
cal degrees of freedom is 5.

In the following, we will represent the Szekeres solu-
tions with�;r � 0 in the parametisation introduced in (2.7).
The formula for mass density in these variables is

�� ¼ 2ðM;r �3ME;r =EÞ
�2ð�;r ��E;r =EÞ

: (2.8)

The shear tensor is

	�
� ¼ 1

3

�
�;tr��;t �;r =�

�;r ��E;r =E

�
diagð0; 2;�1;�1Þ; (2.9)

and the scalar of expansion is


 ¼ u�;� ¼ 2�;t
�

þ�;tr ��;t E;r =E
�;r ��E;r =E

: (2.10)

III. REMARKS ON THE BONDI REDSHIFT
EQUATION IN THE L-T MODEL

The L-T model is a special case of the quasispherical
Szekeres models that follows from (2.7) when " ¼ þ1 and
the functions P, Q, S are all constant. With a different

representation of the coordinates on a sphere, the resulting
metric is:

ds2 ¼ dt2 � R;r
2

1þ 2EðrÞ dr
2 � R2ðt; rÞðd#2 þ sin2#d’2Þ;

(3.1)

and the equation of an incoming radial null geodesic is

dt

dr
¼ � R;r ðt; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2E
p : (3.2)

Bondi’s derivation [10] of the redshift equation for this
geodesic is as follows. Take a light signal obeying (3.2), the
equation of its trajectory (the solution of (3.2)) is

t ¼ TðrÞ (3.3)

Take a second light signal, emitted from the same radial
coordinate r, but later (as measured by the time coordinate
t) by �. The equation of its trajectory is:

t ¼ TðrÞ þ �ðrÞ; (3.4)

where ðT þ �Þ obeys, from (3.2):

dT

dr
þ d�

dr
¼ �R;r ðTðrÞ þ �ðrÞ; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2EðrÞp : (3.5)

From the Taylor formula we have:

R;r ðTðrÞ þ �ðrÞ; rÞ ¼ R;r ðTðrÞ; rÞ þ �ðrÞR;tr ðTðrÞ; rÞ
þOð�2; rÞ; (3.6)

where the last term has the propertyOð�2; rÞ=� !�!0 0. Now,
assuming that � is small, we neglect the last term in (3.6)
and obtain from (3.5), taking into account (3.2):

d�

dr
¼ ��ðrÞR;tr ðTðrÞ; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2EðrÞp : (3.7)

If � is the period of an electromagnetic wave, then by
definition:

�ðrobsÞ
�ðremÞ

¼ 1þ zðremÞ; (3.8)

where the subscripts ‘‘obs’’ and ‘‘em’’ refer to the points
of observation and emission, respectively, and z is the
redshift. From (3.8), keeping the observer at a fixed posi-
tion and letting rem vary, we obtain ðd�=drÞ=� ¼
�ðdz=drÞ=ð1þ zÞ, and so in (3.7):

1

1þ z

dz

dr
¼ R;tr ðTðrÞ; rÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2EðrÞp : (3.9)

This is Bondi’s radial redshift equation [10]. It does not
describe the redshift propagation exactly. Neglecting the
last term in (3.6) we have changed the exact equation into
one that only approximates the actual variation of � along
the ray. The approximation is better the smaller the value of
�. Considering that � is the period of an electromagnetic
wave, and taking into account the period range of relevance

4The implied changes in C and h are then C ¼
ðP2 þQ2Þ=ð2SÞ, h2 ¼ �1=k; k and M remain unchanged.
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in observational astronomy (from gamma rays up to radio
waves, the longest observed of which have the wavelength
of the order of 15 m, thus the period of about 5� 10�8 s),
we see that, compared to cosmological time-scales, the
periods are short indeed and the approximation is not
bad. Moreover, as seen from (3.8), by following the rays
back from the observation event into the past, we encounter
ever smaller values of �, so the approximation gets pro-
gressively better with increasing redshift (or, rather, gets
progressively worse as the ray approaches us). Still, it is
conceptually important to remember that (3.9) involves an
approximation (this approximation is equivalent to the
geometric optics approximation [11,24] that leads to the
commonly used expression for the redshift 1þ z ¼
ðk�u�Þem=ðk�u�Þobs).

We shall apply the same approach to the redshift equa-
tions in the Szekeres models in Sec. V.

IV. EQUATIONS OF GENERAL NULL GEODESICS
IN A SZEKERES SPACETIME

For reference, the equations of general null geodesics
in a Szekeres model are copied from Ref. [12] in
Appendix A.5 They are written there in terms of an affine
parameter s. For our present purpose it is more convenient
to use the coordinate r as an independent parameter (which
is nonaffine).

This is allowed, but with some caution. It is easily seen
from (A1)–(A4) in Appendix A that a geodesic on which
dr=ds ¼ 0 over some open range of s has dx=ds ¼
dy=ds ¼ 0 in that range, and so is timelike. However,
(A1)–(A4) do not guarantee that dr=ds � 0 at all points;
isolated points at which dr=ds ¼ 0 can exist. Examples
that explain how this can happen are the nonradial geo-
desics in an L-T model, considered in Sec. VIII. Thus, r
can be used as a parameter on null geodesics only on such
segments where ds=dr > 0 or ds=dr < 0 throughout.

Several subexpressions in the equations of Appendix A
are multiply repeated, therefore we introduce the following
abbreviations:

�;r ��E;r =E ¼def �1; (4.1)

�;tr ��;t E;r =E ¼def �01; (4.2)

�;rr��E;rr =E ¼def �11; (4.3)

E ;r E;x�EE;xr ¼def E12; (4.4)

E ;r E;y �EE;yr ¼def E13: (4.5)

In addition, the following replacement will appear useful:�
dx

dr

�
2 þ

�
dy

dr

�
2 ¼def �: (4.6)

We have, for any coordinate:

d2x�

ds2
¼

�
dr

ds

�
2 d2x�

dr2
þ d2r

ds2
dx�

dr
: (4.7)

Then, from (A2) we have:

d2r

ds2
¼

�
dr

ds

�
2
�
�2

�01

�1

dt

dr
�

�
�11

�1

� E;r
E

þ 1

2

k;r
"� k

�

� 2
�

E2

E12

�1

dx

dr
� 2

�

E2

E13

�1

dy

dr
þ �

E2

"� k

�1

�

�

¼defUðt; r; x; yÞ
�
dr

ds

�
2
: (4.8)

Consequently, (A1), (A3), and (A4) become, using (4.7):

d2t

dr2
þ�1�01

"� k
þ��;t

E2
�þU

dt

dr
¼ 0; (4.9)

d2x

dr2
þ 2

�;t
�

dt

dr

dx

dr
� 1

�

�1

"� k
E12 þ 2�1

�

dx

dr
� E;x

E

�
dx

dr

�
2

� 2
E;y
E

dx

dr

dy

dr
þ E;x

E

�
dy

dr

�
2 þU

dx

dr
¼ 0; (4.10)

d2y

dr2
þ 2

�;t
�

dt

dr

dy

dr
� 1

�

�1

"� k
E13 þ 2�1

�

dy

dr

þ E;y
E

�
dx

dr

�
2 � 2

E;x
E

dx

dr

dy

dr
� E;y

E

�
dy

dr

�
2 þU

dy

dr
¼ 0:

(4.11)

V. THE REDSHIFT EQUATIONS IN THE
SZEKERES MODELS

Consider, in the Szekeres metric (2.7), two light signals,
the second one following the first one after a short time-
interval �, both emitted by the same source and arriving at
the same observer of coordinates ðr; x; yÞ. The equation of
the trajectory of the first signal is

ðt; x; yÞ ¼ ðTðrÞ; XðrÞ; YðrÞÞ; (5.1)

the corresponding equation for the second signal is

ðt; x; yÞ ¼ ðTðrÞ þ �ðrÞ; XðrÞ þ �ðrÞ; YðrÞ þ c ðrÞÞ: (5.2)

This means that while the first ray intersects the hypersur-
face of a given constant value of the r-coordinate at the
point ðt; x; yÞ ¼ ðT; X; YÞ, the second ray intersects the
same hypersurface at the point ðt; x; yÞ ¼ ðT þ �;
Xþ �; Y þ c Þ. Thus, in general, those two rays will not
intersect the same succession of intermediate matter

5It is shown in Ref. [12] (see also Ref. [13]) that in general
there exists no analogue of a radial null geodesic. Radial geo-
desics exist only when the Szekeres model is axially symmetric;
then their intersections with every space of constant time coor-
dinate lie on the axis of symmetry.
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worldlines on the way. Note that the coordinates we use
throughout the paper are comoving, so both the source of
light and the observer keep their spatial coordinates un-
changed throughout history. Given this, and given that we
consider a pair of rays emitted by the same source and
received by the same observer, we have ð�; c Þ ¼ ð0; 0Þ at
the point of emission and at the point of reception.
However, we have to allow that the second ray was emitted
in a different direction than the first one, and is received
from a different direction by the observer.6 The directions
of the two rays will be determined by ðdx=dr; dy=drÞ
and ðdx=drþ ðrÞ; dy=drþ �ðrÞÞ, respectively, where
 ¼ d�=dr, � ¼ dc =dr. We will assume that
ðd�=dr; �; c ; ; �Þ are small of the same order as �, so
we will neglect all terms nonlinear in any of them and
terms involving their products.

Since � ¼ c ¼ 0 at the observer, these quantities are
not in fact observable. However, they have to be numeri-
cally monitored along the ray because, as will be seen
below, they enter the equation for �, which is connected
to the redshift by (3.8).

In writing out the equations of propagation of
redshift, we will introduce the symbol �. It will denote
the difference between the relevant expression taken at
ðtþ �; r; xþ �; yþ c Þ and at ðt; r; x; yÞ, linearized in

ð�; �; c Þ, for example �01ðtþ�;r;xþ�;yþc Þ�
�01ðt;r;x;yÞ¼def��01þOð�2;��;�c ;�2; . . .Þ. We have:7

�� ¼ �;t �; �ð�;t Þ ¼ �;tt �; �
dt

dr
¼ d�

dr ;

�
dx

dr
¼ ; �

dy

dr
¼ �;

(5.3)

�E ¼ E;x � þ E;y c ; �E;x ¼ �=S; �E;y ¼ c =S;

(5.4)

��1 ¼ �01�þ�E12

E2
� þ�E13

E2
c ; (5.5)

��01 ¼ ð�;ttr ��ttE;r =EÞ�þ�;t E12

E2
� þ�;t E13

E2
c ;

(5.6)

��11 ¼ ð�;trr ��tE;rr =EÞ�þ �

E2
ðE;rr E;x�EE;rrx Þ�

þ �

E2
ðE;rr E;y �EE;rry Þc : (5.7)

In the next two equations account is taken of the fact that
E;xy � 0.

�E12 ¼ ðE;r E;xx �EE;rxx Þ� þ ðE;ry E;x�E;y E;rx Þc ;

(5.8)

�E13 ¼ ðE;rx E;y �E;x E;ry Þ� þ ðE;r E;yy �EE;ryy Þc ;

(5.9)

�� ¼ 2
dx

dr
þ 2

dy

dr
�; (5.10)

�U ¼ 2

�
���01

�1

þ�01��1

�2
1

�
dt

dr
� 2

�01

�1

d�

dr
� ��11

�1

þ�11��1

�1
2

þ�E;r
E

� E;r �E
E2

þ 2

�
��;t E12�

E2�1

þ 2
��EE12

E3�1

���E12

E2�1

þ�E12��1
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: (5.11)

Applying the �-operation to (4.9)–(4.11) we obtain:

d2�

dr2
þ�01��1 þ�1��01

"� k
þ ð�;t

2 þ��;tt Þ��
E2

� 2
��;t �E�

E3
þ��;t ��

E2
þ�U

dt

dr
þU

d�

dr
¼ 0; (5.12)

6This means that in a general inhomogeneous and anisotropic Universe, the observed objects should drift across the sky. See a brief
quantitative discussion of this effect in Sec. VIII.

7A quick way to calculate (5.3)–(5.16) is to take the differential of the corresponding quantity at constant r and replace
ðdt; dx; dy; dðdx=drÞ; dðdy=drÞÞ by ð�; �; c ; ; �Þ.
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þU ¼ 0; (5.13)
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E
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þU� ¼ 0; (5.14)

In addition, we have the first integral of the geodesic
Eqs. (4.9)–(4.11):

�
dt

dr

�
2 ¼ ð�1Þ2

"� k
þ�2

E2

��
dx

dr

�
2 þ

�
dy

dr

�
2
�
; (5.15)

Applying the �-operation to this we get

d�

dr

dt

dr
¼ �1��1

"� k
þ
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��;t �

E2
��2�E

E3

���
dx
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�
2 þ

�
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�
2
�

þ�2

E2

�
dx

dr
þ dy

dr
�

�
: (5.16)

Note: dt=dr < 0 for an incoming ray.

VI. REPEATABLE LIGHT PATHS

As attested by (5.12)–(5.14), in a generic Szekeres
model two light rays connecting a given source to a given
observer at different instants of emission do not proceed
through the same succession of intermediate matter parti-
cles. We will now investigate under what conditions this
intermediate succession is the same. This property will be
called repeatable light paths (RLP).
For a RLP we have

� ¼ c ¼  ¼ � ¼ 0 (6.1)

all along the ray. Then (5.12) decouples from (5.13) and
(5.14) and just determines � (and, with it, the redshift), if
the null geodesic equations are solved first. Eqs. (5.13) and
(5.14) become then:

2
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�;tt
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��;t
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� ��1E12
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��1

�
��1�;t �

�2

�
dx
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þ �U

dx

dr
¼ 0; (6.2)
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�
�;tt
�

��;t
2

�2

�
dt

dr

dy

dr
�þ 2

�;t
�

dy

dr

d�

dr
� ��1E13

ð"� kÞ�þ�;t �1E13�

ð"� kÞ�2
þ 2

�
��1

�
��1�;t �

�2

�
dy

dr
þ �U

dy

dr
¼ 0: (6.3)

These equations can be understood in 2 ways:

(1) As equations defining special Szekeres spacetimes
in which all null geodesics are RLPs.

(2) As equations defining special null geodesics which
are RLPs in subcases of the Szekeres spacetimes.

In the first interpretation, (6.2) and (6.3) should be
identities in the components of dx�=dr. They are polyno-
mials of degree 3 in these components, and since ðdt=drÞ2
does not appear in them, the constraint (5.15) plays no
role—all powers of dx�=dr that do appear are independent.
Equating to zero the coefficient of ðdx=drÞ3 in (6.2) (which
arises inside �U, within �), and taking into account that
�E ¼ �� ¼ 0 when (6.1) holds, we get

�¼def �;tr ��;t �;r =� ¼ 0: (6.4)

The integral of this is � ¼ SðtÞfðrÞ, where S and f are
arbitrary functions. It is seen from (2.9) that this means
zero shear, i.e. the Friedmann limit. With (6.4) fulfilled,
(6.2) and (6.3) become identities, and (4.9)–(4.11) reduce
to the equations of general null geodesics in a Friedmann
spacetime.8 With the observer placed at the origin, the
geodesics become radial, dx=dr ¼ dy=dr ¼ 0, and then

8We recall, however, that the Friedmann limit is represented in
the Goode-Wainwright [18] coordinates (see the remark in para 4
after (2.6)). Consequently, all equations representing the
Friedmann model will look unfamiliar.
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(5.16) becomes equivalent to the ordinary Robertson-
Walker redshift formula, 1þ z ¼ SðtoÞ=SðteÞ. To verify
this, some calculations are needed, in which Ref. [11]
may prove helpful.

Thus, we have proven the following:
Corollary 1:
The only spacetimes in the Szekeres family in which all

null geodesics have repeatable paths are the Friedmann
models.9

In the second interpretation of (6.2) and (6.3), we con-
sider 2 cases:

A. The general case: dx=dr � 0 � dy=dr everywhere.

Then we multiply (6.2) by dy=dr, (6.3) by dx=dr and
subtract the results. Disregarding the familiar case � ¼ 0
we get

E12

dy

dr
� E13

dx

dr
¼ 0: (6.5)

This, together with (6.2), (5.12), and (4.9)-(4.11) defines a
certain subcase of the Szekeres model and a class of curves
in it. Since both the subcase and the class will turn out to be
empty, but the calculations proving it are rather elaborate,
we present them in Appendix B.

B. The special cases: dx=dr ¼ 0 or dy=dr ¼ 0.

These two cases are equivalent under the coordinate
transformation ðx; yÞ ¼ ðy0; x0Þ, so we consider only the
first one. Again disregarding � ¼ 0, we get from (6.2)
E12 ¼ 0. Then, (4.10) implies two possibilities:

1. Ba) E;x¼ 0.

This is possible only when P is constant, and then the
geodesic lies in the subspace x ¼ P. Equations (4.11) and
(6.3) still have to be obeyed, while (4.10) and (6.2) are
fulfilled identically. The simple coordinate transformation
x ¼ x0 þ P has then the same effect as if P ¼ 0 and x ¼ 0
along the geodesic. We show in Appendix E that in this
case, apart from the axially symmetric subcase mentioned
below, RLPs may exist only when the Szekeres metric has
a 3-dimensional symmetry group. Such spacetimes are
considered in Sec. VII.

2. Bb) dy=dr ¼ 0.

The case dx=dr ¼ dy=dr ¼ 0, " ¼ þ1was investigated
in detail in Ref. [12]. It turned out that this can happen only
when the Szekeres spacetime is axially symmetric, and
then along only one subfamily of null geodesics—those
that intersect each t ¼ constant space on the symmetry
axis. We show in Appendix F that this result applies also

with " � 0, and that other RLPs may exist only with higher
symmetries.

VII. RLPS IN THE G3=S2 MODELS

The symbol G3=S2 denotes such models that have
3-dimensional symmetry groups acting on 2-dimensional
orbits [11]. They result from the general �0 � 0 Szekeres
family when the functions ðP;Q; SÞ are all constant. The
symmetry of the model is then spherical when " ¼ þ1
(this is the L-T model), pseudospherical (also called hyper-
bolic) when " ¼ �1 and plane when " ¼ 0.
Using the G3 symmetry, the origin of the ðx; yÞ coordi-

nates at ðx; yÞ ¼ ðP;QÞ can be moved to any location on the
S2 surfaces. So let us consider the S2 on which the first light
ray is emitted, and let us choose the origin of ðx; yÞ at the
position of the emitter. Thus, in (4.9)–(4.11) the initial
point of the earlier null geodesic will have
the coordinates ðx; yÞ ¼ ðP;QÞ, and, at this point, E;x ¼
E;y ¼ 0. In addition, the isotropy subgroup of G3, existing

in each case at every point of the manifold, allows us to
rotate the ðx; yÞ coordinates, with no loss of generality, so
that the initial value of dy=dr for our chosen geodesic is
zero, i.e. so that the ray is initially tangent to the
y ¼ constant subspace. Equation (4.11) shows that with
such initial conditions (and with E;y¼ 0 at the initial point)

we have d2y=dr2 ¼ 0 initially, and so d2y=dr2 ¼ 0 ¼
dy=dr all along the geodesic.
With coordinates chosen in such a way, Eqs. (4.11) and

(6.3) are fulfilled identically. However, (6.2) is not an
identity and reduces to:

dx

dr
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�
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�;tr
�
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��;ttr

�;r
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�;r
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��;trr

�;r
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�;r
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þ ð"� kÞ�
E2

�
dx
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�
2
�
�;t
�;r

���;tr
�;r

2

��
¼def dx

dr
� ¼ 0: (7.1)

One solution of this is dx=dr ¼ 0, which together with
dy=dr ¼ 0 defines a radial null geodesic. Then, (4.10) and
(4.11) are fulfilled identically, while (5.15) and (5.16),
together with (4.1), (4.2), and (5.5) reproduce the Bondi
equation (3.7) when " ¼ þ1. So, we found that in the
G3=S2 models all radial null geodesics are RLPs.10

There would exist other RLPs in these models if � in
(7.1) were zero along any null geodesic—possibly in some
subcases of the models. It is shown in Appendix G that this

9This is one more piece of evidence of how exceptional the
Robertson-Walker class of models is.

10The null geodesics with dx=dr ¼ dy=dr ¼ 0 can properly be
called radial only in the L-T model, where " ¼ þ1. What this
condition means in the other two cases is not clear, so the term
‘‘radial’’ is used here only as a brief label.
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does not happen, so the radial null geodesics are the only
RLPs in these models.

VIII. NUMERICAL EXAMPLES OF NON-RLPS IN
THE L-T MODEL

For illustration, we first consider a configuration that
is not realistic, but shows the non-RLP effect in a
clearly visible way. It is an L-T model specified by the
following functions: tB¼0 and �ðt0; rÞ ¼ �0½1þ ��
� expð�r2=	2Þ�, (where t0 is the current instant, r is
defined as Rðt0; rÞ, and �0 is the density at the origin and
equals 0:3�ð3H2

0Þ=ð8�GÞ, where H0 ¼ 72 km s�1 Mpc�1

and G is the gravitational constant). This model is the so-
called giant void model discussed in detail in [25], with the
best-fit parameters: � ¼ 4:05 and 	 ¼ 2:96 Gpc. We use
this model to study the configuration presented in Fig. 1,
where, for the middle curve, the angle between the radial
direction and the incoming geodesic is � ¼ 0:22�. We
consider 3 light paths. The first one corresponds to photons
received by the observer 5� 109 years ago, the second one
corresponds to photons received at the current instant, and
the third one corresponds to photons which will be received
in 5� 109 years in the future. Figure 1 shows these 3
geodesics projected on the space t ¼ now along the flow
lines of the matter source in the L-T model. Since in each
case the light paths are different, the profile of matter
density along each projected light ray is different. This
feature is presented in the inset in Fig. 1. Even though the

density variation along the light path is of small amplitude,
the effect is clearly visible. The average rate of change of
the position of the source in the sky, seen by the observer, is
�10�7 arc sec per year.
Now we will study a more realistic configuration. The

parameters of the L-T model will be the same as above, but
the placement of the observer and of the source will be
different, see Fig. 2. The observer (O) is located at R0

(R0 ¼ Rðt0; rÞ is the present-day areal distance) and ob-
serves a galaxy (*), the angle between the direction to-
wards the galaxy and towards the origin is �. We study 3
configurations: (1) R0 ¼ 3 Gpc, (2) R0 ¼ 1 Gpc,
(3) R0 ¼ 1 Gpc but with � ¼ 10. All 3 cases have d ¼
1 Gyr (� 306:6 Mpc). For each case (for a given �) we
find a null geodesic that joins the observer and the galaxy.
We then calculate the rate of change �, which is equivalent
to the change of the position of the galaxy in the sky. A
detailed description of the algorithm is presented in
Appendix H. The results are presented in Fig. 3.
As seen, the rate of change of the position of the source

in the sky depends on the angle �. The amplitude of the
change is of the order �10�7 arc sec per year for case
(2) and �10�6 arc sec per year for cases (1) and (3).
Given Gaia11 accuracy of position measurement,
5–20� 10�6 arc sec , we would need to wait at least a
few years to detect the change of position due to non-
RLP effects. However, this estimate assumes that we
have a reference direction that does not change. This will
be a difficult practical problem, since cosmological
observations are done under the assumption that our

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

r 
[G

pc
]

Θ [rad]

 2.8

 3.2

 3.6

 4

 0  0.3  0.6  0.9  1.2  1.5  1.8

ρ/ρ0

FIG. 1. Three nonradial null geodesics in an L-T model,
projected on the space t ¼ now along the flow lines of the L-T
dust. Each geodesic runs between the same observer and the
same emitter, which, at present, lie at the same distance of
3.5 Gpc from the center. The solid line represents the ray that
the observer receives at the current instant, � ¼ 0:22�, the
dashed line represents the ray that was received 5� 109 years
ago, � ¼ 0:228�, and the dotted line represents the ray that will
be received 5� 109 years in the future, � ¼ 0:214�. As seen,
nonradial null geodesics in the L-T model do not have the RLP
property. The inset shows the density profile (�0 is the density at
the origin) evaluated at the current instant along these three
different paths.

FIG. 2. A schematic view of the considered configurations.
The observer (O) is located at R0 and observes a galaxy (*),
the angle between the direction towards the galaxy and towards
the origin is �. Because of the non-RLP effect the angle at which
the galaxy is observed at some other time instant is different.

11http://sci.esa.int/science-e/www/area/index.cfm?fareaid=26
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Universe is precisely represented in large scales by the
Robertson-Walker class of models, in which there is no
such drift. We would have to identify a direction that does
not change with time even in an inhomogeneous model or
measure a relative change of position between various
objects.

IX. SUMMARY

By a method analogous to that of Bondi [10] we have
derived the equations to be obeyed by the redshift in
a general Szekeres �0 � 0 spacetime, (5.12)–(5.14). The
null geodesic equations parametrized by r, which must
be solved together with (5.12)–(5.14), are given by
(4.9)–(4.11). Although the physically most interesting
quantity is the longitudinal redshift determined by �, the
other two components, � and c , must be numerically
monitored along the ray because the equations that deter-
mine ð�; �; c Þ are coupled.

We have shown that, in general, two light rays sent
from the same source at different times to the same ob-
server do not proceed through the same succession of
intermediate matter particles; we refer to this property by
saying that the light paths are not repeatable. In a toy
model, with the present spatial distance between the light
source B and the observer being of the order of 1.5 Gpc,
the estimated rate of the drift of B across the sky would
be � 7� 10�8 arc sec per year. In a more realistic con-
figuration, this number is � 10�6 arc sec per year. The
Gaia is expected to have the precision of position determi-
nation 5–20� 10�6 arc sec .

We have derived the equations defining repeatable
light paths (RLPs), (6.2) and (6.3); they must hold
together with (4.9)–(4.11) and (5.12). We have shown
that all null geodesics are RLPs only in the Friedmann
models. The only other cases in which RLPs exist are the
following:

(i) The axially symmetric Szekeres models, in which
the RLPs are the null geodesics intersecting every
space of constant time on the axis of symmetry.

(ii) The radial null geodesics in theG3=S2 subcases (i.e.
in the spacetimes that have 3-dimensional symme-
try groups).
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APPENDIX A: EQUATIONS OF NULL GEODESICS
IN A SZEKERES SPACETIME IN AN AFFINE

PARAMETRIZATION

For convenience of the readers, the equations of null
geodesics in a Szekeres spacetime are copied here from
Ref. [12]. They are given in an affine parametrization.
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FIG. 3. The rate of change of position in the sky ( _�) due to the
non-RLP effect, expressed as a change of an angle in arc sec per
year �107. The solid line presents case (1) where R0 ¼ 3 Gpc,
the dashed line presents case (2) where R0 ¼ 1 Gpc, and the
dotted line presents case (3) where R0 ¼ 1 Gpc and � ¼ 10.
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APPENDIX B: SOLUTIONS OF (6.5).

Since (6.5) should hold along certain null geodesics, its
derivative by r along those geodesics must be zero. This
derivative, denoted by D=dr, of any quantity � defined
along the geodesic, �ðtðrÞ; r; xðrÞ; yðrÞÞ, is:

D�

dr
¼ @�

@t

dt

dr
þ @�

@r
þ @�

@x

dx

dr
þ @�

@y

dy

dr
: (B1)

Calculating D=dr of (6.5) we get:�
E12;r þ E12;x

dx

dr
þ E12;y

dy

dr

�
dy

dr

�
�
E13;r þ E13;x

dx

dr
þ E13;y

dy

dr

�
dx

dr

þ E12

d2y

dr2
� E13

d2x

dr2
¼ 0: (B2)

The expression in the last line can be calculated from (4.10)
and (4.11) using (6.5); it is:

E12

d2y

dr2
� E13

d2x

dr2
¼ ðE;y E;rx �E;x E;ry Þ

��
dx

dr

�
2 þ

�
dy

dr

�
2
�
:

(B3)

Substituting (B3), (4.4), and (4.5) in (B2), and taking into
account the identities E;xy ¼ E;xx�E;yy ¼ 0 we get:

E12;r

dy

dr
� E13;r

dx

dr
¼ 0: (B4)

This should hold simultaneously with (6.5). Since we
assumed dx=dr � 0 � dy=dr, (6.5) and (B4) imply:

E12E13;r � E13E12;r ¼ 0: (B5)

When (4.4) and (4.5) are substituted in (B5), E factors out,
and the other factor is:

E;r ðE;y E;rrx�E;x E;rry Þ þ E;rr ðE;x E;ry �E;y E;rx Þ
þ EðE;rx E;rry�E;ry E;rrx Þ ¼ 0: (B6)

This simplifies to a polynomial of second degree in x and y,
which should vanish identically.12 Using the algebraic
program ORTOCARTAN [26,27] we find that the coefficient
of ðx2 þ y2Þ is

P;rr Q;r �P;r Q;rr¼ 0: (B7)

One of the solutions of this is P;r ¼ 0; then no limitation
for Q follows. This case we consider separately below.

When P;r � 0, (B7) implies

Q ¼ C0PþD0; (B8)

where C0 and D0 are arbitrary constants. When this is
substituted in (B6), the coefficient of y implies:

"ðSS;r P;rr �S;r
2P;r �SS;rr P;r Þ � ð1þ C0

2ÞP;r 3 ¼ 0;

(B9)

and this guarantees that the whole of (B6) is fulfilled.
The case " ¼ 0 is seen to be incompatible with P;r � 0.

This means that no RLPs exist in the " ¼ 0 models with
P;r � 0. Further calculations apply only to " ¼ �1.
In integrating (B9) we can assume S;r � 0 because

S;r ¼ 0 immediately implies P;r ¼ 0, which we have left
for a separate investigation. Therefore we can introduce
SðrÞ as the new independent variable in (B9), which then
becomes:

"ðSP;SS �P;S Þ � ð1þ C0
2ÞP;S 3 ¼ 0: (B10)

Since the case P ¼ constant was left for later, we assume
P;S� 0, and then (B10) is easily integrated with the result:

"S2 þ ð1þ C0
2ÞP2 ¼ C3PþD3; (B11)

where C3 and D3 are new arbitrary constants.
When " ¼ þ1, Eqs. (B8) and (B11) are equivalent to

those that were shown in Ref. [12] (Sec. 3.3.1) to be
sufficient conditions for the Szekeres metric to be axially
symmetric. However, this equivalence is nontrivial, and the
extension of the proof to " ¼ 0,�1 is not automatic, so we
have to elaborate on this subject.
For this purpose, we note the following properties of the

general Szekeres metrics (2.7):

(1) The metric (2.7) does not change in form under the
coordinate transformation:

ðx; yÞ ¼ ðx0 þ x0; y
0 þ y0Þ; (B12)

where ðx0; y0Þ are arbitrary constants. This changes
ðP;QÞ to

ðeP; eQÞ ¼ ðP� x0; Q� y0Þ: (B13)

(2) The metric (2.7) does not change in form when
ðx; yÞ are transformed by a general orthogonal
transformation:

x ¼ ax0 þ by0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ; y ¼ �bx0 þ ay0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ; (B14)

which implies the change of ðP;QÞ to:

eP ¼ aP� bQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ; eQ ¼ bPþ aQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p : (B15)

(3) The metric (2.7) does not change in form under the
discrete transformations:

12Should there exist any point P n in the spacetime at which the
polynomial would be nonzero, this would mean that the deter-
minant of the set {(6.5), (B4)} is nonzero at P n, which in turn
would mean dx=dr ¼ dy=dr ¼ 0 at P n, contrary to our initial
assumption.
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ðx; yÞ ¼ ðy0; x0Þ; ðx; yÞ ¼ ð�x0; y0Þ;
ðx; yÞ ¼ ðx0;�y0Þ; (B16)

which induce, respectively

ð eP; eQÞ ¼ ðQ;PÞ; ðeP; eQÞ ¼ ð�P;QÞ;
ðeP; eQÞ ¼ ðP;�QÞ: (B17)

(4) The metric (2.7) does not change in form when ðx; yÞ
are transformed by a conformal symmetry of a
Euclidean 2-plane—a 2-dimensional Haantjes
transformation by the terminology of Ref. [11]. It
has the form:

x ¼ x0 þ �1ðx02 þ y02Þ
T

;

y ¼ y0 þ �2ðx02 þ y02Þ
T

;

T ¼def 1þ 2�1x
0 þ 2�2y

0

þ ð�1
2 þ �2

2Þðx02 þ y02Þ;

(B18)

where �1 and �2 are arbitrary constants—the group
parameters. This group is Abelian, the inverse trans-
formation to (B18) being of the same form, but with
parameters ð��1;��2Þ. The characteristic proper-
ties of (B18), useful in calculations, are:

x2 þ y2 ¼ x02 þ y02

T
;

dx2 þ dy2 ¼ dx02 þ dy02

T2
:

(B19)

Under (B18) and (B19), ðP;Q; SÞ change, respec-
tively, to:

eP ¼ 1

U
½P� �1ðP2 þQ2 þ "S2Þ�;

eQ ¼ 1

U
½Q� �2ðP2 þQ2 þ "S2Þ�; eS ¼ S=U;

U¼def 1� 2�1P� 2�2Q

þ ð�1
2 þ �2

2ÞðP2 þQ2 þ "S2Þ: (B20)

Let eE denote E with ðx; y; P;Q; SÞ replaced by

ðx0; y0; eP; eQ; eSÞ. Then calculation shows that

E ¼ eE=T; (B21)

and since T does not depend on r, it follows that the grr
component in (2.7) is also covariant with (B18) and (B19).

Now we will use the properties listed above to interpret
the consequences of (B8) and (B11) for the metric (2.7).

TheD0 in (B8) can be set to zero by (B12) with ðx0; y0Þ ¼
ð0; D0Þ. The C0 in (B8) can be set to zero by (B15) with

b ¼ �aC0; the result of these two transformations is
Q ¼ 0. Finally, the C3 in (B11) (with C0 ¼ 0 taken into
account) can be set to zero by (B12) with ðx0; y0Þ ¼
ð�C3=2; 0Þ. Thus we can assume D0 ¼ C0 ¼ C3 ¼ 0 with
no loss of generality.
We carry out a combination of (B12) with (B18):

x ¼ x0 þ x0 þ �1ðx02 þ y02Þ
T

; y ¼ y0; (B22)

and get the following generalization of (B20) with �2 ¼ 0:

eP ¼ 1

U
fP� x0 � �1½ðP� x0Þ2 þQ2 þ "S2�g;

ð eQ; eSÞ ¼ ðQ; SÞ=U;

U¼def 1� 2�1ðP� x0Þ þ �1
2½ðP� x0Þ2 þQ2 þ "S2�:

(B23)

Using (B8) and (B11) with D0 ¼ C0 ¼ C3 ¼ 0, the above
becomes

eP¼ 1

U
½P�x0��1ð�2x0PþD3þx0

2Þ�; eQ¼0;

U¼def1�2�1ðP�x0Þþ�1
2ð�2x0PþD3þx0

2Þ: (B24)

Now it can be seen that if the constants ðx0; �1Þ, so far
arbitrary, obey:

1þ 2�1x0 ¼ 0; x0 þ �1ðD3 þ x0
2Þ ¼ 0; (B25)

then eP ¼ eQ ¼ 0, and in the ðx0; y0Þ coordinates the
Szekeres metric is explicitly axially symmetric. However,
two things must be noted:

(1) The set (B25) has no solutions when D3 � 0.
(2) With P ¼ Q ¼ 0, Eq. (B9) is fulfilled identically,

and (B11) no longer follows, thus there is no limi-
tation on S.

Looking at (B11) with C0 ¼ C3 ¼ 0 we see thatD3 < 0
cannot occur when " ¼ þ1 or " ¼ 0. The case D3 ¼ 0,
although possible with " ¼ þ1 or " ¼ 0, need not be
considered with these two values of ", for the following
reasons: With " ¼ þ1 this would imply S ¼ 0, which is an
impossibility in (2.7), and with " ¼ 0 ¼ C0 ¼ C3, (B11)
implies P ¼ 0. With Q ¼ 0 now being considered, P ¼
" ¼ 0 guarantees that S may be set to 1 by a suitable
reparametrization of the other metric functions [20].
Consequently, with P ¼ Q ¼ 0, the " ¼ 0 Szekeres metric
is already plane symmetric even with nonconstant S, and
the Szekeres metrics with 3-dimensional symmetry groups
are considered in Sec. VII.
So, finally,D3 � 0must be considered only for " ¼ �1.

Since these calculations are lengthy and very complicated,
we have moved them to the separate Appendix C.
We now come back to (B7) to consider the case P;r¼ 0.

By a transformation of x this can be reduced to P ¼ 0.
Then, the whole of (B6) becomes:
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x½"ðS;r 2Q;r �SS;r Q;rr þSS;rr Q;r Þ þQ;r
3� ¼ 0: (B26)

This is equivalent to the subcase C0 ¼ 0 of (B9) under the
coordinate transformation ðx; yÞ ¼ ðey; exÞ and the associated
renaming ðP;QÞ ¼ ð eQ; ePÞ. This case was included in the
consideration above.

Thus, apart from the special cases D3 � 0 to be consid-
ered further on, RLPs with dx=dr � 0 � dy=dr may pos-
sibly exist only when the Szekeres metric is reducible, by a
coordinate transformation, to one with P ¼ Q ¼ 0. In this
case, (6.5) becomes:

"
S;r
S

�
x
dy

dr
� y

dx

dr

�
¼ 0: (B27)

But with " ¼ 0 and P ¼ Q ¼ 0 now being considered, the
quasiplane Szekeres metric is plane symmetric even with
nonconstant S; see the paragraph following (B25). The
Szekeres metrics with 3-dimensional symmetry groups
are considered in Sec. VII, so we need not consider
" ¼ 0 here.

When S;r ¼ 0 ¼ P;r ¼ Q;r , all Szekeres metrics ac-
quire a 3-dimensional symmetry group and are considered
in Sec. VII. Thus, we need not consider S;r ¼ 0 in (B27).

What remains of (B27) is xdy=dr� ydx=dr ¼ 0. One
solution of this is x ¼ 0 along the null geodesic. The other
solution is y ¼ G0x along the geodesic, where G0 is a
constant. However, we are now considering the axially
symmetric Szekeres solutions in which P ¼ Q ¼ 0. In
this case, a rotation (B14) can be chosen so that y ¼ G0x
is transformed to x0 ¼ 0. So, apart from the special case
" ¼ �1, D3 � 0, for the other Szekeres solutions the
following result applies:

Corollary 2:
The Szekeres spacetimes in which RLPs exist with

dx=dr � 0 � dy=dr either are the Friedmann models (in
which all null geodesics are RLPs) or are inhomogeneous
and axially symmetric or have a 3-dimensional symmetry
group. In the first two cases, coordinates may be chosen so
that x ¼ 0 along the hypothetic RLP and P ¼ Q ¼ 0 in the
metric. The second case is considered in Appendix F. The
third case is considered in Sec. VII and in Appendix G.

APPENDIX C: THE SPECIAL METRIC WITH
Q ¼ 0, " ¼ �1 AND D3 � 0.

We consider here the special case D3 � 0 that arose in
solving (B25). The Szekeres model in question has

E ¼ x2 � 2Pxþ y2 þD3

2S
;

E12 ¼ P;r
2S2

ðy2 � x2 þD3Þ;

E13 ¼ �P;r
S2

xy:

(C1)

The solution of (6.5) is then either P;r ¼ 0, which belongs
to the axially symmetric case considered in Appendix E, or

x2 þ y2 � Cy�D3 ¼ 0; (C2)

where C is the arbitrary constant that arises while integrat-
ing (6.5). By writing the above as x2 þ ðy� C=2Þ2 ¼
D3 þ C2=4 we note that the following must hold:

D3 þ C2=4> 0: (C3)

(With this quantity being negative, (C2) has no solutions,
i.e. there are no RLPs. When it is zero, the only solution of
(C2) is ðx; yÞ ¼ ð0; C=2Þ, what is possible only in the
axially symmetric case of Appendix E.)
Note that (C3) implies C � 0, since D3 � 0.
Taking the second derivative of (C2) by r and substitut-

ing in it the expressions for x;rr and y;rr from (4.10) and
(4.11), we obtain an identity. This means that (C2) is
consistent with the geodesic equations (4.9)–(4.11) and
defines a special class of null geodesics. We will verify
in the following that this class does not contain any RLPs.
We note the following auxiliary formulae. In

Eqs. (C4)–(C11) asterisks mark those equations that hold
only along the null geodesics obeying (C2), those without
the asterisk are general. After (C11) all further calculations
are done only along these geodesics, so we omit the
asterisks for better readability.

ð	Þ E ¼ �2Pxþ Cyþ 2D3

2S
; (C4)

E;x ¼ x�P

S
; E;y¼ y

S
; E;r¼ � xP;r

S
� S;r

S
E;

(C5)

E;rx ¼�P;r
S

� S;r
S2

ðx�PÞ; E;ry¼�yS;r
S2

; (C6)

ð	Þ E12 ¼ P;r
2S2

ð2y2 � CyÞ; (C7)

ð	Þ y;r ¼ � 2x

2y� C
x;r ; (C8)

ð	Þ x;r
2 þ y;r

2 ¼ 4D3 þ C2

ð2y� CÞ2 x;r
2: (C9)

ð	Þ 2x;r
2E12 þ 2x;r y;r E13 ¼ P;r

S2
yð2y�CÞðx;r 2 þ y;r

2Þ:
(C10)

From (5.15) we have

x;r
2 þ y;r

2

E2
¼ t;r

2

�2
� �1

2

ð"� kÞ�2
: (C11)

In order to write the equations in a compact way it is
convenient to use the symbol� introduced in (6.4). Recall:

ANDRZEJ KRASIŃSKI AND KRZYSZTOF BOLEJKO PHYSICAL REVIEW D 83, 083503 (2011)

083503-12



this is a factor of shear, and when it vanishes, the Szekeres
model reduces to Friedmann. Thus, in searching for RLPs
in nontrivial models we will assume � � 0. Using (C11)
in (5.16) adapted to RLPs we obtain

�;r t;r ¼ �1�01�

"� k
þ�;t t;r

2�

�
� �;t �1

2�

ð"� kÞ�
� �1��

"� k
þ�;t t;r

2�

�
: (C12)

We also have:

�01 ��;t �1=� � �;tr ��;t �;r =� ¼ �; (C13)

�;ttr ��;tt �;r =� ¼ �;t þ�;t
�

�; (C14)

�;trr ��;t �;rr =� ¼ �;r þ�;r
�

�: (C15)

Assuming � � 0 we now multiply (6.2) by
��1

2t;r =½ð"� kÞ��, use (C7)–(C15), cancel � that fac-
tors out, and write the result in the form:

x;r ðt;r 3 þ c2t;r
2 þ c3t;r þc4Þ ¼ B1t;r

3 þ B3t;r ; (C16)

where

c2 ¼def 2�ð�1�;t ��2Þ
ð"� kÞ� ; (C17)

c3 ¼def�3�1
2 þ��1�;r =����;rr

"� k

þ�2E;rr =E þ�1�;r
"� k

; (C18)

c4 ¼def 2��1
2�

ð"� kÞ2 ; (C19)

B1 ¼def P;r yð2y� CÞ
ð"� kÞS2 ; (C20)

B3 ¼def� 3�1
2

2ð"� kÞB1: (C21)

Then, using (C1), (C7), and (C11) we can rewrite (4.9) in
the form:

t;rr ¼ c5t;r
3 þ c6t;r

2 þ c7t;r þc8 þ Ax;r t;r ; (C22)

where

c5 ¼def�"� k

��1

; (C23)

c6 ¼def 2 �

�1

þ�;t
�

; (C24)

c7 ¼def �;rr��E;rr =E
�1

� E;r
E

þ k;r
2ð"� kÞ þ

�1

�
; (C25)

c8 ¼def� ��1

"� k
; (C26)

A¼def ð4D3 þ C2ÞP;r y�
ð2y� CÞS2E2�1

: (C27)

Combining (C9) and (C11) we get:

x;r
2 ¼ ð2y� CÞ2E2

ð4D3 þ C2Þ�2

�
t;r

2 � �1
2

"� k

�
: (C28)

Equations (C16) and (C28) determine dt=dr along the
hypothetic RLP. Formally, a solution for dt=dr of these
equations always exists, but it must be consistent with the
geodesic equations, and this is what we will investigate
next. Namely, every solution of these equations must be
preserved along the null geodesics. To see whether it is, we
first transform this set into a single polynomial equation for
dt=dr.
We square (C16) and use (C28) in the result. We thus

obtain an 8th degree polynomial in t;r , whose coefficient
at t;r

8 is

�1 ¼ ð2y� CÞ2E2

ð4D3 þ C2Þ�2
: (C29)

It is seen that it cannot vanish except when y ¼ C=2, but
this defines a ‘‘radial’’ geodesic that exists only in the
axially symmetric case [12]. Thus we divide the 8th degree
polynomial by �1 and obtain the following equation

t;r
8 þ 2c2t;r

7 þ a3t;r
6 þ a4t;r

5 þ a5t;r
4 þ a6t;r

3

þ a7t;r
2 þ a8t;r þa9 ¼ 0; (C30)

where:

a3 ¼def 2c3 þ c2
2 � �1

2

"� k
� ð4D3 þ C2Þ�2P;r

2y2

ð"� kÞ2S4E2
; (C31)

a4 ¼def 2c4 þ 2c2c3 � 2c2
�1

2

"� k
; (C32)

a5 ¼def 2c2c4 þ c3
2 � ð2c3 þ c2

2Þ �2
1

"� k

þ 3
�1

2

ð"� kÞ3
ð4D3 þ C2Þ�2P;r

2y2

S4E2
; (C33)

a6 ¼def 2c3c4 � ð2c4 þ 2c2c3Þ �1
2

"� k
; (C34)

a7 ¼def c42 � ð2c2c4 þ c3
2Þ �1

2

"� k

� 9�1
4

4ð"� kÞ4
ð4D3 þ C2Þ�2P;r

2y2

S4E2
; (C35)

REDSHIFT PROPAGATION EQUATIONS IN THE . . . PHYSICAL REVIEW D 83, 083503 (2011)

083503-13



a8 ¼def�2c3c4
�1

2

"� k
; (C36)

a9 ¼def�c4
2 �1

2

"� k
: (C37)

Now we differentiate (C30) along the null geodesic by the
rule (B1), and use (C30) to eliminate t;r

10, t;r
9 and t;r

8

from the result. In this way we obtain:

b1t;r
7 þb2t;r

6 þb3t;r
5 þ b4t;r

4 þb5t;r
3 þb6t;r

2

þb7t;rþb8 þ x;r ð�1t;r
7 þ�2t;r

6 þ�3t;r
5

þ�4t;r
4 þ�5t;r

3 þ�6t;r
2 þ�7t;rþ�8Þ ¼ 0; (C38)

where

b1 ¼def 8c8 þ 2c2;r þ a3;t � 2a3c6 � 3a4c5 � 2c2c7

� 4c2c2;t þ 6a3c2c5 þ 4c2
2c6 � 8c2

3c5; (C39)

b2 ¼defa3;r þ a4;tþ 14c2c8 � 2a3c7 � 3a4c6 � 4a5c5

� 2a3c2;t þ 2a4c2c5 þ 2a3c2c6 þ 2a3
2c5 � 4a3c2

2c5;

(C40)

b3 ¼def a4;r þ a5;t þ 6a3c8 � 3a4c7 � 4a5c6 � 5a6c5

� 2a4c2;t þ 2a5c2c5 þ 2a4c2c6 þ 2a3a4c5

� 4a4c2
2c5; (C41)

b4 ¼def a5;r þ a6;t þ 5a4c8 � 4a5c7 � 5a6c6 � 6a7c5

� 2a5c2;t þ 2a6c2c5 þ 2a5c2c6 þ 2a3a5c5

� 4a5c2
2c5; (C42)

b5 ¼def a6;r þ a7;t þ 4a5c8 � 5a6c7 � 6a7c6 � 7a8c5

� 2a6c2;t þ 2a7c2c5 þ 2a6c2c6 þ 2a3a6c5

� 4a6c2
2c5; (C43)

b6 ¼def a7;r þ a8;t þ 3a6c8 � 6a7c7 � 7a8c6 � 8a9c5

� 2a7c2;t þ 2a8c2c5 þ 2a7c2c6 þ 2a3a7c5

� 4a7c2
2c5; (C44)

b7 ¼def a8;r þ a9;t þ 2a7c8 � 7a8c7 � 8a9c6 � 2a8c2;t

þ 2a9c2c5 þ 2a8c2c6 þ 2a3a8c5 � 4a8c2
2c5;

(C45)

b8 ¼def a9;r þ a8c8 � 8a9c7 � 2a9c2;t þ 2a9c2c6

þ 2a3a9c5 � 4a9c2
2c5; (C46)

�1 ¼def 2
�
c2;x � 2x

2y� C
c2;y

�
� 2c2A; (C47)

�2 ¼def a3;x � 2x

2y� C
a3;y � 2a3A; (C48)

�3 ¼def a4;x � 2x

2y� C
a4;y � 3a4A; (C49)

�4 ¼def a5;x � 2x

2y� C
a5;y � 4a5A; (C50)

�5 ¼def a6;x � 2x

2y� C
a6;y � 5a6A; (C51)

�6 ¼def a7;x � 2x

2y� C
a7;y � 6a7A; (C52)

�7 ¼def a8;x � 2x

2y� C
a8;y � 7a8A; (C53)

�8 ¼def a9;x � 2x

2y� C
a9;y � 8a9A: (C54)

We provisionally assume that the coefficient of x;r in
(C16) is nonzero. (Wewill later come back to this point and
investigate what happens when it is zero.) Then we deter-
mine x;r from (C16) and substitute the result in (C38).
After multiplying out to get a polynomial in t;r , we again
use (C30) to eliminate t;r

10 and t;r
9 (but not t;r

8). Then we
assume that the coefficient of t;r

8, denoted d1, is nonzero
(we will check the case d1 ¼ 0 later), and divide the
equation by d1. In this way we obtain:

t;r
8 þ �2t;r

7 þ �3t;r
6 þ �4t;r

5 þ �5t;r
4 þ �6t;r

3

þ �7t;r
2 þ �8t;r þ�9 ¼ 0; (C55)

where �i¼defdi=d1, i ¼ 2; . . . ; 9, and

d1¼defb3�b2c2þb1c3þ�1B3þ�3B1�a3b1�a3�1B1

�2�2B1c2þ2b1c2
2þ4�1B1c2

2; (C56)

d2¼defb4þb1c4þb3c2þb2c3þ�2B3þ�4B1�a4b1

�a3b2�a4�1B1�a3�2B1þa3b1c2þ2a3�1B1c2;

(C57)

d3 ¼def b5 þ b2c4 þ b4c2 þ b3c3 þ �3B3 þ �5B1 � a5b1

� a4b2 � a5�1B1 � a4�2B1 þ a4b1c2

þ 2a4�1B1c2; (C58)
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d4 ¼def b6 þ b3c4 þ b5c2 þ b4c3 þ �4B3 þ �6B1 � a6b1

� a5b2 � a6�1B1 � a5�2B1 þ a5b1c2

þ 2a5�1B1c2; (C59)

d5 ¼def b7 þ b4c4 þ b6c2 þ b5c3 þ �5B3 þ �7B1 � a7b1

� a6b2 � a7�1B1 � a6�2B1 þ a6b1c2

þ 2a6�1B1c2; (C60)

d6 ¼def b8 þ b5c4 þ b7c2 þ b6c3 þ �6B3 þ �8B1

� a8b1 � a7b2 � a8�1B1 � a7�2B1 þ a7b1c2

þ 2a7�1B1c2; (C61)

d7¼defb6c4þb8c2þb7c3þ�7B3�a9b1�a8b2

�a9�1B1�a8�2B1þa8b1c2þ2a8�1B1c2; (C62)

d8 ¼def b7c4 þ b8c3 þ �8B3 � a9b2 � a9�2B1

þ a9b1c2 þ 2a9�1B1c2; (C63)

d9 ¼def b8c4: (C64)

Every solution of (C30) is a candidate RLP, and every
RLP must obey (C30). Equation (C55) is the condition that
(C30) is preserved along null geodesics. Thus, every solu-
tion of (C30) must also be a solution of (C55). Since (C30)
and (C55) are of the same degree in t;r , it follows that both
must have the same set of zeros. Consequently, their co-
efficients must be the same. After we make sure that they
are the same, we may next investigate which zeros define
RLPs. Thus, the following equations are necessary con-
ditions for the existence of RLPs:

2c2 ¼ �2; ai ¼ �i; i ¼ 3; . . . 9;

()2c2d1 � d2 ¼ 0; d1ai � di ¼ 0:
(C65)

By far the simplest condition, as seen from (C64), is the
one with i ¼ 9. Even so, further calculations are so com-
plicated and involve intermediate equations so large that
they could be done only using the computer algebra system
ORTOCARTAN [26,27], and we only describe how they were

done.
First we observe that the functions ð�1; y; EÞ are linearly

independent, and in the resulting final equation can be used
as independent variables. Although the proof is a simple
exercise, it requires careful inspection of special cases that
we had earlier excluded for separate investigation, so we
give it in the separate Appendix D.

The condition (C65) corresponding to i ¼ 9 is

d1a9 � d9 ¼ 0: (C66)

In this, one has to do the whole cascade of substitutions,
listed in (C17)–(C64). In the result, we use (C5) and (C6).
However, we use the last of (C5) only to eliminate E;rr . For
E;r we substitute from (4.1), i.e.

E ;r ¼ Eð�;r ��1Þ=�; (C67)

in order to express E;r through �1.
We then use (C15) to express �;trr through�, and (6.4)

to express �;tr through �. In the result we use (C2) to
eliminate x2 and (C4) to express x through E. From the
resulting equation we can factor out �1

6, and we must
multiply it by E4 to get rid of negative powers of E. The
final equation thus obtained has on its left-hand side a
polynomial of 4th degree in E, of 4th degree in y and of
6th degree in �1 (recall, we determined that ð�1; y; EÞ are
independent variables).13 So, if this polynomial is to be
zero, the coefficients of all powers of the independent
variables must vanish separately.
Now we take this large polynomial as data for a second

program, in which ð�1; y; EÞ are treated as independent
variables, no longer as functions. In it, we determine the
coefficient of y4 and substitute E ¼ 0 to find the term
independent of E. The resulting equation is:

16ð4D3 þ C2Þ2�6��;t P;r
4=½S8ð"� kÞ9� ¼ 0: (C68)

In this equation we can discard several alternatives:� ¼ 0
obviously, 4D3 þ C2 ¼ 0 because of (C3),� ¼ 0 because
it defines the Friedmann limit and P;r ¼ 0 because, in view
of (B11) and the paragraph above (B22), it leads to the
G3=S2 symmetric cases considered in Appendix G. The
only case to consider is thus �;t ¼ 0.
In order to investigate it, we substitute �;t ¼ 0 in the

large main polynomial, and in the resulting somewhat
smaller polynomial we take the coefficient of y4. The
equation that results is:

�16ð4D3 þC2Þð4P2 þC2ÞE�5�3P;r
3=½PS7ð"� kÞ9� ¼ 0:

(C69)

The factors E and � obviously cannot vanish, and the
reason zero values of ð4D3 þ C2Þ,� and P;r are discarded
was explained above. Thus, the only case left is 4P2 þ
C2 ¼ 0, which means P ¼ 0 ¼ C. But this is just a special
case of P;r ¼ 0 discarded above. Thus, (C68) does not
include any case that would define any new RLP, apart
from those considered elsewhere.
We go back to (C55) to consider the case d1 ¼ 0. The

calculation is almost the same as we did for (C66), with
only minor differences: this time the expression is some-
what simpler, and �1

6 does not factor out. We employ the
algebraic program to calculate E4d1, with the same cascade
of substitutions as before, take the coefficient of y4 at
E ¼ 0, and obtain an equation almost identical to (C68):

13The whole equation would take 1830 print lines on paper.
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4ð4D3 þ C2Þ2�4�;t P;r
4=½S8ð"� kÞ4�� ¼ 0: (C70)

As explained above, only�;t could possibly be zero, so we
substitute�;t ¼ 0 in the main large polynomial, and in the
resulting expression take the coefficient of y4. The result is
almost the same as (C69)

�4ð4D3 þ C2Þð4P2 þ C2ÞE�3�P;r
3=½PS7ð"� kÞ4� ¼ 0;

(C71)

and again does not include any case that would define a
new RLP.

Finally, we go back to (C54), where we assumed that the
coefficient of x;r in (C16) was nonzero, and investigate
what happens when it is zero. Then

B1t;r
3 þ B3t;r ¼ 0; (C72)

and one of the solutions of this is t;r ¼ 0. This we imme-
diately discard because it defines a spacelike curve, while
our RLPs must be null geodesics. In consequence of (C21),
another solution of (C72) is B1 ¼ 0. But this implies
P;r ¼ 0 or y ¼ 0 or y ¼ C=2. The first case leads to the
G3=S2 solutions considered in Appendix G, the other two
to the axially symmetric solutions of Appendix F. So the
only possibility left to fulfil (C72) is

t;r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3

2ð"� kÞ

s
�1: (C73)

Putting this into the coefficient of x;r in (C16) we get:�
3

2ð"� kÞ
�
3=2

�1

��

1þ 23=2��;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð"� kÞp
�

�
�2

1

þ
�
� 23=2��

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð"� kÞp � 2

3

�
�
�;r
�

þ�;r

��
�1

� 2

3
�

�
�
E;rr
E

��;rr

��
¼ 0: (C74)

In this expression, we do the same series of substitutions
that we did in the large polynomial that resulted from
(C66): we express E;rr through E;r using (C5), E;r through
�;r and�1 using (C67), then x through E and y using (C4),
and multiply the whole expression by E. The result is:�

1þ 23=2��;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð"� kÞp
�

�
E�1

2 þ
�
� 23=2��

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð"� kÞp

� 2

3

�
�
�;r
�

þ�;r þ�
S;r
S

��
E�1


 2

3
��;rr E 
 2

3
�2

��
P;r
S

�
;r

�
�SE

P
þ Cy

2P
þD3

P

�

þ
�
S;r
S

�
;r E þ S;r �;r

S�
E
�
¼ 0: (C75)

We then use the fact that ð�1; y; EÞ are linearly independent
and require that each coefficient of an independent function

is zero. There is only one term containing y, with the
coefficient CðP;r =SÞ;r . But C cannot be zero, as explained
below (C3). Thus ðP;r =SÞ;r ¼ 0 is the unique implication of
this (it will be seen from the following that we need not
consider whether this condition is consistent with the other
equations that P and S must obey). This means:

P;r ¼ �0S; (C76)

where �0 is an arbitrary constant. Taking this into account,
and taking the term independent of�1 in (C75) we get:

�;rr þ�

�
S;r
S

�
;r þ S;r �;r

S
¼ 0: (C77)

Using (C76), this is easily integrated with the result:

� ¼ �1ðtÞP
�0S

þ �2ðtÞ
S

; (C78)

where ð�1ðtÞ; �2ðtÞÞ are arbitrary functions of t. Both appear
as integration ’’constants’’ of (C77). Using such � in the
definition of �, (6.4), we get:

�� ¼ �ðtÞ
S

; �ðtÞ ¼def �2�1;t � �1�2;t: (C79)

But with � ¼ �ðtÞ=ðS�Þ the last three terms in the coeffi-
cient of �1 in (C75) sum up to zero, and what remains
of that coefficient is the equation �� ¼ 0. The only solu-
tion of this can be � ¼ 0, but we know it leads to the
Friedmann model.
Consequently, the coefficient of x;r in (C16) is always

nonzero.
Since (C68) and (C70) were, in their respective branches

of the calculation, among the necessary conditions for the
existence of RLPs, we conclude that the special quasihy-
perbolic Szekeres solution defined by (C1) does not con-
tain any RLPs except (possibly) when it becomes axially
symmetric or G3=S2, but these cases are considered in
Appendices F and G.

APPENDIX D: PROOF THAT ð�1; y; EÞARE
LINEARLY INDEPENDENT

We take the equation

��1 þ �yþ �E ¼ 0 (D1)

with constant coefficients �, �, � and prove that it implies
� ¼ � ¼ � ¼ 0.
We substitute for �1 from (4.1), then multiply the equa-

tion by 2SE and use (C2) to eliminate x2. We thus obtain a
polynomial of degree 1 in x and degree 2 in y, which we
denote by P . We take the second derivative of P by xy.
The result is:

2Pð�S� �CÞ ¼ 0: (D2)
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We discard the solution P ¼ 0 because this implies con-
stant S (see (B11) and the remarks above (B22)), and then
the metric acquires a G3=S2 symmetry group—these are
discussed in Appendix G. We also discard the case � � 0
because then S, and consequently P, are constant, again
leading to the G3=S2 case. So finally, the implication of
(D2) is

� ¼ 0 ¼ �C: (D3)

With this, we go back toP and take its second derivative
by y. The result is�4�P2=S ¼ 0, and the solution of this is
� ¼ 0. We again go back to P with � ¼ � ¼ 0, and take
its first derivative by y. The result is:

�Cð�;r þ�S;r =SÞ ¼ 0: (D4)

When the expression in parentheses vanishes,� becomes a
product of the form RðtÞ=SðrÞ, where RðtÞ is an arbitrary
function. Such form of � defines the Friedmann limit, in
which we know that all null geodesics are RLPs, so we
discard this case. Thus, we follow the case �C ¼ 0.

Putting this, together with � ¼ � ¼ 0, in P and taking
the derivative of the result by x we obtain

2�ð�P�;r þP;r ���PS;r =SÞ ¼ 0: (D5)

If the expression in parentheses should vanish, then the
solution is � ¼ RðtÞPðrÞ=SðrÞ, which again leads back to
the Friedmann model. Thus, finally, (D5) implies � ¼ 0,
which completes the proof.

APPENDIX E: THE RLPS WITH P ¼ 0 AND x ¼ 0
ALONG THE GEODESIC.

We can leave aside the case when Q;r ¼ 0 because then
the metric is axially symmetric from the beginning.

It is useful to turn this case back to that of Appendix B
by the transformation (B14) and (B15) with a � 0 � b.
After the transformation we have x0 ¼ �by0=a, i.e.

dx0=dr � 0 if dy0=dr � 0, and eP ¼ �b eQ=a, i.e. eP;r � 0

if eQ;r � 0. Thus the new eP and eQ obey (B8) with D0 ¼ 0
from the beginning, and the RLP condition reduces to

(B11) alone, with ðP;QÞ replaced by ðeP; eQÞ. The rest of
the reasoning of Appendix B then applies, unchanged, to

ð eP; eQÞ, with the same result:
Corollary 3:
RLPs with P ¼ 0 and x ¼ 0 along the geodesic may

exist only in the special case when the coordinates may be
transformed so thatQ ¼ 0 as well, i.e. the metric is axially
symmetric, or has a 3-dimensional symmetry group.

APPENDIX F: THE AXIALLY SYMMETRIC CASE
P ¼ Q ¼ 0: ONLY THE AXIAL GEODESICS

x;r ¼ y;r ¼ 0 ARE RLPS

We know from Ref. [12] that in the quasispherical case
" ¼ þ1 null geodesics on which x and y are constant exist

only when the Szekeres model is axially symmetric. Then
coordinates may be chosen so that P ¼ Q ¼ 0, and the
constant-ðx; yÞ null geodesics have x ¼ y ¼ 0, i.e. intersect
each t ¼ constant space on the symmetry axis.
In this appendix we show that the statement above

applies also with " ¼ 0 and " ¼ �1, that the
constant-ðx; yÞ null geodesics are RLPs, and that other
RLPs may exist only when the Szekeres spacetime has
more symmetries.

1. Constant-ðx; yÞ null geodesics exist only in the axially
symmetric case

This thesis was proven in Ref. [12] for " ¼ þ1. The
assumption made there in the proof, that E > 0, does not
hold for " ¼ 0 and " ¼ �1, so we first verify what hap-
pens when E ¼ 0.
It is seen from (4.10) and (4.11) that constant ðx; yÞ imply

E12 ¼ E13 ¼ 0 along the geodesic. With E ¼ 0 (4.4) and
(4.5) then imply that either E;r ¼ 0 at all r, which means
a G3=S2 symmetry (discussed in Appendix G), or E;x ¼
E;y ¼ 0 along the geodesic, which means P and Q being

constant, i.e. axial symmetry. Thus, E ¼ 0 along a
constant-ðx; yÞ null geodesic implies axial symmetry
anyway.14

The equations of Sec. 3.3.1 in Ref. [12] that are imposed
on ðP;Q; SÞ by the condition of constant ðx; yÞ along the
geodesic become subcases of our (B8) and (B11) for a
general ". As shown in our Appendix B, they imply axial
symmetry for any ". This is true even for the special
solution discussed in Appendix C, as we now show.
When x;r ¼ y;r ¼ 0 along a null geodesic, as stated

above, (4.10) and (4.11) imply E12 ¼ E13 ¼ 0 along
this geodesic. Then (C1) implies that either (i) P;r ¼ 0,
or (ii) x ¼ 0 and y2 þD3 ¼ 0, or (iii) y ¼ 0 and x2 �
D3 ¼ 0. Case (i) is axially symmetric. Case (ii) implies
E ¼ 0 along the geodesic, and this was discussed above.
Case (iii) implies D3 � 0. However, the solution of
Appendix C has D3 � 0 by definition. So the only subcase
to consider here is D3 ¼ 0 ) x ¼ 0 along this geodesic.
But then we have again E ¼ 0, which completes the proof.

2. Constant-ðx; yÞ null geodesics are RLPs
As stated above, along null geodesics of constant ðx; yÞ

we have E12 ¼ E13 ¼ 0. Then (6.2) and (6.3) are fulfilled
identically, which means that such geodesics are RLPs.

3. Other RLPs may exist in the axially symmetric case
only with higher symmetries

We will now show that, in the axially symmetric case,
(6.2) and (6.3) may have other solutions than constant ðx; yÞ

14Moreover, as shown in Ref. [20], the location E ¼ 0 is
infinitely far from any point within the spacetime, i.e. does not
in fact belong to the spacetime.
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only when the spacetime has more symmetries than just the
axial.

The whole reasoning and calculation is closely analo-
gous to the one presented in Appendix C for the special
Szekeres solution. We proved in Appendix B that in the
axially symmetric case coordinates may be chosen so that
P ¼ Q ¼ 0 and the candidate RLP has x ¼ 0. Then:

E ¼ x2 þ y2

2S
þ 1

2
"S;

E12 ¼ "xS;r =S;

E13 ¼ "yS;r =S:

(F1)

Note that with " ¼ 0, this axially symmetric Szekeres
solution is in fact plane symmetric. Thus, it will be con-
sidered together with other G3=S2 symmetric solutions in
Appendix G. From here on, in the present appendix we
assume " � 0, i.e. " ¼ �1.

With (F1) obeyed, (6.2) and (6.5) are fulfilled identically
along x ¼ 0. From (5.15) we obtain:

y;r
2

E2
¼ t;r

2

�2
� �1

2

ð"� kÞ�2
; (F2)

and (C12) applies unchanged. We then multiply (6.3) by
��1

2t;r =½ð"� kÞ�� and use (F2) and (C12)–(C15) and
x ¼ 0 in the result. As before, � factors out and is can-
celled, and we obtain an equation almost identical to
(C16), with the same definitions of ðB3; c2; c3; c4Þ, but
with y;r in place of x;r , and with the definition of B1

changed to:

B1 ¼def 2"yS;r
ð"� kÞS : (F3)

We proceed in strict analogy to Appendix B. From (4.9)
using (F2) we again obtain (C22), with y;r in place of x;r ,
and with the same definitions of ðc5; . . . ; c8Þ, but with the
definition of A changed to:

A¼def 2"y�S;r
SE2�1

: (F4)

Then we square the current analogue of (C16) and use (F2)
to eliminate y;r

2 from the result. We obtain an 8th degree
polynomial in t;r , but this time the coefficient of t;r

8 is

�1 ¼ E2=�2 (F5)

and is sure to be nonzero. Dividing the polynomial by �1

we obtain (C38) again, but with the definitions of some of
the coefficients changed as follows:

a3 ¼def 2c3 þ c2
2 � �1

2

"� k
� 4"2�2S;r

2y2

ð"� kÞ2S2E2
; (F6)

a5¼def 2c2c4þc3
2�ð2c3þc2

2Þ �1
2

"�k
þ12"2�2�1

2S;r
2y2

ð"�kÞ3S2E2
;

(F7)

a7 ¼def c42 � ð2c2c4 þ c3
2Þ �1

2

"� k
� 18"2�2�1

4S;r
2y2

ð"� kÞ4S2E2
;

(F8)

the remaining ones are the same as given by (C32), (C34),
(C36), and (C37).
Now we differentiate the current analogue of (C30) by r

along the null geodesic by the rule (B1). This time, how-
ever, x ¼ 0 along our candidate RLP, so no coefficient
depends on x. We then use our analogue of (C30) to
eliminate t;r

10, t;r
9 and t;r

8 from the result. The equation
that emerges is an analogue of (C38) with y;r in place of
x;r , with the same definitions of ðb1; . . . ; b8Þ, and with the
definitions of ð�1; . . . ; �8Þ changed to

�1 ¼def 2c2;y � 2c2A; (F9)

�2 ¼def a3;y � 2a3A; (F10)

�3 ¼def a4;y � 3a4A; (F11)

�4 ¼def a5;y � 4a5A; (F12)

�5 ¼def a6;y � 5a6A; (F13)

�6 ¼def a7;y � 6a7A; (F14)

�7 ¼def a8;y � 7a8A; (F15)

�8 ¼def a9;y � 8a9A; (F16)

where for A the definition (F4) must be used.
Here we can assume that the coefficient of y;r in the

present analogue of (C16) is nonzero—the explanation
given in the paragraphs containing (C72)–(C75) still ap-
plies, except that the B1 given by (F3) cannot vanish for
somewhat different reasons.15 Then we determine y;r from
that equation and substitute the result in the current ana-
logue of (C38). After multiplying out to get a polynomial
in t;r , we again use (C30) to eliminate t;r

10 and t;r
9 (but

not t;r
8). Then we assume that the coefficient of t;r

8,
denoted d1, is nonzero (we will check the case d1 ¼ 0
later), and divide the equation by d1. In this way we obtain
an exact copy of (C55), with the same definitions
(C56)–(C64) of the coefficients; but it is to be remembered
that some of the symbols in these formulae (namely B1, B2,

15The cases " ¼ 0 and S;r ¼ 0 define metrics of higher sym-
metry, treated in Appendix G, while y ¼ 0 (together with x ¼ 0
assumed throughout this appendix) defines an axial geodesic,
which we already know is an RLP.
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a3, a5, a7 and all of ð�1; . . . ; �8Þ) now have different
definitions from those in Appendix C.

Consequently, Eqs. (C65) must still hold, and we again
choose (C66) to investigate, by exactly the same method as
before. By the method of Appendix D we show that
ð�1; y; EÞ are still linearly independent in the present
case (i.e. with E given by (F1), and along the x ¼ 0
geodesic). The explanation given under (C67) still applies,
with the modification that now x is nowhere present, so
does not have to be eliminated. In place of (C68) we now
obtain:

256"4�6��;t S;r
4=½S4ð"� kÞ9� ¼ 0: (F17)

We recall that we excluded the case " ¼ 0 (since it is
treated in Appendix G), and � ¼ 0 because it reduces
the Szekeres model to Friedmann. We can also exclude
S;r ¼ 0 because then the metric acquires a G3=S2 symme-
try and is also treated in Appendix G. So, as before, the
only case left to investigate is �;t ¼ 0.

We substitute�;t ¼ 0 in the large main polynomial, and
in the resulting smaller polynomial we take the coefficient
of y4. The equation that results is:

256"3E�5�3S;r
3=½S4ð"� kÞ9� ¼ 0: (F18)

The only factors that could vanish here are� and S;r , but,
as explained above, their vanishing leads to simpler cases
of higher symmetry. Thus, (F18) does not include any case
that would define any new RLP, apart from those consid-
ered elsewhere.

We go back to the paragraph after (F16) to consider the
case d1 ¼ 0. The explanation given above (C70) still ap-
plies, but this time, in the expression E4d1 calculated by the
algebraic program, we take the coefficient of y4 at
E ¼ 0, and obtain:

64"4�4�;t S;r
4=½S4ð"� kÞ4�� ¼ 0: (F19)

As explained above, only�;t could possibly be zero, so we
substitute�;t ¼ 0 in the main large polynomial, and in the
resulting expression take the coefficient of y4. The result is:

64"3E5�3�S;r
3=½S4ð"� kÞ4� ¼ 0; (F20)

and again does not include any case that would define a
new RLP.

So, the final conclusion is:
Corollary 4:
In the axially symmetric Szekeres solutions, apart from

cases of higher symmetry, the only RLPs are the axial null
geodesics that intersect each 3-space of constant t on the
symmetry axis.

APPENDIX G: THERE ARE NO NON-RADIAL
RLPS IN ANY G3=S2 MODEL.

We will investigate the equation � ¼ 0 (see (7.1)) and
will show that it has no solutions defining nonradial RLPs,
unless the model reduces to Friedmann.

Several equations in this appendix follow from the cor-
responding ones in Appendix C as the special case E;r ¼ 0;
they are similar but not identical.
We will use all equations adapted to the special case

discussed in Sec. VII, i.e. � ¼ c ¼  ¼ � ¼ E;r ¼
dy=dr ¼ 0. From (5.15) we find

x;r
2

E2
¼ t;r

2

�2
� �r

2

ð"� kÞ�2
: (G1)

Then, using (G1) in (5.16) we obtain

�;r t;r ¼ ��r�

"� k
þ ��;t

�
t;r

2; (G2)

where � is defined by (6.4)—as seen from (2.9) this is a
coefficient of shear, whose vanishing defines the
Friedmann limit.
We now substitute (G1) and (G2) in � ¼ 0, where �

is given by (7.1). We multiply the result by
��;r

2t;r =½ð"� kÞ��, and cancel � that factors out. The
result is:

W1 ¼def t;r 3 þ c2t;r
2 þ c3t;r þc4 ¼ 0; (G3)

where

c2 ¼def 2�ð�;r �;t ��2Þ
ð"� kÞ� (G4)

c3 ¼def �ð�;r �;r ��;rr �Þ � 2�;r
2�

ð"� kÞ� (G5)

c4 ¼def 2��;r
2�

ð"� kÞ2 : (G6)

Adapting (4.9) to the G3=S2 case, eliminating x;r with
use of (G1) and using (G3) to eliminate t;r

3 we obtain:

trr ¼ c6t;r
2 þ c7t;r þc8; (G7)

where

c6 ¼def 2�;t
�

þ�;t
�

; (G8)

c7 ¼def �;r
�

��;r
�

þ k;r
2ð"� kÞ ; (G9)

c8 ¼def �;r �

"� k
: (G10)

Now we differentiate (G3) along a null geodesic (since the
equation must hold all along it), by the rule given in (B1),
and use (G7) to eliminate t;rr . The resulting equation is of
4th degree in t;r . We eliminate the 4th power of t;r by using
(G3). In the end, we obtain an equation of degree 3 in t;r ,
which we write symbolically as follows:

d1t;r
3 þ d2t;r

2 þ d3t;r þd4 ¼ 0: (G11)
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The expressions for the coefficients in (G11) are:

d1 ¼ c2;t þ 3c7 � c2c6; (G12)

d2 ¼ c2;r þ c3;t þ 3c8 þ 2c2c7 � 2c3c6; (G13)

d3 ¼ c3;r þ c4;t þ 2c2c8 þ c3c7 � 3c4c6; (G14)

d4 ¼ c4;r þ c3c8: (G15)

For the beginning, let us assume that d1 � 0. For further
considerations it will be more convenient to write (G11) as
follows:

W2 ¼def t;r 3 þ �2t;r
2 þ �3t;r þ�4 ¼ 0; (G16)

where �i ¼def di=d1, i ¼ 2, 3, 4.
Equation (G3) is equivalent to� ¼ 0 in (7.1). Thus (G3),

just like (7.1), defines the collection of RLPs together with
the conditions of their existence. Every solution of (G3)
and (7.1) is a candidate RLP, and every RLP must obey
(G3) and (7.1). Then, (G16) is the condition that the
solutions of (G3) are preserved along the null geodesics,
thus every solution of (G3) must be a solution of (G16) and
vice versa. But if (G3) and (G16) have the same set of
solutions, then they must be identical, i.e. their respective
coefficients must be equal. Thus, the necessary conditions
for the existence of RLPs are:

ci ¼ �i()cid1 � di ¼ 0; i ¼ 2; 3; 4: (G17)

As with the previous calculations, we employed the
algebraic program ORTOCARTAN [26,27]. We consider
(G17) with i ¼ 4, the simplest one. In it, we substitute
(G4)–(G15) and multiply the result by ð�=�;r Þ to get a
polynomial in�,� and their derivatives (�;r factors out in
the original expression). The resulting expression is simple
enough to be shown here:

W3 ¼ ���;r �
2k;r þ8�2�;r �

2�;t þ4��;t �;r
2��;t

ð"� kÞ3

þ 4�2�;r
2��;tt �12�2�;r

2�;2t
ð"� kÞ3

þ 3��;r ��;r �6�;r
2�2 � 3��;rr �

2

ð"� kÞ2 ¼ 0:

(G18)

We assume � ¼ 0 and take the k > 0 model for the begin-
ning. The solution of (2.3) can then be written as

�ðt; rÞ ¼ M

k
ð1� cos�Þ; �� sin� ¼ k3=2

M
½t� tBðrÞ�;

(G19)

where � is a parameter (dependent on t and r), and tBðrÞ is
an arbitrary function, the bang time. We introduce the
abbreviations:

IM ¼def 3k;r
2k

�M;r
M

; DM ¼def k
2tB;r
M

: (G20)

The derivatives of � and � can then be written as

�;r ¼
�
M

k

�
;r ð1� cos�Þ þMIM

k

sin�ð�� sin�Þ
1� cos�

�MDM

k3=2
sin�

1� cos�
; (G21)

�;t ¼
ffiffiffi
k

p
sin�

1� cos�
; (G22)

�rr ¼
�
M

k

�
;rr ð1� cos�Þ þ

�
M

k

�
;r sin�

�
2IM

�� sin�

1� cos�

� DMffiffiffi
k

p ð1� cos�Þ
�
þMðIMÞ;r

k

sin�ð�� sin�Þ
1� cos�

þMIM
2

k

ð2 sin�� sin� cos�� �Þð�� sin�Þ
ð1� cos�Þ2

�MIMDM

k3=2
3 sin�� sin� cos�� 2�

ð1� cos�Þ2

� ð ffiffiffi
k

p
tB;rÞ;r sin�

1� cos�
� MDM

2

k2ð1� cos�Þ2 ; (G23)

� ¼ ffiffiffi
k

p
IM

3 sin�� � cos�� 2�

ð1� cos�Þ2 þDM

2þ cos�

ð1� cos�Þ2 ;

(G24)

�;r ¼ ð ffiffiffi
k

p
IMÞ;r 3 sin�� � cos�� 2�

ð1� cos�Þ2

þ IM
4 cos�þ � sin�ð5þ cos�Þ � 4� 4sin2�

ð1� cos�Þ4

� ½ ffiffiffi
k

p
IMð�� sin�Þ �DM� þ ðDMÞ;r 2þ cos�

ð1� cos�Þ2

�DM

sin�ð5þ cos�Þ
ð1� cos�Þ4

�
IMð�� sin�Þ �DMffiffiffi

k
p

�
;

(G25)

�;t ¼ k2IM
M

4 cos�þ � sin�ð5þ cos�Þ � 4� 4sin2�

ð1� cos�Þ4

� k3=2DM

M

sin�ð5þ cos�Þ
ð1� cos�Þ4 ; (G26)

�;tt ¼ k7=2IM
M2ð1� cos�Þ5 ð�23�� 19� cos�þ 2�sin2�

þ 33 sin�þ 9 sin� cos�Þ

� k3DM

M2

�19 cos�þ 2sin2�� 23

ð1� cos�Þ5 : (G27)
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From here on, the intermediate expressions become so
large that we cannot reproduce them here; we only describe
how the calculation is done. We substitute (G21)–(G27) in
(G18) and multiply the result by ð1� cos�Þ6 to get a
polynomial in ð1� cos�Þ (of 6th degree). It is also a
polynomial of 4th degree in �. The function � is the
only one in this polynomial that depends on t, the coef-
ficients of �, ð1� cos�Þ and their powers depend only
on r. Thus we treat � and ð1� cos�Þ as independent
variables, and the coefficients of their different powers
must vanish separately.

In W3 transformed in this way we now take the coeffi-
cient of �4, the resulting equation is a polynomial of
degree 4 in ð1� cos�Þ:
M2IM

4

ð"� kÞ3 ½9ð"=k� 1Þð1� cos�Þ4 � 78ð"=k� 1Þð1� cos�Þ3

þð216"=k� 276Þð1� cos�Þ2
�ð189"=k� 381Þð1� cos�Þ� 144� ¼ 0: (G28)

The term independent of ð1� cos�Þ clearly shows that
IM ¼ 0 is a unique solution of this, independently of the
value of k.

So, we substitute IM ¼ 0 in the main large polynomial
and in the resulting smaller polynomial we take the

term independent of ð1� cos�Þ. The equation that
results is:

� 144M2DM
4=½k2ð"� kÞ3� ¼ 0: (G29)

Here the unique solution is DM ¼ 0. But with IM ¼
DM ¼ 0 we get � ¼ 0 from (G24), i.e. the Friedmann
limit. Thus, c4d1 � d4 ¼ 0, which is one of the necessary
conditions for the existence of RLPs, can in this case be
fulfilled only when the Szekeres model trivializes to
Friedmann.
The calculation above was done for k > 0. The calcu-

lation with k < 0 is essentially the same and need not be
done separately—it is enough to replace ðk; �Þ in all equa-

tions with ð�ek; ie�Þ.
When k ¼ 0, we have necessarily " ¼ þ1 and the cal-

culation must be done separately. Then we have:

� ¼
�
9M

2

�
1=3ðt� tBÞ2=3;

� ¼ 2

3

�
9M

2

�
1=3

tB;rðt� tBÞ�4=3:

(G30)

With the r-coordinate chosen so thatM ¼ M0r
3, whereM0

is a constant, this simplifies W3 in (G18) to

W4 ¼def�ð64=9ÞM0
2r6tB;r

4ðt� tBÞ�4 � ð14=3Þ � 361=3M0
4=3r4tB;r

4ðt� tBÞ�10=3 þ ð256=3ÞM0
2r5tB;r

3ðt� tBÞ�3

þ 14� 361=3M0
4=3r3tB;r

3ðt� tBÞ�7=3 � 112M0
2r4tB;r

2ðt� tBÞ�2 � 3� 361=3M0
4=3r2tB;r

2ðt� tBÞ�4=3

þ 3� 361=3M0
4=3r3tB;rrtB;rðt� tBÞ�4=3 ¼ 0: (G31)

Now the independent variables are t and r, and t appears
always in the combination ðt� tBÞ. Thus different powers
of ðt� tBÞ are linearly independent, and their coefficients
must vanish separately. Whichever term we take, except
for the last two, the result is always the same:

tB;r ¼ 0 (G32)

(because M0 ¼ 0 is the vacuum, i.e. Schwarzschild, limit
of the L-T model). This guarantees that all the terms in
(G31) vanish. However, as seen from (G30), tB;r ¼ 0
means � ¼ 0, i.e. zero shear (see (6.4) and (2.9)), i.e. the
Friedmann limit. Thus, there are no nonradial RLPs also
when k ¼ 0, which completes the proof in the case d1 � 0.

We go back to (G15), where we assumed d1 � 0 and
proceed from there on to consider the case d1 ¼ 0. Instead
of (G18) we now get:

W5 ¼ �6��;r �;t
2=�2 þ 2��;r �;tt =�

"� k

þ 4��;t þ2�;t �;r �;t =�þ ð3=2Þk;r
"� k

� 3
�;r
�

þ 3
�;r
�

¼ 0: (G33)

As before, we begin by considering the case k > 0. We
multiply W5 by �2�ð1� cos�Þ6 and substitute for � and
� from (G19)–(G27). What results is a polynomial of
degree 6 in ð1� cos�Þ and of degree 3 in �. Taking the
coefficient of �3 we obtain:

W6 ¼ MIM
3 sin�

"� k
½�6ð"� kÞð1� cos�Þ3

þ 45ð"� kÞð1� cos�Þ2 � 81ð"� kÞð1� cos�Þ
þ 30kð1� cos�Þ � 36k� ¼ 0: (G34)

Looking at the term independent of ð1� cos�Þ we see that
the unique solution of this is IM ¼ 0.
So we substitute IM ¼ 0 in the main polynomial, and in

the resulting expression we take the term independent of
ð1� cos�Þ. The resulting equation is:

36 sin�MDM
3ffiffiffi

k
p ð"� kÞ ¼ 0: (G35)

The unique solution of this is DM ¼ 0, which, together
with IM ¼ 0, leads back to the Friedmann limit. Thus, no
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RLPs exist in nontrivial Szekeres spacetimes in this case,
either.

The argument given before, that the result for k < 0

follows by the substitution ðk; �Þ ! ð�ek; ie�Þ, is still valid.
So we now consider d1 ¼ 0 with k ¼ 0. We substitute
k ¼ 0 (and, as is necessary, " ¼ þ1) in (G33), multiply
the result by �, substitute then for � and � from (G30),
and obtain:

W7 ¼ ð16=9ÞM0r
3tB;r

2ðt� tBÞ�3

þ 2� 361=3M0
1=3rtB;r

2ðt� tBÞ�7=3

� ð56=3ÞM0r
2tB;rðt� tBÞ�2

þ 361=3M0
1=3rtB;rrðt� tBÞ�4=3 ¼ 0: (G36)

The coefficients of independent powers of ðt� tBÞ have to
vanish separately, as explained before. Whichever term we
take, except for the last one, the result is always the same:

tB;r ¼ 0 (G37)

and this implies the Friedmann limit in the same way as
explained after (G32). This also guarantees that the whole
of (G36) is fulfilled.

Thus, in every case considered, the assumption that
nonradial RLPs could exist leads to either the Friedmann
limit or the Schwarzschild limit. The final conclusion is
that the only RLPs in the G3=S2 models are the radial null
geodesics. h

APPENDIX H: A DETAILED DESCRIPTION
OF THE MODEL PRESENTED

IN SEC. VIII.

The algorithm used in the calculations discussed in
Sec. VIII consists of the following steps:

(1) First we set the observer at R0 (the present-day areal
distance) and consider sources which are, at the
present instant, away from the observer by 1 Gly
(� 306:6 Mpc).

(2) To calculate the evolution of the model one needs to
follow the following points:

(i) The radial coordinate is chosen to be the areal radius
at the present instant: �r ¼ �ðt0; rÞ. However, to sim-
plify the notation we will omit the bar and denote the
new radial coordinate by r.

(ii) The chosen asymptotic cosmic background is an
open Friedmann model, i.e. �m ¼ 0:3 and � ¼ 0.
The background density is then given by

�b ¼ �m � �cr ¼ 0:3� 3H2
0

8�G
ð1þ zÞ3; (H1)

where the Hubble constant is H0 ¼
72 km s�1 Mpc�1.

(iii) The initial time t0 is calculated from the following
formula for the background Friedmann Universe

tðzÞ ¼
Z 1

0

H�1
0 ð1þ ezÞ�1dezffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�mð1þ ezÞ3 þ ð1��mÞð1þ ezÞ2p ;

(H2)

(iv) The age of the universe is assumed to be every-
where the same: tB ¼ 0.

(v) The function MðrÞ follows from (2.5), where the
present-day density is

�ðt0; rÞ ¼ �0½1þ �� � expð�r2=	2Þ�

(vi) Because of the assumed spherical symmetry
e� ¼ 1.

(vii) The function kðrÞ can be calculated from (2.6).
(viii) Then the evolution of the model can be calculated

from Eq. (2.3).
(3) We then find a null geodesic that joins the observer

and the source. The angle between the direction
towards the source and the direction towards the
origin, at the present instant, is denoted as �.

(4) The null geodesics are found in the following
manner:

(i) Because of spherical symmetry we may set one of
the angular components of the null vector to zero.
We set k� ¼ 0.

(ii) The second angular component, k
, follows from
R2k
 ¼ J¼ const¼ R0 sin�, where R0 ¼ Rðt0; r0Þ,
i.e. at the observer’s position. This relation is a
consequence of (4.10) and (4.11) and was derived
in [12] (see equation (3.26) in [12]).

(iii) The radial component is evaluated from (4.8) with
E12 ¼ 0 ¼ E13 ¼ E;r , and � ¼ E2ðd
=drÞ2.

(iv) The time component of the null vector is found
from k�k� ¼ 0.

(5) We then find two other null geodesics: one that will
reach the observer in 1 Gy time, the other one that
arrived at the observer’s position 1 Gy ago. Because
of the non-RLP effect these geodesics approach the
observer at angles that are different from �.

(6) The difference between these angles allows us to
evaluate the rate of change of the angle �.
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