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Abstract. Recently, inhomogeneous generalisations of the Friedmann � Lemaître
� Robertson � Walker cosmological models have gained interest in the astrophysical
community and are more often employed to study cosmological phenomena. However,
in many papers the inhomogeneous cosmological models are treated as an alternative to
the FLRWmodels. In fact, they are not an alternative, but an exact perturbation of the
latter, and are gradually becoming a necessity in modern cosmology. The assumption
of homogeneity is just a �rst approximation introduced to simplify equations. So
far this assumption is commonly believed to have worked well, but future and more
precise observations will not be properly analysed unless inhomogeneities are taken into
account. This paper reviews recent developments in the �eld and shows the importance
of an inhomogeneous framework in the analysis of cosmological observations.
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1. Introduction

For this article, we de�ne inhomogeneous cosmological models as follows: they are those
exact solutions of Einstein's equations that contain at least a subclass of nonvacuum and
nonstatic Friedmann � Lemaître � Robertson � Walker (FLRW) solutions as a limit. The
reason for this choice is that such FLRW models are universally recognised as a good
�rst approximation to a realistic description of our actual Universe, so it makes sense to
consider only those other models that have a chance to be a still better approximation.
Models that do not include an FLRW limit would not easily ful�l this condition.

Among the models so de�ned we chose for a more detailed description only the
Lemaître [103] � Tolman [159] (LT) and Szekeres [154] models because they were
the basis for the greatest number of papers aimed at physical and astrophysical
interpretation. The other inhomogeneous models are only partly listed and some of
them are brie�y described.

The LT and Szekeres models describe the evolution of the Universe in the post-
recombination era, in which only gravitational interactions play a role. The matter
source in them is dust, i.e. a perfect �uid with zero pressure (the generalisation to
nonzero cosmological constant is known, but less frequently used). Thus, they should not
be considered for application to pre-recombination epochs, in which the pressure cannot
be neglected. In particular, they should not be applied to the in�ationary epoch. Also,
they are not suitable for including �dark energy� in any other form than cosmological
constant. On the contrary, these models are sometimes used to explain observational
results attributed to the �dark energy� by e�ects of inhomogeneities in ordinary matter.
They are meant to be a replacement for the linearised perturbations of the FLRWmodels
and for methods describing backreactions with the help of averaged quantities. Because
of their symmetries (LT) and quasi-symmetries (Szekeres) they apply to less general
situations than the perturbative calculations, but their advantage is that they ful�l the
Einstein equations exactly. Therefore, as long as we believe that general relativity is the
correct theory of gravitation, the inhomogeneous models can be extrapolated arbitrarily
far into the future and are not constrained by any �regimes�.

The main body of this review is devoted to a description of those observed e�ects
that can be explained using the LT and Szekeres models. The penultimate section deals
with misuses, errors and misconceptions existing in the literature on the inhomogeneous
models.

2. Exact solutions of Einstein's equations that can be applied as
inhomogeneous cosmological models

The total number of papers in which such solutions were derived or discussed was
approx. 750 until 1994 [89]. No-one has updated that statistic. No generalisations
of models known until 1994 have been reported in later years. However, the Lemaître
[103] � Tolman [159] (LT) models have become popular as a basis for astrophysical
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considerations, and the same is happening recently with the Szekeres [154] models. The
current number may well be over 1000. We begin by recalling the general classi�cation
scheme [89].

(1) The Szekeres - Szafron (S�S) family [154, 152]
These models are invariantly de�ned by the following properties [153]:

1. They obey the Einstein equations with a perfect �uid source.
2. The �ow-lines of the perfect �uid are geodesic and nonrotating.
3. The hypersurfaces orthogonal to the �ow-lines are conformally �at.
4. The Ricci tensor of those hypersurfaces has two of its eigenvalues equal.
5. The shear tensor has two of its eigenvalues equal.

Because of property 2, in comoving coordinates the pressure depends only on
time. Thus the barotropic equation of state, the most popular one in the astrophysics
community, reduces the Szafron metric to the Friedmann � Lemaître � Robertson �
Walker (FLRW) class. The only nontrivial solutions in the S�S family that can be
reasonably applied in cosmology are the Szekeres metrics [154], in which the source is
dust (a perfect �uid with zero pressure). This is a good model for the later phases of
the evolution of the Universe, in which gravitation plays a dominant role and large-scale
hydrodynamical processes have come to an end.

The metric of the Szekeres solutions is
ds2 = dt2 − e2α(t,r,x,y)dr2 − e2β(t,r,x,y)

(
dx2 + dy2

)
. (1)

The coordinates of (1) are comoving so that uµ = δµ
0. There are two families of Szekeres

solutions, depending on whether β,r = 0 or β,r 6= 0. The �rst family is a simultaneous
generalisation of the Friedmann and Kantowski�Sachs models [84]. So far it has found
no application in astrophysical cosmology, and we shall not discuss it here. The metric
functions in the second family are

eβ = Φ(t, r)eν(r,x,y),

eα = h(r)Φ(t, r)β,r≡ h(r) (Φ,r +Φν,r ) ,

e−ν = A(r)
(
x2 + y2

)
+ 2B1(r)x + 2B2(r)y + C(r), (2)

where Φ(t, r) is a solution of

Φ,t
2 = −k(r) +

2M(r)

Φ
+

1

3
ΛΦ2; (3)

Λ is the cosmological constant, while h(r), k(r), M(r), A(r), B1(r), B2(r) and C(r) are
arbitrary functions obeying

g(r)
def
= 4

(
AC −B1

2 −B2
2
)

= 1/h2(r) + k(r), (4)
where g(r) is another arbitrary function of the coordinate r de�ned as above. The mass
density in energy units is

κρ =
(2Me3ν) ,r
e2β (eβ) ,r

; κ = 8πG/c4. (5)
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The bang time function tB(r) follows from (3):
Φ∫

0

dΦ̃√
−k + 2M/Φ̃ + 1

3
ΛΦ̃2

= t− tB(r). (6)

The Szekeres metric has in general no symmetry, but acquires a 3-dimensional
symmetry group with 2-dimensional orbits when A, B1, B2 and C are all constant.

The sign of g(r) determines the geometry of the (constant t, constant r) 2-surfaces.
The geometry is spherical, planar or hyperbolic (pseudo-spherical) when g > 0, g = 0

or g < 0, respectively. With A, B1, B2 and C being functions of r, the surfaces r =

const within a single space t = const may have di�erent geometries, i.e. they can be
spheres in one part of the space and surfaces of constant negative curvature elsewhere,
the curvature being zero at the boundary.

The sign of k(r) determines the type of evolution when Λ = 0; with k > 0 the model
expands away from an initial singularity and then recollapses to a �nal singularity; with
k < 0 the model is either ever-expanding or ever-collapsing; k = 0 is the intermediate
case corresponding to the `�at' Friedmann model. Similarly to g, k can have di�erent
signs in di�erent regions of the same space. The sign of k(r) in�uences the sign of g(r).
Since 1/h2 in (4) must be non-negative, we have the following: with g > 0 (spherical
geometry), all three types of evolution are allowed; with g = 0 (plane geometry), k must
be non-positive (only parabolic or hyperbolic evolutions are allowed); and with g < 0

(hyperbolic geometry), k must be strictly negative, so only the hyperbolic evolution
is allowed. The geometry of the latter two classes is poorly understood [77, 90], and
therefore not explored for cosmological applications. Only the quasi-spherical model has
been well investigated, and has found applications in the study of the early Universe
[73, 119], structure formation [20, 21], supernova [27] and cosmic microwave background
(CMB) [23] observations, light propagation [93]. In [93] it was shown that two rays sent
from the same source at di�erent times to the same observer pass through di�erent
sequences of intermediate matter particles. The change of object position in the sky,
due to this e�ect, should be observable in the future.

The quasi-spherical Szekeres models can be imagined as deformations of the
spherically symmetric models after which the spheres (still identi�able in the Szekeres
geometry) are no longer concentric. The mass-density distribution may be interpreted
as a superposition of a mass monopole and a mass dipole [56, 134].‡

(2) The Lemaître and Lemaître � Tolman models
(2.a) The Lemaître model
The Lemaître metric [103] describes a spherically symmetric inhomogeneous �uid

‡ A special case of this may be interpreted as a pure mass dipole, but then the density is necessarily
negative over approx. half of each sphere, and the physical interpretation of such an object is unknown.
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with anisotropic pressure.§ In comoving coordinates it has the following form
ds2 = eA(t,r)dt2 − eB(t,r)dr2 −R2(t, r)

(
dϑ2 + sin2 ϑdϕ2

)
. (7)

The Einstein equations reduce to:
κR2R,r ρ = 2M,r, (8)

κR2R,tp = −2M,t, (9)

where (R,t , R,r )
def
= (∂R/∂t, ∂R/∂r), p is the pressure, ρ is the mass density in energy

units, and M(t, r) is de�ned by:

2M = R + e−ARR,t
2 − e−BRR,r

2 − 1

3
ΛR3. (10)

In the Newtonian limit, Mc2/G is equal to the mass inside the shell of radial
coordinate r. However, in curved space it is not an integrated rest mass, but the active
gravitational mass that generates the gravitational �eld. As can be seen from (9), in
the expanding universe the mass decreases with time. The function B can be written
in the following form [19]

eB(t,r) =
R,r

2(t, r)

1 + 2E(r)
exp




t∫

t0

dt̃
2R,t(t̃, r)[

ρ(t̃, r) + p(t̃, r)
]
R,r (t̃, r)

p,r (t̃, r)


 , (11)

where E(r) is an arbitrary function. The equations of motion T αβ
;β = 0 reduce to

T 0α
;α = 0 ⇒ B,t +4

R,t
R

= − 2ρ,t
ρ + p

, (12)

T 1α
;α = 0 ⇒ A,r = − 2p,r

ρ + p
, (13)

T 2α
;α = T 3α

;α = 0 ⇒ ∂p

∂θ
= 0 =

∂p

∂φ
. (14)

The Lemaître model has been employed to study the conditions of the early Universe
[72], the mass of the Universe [3], supernova observations [102], structure formation and
the impact of pressure gradients on shell crossing singularities [33].

(2.b) The Lemaître-Tolman model
In the special case of dust with the cosmological constant, the above equations

reproduce the Lemaître�Tolman (LT) model [103, 159]. When p,r = 0, equation (13)
implies A,r = 0, which means that the component g00 can be scaled to 1, and, using
(11), the metric (7) becomes

ds2 = dt2 − R,2r
1 + 2E

dr2 −R2(t, r)
(
dϑ2 + sin2 ϑdϕ2

)
. (15)

Equation (10) becomes then identical to (3):

R,t
2 = 2E +

2M

R
+

Λ

3
R2. (16)

§ The subclass of isotropic pressure is usually credited to Misner and Sharp [118], and occasionally to
Podurets [135].
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Because the pressure is zero, the mass does not depend on time. The mass density follows
from (8), and the bang time function tB(r) is given by (6), with (−k, Φ) replaced by
(2E, R).

For reviews of applications of the LT models see [89, 134, 32]. Selected examples:
formation of black holes [96, 68], of galaxy clusters [94, 95], superclusters [29], cosmic
voids [31], interpretation of supernova observations [45, 79, 5, 47, 4, 63, 16, 41, 42, 112,
22, 111, 40, 69, 70, 53, 62, 15, 35, 64], CMB [2, 176, 165, 137, 51, 120], redshift drift
[163, 10], and averaging (see the contributions by Buchert, Räsänen, and Wiltshire in
this issue).

Some of these applications will be discussed in Sec. 4.
(3) The Stephani � Barnes (S�B) family
This is the family of perfect �uid solutions with zero shear, zero rotation and

nonzero expansion. It consists of two collections of solutions:
(3a) The conformally �at solution:

ds2 = D2dt2 − V −2(t, x, y, z)(dx2 + dy2 + dz2), (17)

where:
D = F (t)V,t /V, (18)

V =
1

R

{
1 +

1

4
k(t)

[
(x− x0(t))

2 + (y − y0(t))
2 + (z − z0(t))

2]
}

, (19)

F (t), R(t), k(t), x0(t), y0(t) and z0(t) are arbitrary functions of time, F is related to the
expansion scalar θ by θ = 3/F , and k(t) is a generalisation of the FLRW curvature
index k, it can change sign during evolution. The matter density and pressure are:

κρc2 = 3kR2 + 3/F 2 def
= 3C2(t), (20)

κp = −3C2(t) + 2CC,t V/V,t . (21)

This solution was found by Stephani [147]; it is the most general conformally �at solution
with a perfect �uid source and nonzero expansion. As seen from (20) � (21), the matter
density in it depends only on the comoving time, while the pressure depends on all
the coordinates. In general, the solution has no symmetry. In Refs. [36, 37, 54, 98] it
was shown that the source has the thermodynamics of a single-component perfect �uid
only if the metric (20) � (21) is specialised so that it acquires an at least 3-dimensional
symmetry group acting on at least 2-dimensional orbits. The FLRW limit follows when
the functions k, x0, y0 and z0 are all constant.

The arbitrary functions of time cause that the evolution of the spacetime is
not determined. This is because no equation of state was imposed on (20) � (21).
Unfortunately, the two types of equations of state that are most often used in cosmology
and astrophysics (dust, p = 0, and a barotropic equation of state, f(p, ρ) = 0) both
reduce (20) � (21) to a FLRW model.
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(3b) The Petrov type D solutions
Equations (20) and (21) still apply here, but now V (t, x, y, z) is determined by the

following equation (resulting from the Einstein equations):
wuu/w

2 = f(u), (22)
where f(u) is an arbitrary function. The variable u and the function w are related to
the coordinates x, y, z, and to the function V (t, x, y, z) as follows:

(u,w) =





(r2, V ) for spherically symmetric models;
(z, V ) for plane symmetric models;
(x/y, V/y) for hyperbolically symmetric models,

(23)

where r2 = x2 + y2 + z2. These three classes of models were found by Barnes [12],
but the spherically symmetric case was known much earlier (and rediscovered many
times over, see [89] for a full list). The Einstein equations were reduced to the form
(22) by Kustaanheimo and Qvist [100]. With f(u) = 0, the Barnes models all become
conformally �at and are then subcases of the Stephani solution.

Many papers discussed methods of solving (22) and examples of particular solutions,
but with no relation to cosmology. An interesting application was a counterexample to
the Ehlers � Geren � Sachs (EGS) theorem [48, 13] � it was shown that almost isotropic
CMB is also possible in an inhomogeneous universe.

One member of the Barnes family of solutions, found by McVittie [116], is worth
noting here:

ds2 =

[
1− µ(t, r)

1 + µ(t, r)

]2

dt2 −R2(t)
[1 + µ(t, r)]4(
1 + 1

4
kr2

)2

[
dr2 + r2

(
dϑ2 + sin2 ϑdϕ2

)]
, (24)

where : µ(t, r) =
m

2rR

√
1 +

1

4
kr2,

m and k being arbitrary constants and R(t) being an arbitrary function. In the case
m = 0 this solution reproduces the whole FLRW class, and when (k, R) = (0, 1) it
reproduces the Schwarzschild solution. So, it is an exact superposition of the FLRW
and Schwarzschild metrics, with a perfect �uid source. It was published in 1933 (!).

A few authors attempted to apply this solution to observational cosmology.
However, all those attempts were fallacious. McVittie's discussion of the in�uence
of cosmic expansion on planetary orbits was coordinate-dependent. Järnefelt's
perturbative discussions of the same problem [89] produced no conclusive result because
the author did not de�ne a length unit that would be unchanging in time. Later,
McVittie [117] applied his solution to a discussion of stellar collapse, but the case k = 0

that he discussed has a spatially homogeneous density, so is unrealistic. Noerdlinger and
Petrosian [123] considered the problem of whether clusters or superclusters of galaxies
participate in the cosmological expansion. Their discussion was mostly Newtonian; they
used the McVittie solution only to estimate the relativistic correction to the result.

The disadvantage of this solution, shared with the whole S�B family, is that it
contains an arbitrary function of time, and so does not de�ne any evolution law for the
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universe. One way out of this is to impose an equation of state � but so far no-one had
a workable idea on what this equation should be. A barotropic equation f(ρ, p) = 0

reduces the McVittie solution to pure FLRW.
The subcase k = 0 is of little interest for cosmology because, similarly to the

Stephani [147] solution, it has spatially homogeneous mass density, and so its whole
inhomogeneity is hidden in pressure gradients. So far, nobody has provided a physical
interpretation of this situation.

Global properties of the McVittie solution were discussed by Sussman [151]. He
showed that the seemingly self-evident interpretation (a point particle in an expanding
universe) is not consistent with the global geometry. The set r = 0 is a null boundary,
and its intersection with any t = constant hypersurface H is at an in�nite geodesic
distance from any other point of H.

More recently, there appeared a collection of papers discussing global properties of
the McVittie solution, and some generalisations of it, for example by Nolan [124, 125],
Carrera and Giulini [44] and Kaloper et al. [82]. However, from the point of view of
cosmology, the results of these papers would require clari�cation, for which there is not
enough space in this review, for the following reasons:

1. They discuss the physically uninteresting subcase k = 0.
2. They treat the McVittie solution as if it were the only existing candidate for a

model of a black hole embedded in an FLRW universe. They overlook the fact that it is a
member of the large Barnes family that might be surveyed for more such examples. They
also overlook the fact that the LT and Szekeres models do contain subcases describing
black holes in a cosmological background, which are physically much better understood,
see for example Ref. [96].

3. They are involved in a tangle of polemics, the later authors pointing out alleged
errors in the earlier papers. Consequently, an extended re-analysis would be necessary
in order to sort out who is right.

4. Some errors in the most recent papers are evident. Examples:
(4a) Carrera and Giulini [44] cite Sussman [151] and Gautreau [71] as examples of

a �confusion� about interpreting the McVittie solution as a point particle in an FLRW
universe. In truth, Sussman was the �rst to point out and resolve this confusion, while
Gautreau's paper has nothing to do with McVittie (it used the LT model to discuss the
in�uence of cosmic expansion on planetary orbits).

(4b) Kaloper et al. [82] claim that there is some kind of singularity where invariants
built of second derivatives of the Riemann tensor diverge; they call it a �very soft�
singularity. In this, they revive the infamous �weak singularity� concept of Vanderveld
et al. [166], which was proven in Refs. [32] and [97] to be no singularity at all; see also
sec. 7 of the present text.

(4) Generalisations of the LT and Barnes models
For the LT model and for the whole Barnes class generalisations were found in which

the matter source is a charged dust, or, respectively, a charged perfect �uid obeying
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the Einstein � Maxwell equations. These do not seem to have a direct application
in cosmology, so we do not review them here; see Refs. [89] and [134] for overviews.
Nevertheless, the charged LT solution has interesting physical properties [134, 91, 92].
In addition, several generalisations of the LT and Barnes models were found, in which
the source has nonzero viscosity or heat conduction. The physical interpretation of these
in a cosmological context is less clear; see Ref. [89] for a review.

(5) Other models
The list that might be given here depends on how one de�nes a cosmological model.

In Ref. [89] it was proposed that the term �cosmological model� may denote only such a
solution of Einstein's equations that contains a nontrivial member of the FLRW class as
a limiting case. We shall stick to this terminology here, thereby eliminating more than
1500 papers [89] whose authors used the term �cosmological model� for their results. In
Ref. [89] this de�nition was used in a strict formal way, which resulted in listing a large
number of metrics, most of which do not seem to have any relation to observational
cosmology because, for example, they contain �elds of unclear interpretation, often
coupled together in ways that are di�cult to interpret. Examples of those are brie�y
listed here to give the reader an idea about the wealth of the existing material.

(5a) Models with null radiation
These are superpositions of the FLRW models with various vacuum solutions, like

those of Schwarzschild, Kerr, Kerr � Newman, etc. The superpositions are not perfect
�uid solutions, and their energy-momentum tensors were interpreted ex post as mixtures
of perfect �uid with null radiation (whose energy-momentum tensor is Tµν = τkµkν with
kµkµ = 0), sometimes also with electromagnetic �eld. The solutions were in fact guessed
in the course of exercises in metric-building and interpreting. As a result, the di�erent
contributions to the source are coupled through common constants so that, for example,
the null radiation can in some cases vanish only if either the perfect �uid component or
the inhomogeneity on the FLRW background go away. In particular, the superposition
of the Schwarzschild and FLRW solutions in this family is di�erent from the McVittie
solution [116]. This activity was started by Vaidya [164], who found a superposition
of the Kerr and FLRW solutions, and the probably most sophisticated composite was
found by Patel and Koppar [132]; it is an in�nite sequence of perturbations of the �at
FLRW background whose �rst-order term is the Kerr solution.

(5b) The �sti�-�uid� models
These are solutions of the Einstein equations with a 2-dimensional Abelian

symmetry group acting on spacelike orbits, in which the perfect �uid source obeys
the �sti� equation of state�, energy density = pressure (the source can be alternatively
interpreted as a massless scalar �eld). It was claimed that these models apply to the
early Universe, but the real reason behind the popularity of this activity was that
such solutions can be relatively simply generated from vacuum solutions with the same
symmetry, of which many are known. This activity began with the paper by Tabensky
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and Taub [157], and the probably most sophisticated example of an explicit solution
was given by Belinskii [14]. See [89] for an extended review.

(5c) Examples of other solutions (see [89] for a full list)
1. The Petrov type N perfect �uid solutions of Oleson [129].
2. A few simple examples of spherically symmetric perfect �uid solutions with

shear, expansion and acceleration being all nonzero, see Ref. [89].
3. Examples of algebraically special solutions de�ned by requirements imposed on

the degenerate principal null congruence of the Weyl tensor [89].
4. Anisotropic soliton-like perturbations propagating on the �at FLRW background

(the pressure has di�erent values for di�erent directions). The most elaborate example
of an explicit solution was given by Diaz, Gleiser and Pullin [55].

In this article we will discuss only those exact inhomogeneous cosmological models
that allow for testable observational predictions. For more exhaustive discussions the
reader is referred to [89, 134, 32].

3. Distance measurements

The concept of distance lies at the root of almost all cosmological observations whose
interpretation strongly depends on this quantity. The distance however depends on
the assumed model of the Universe and on the matter distribution in it. The e�ect
of inhomogeneities on the measured distance has been addressed frequently after the
papers by Kristian & Sachs [99] and Dyer & Roeder [57] were published (see also
[136] and references therein). For example, Partovi & Mashhoon [130] showed that
the inhomogeneities a�ect the second order coe�cient in the series expansion of the
luminosity distance, i.e. the deceleration parameter. Using the same line of calculations
Pascual-Sánchez argued that in such a case the deceleration parameter can be negative
just due to the presence of inhomogeneities [131]. However, cosmologists often disregard
the e�ect of inhomogeneities and just apply the FLRW relation. The `justi�cation' is:
1) even if density variations are large, the �uctuations of the gravitational potential
are small and therefore the perturbation scheme can be applied, and 2) since the
perturbations are Gaussian, they vanish after averaging, and therefore they should have
little impact on observations. However, as shown by Sachs [140], the equation for the
angular diameter distance DA is

d2DA

ds2
= −(|σ|2 +

1

2
Rαβkαkβ)DA, (25)

where σ is the shear, Rαβ is the Ricci tensor and Rαβkαkβ = κTαβkαkβ. In the case of
dust (p = 0), in the comoving and synchronous coordinates, Rαβkαkβ = κρk0k0. As seen,
the distance does depend on density �uctuations (not on the gravitational potential),
and secondly, even if the perturbations vanish after averaging (i.e. 〈ρ〉 = 〈ρb + δρ〉 = ρb,
where ρb is the background density), they do modify the distance and the �nal result
deviates from the homogeneous solution ρ = ρ(t). This is a consequence of (25). This
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means that one needs to know an exact model to calculate the distance � a statistical
information about the density distribution, like the matter power spectrum, is not
su�cient to calculate it. The matter power spectrum can only be used (within the
linear regime) to estimate �uctuations around the mean distance-redshift relation, to
be precise 〈∆2

D〉 (where ∆D is given by (26)). Thus, this method does not provide any
information about the change of ∆D, which as mentioned above, very often is assumed
to be zero. Apart from the above mentioned 2 arguments sometimes people quote
Weinberg's argument [169] that although for a single case the distance is modi�ed by
the inhomogeneities, but due to photon conservation, when averaged over large enough
angular scales the overall e�ect is zero. A detailed discussion why this kind of reasoning
should not apply is presented in [60].

To show how matter inhomogeneities a�ect the distance let us consider the following
examples:
(i) A large-scale inhomogeneous matter distribution (Gpc-scale) whose volume average

does not vanish, 〈δρ〉 6= 0. This is the giant void model with best �t parameters as
presented in [35] (the reader is referred there for more details).

(ii) Small-scale inhomogeneities (Mpc-scale) whose volume average vanishes, 〈δρ〉 = 0.
However, the average of the density �uctuations along the line of sight is not zero
〈δρ〉1D 6= 0. The model is based on the Swiss-Cheese model presented in [24] and
the reader is referred there for more details.

(iii) As above but now the distance is calculated within the weak lensing approximation,
and is based on the model presented and discussed in [25].

(iv) Small-scale inhomogeneities (Mpc-scale) whose volume average vanishes, 〈δρ〉 = 0.
Also, the average of density �uctuations along the line of sight is zero, 〈δρ〉1D = 0.
The model is based on the Swiss-Cheese model presented in [26].

The results in terms of the distance corrections, ∆D, are presented in Fig. 1. The
distance correction ∆D is de�ned by the following relation

DA = D̄A(1 + ∆D), (26)
where D̄A is the distance in the homogeneous (background) model. As seen, the
correction is of the order of a few percent, thus, owing to the increasing precision of
the observations, the inhomogeneities need to be taken into account.

Below we will discuss several examples showing how inhomogeneities can in�uence
our interpretation of cosmological observations. As we cannot discuss here every single
paper that deals with this issue we will just focus on some major developments and refer
only to a few (not all) papers dealing with this problem. We will also omit the Stephani
models in our review as being less physically motivated.

4. The direct method

The studies of inhomogeneities and their e�ect on observations can be divided in 3
approaches: direct methods, the inverse problem and the averaging approach. Only
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Figure 1. The distance correction. Roman numbers refer to the labels of the models
discussed in this section. Models (ii)-(iv) are based on the Swiss-Cheese models with
Mpc-scale inhomogeneities hence large �uctuations for low redshifts.

the �rst two will be discussed in this review � for the averaging approach see the
contributions by Buchert, Räsänen, and Wiltshire in this issue. In the �rst approach a
model is speci�ed by a set of a priori chosen parameters and the observational data is
used to �nd the best �t for these parameters. In the second approach the observational
data is used to de�ne the model with no a priori constraints imposed on it.

4.1. Giant void models

The giant void con�gurations are characterised by underdensity pro�les increasing with
radius on Gpc scales. One of the �rst and simplest models was the one discussed by
Tomita [160, 161, 162]. He considered a model consisting of a low-density inner and a
higher density outer homogeneous regions connected at some redshift and showed that
such a con�guration can explain the supernova dimming. After 2006 the number of
papers concerning the giant void models rapidly increased. Assuming a density pro�le
and an expansion rate, or a shape of the bang time function, one analyses cosmological
observations to constrain the parameter space of the giant void. However, the particular
constraints strongly depend on the assumed parameterisations, and almost every single
paper introduced its own. As it is impossible to discuss all of them, we will focus here
on three examples:
(i) The GBH void model [69] is de�ned by the following functions

M(r) =
1

2
H0(r)

2Ωm(r)R3
0 & k(r) = H0(r)

2(Ωm(r)− 1)R2
0, (27)

where

Ωm(r) = Ωout +
(
Ωin − Ωout

) (
1− tanh[(r − r0)/2∆r]

1 + tanh[r0/2∆r]

)
, (28)
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Figure 2. Supernova constraints on the size and depth of giant void models. Dashed
line: the GBH model (27), solid line: the BW model (30), and dotted line: the ZMS
spline model (31).

H0(r) = Hout +
(
Hin −Hout

) (
1− tanh[(r − r0)/2∆r]

1 + tanh[r0/2∆r]

)
. (29)

There are 6 parameters here, Ωout determined by the assumption of asymptotic
�atness, Ωin determined by LSS observations, Hout determined by CMB
observations, Hin determined by HST observations, r0 characterizing the size of
the void, ∆r characterizing the transition to uniformity. But in the GBH model it
is assumed that Ωout = 1.

(ii) Bolejko and Wyithe class I model [35] is de�ned by

ρ(t0, r) = ρb

[
1 + δρ − δρ exp

(
− r2

σ2

)]
, & tB = 0. (30)

where ρb = Ωm × (3H2
0 )/(8πG). It contains 4 parameters: H0, Ωm, δρ, σ. In [35] it

was assumed that Ωm = 0.3 but here we will allow this parameter to vary.
(iii) The spline model of Zibin, Moss, and Scott [176, 120] is de�ned by

ρ(t0, r) = ρEdS(1 + δ), & tB = 0, (31)
where δ is given by a three-point cubic spline to the initial density �uctuation
δj = δti,rj

= and j = 1, 2, 3. By construction, r1 = 0 = δ3. Thus the model depends
on 5 free parameters: δ1, δ2, r2, r3 and ρEdS which just depends on H0.

Using cosmological observations (like supernovae and CMB, etc.) one can constrain
the range of the above parameters. Usually three parameters are most interesting: the
size and depth of the void and the local value of H0. In order to compare the constraints
from these 3 parameterisations let us assume that the depth is just the density contrast
(δ = 1− ρout/ρin) and the radius of a void is de�ned as a place (at the current instant)
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where the density contrast becomes smaller than −0.1 as we proceed from outside into
the void.

The constraints on δ and Rv from the supernova observations‖ are presented in
Figure 2. As seen, using di�erent parameterisations one obtains di�erent constraints.
For example, a void of size Rv = 1.5 Gpc and δ = −3 is consistent with the constraints
coming from (30), but is excluded by those coming from (27).

Apart from supernovae it is common to include the CMB constraints. However,
up to date no one has performed the full CMB analyses within the LT framework. In
the standard approach (the FLRW framework) the CMB data is analysed using the
temperature anisotropy power spectrum given by the covariance of the temperature
�uctuations expanded in spherical harmonics

Cl = 4π

∫
dk

k
Pi|∆l(k, η0, µ)|2 (32)

where ∆l(k, η0, µ) is the transfer function, Pi is the initial power spectrum, η0 is the
conformal time today and µ is the angle µ = k.n/k (with n the unit vector in the
direction of the emission of the radiation). On large scales the transfer function is of the
form ∆l(k, η0, µ) = ∆LSS

l (k) + ∆ISW
l (k), where ∆LSS

l (k) is the contribution from the last
scattering surface given by the Sachs-Wolfe e�ect and the temperature anisotropy, and
∆ISW

l (k) is the contribution due to the change in the gravitational potential along the
line of sight, known as the integrated Sachs-Wolfe (ISW) e�ect. The ISW e�ect depends
on the growth of the perturbations within the considered model. As the perturbative
scheme within the LT model is still in its infancy [175, 50] (see also the contribution by
Clarkson in this issue) it is impossible to estimate the ISW e�ect in the conventional way.
However, the ISW e�ect is only important for low ` and is expected to be smaller than
the cosmic variance ∆Cl/Cl = ±(2/(2`+1))1/2. Another e�ect that is hard to estimate,
but expected to be within the cosmic variance limits, is the e�ect of the reionisation.

Therefore, the analysis of the CMB within the LT framework is done as follows:
it is assumed that the generation of the CMB anisotropies at the last scattering is the
same as in the standard model. As the post-decoupling e�ects (like the ISW e�ect or
reionisation) are expected to be smaller than cosmic variance, one does not estimate
these e�ects within the LT framework, but uses standard codes like CMBFAST [144]
or CAMB [104]. Therefore, if one does not change the initial power spectrum then the
shape and amplitude of the Doppler peaks is just governed by Ωch

2, Ωbh
2, Ωkh

2 (i.e., the
physical densities of cold dark mater, baryonic matter and curvature) [38, 58]. Finally,
as the angular diameter distance maps the physical position of the peaks to peaks in the
angular power spectrum Cl as a function of the multipole `, one needs to �t the angular
diameter distance to the last scattering surface. Thus, the only di�erence between the
standard analysis of the CMB and the analysis within the LT model is the change of
distance to last scattering. Other e�ects have not been taken into account because of

‖ The constraining function is χ2 =
∑

i
(µi−µ0)

2

σ2
i

, where µi and σi correspond to the measurements of
the 557 supernovae [6], µ0 is the distance modulus in the considered model.
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lack of a fully developed perturbative scheme within the LT framework, though the
change of initial power spectrum was considered in [120, 122].

From the above description it is apparent that such an analysis only weakly
constrains the giant void [51]. To successfully �t the CMB data one just needs to
�t Ωch

2, Ωbh
2, Ωkh

2 (in the region that emitted CMB) and the distance to the last
scattering surface. This however, as argued in [35], can be achieved by changing the
properties of the model outside the void. The region from which the CMB was emitted
is currently approximately 13 Gpc away from us, therefore its Ωch

2, Ωbh
2, Ωkh

2 are not
related to a void which has a radius of ∼ 3 Gpc. Similarly, the distance to the last
scattering instant can be tuned by the properties of the model outside the void.

In most cases, however, one does not consider any modi�cation outside the void and
just assumes that the universe (from our Galaxy up to the last scattering) is described by
the chosen parametrisation, such as for example (27) or (31). Such a procedure leads to
large systematics. For example, if the background (i.e the model far away from the void)
is assumed to be the Einstein-de Sitter model, then in order to have a good shape of
the CMB power spectrum a low value of the expansion rate is required. This is because
the proper shape of the power spectrum requires that Ωmh2 ≈ 0.13, so if one assumes
that Ωm = 1 then one gets h ≈ 0.4. This, on the other hand, has strong implications
for the void. To �t the supernovae one needs a �uctuation of the expansion rate of
amplitude δH ≈ 0.1 − 0.2 [63, 35], so this implies that the local expansion rate is low,
i.e. H0 ≈ 45 km s−1 Mpc−1 [120] or H0 ≈ 60 km s−1 Mpc−1 [69]. This, when combined
with local measurements of H0, seems to rule out the giant void. The assumption of
an Einstein-de Sitter background also impairs the BAO analysis like the one in [120].
When the assumption of spatial �atness is relaxed one obtains better results, see for
example [17].

The local expansion rate within the LT region is also important for the age
considerations. A small H0 implies a large age of the Universe [120]. On the contrary,
a large H0 and Λ = 0 imply a shorter age. Thus H0 ≈ 70 km s−1 Mpc−1 gives the
age of 11 − 12 Gyr. This was discussed in [101], where it was shown that the current
measurements do not put tight constraints on the model.

Actually, in an LT model, due to the shear, the anisotropy in the expansion increases
as the void grows and becomes nonlinear. Hence, physical length scales, and in particular
the sound horizon at the drag epoch, which are isotropic in an FLRW model, become
more and more di�erent in the radial and transverse direction. This is the reason why
the Einstein-de Sitter background is suspected not to be a good approximation for the
calculation of the BAO in the case of huge (Gpc) voids.

Di�erent tests have been proposed in the literature to rule out or con�rm the giant
void proposal. The stronger constraints compared to other observational probes are the
kinematic Sunyaev-Zeldovich (kSZ) e�ects [150] that can be observed on distant galaxy
clusters. Since these clusters are o� the centre of the LT universe, there should be a
large CMB dipole in their frame of reference which would manifest itself for us as a kSZ
e�ect. Such a test was performed by the authors of [70] who showed that observations
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of nine clusters with large error bars can rule out LT models with voids of size greater
than ∼ 1.5 Gpc. More recently, using the observational data from the the South Pole
Telescope and the Atacama Cosmology Telescope, Zhang & Stebbins [174] put tighter
constrains on the size of a void ∼ 850 Mpc. However, the paper uses the �Hubble
bubble� void model (i.e. based on a 2-region FLRW model, with negative curvature
inside and spatially �at outside). Also, if one introduces non-adiabatic perturbations
then the observational constraints are relaxed [172].

Another test uses the spectral distortion of the CMB black-body spectrum [43]. A
large local void causes ionised gas to move outward, in motion relative to the frame of
the CMB. This produces a Doppler anisotropy in the frame of the gas. A large void
will imply large anisotropies which will be re�ected back at us as spectral distortions.
The test has been performed in [43], using the particular case of �Hubble bubble� void
models. Large voids with large density contrasts are thus ruled out. However, the test
has only been applied to the Hubble bubble class of models and other models may evade
this test.

The void can also be tested directly by means of galaxy surveys as the one reported
in [87]. Here, a deep, wide-�eld near-infrared survey is presented and explored to provide
implications for local large scale structure. The results suggest that local structures may
exist on scales up to 300 Mpc.

In the papers cited above, the observer has been assumed to be located at the
centre of the LT model. But one can �nd in the literature some models where he/she is
assumed to be o� the centre. However, the CMB low multipoles put stringent limits on
the distance he/she can be from the centre. This has been studied in [4, 18, 143] using
di�erent LT models. Using SN Ia data alone, it can be concluded that the observer can
be displaced at most 15% of the void scale radius from the centre [4, 18]. But when one
takes into account the induced anisotropies in the CMB temperature, the combination
of the CMB dipole measurement and the SNe Ia data imposes very strict constraints on
how far from the centre the observer can be located, i. e. no more than 1% of the void
scale radius [18].

For more details on observational constraints on giant void models see the
contributions by Zibin and Marra & Notari in this issue.

4.2. Non-void models � the e�ect of expansion

Giant voids are not the only con�gurations that can be used to �t cosmological
observations. There is a group of LT models that are de�ned by the assumption of a
homogeneous density distribution at the present instant and a Gpc-scale inhomogeneous
expansion rate. Such a con�guration was �rst considered in [22]. A homogeneous density
pro�le at the current instant does not imply a homogeneous pro�le at all times. Also
the bang time function in such cases is of high negative amplitude, around 1-2 Gyr at
2 Gpc [22]. The in�uence of inhomogeneous expansion on the luminosity distance was
further studied in more detail by Enqvist and Mattsson [63]. In their set of di�erent
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LT models the observer is located at the centre and the universes are de�ned by an
inhomogeneous expansion rate and a homogeneous density pro�le in some cases and in
other cases by an inhomogeneous expansion and homogeneous tB.

The analysis of cosmological observations within this type of models implies that
they have a better goodness of �t than giant void models [63, 35]. The amplitude of
the �uctuations of the expansion needed to �t the observations was found to be around
δH ≈ 0.1 − 0.2 [63, 35]. This seems to imply that an inhomogeneous expansion rate is
very important, since, as shown in [22], models with a homogeneous expansion rate and
Λ = 0 cannot successfully �t supernova data.

This property can be linked to the result of Krasi«ski and Hellaby [95, 31]
that velocity perturbations are more e�cient at generating structures than density
perturbations.

4.3. Swiss-Cheese models

An alternative way of modelling inhomogeneities is the Swiss-Cheese approach. Instead
of assuming that the whole Universe is modelled by a single inhomogeneity of Gpc-scale,
smaller inhomogeneous patches that are matched with each other are considered.

The Einstein and Straus [65] type Swiss-cheese models were used to study, among
other e�ects, the in�uence of inhomogeneities on the magnitude-redshift relation
[83, 126, 127, 128]. However, since Schwarzschild's is a static solution, any in�uence
of the expansion of the vacuoles remains weak in such models, and the magnitude of the
reported e�ects is very low (as an example, Nottale [127], using a very simpli�ed such
model, found an observable ampli�cation by medium density clusters or by superclusters
of galaxies of only a tenth of a magnitude).

The recent appearance in the literature of models of Universe in which the
inhomogeneities are represented by LT regions within a homogeneous background, where
the matter is assumed continuously distributed, with densities both below and above
the average, allows us to account for this vacuole expansion. The �rst authors, to our
knowledge, to have considered such LT Swiss-cheese models to deal with the dark energy
problem were Kai et al. [81]. However, their aim was to reproduce an accelerated
expansion (which is only an artifact of the homogeneity assumption), and not the
observed luminosity distance-redshift relation. Therefore, the constraints they found
on their model cannot be considered as relevant for cosmological purpose.

Other LT Swiss-cheese models have been proposed to deal with the same dark
energy problem [41, 42, 15, 112, 111]. The best results were obtained by Marra et al.
[112, 111], who considered a model where holes with radius 350 Mpc are inserted into
an Einstein-de Sitter background. Each hole exhibits a low density interior, surrounded
by a Gaussian density peak near the boundary that matches smoothly to the exterior
Friedmann density, and such that the matter density in the centre is roughly 104 times
smaller than in the Friedmann background. To have a realistic evolution, it is also
demanded that there are no initial peculiar velocities. This implies 0 < E(r) ¿ 1.
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Evolving this model from the past to the present day, the inner almost empty region
expands faster than the background, and the interpolating overdense region is squeezed
by it. The density ratio between the background and the interior of the hole increases
by a factor of 2. The evolution is realistic. Matter is falling toward the peaks in density.
Overdense regions start contracting and become thin shells, mimicking structures, while
underdense regions become larger, mimicking voids, and eventually they occupy most
of the volume. The propagation of photons is studied in three cases: the observer is
just outside the last hole, in the Friedmann region, looking at photons passing through
the holes; the observer is on a high density shell; the observer is in the centre of a hole.
The observables calculated are the redshift z(λ), the angular diameter distance DA(z),
the luminosity distance DL(z) and the corresponding distance modulus ∆m(z). In this
model, inhomogeneities are able to mimic at least partly the e�ects attributed to dark
energy.

The last scenario described above has some similarity to the one considered years
ago by Sato and coworkers [108, 142, 109, 110, 141]. Maeda, Sasaki and Sato [108]
considered a spherical void represented by a low-density FLRW region surrounding the
centre of symmetry, itself surrounded by a LT transition region, in turn surrounded by an
FLRW background with a higher density which has positive curvature and recollapses.
The void has a tendency to expand forever, but it is eventually swallowed up in the
�nal singularity of the background FLRW region. Sato and Maeda [142] have shown
that spherical symmetry is a stable property in the expansion of voids, i.e. initially
nonspherical voids become more spherical during their expansion. Maeda and Sato
[109, 110] investigated the expansion of a shell of zero thickness and �nite surface density
of matter inside a spatially homogeneous dust medium with di�erent densities on each
side of the shell. They derived the equation of motion of the shell and the equation for
mass-accumulation in the shell. They solved these equations numerically for the three
types of FLRW background. The dependence of the enlargement of the void on the time
of its formation was derived. In general, the earlier the formation time, the larger the
enlargement. Moreover, the enlargement is increased for higher background density.

When studying the light propagation within Swiss Cheese models an important role
is played by the proper randomisations. In some papers, like in the model by Marra et
al., structures are lined up. However, as shown in [41, 42, 167, 156, 25] if one allows
for randomisation of structures and angles at which light rays enter the structures, then
the e�ect of inhomogeneities on the distance-redshift relation is reduced.

An intriguing result was presented in [52], where the Swiss Cheese model was
constructed using the Schwarzschild solution. Their approach is a generalisation of
the Lindquist & Wheeler model [105] and aims at describing the matter content of
the Universe, which in fact is not a continuous �uid. The result, however, is that the
distance to a given redshift in this model is smaller than in a homogeneous perfect �uid
model. Thus in order to �t the supernova data, more dark energy is needed. For more
details see the contribution by Clifton in this issue.

To escape the spherical symmetry of the vacuoles, a generalisation to the Szekeres
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Swiss-cheese models was proposed in [27]. As a �rst step, and for simplicity, particular
classes of axially symmetric quasi-spherical Szekeres holes were used to reproduce the
apparent dimming of the supernovae of type Ia. The results were compared with
those obtained in the corresponding LT Swiss-cheese models. Although the quantitative
picture is di�erent, the qualitative results are comparable, i.e, one cannot fully explain
the dimming of the supernovae using small scale (∼ 50 Mpc) inhomogeneities. To �t
successfully the data, structures of at least ∼ 500 Mpc size are needed. However, this
result might be an artifact of axial light rays in axially symmetric models (the model
is not fully general). This work is a �rst step toward using the Szekeres Swiss-cheese
models in cosmology.

5. The inverse problem

The inverse problem is conceptually di�erent from the direct approach. Here one
does not parametrise a model and look for the best �t values of assumed parameters.
Instead, one uses observations to specify the functions that de�ne the model. This
idea was pursued by Kristian & Sachs [99], who were the �rst to consider how to use
observations to determine the geometry of the Universe. They used series expansions in
powers of the diameter distance and focused on such observables like redshift, image
distortion, number density and proper motion. The problem was revived by Ellis
et al [61, 149, 107, 8, 11, 9]. They considered the �uid-ray tetrad and focused on
the spherically symmetric case and its perturbations. For the review and pedagogical
presentation of the �uid-ray tetrad problem see [76].

5.1. Distance

The simplest version of the inverse problem is just to take the distance measurements
(angular or luminosity) and use it to de�ne the model. This approach is mostly based
on the LT model. However, to de�ne such model one needs 2 functions. This means
that using just distance measurements one of the functions needs to be speci�ed by an
ansatz instead of by observations. The simplest ansatz is to assume a spatially �at LT
model. An LT model with E(r) = 0 = Λ was considered in [45, 79, 166]. The model
was �tted to the luminosity distance-redshift relation alone. This implies constraints
on tB(r) which were given either in terms of constraints on the lower order derivatives
of tB(r) taken at the observer as in [45] or in terms of di�erential equations which were
numerically solved as in [79, 166]. Reference [79] also presented an algorithm de�ning
the LT model from distance measurements and the assumption tB = 0.

The aim of this approach was to show that supernova observations alone imply
neither dark energy nor accelerated expansion of the Universe. However, by imposing
additional constraints some tried to argue otherwise. For example if one imposes
smoothness conditions, i.e. density pro�le at the origin with vanishing �rst derivative,
then one obtains that the luminosity distance within the LT model and the FLRW
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model are the same up to the second order [158], which implies that the deceleration
parameter for pure dust models must be positive. This, however, does not have any
serious cosmological implications as, �rstly, density does not need to be smooth [139],
and, secondly, models with a smooth density pro�le can also �t the data without dark
energy (for example most of the giant void models have a smooth density distribution,
see Sec. 4.1).

The inverse problem that uses the angular diameter distances (this relates also to
Sec. 5.2 � 5.6) has di�culties at the apparent horizon (AH), where dR̂/dz = 0. As this
quantity can appear in the denominator (with another quantity vanishing at the AH in
the numerator) this can cause problems when numerically solving the equations. This
is not a drawback of the model, as improperly claimed in [166], and this can be dealt
with in several ways. One of the solutions is to employ the Taylor expansion at the AH
[106, 114, 30]. Another approach is based on solving the equations on both sides of the
AH and choosing such solutions that approach each other [171]. In [46] the problem was
solved by �tting polynomials to the functions M(r) and E(r) and using them as initial
conditions for the direct method.

The existence of the AH can in fact be useful as it puts additional constraints that
must hold at this location. For example for the Lemaître model (and its subcase the LT
model) we have [3]

6M = 3R− ΛR3. (33)
A generic set of data will not obey the above relation. Also, as discussed in [121, 170],
there are some other relations that will not be satis�ed by generic data because real
observational data are always accompanied by systematics. Thus, these relations can
be used to estimate a correction for systematics so that a consistent solution is obtained.
The algorithm for such corrections is presented and discussed in [106, 114, 30].

5.2. Distance and galaxy number counts

An algorithm which shows how to de�ne an LT model based on distance and number
count data was �rst presented in [121]. The algorithm was further developed in [106, 114]
but no real observational data has been used. In [46] this algorithm was applied to D(z)

and n(z) of the same form as in the ΛCDM model. In such a case the model obtained
does not exhibit a giant void. The density at the current instant in this case is slowly
increasing up to δ ≈ 0.05 and then is decreasing with an overall pro�le more resembling
a hump than a void. The bang time function is negative and decreasing to around -2
Gyr at 4 Gpc.

In [88], the same goal of reconstructing an LT model from the luminosity-distance-
redshift relationship and the light-cone matter density as a function of redshift that
matches the �ducial ΛCDM model was pursued. The results exactly agree with those of
[46]. Another result of this paper is that the LT model whose DL(z) and ρ(z) functions
exactly match those of the �ducial ΛCDM model has singular initial conditions for R,r,
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which means that R,r→ +∞ when the bang time is approached away from the center,
i. e., R,r (r 6= 0, tB(r)) = +∞.

5.3. Distance and expansion rate

Reference [46] also described an algorithm for de�ning a model based on distance and
expansion rate observations. Again it was assumed that D(z) and H(z) are the same as
in the ΛCDM model. The results suggested a model with a hump rather than a void,
with a decreasing bang time function.

5.4. Distance and age of the Universe

The �rst attempt to use real data to de�ne the LT model was presented in [30]. Up to
date there are no precise measurements of galaxy number counts, also the measurements
of H(z) [145, 148] are based on the assumption that tB = 0 and cannot be used to de�ne
a general LT model. Therefore an algorithm for de�ning an LT model from distance
and age measurements is given in [30]. The paper discusses two separate cases with
and without the cosmological constant. In the case of Λ = 0 the results are somewhere
between the giant void and hump con�gurations, i.e. the present-day density pro�le
initially increases as in giant void models, but then decreases. However, due to poor
data at high redshift one cannot have con�dence in the model at large distances. The
constraints on tB are not tight and are consistent with either increasing or decreasing
pro�les. When Λ 6= 0 the results suggest a very slowly increasing pro�le, but are
consistent with a homogeneous con�guration.

5.5. Distance and redshift drift

An algorithm de�ning an LT model based on distance and redshift drift data (both as
functions of redshift) can be found in [10]. The model uses the �uid-ray tetrad approach
[76].

5.6. Distance, galaxy number counts, and age of the Universe

To specify the LT model one needs to know 2 functions and 1 parameter (the
cosmological constant, which usually, within the LT framework, is set to be zero). Ref.
[28] presented the algorithm how to specify the LT model with the cosmological constant
based on the distance, galaxy number counts, and age of the Universe data. Using 3
sets of data allows to break the degeneracy (described in Secs. 5.2 and 5.3) between the
ΛCDM model and zero-Λ LT model.

5.7. Consistency between observations

Another approach to study observations (instead of directly �tting a model with them)
is based on checking the consistency between observations, i.e. to check if the relation
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between observations is as given by the cosmological model. Ribeiro and Stoeger
considered the consistency between the galaxy luminosity function and corresponding
galaxy number counts [138]. In a follow-up paper they showed that such an analysis
strongly depends on the distance de�nition used [1]. Clarkson, Bassett & Lu [49] studied
the relation between H(z) and D(z) data. They found that if the Universe is almost
homogeneous on large scales, then the expansion rate and distance are not independent
but are related. Thus, by studying relations between observations one can test the large
scale homogeneity of the Universe. An additional problem arises when the observed
objects evolve. A discussion of a possible distinction between the e�ect of evolution and
inhomogeneity was presented in [74].

The motivation for the consistency checks is that the relation between di�erent sets
of observational data does not have to be the same as in the cosmological model that we
assume to analyse the data. In [28] it was shown how using 3 di�erent sets of data we
can test consistency between observations and the underlying background cosmological
models.

6. What if the cosmological constant is not zero?

In most of the literature applying inhomogeneous models to �t the observations the
cosmological constant has been set to be zero. Actually, the aim of these works was to get
rid of the impenetrable dark energy component. However, if, for some theoretical reason,
coming for example from particle physics, a nonzero cosmological constant appeared to
be part of the Universe energy budget, the e�ect of the inhomogeneities observed in
the Universe should still be taken into account to build a proper cosmological model.
Actually, the studies realised up to now show that their in�uence is not negligible.

Marra and Paakkonen [113] studied the giant void models with a non-zero
cosmological constant. Their conclusion is that if ΩΛ ≈ 0.7 then large voids are excluded
by cosmological observations. On the other hand, large voids (Rv ∼ 3 Gpc) with
ΩΛ ≈ 0− 0.3 are consistent with the data.

Models with Mpc-scale inhomogeneities and cosmological constant were considered
in [27], where it is shown that smaller values of Λ (than when homogeneity is assumed)
are su�cient to �t the data. This is because small-scale inhomogeneities lead to an
increase of the distance (see also Fig. 1) hence less dark energy is needed [27]. However,
if the CMB constraints are taken into account, the opposite is true � in order to have
a good �t more dark energy is needed (than when homogeneity is assumed) [26]. Also,
as shown in [7], adding inhomogeneities to a model with the cosmological constant can
actually improve the �t to the data, compared to purely homogeneous models.

The above mentioned studies are based on the direct approach. The �rst inverse
approach with the pre-assumed cosmological constant was presented in [30]. The full
inverse problem that uses the data to derive also the value of the cosmological constant
was discussed in Ref. [28].
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7. Formation of black holes

When studying black holes it is commonly assumed that these objects can be described
using the Schwarzschild or Kerr metrics. This approach has the following caveats: (1)
these space-times are asymptotically �at while the real Universe is not; (2) these black
holes do not evolve, they exist unchanged from t = −∞ to t = +∞, while real black
holes accrete mass.

The solution for the �rst problem are superpositions of the FLRW models with
stationary black holes such as the Swiss cheese Einstein�Straus [65] con�guration. Still,
such black holes do not evolve, they exist ab initio and their masses do not change,
whereas in cosmology we are interested in evolving black holes and in their formation.

An LT model can solve both these problems. Its �rst application to a study of the
formation of black holes was presented in [96], and then followed by [68, 67]. Using it, one
can study the evolution of primordial black holes or both the formation and evolution.
For the most detailed analysis see [80]. The process analysed in detail in Refs. [96] and
[80] was predicted by Bondi [39] already in 1947. A black hole is formed because rapidly
collapsing matter forces the light rays to also converge toward the �nal singularity. A
black hole with mass comparable to those at the centres of galaxies may form either
out of a localised mass-density perturbation, or out of a localised velocity perturbation,
or around a pre-existing wormhole [96]. In each case, an apparent horizon is formed
because of the rapid collapse, and the collapse is caused either by gravitational attraction
of the initial condensation, or by the initial �uctuation of velocity that magni�es itself
in the course of collapse.

So far the problem was not considered beyond the LT models. Although the collapse
within the Szekeres model was studied [155] it was only within the asymptotically �at
models, not within a cosmological background.

8. Observational predictions

There are a number of potentially observable e�ects that could occur only when
inhomogeneities are present and do not exist in the Friedmann models. The best known
among them is gravitational lensing (see paragraphs 4 and 5 of Sec. 10). In this section
we are not going to discuss the e�ects that are most often modelled using perturbative
methods, such as gravitational lensing or the Rees�Sciama e�ect. Instead, we will focus
on the less known e�ects, in particular those that can potentially be used to distinguish
between Gpc-scale inhomogeneous models and homogeneous models with dark energy.
Thus, the list below is very selective and does not include all possible observational
tests.
• Redshift drift
As the Universe evolves, the redshifts of astronomical objects change with time. For
the ΛCDM model ∆z > 0 for z < 2. For the giant void models (which are the most
popular alternative among the inhomogeneous models) ∆z is expected to be negative
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for all z. Thus, a detection of a negative redshift drift for all z would be a proof against
dark energy. However, the converse is not true, as there are Gpc-scale inhomogeneous
models that also have ∆z > 0 for low z [173].
• Galaxy number counts
The galaxy distribution on small scales is very inhomogeneous, with large �uctuations in
number counts. However, with the increasing amount of data we should be able to detect
an overall trend of n(z). In this case it will be possible to see if the overall behaviour
is consistent with the prediction of homogeneous models. Although a detection of a
Gpc-scale inhomogeneous trend would be an argument against large-scale homogeneity,
the converse argument does not hold as there are inhomogeneous models that can have
the same n(z) as homogeneous models [46].
• Kinematic Sunyaev-Zel'dovich e�ect

The existence of a Gpc-scale inhomogeneity leads to an additional (compared to a
homogeneous scenario) peculiar velocity of galaxy clusters. As discussed in Sec. 4.1, the
present data already puts tight constraints on the size of such an inhomogeneity. Thus,
with new data coming from the Planck mission, the giant void models will be put to
the test.
• Lyα observations
Observations of Lyα lines in spectra of distant quasars provide information about the
amount of light elements. These observations can be used to constrain cosmological
parameters, for example the D/H ratio is very sensitive to Ωbh

2. The accurate analysis of
the observations is di�cult as the amount of light elements also depends on astrophysical
processes. However, it is believed that low metallicity objects should have the deuterium
to hydrogen ratio unchanged from the time of the primordial nucleosynthesis.

Within a homogeneous universe Ωbh
2 should be everywhere the same. The

observations, however, show a large scatter in the data which is also not consistent
with the WMAP data [133]. A conventional explanation of this phenomenon is that the
errors in the individual measurements of D/H may have been underestimated [146, 133].
As this may be true, in the future, with a large amount of data and more precise
observations, it will be possible to detect if the variation of Ωbh

2 is real.
• Dark �ow
In the standard approach, the galaxy velocity �eld is described using linear perturbations
of the Friedmann model. Within this framework, �ows of large amplitude on a scale
beyond 100 Mpc are exceptional. However, observations show that such a �ow exists
on scales of at least 150 Mpc [168, 66]. Although such a �ow is hard to explain using
linear methods, it may still be consistent with the standard cosmological model. But if
this �ow extends to even larger scales, the ΛCDM model will not be able to account for
it.

Recently, Kashlinsky et al. reported the existence of �ows on scales over at least
800 Mpc [85, 86]. The result of their analysis is subject to large systematics and so far
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has not been con�rmed by any other group. However, if such a �ow is con�rmed, then
this will put the ΛCDM model at odds with the data.
• Maximum of the diameter distance
The position of the maximum of the angular distance puts additional constraints on
a model, see (33). This relation combines the distance, mass and the cosmological
constant [75]. Thus it may serve as a consistency check and may be used to rule out
the models that do not meet this criterion. Also, the position itself can be di�erent
for di�erent types of models. For example, the giant void models have typically the
maximum around z ≈ 1 while the ΛCDM model has a maximum around z = 1.6 [35].
• Non-repeatable light paths (non-RLPs).
In Ref. [93] it was shown that within inhomogeneous models generic light rays do not
have repeatable paths: two rays sent from the same source at di�erent times to the
same observer pass through di�erent sequences of intermediate matter particles. This
e�ect does not exist in the Robertson�Walker models. This shows that RLPs are very
special and in the real Universe should not exist. As a consequence, cosmological objects
should change their positions in the sky. Although the e�ect is small, in principle it is
detectable.

The existence of this e�ect may also have consequences in applying averaging
schemes. Within an averaging scheme, an inhomogeneous distribution is approximated
with a uniform (averaged) model. As a �st approximation it is assumed that light
propagates along null geodesics of a homogeneous model (the only di�erence is that the
evolution of the model is governed by the Buchert rather than Friedmann equations).
However, if geodesics that join the observer and the source proceed at di�erent times
through di�erent sequences of intermediate matter particles, then the path of the light
ray within an average geometry may not be a geodesic anymore.

9. Pervasive errors and misconceptions

Many astrophysicists tolerate a loose approach to mathematics and physics. Papers
written in such a style planted errors and misconceptions in the literature, which were
then uncritically cited in other papers and came to be taken as established facts. In
this section we present a few most damaging misconceptions (marked by black squares
¥) together with their explanations (marked by large asterisks ∗).
¥ The LT models that explain away dark energy with matter inhomogeneities contain
a �weak singularity� at the centre [166], where the scalar curvature R has the property
gµνR;µν →∞.

∗ gµνR;µν →∞ is not a singularity by any accepted criterion in general relativity [97].
It only implies a discontinuity in the derivative of mass density by distance � a thing
quite common in Nature (e.g. on the surface of the Earth). At the centre, gµνR;µν →∞
implies a conical pro�le of density � also a nonsingular con�guration.
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¥ Decelerating inhomogeneous models with Λ = 0 cannot be �tted to the same
distance�redshift relation that implies acceleration in ΛCDM. This is because a certain
equation connecting the deceleration parameter q4 to density, expansion and shear
prohibits q4 < 0 [78].

∗ The equation derived in [78] (formally analogous, but inequivalent, to the
Raychaudhuri equation) is based on approximations that are not explicitly spelled
out [97]. An approximate equation cannot determine the sign of anything. If the
approximations are taken as exact constraints imposed on the LT model, they imply
zero mass density, i.e. the Schwarzschild limit. Moreover, the q4 of [78], although it
coincides with the deceleration parameter in the Friedmann limit, is not a measure of
deceleration in an inhomogeneous model (it is de�ned by the Taylor expansion of the
luminosity�redshift relation). Refs. [30, 46, 79] provide an explicit demonstration that
a decelerating LT model with Λ = 0 can be �tted to exactly the same distance - redshift
relation that holds in the ΛCDM model. This relation is reproduced by a spatially
inhomogeneous expansion pattern, without any dark energy.
¥ There is a �pathology� in the LT models that causes the redshift-space mass density
to become in�nite at a certain location (called �critical point�) along the past light cone
of the central observer [166].

∗ The �critical point� is the apparent horizon (AH), at which the past light cone
of the central observer begins to re-converge toward the past. This re-convergence had
long been known in the FLRW models [59, 115], and the in�nity in density is a purely
numerical artifact � a consequence of trying to integrate past AH an expression that
becomes 0/0 at the AH. Ways to handle this problem are known [106, 114, 46].
¥ Fitting the LT model to cosmological observations, such as number counts or the
Hubble function along the past light cone, results in predicting a huge void, at least
several hundred Mpc in radius, around the centre (see discussion in Sec. 4.1).

∗ The implied huge void is a consequence of handpicked constraints imposed on the
arbitrary functions of the LT model, for example a constant bang time tB. With no a
priori constraints, the giant void is not implied [46].
¥ The bang time function must be constant because dtB/dr 6= 0 generates decaying
inhomogeneities, which would have to be �huge� in the past, and this would contradict
the predictions of the in�ationary models (private communication from the referees of
[46]).
∗ While it is true that in models with dtB/dr 6= 0 the early universe was very
inhomogeneous, it does not mean that such models could not be realistic (so far they
are consistent with observations after all). Although in the current paradigm the
early Universe undergoes in�ation that is supposed to leave it very homogeneous, the
occurrence of in�ation is not in any way proven. In�ationary models are just one of
hypotheses that compete for observational con�rmation. Thus, using them to justify or
reject some other hypotheses may sound dogmatic and is in fact un-scienti�c.
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10. Discussion and future prospects

We have seen that one can �nd in the literature a number of models constructed
with exact inhomogeneous solutions of Einstein's equations which �t the available
observational data as properly as (and sometimes better than) the standard ΛCDM
model.

The LT model with a central observer, which is sometimes criticised as being at odds
with the Copernican Principle, must be, in our view, only considered as an intermediate
model where the angular inhomogeneities have been smoothed around the observer and
only the radial inhomogeneities have been taken into account (an example of such a
situation is presented and discussed in [34]). Moreover, the use of oversimpli�ed LT
models can create another false idea and false expectation. The false idea is that there
is an opposition between the ΛCDM model, belonging to the FLRW class, and the LT
model or in general, inhomogeneous models: it is believed that either one or the other
could be `correct', but not both. This putative opposition can then give rise to the
expectation that more, and more detailed, observations will be able to tell us which one
to reject. In truth, there is no opposition. The inhomogeneous models, like for example
the LT model with its two arbitrary functions of one variable, are huge, compared to
FLRW, families of models that include the Friedmann models as a very simple subcase.
The fact, demonstrated in several papers, that even a Λ = 0 LT model can mimic Λ 6= 0

in an FLRW model, additionally attests to the �exibility and power of the LT model.
Thus, if the Friedmann models, ΛCDM among them, are considered good enough for
cosmology, then the LT models can only be better: they constitute an exact perturbation
of the Friedmann background, and can reproduce the latter as a limit with an arbitrary
precision. The right question to ask is not �which model to reject: FLRW or LT?�,
but �how close to their FLRW limits must the LT arbitrary functions be to satisfy the
observational constraints?�.

Nature does not create objects that ful�l mathematical assumptions with perfect
precision. Objects in mechanics or electrodynamics that are described as spherically
symmetric have this symmetry only up to some degree of approximation. An �ideal gas�
in thermodynamics is nearly ideal only at su�ciently low pressure. An �incompressible
�uid� ..., and so on. Why should the Universe be an exception and be exactly
homogeneous in the large (and exactly spatially �at in addition)?

In fact, we already have qualitative evidence that our observed Universe is not
FLRW: the gravitational lenses. The FLRW models are conformally �at, so the null
geodesics in them are conformal images of the null geodesics from the Minkowski
spacetime. In this spacetime, rays sent from a common origin never intersect again. So,
in a conformally �at spacetime rays issuing from a common source can intersect again
only in such points that are singularities of the conformal mapping (and, consequently, of
the spacetime itself). Then, however, the positions of the points of second intersection
are determined by the geometry of spacetime, and not just by the initial points and
directions of the rays, as is the case in a gravitational lens (where, in addition, there
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is no spacetime singularity at the intersection point). Hence, a spacetime containing a
gravitational lens cannot be conformally �at.

Gravitational lenses are observed in our Universe at the distance scales, at which the
FLRW approximation is supposed to already apply, namely the lensing objects and the
sources of lensed rays are quasars. So, our Universe does not have the FLRW geometry
at large scales.

One more qualitative evidence of our Universe being non-FLRW on large scales
may be provided by the e�ect of non-repeatable light paths, described in Ref. [93].

It is strange that a large part of the astrophysical community is comfortable with
the idea of linearised perturbations around homogeneous models, but reacts with strong
negative emotions to exact perturbations represented by inhomogeneous models.

In the future, the LT models will be used to extract the cosmic metric from
observations. This programme has been initiated in [106, 114, 28]. This is the full
inverse problem. To date it has been assumed that the metric has the LT form, as
a relatively simple case to start from, but the long term intention is to remove the
approximation of spatial symmetry.

All known exact solutions of the Einstein equations which can be of cosmological
use possess some symmetries or quasisymmetries. The only way to overcome such
shortcomings is to obtain a fully operational, exact and inhomogeneous solution of
these equations. This can only be achieved using numerical relativity and we suspect
that this will be the new way of dealing with cosmology in the years to come.
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