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Abstract A number of misunderstandings about modeling the apparent accelerated
expansion of the Universe and about the ‘weak singularity’ are clarified: (1) Of the
five definitions of the deceleration parameter given by Hirata and Seljak (HS), only
q1 is a correct invariant measure of acceleration/deceleration of expansion. The q3
and q4 are unrelated to acceleration in an inhomogeneous model. (2) The averaging
over directions involved in the definition of q4 does not correspond to what is done
in observational astronomy. (3) HS’s equation (38) connecting q4 to the flow invari-
ants gives self-contradictory results when applied at the centre of symmetry of the
Lemaître–Tolman (L–T) model. The intermediate equation (31) that determines q3′ is
correct, but approximate, so it cannot be used for determining the sign of the decel-
eration parameter. Even so, at the centre of symmetry of the L–T model, it puts no
limitation on the sign of q3′(0). (4) The ‘weak singularity’ of Vanderveld et al. is a
conical profile of mass density at the centre—a perfectly acceptable configuration.

A. Krasiński (B) · K. Bolejko
N. Copernicus Astronomical Centre, Polish Academy of Sciences, Bartycka 18,
00-716 Warszawa, Poland
e-mail: akr@camk.edu.pl

K. Bolejko
e-mail: bolejko@camk.edu.pl

C. Hellaby · K. Bolejko
Astrophysics, Cosmology and Gravity Centre,
Department of Mathematics and Applied Mathematics, University of Cape Town,
Rondebosch 7701, South Africa
e-mail: Charles.Hellaby@uct.ac.za

M.-N. Célérier
Laboratoire Univers et Théories (LUTH), Observatoire de Paris, CNRS, Université Paris-Diderot,
5 place Jules Janssen, 92190 Meudon, France
e-mail: marie-noelle.celerier@obspm.fr

123



2454 A. Krasiński et al.

(5) The so-called ‘critical point’ in the equations of the ‘inverse problem’ for a central
observer in an L–T model is a manifestation of the apparent horizon (AH)—a common
property of the past light cones in zero-lambda L–T models, perfectly manageable if
the equations are correctly integrated.

Keywords Exact solutions · Cosmology · Inhomogeneous cosmological models

1 Motivation

Vanderveld et al. [1] (abbreviated as VFW) claimed that there was a contradiction
between two results concerning the putative accelerated expansion of the Universe.
Their reasoning was, in brief, this (italics mark quotations): On the one hand, Hirata
and Seljak [2] (abbreviated as HS) claimed to have proved that in a perfect fluid cos-
mological model that is geodesic, rotation-free and obeys the strong energy condition
ρ + 3p ≥ 0, a certain generalisation of the deceleration parameter q must be non-
negative. But on the other hand, Iguchi et al. [3] (hereafter INN) did obtain simulated
acceleration in Lemaître–Tolman (L–T) models [4,5] with � = 0 that obey HS’s
conditions. This contradiction is resolved by showing that L–T models that simulate
accelerated expansion also contain a weak singularity, and in this case the derivation
of HS breaks down. In addition to this, there are other singularities that tend to arise
in L–T models, and VFW have failed to find any singularity-free models that agree
with observations.

This leaves the impression that physically acceptable inhomogeneous models are
unable to account for observations. It is shown here that this reasoning is not correct.
In brief, our theses are the following:

1. Of the five definitions of the deceleration parameter given by HS, only q1 is a cor-
rect invariant measure of deceleration of fluid expansion. Their q3′ derives from a
Taylor expansion of the luminosity distance–redshift relation, DL(z), in powers
of z, done separately for each direction. Their q4 is based on the angular average
of a Taylor expansion of z(DL), and is conceptually different from what is done
in observational practice. Although all these definitions reduce to the familiar q
in FLRW models, they have different values and distinct meanings in an inho-
mogeneous model. In particular q3′ and q4 are not measures of deceleration in an
inhomogeneous model.

2. HS’s q4 does not correctly represent the observers’ deceleration parameter q.
When observers assume that our real Universe is in the FLRW class, q is the
same in all directions. But when they consider inhomogeneous and anisotropic
models, they have to measure the distance–redshift relation for each direction
separately rather than average the measured results over directions, as this would
mean destroying useful information. Thus, HS’s q4 that represents the result of
such averaging does not correspond to the observations actually done in relation
to this quantity.

3. HS’s reasoning is correct (in the approximate sense) up to their eq. (31), which
allows one to calculate q3′ at the centre of symmetry in a Lemaître–Tolman (L–
T) model. But, at a spherical centre, the final result is the opposite to what they
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Misunderstandings about accelerated expansion 2455

intended—no limitation on the sign of q4(0) follows (see our Sects. 4 and 6).
Thus, there is no contradiction involved in a decelerating inhomogeneous model
imitating observational relations of an accelerating FLRW model. Even so, it
is incorrect to use an approximate equation to decide whether some quantity is
positive or negative.

4. What VFW call a weak singularity is not a singularity.1

5. It is also not true that other singularities invalidate the L–T models. The dif-
ferential equations for the inverse problem—given observational data functions,
calculate the LT model that would give them—are indeed singular at the apparent
horizon (AH). VFW refer to this location as a critical point, and to this phenom-
enon as a pathology. In truth, this is simply the reconvergence of the observer’s
past null cone towards the Big Bang, that is a consequence of the decelerating
cosmic expansion when lambda is zero, long known in the FLRW case, e.g [7–9].
Though some authors (INN and VFW among them) were unable to propagate
their solutions through the ‘critical point’, this difficulty was overcome by Lu and
Hellaby [10] and in fact the AH relation was used to provide extra information by
McClure and Hellaby [11,12].

Since these misunderstandings have propagated into the literature, it is essential to
resolve these issues.

But the most important point to be stressed is this: what one wants to reproduce,
in connection with the distant type Ia supernovae, is not the accelerated expansion
of the Universe, but the observed luminosity distance–redshift relation. The apparent
dimming of supernovae (first reported by Riess et al. [13] and Perlmutter et al. [14])
stems from a comparison between observations and the Einstein–de Sitter model, the
‘old’ standard model of the Universe. The first proposed explanation, originating from
the assumption that the Universe should be Friedmannian, is an accelerated expansion.
However, this acceleration is not the phenomenon to be explained, but a component
of a particular explanation—one that assumes homogeneity on the scale in question.

2 The Lemaître–Tolman (L–T) model

Since in the following we often refer to the L–T model, we summarise here the basic
facts about it in the case � = 0. For more extended expositions see Refs. [15,16]. The
metric of the L–T model is:

ds2 = dt2 − R,r
2

1 + 2E(r)
dr2 − R2(t, r)(dϑ2 + sin2 ϑ dϕ2), (2.1)

where E(r) is an arbitrary function, and R(t, r) is determined by the integral of the
Einstein equations:

R,t
2 = 2E(r) + 2M(r)/R, (2.2)

1 Moreover, their definition of ‘weak singularity’ does not agree with the meaning of the term ‘singularity’
in relativity, and is not supported by anything in the Tipler paper [6] they cite.
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M(r) being another arbitrary function. Equation (2.2) has the same algebraic form
as one of the well-known Friedmann equations, except that here it contains arbitrary
functions of r in place of arbitrary constants. The Friedmann limit follows when
E = −kr2/2, M = M0r3 and R = r S(t) where k, M0 and S(t) are the corresponding
Friedmann constants and scale factor. The solution of (2.2) may be written as

t − tB(r) =
∫

dR

±√
2E(r) + 2M(r)/R

, (2.3)

where tB(r) is one more arbitrary function called the bang-time function; in the Fried-
mann limit it is constant. The + sign applies for an expanding region, − applies for a
collapsing region. The mass density is

8πGρ = 2M,r

R2 R,r
. (2.4)

The pressure is zero, and so the matter (dust) particles move on geodesics.
The equations determining the L–T model are covariant with the transformations

r → r ′ = f (r). Therefore, we may use such a transformation to give one of the
functions (M, E, tB) a handpicked form, provided the chosen function is monotonic
in the range under investigation.

An incoming radial null geodesic is given by the differential equation

dt

dr
= − R,r√

1 + 2E(r)
, (2.5)

and its solution is denoted t = t̂(r). The general solution determines the past null
cone (PNC) of the observer situated at the centre of symmetry. We use the hat̂and
the subscript ∧ to indicate evaluation on the PNC. Then the redshift along the PNC,
z(r), is given by [16,17]:

1

1 + z

dz

dr
=

[
R,tr√

1 + 2E

]
∧

, (2.6)

and the area and luminosity distances are

DA = R̂, DL = (1 + z)2 R̂. (2.7)

Equations (2.5) and (2.6) can be solved numerically once M(r), E(r) and tB(r) are
specified.

An L–T model may possibly have a curvature singularity at the centre of symmetry.
The singularity will be absent when there is no point mass there, and the mass density
is finite. This will happen when the conditions given below are obeyed (see Ref. [16]
for the derivation).

Let r = rc be the radial coordinate of the centre of symmetry, where R(t, rc) = 0

for all t > tB(rc), and let ρ(t, rc)
def= α(t) < ∞. We choose the r -coordinate so that
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rc = 0 and

M = M0r3, (2.8)

where M0 = constant. Then, in a neighbourhood of r = 0, the functions behave as
follows:

R = β(t)r + R1(t, r), E = γ r2 + R2(r), tB = τ + R0(r), (2.9)

γ and τ being constants, where the symbols Ra will denote quantities with the property

lim
r→0

Ra

ra
= 0. (2.10)

3 The definitions of deceleration by HS and their physical meaning

Hirata and Seljak [2] give in their paper five alternative definitions of the decelera-
tion parameter, three of which we briefly recall here for reference. In all cases it is
assumed that the spacetime is filled with a perfect fluid obeying Einstein’s equations
with zero cosmological constant. HS assume that the fluid moves geodesically, but for
the beginning we shall drop this assumption.

Their first definition of the deceleration parameter is:

q1
def= − 1 − uμ H1;μ/H1

2, H1
def= uμ;μ/3, (3.1)

where H1 is the (local) Hubble parameter and uμ is the velocity field of the fluid. Then,
using these definitions, the Raychaudhuri equation may be rewritten as follows:

H1
2q1 = 1

3

[−u̇γ ;γ + σμνσμν − ωμνωμν

] + 4πG

3
(ρ + 3p), (3.2)

where u̇μ is the acceleration of the fluid, σμν and ωμν are the shear and rotation ten-
sors, respectively, ρ is the mass density and p is the pressure. It follows that with
u̇μ = 0 = ωμν and ρ + 3p ≥ 0, q1 must be non-negative. This result applies in
particular to the L–T models (where u̇μ = 0 = ωμν and p = 0) and to the FLRW
models (where u̇μ = 0 = ωμν = σμν).

The definition (3.1) is invariant, applies in all geometries, is a generalization of the
deceleration parameter long used in the FLRW geometries, and measures the relative
change of the expansion scalar along the flow lines of the perfect fluid. With q1 ≥ 0
we have uμH1;μ ≤ −H1

2 < 0, so the expansion slows down toward the future of
the comoving observers. This is the case in all cosmological models that obey the
assumptions listed above.
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The quantities q3′ and H3′ refer to a Taylor expansion of the luminosity distance-
redshift relation z(DL):

z = H3′ DL − 1
2 H3′ 2(1 − q3′)DL

2 + O(DL
3), (3.3)

where H3′ and q3′ are functions of the angle of observation. The definitions of H4 and
q4 follow by averaging (3.3) over the full solid angle 4π at each fixed DL :

〈z〉4π = H4 DL − 1

2
H4

2(1 − q4)DL
2 + O(DL

3). (3.4)

These equations have the same algebraic form as the corresponding equation in an
FLRW model.

4 Problems with HS’s equation (38)

By considering a bundle of null geodesics converging to a point in space, Hirata and
Seljak [2] derived an equation relating the quantities in (3.4) to the invariants of flow
of a perfect fluid filling the spacetime. Flanagan’s (hereafter F, [18]) equation is more
general, and it reads, in HS’s notation,

H4
2q4 = 4π

3
(ρ + 3p) + 1

3

[
u̇α u̇α + 7

5
σαβσαβ − ωαβωαβ − 2u̇α;α

]
. (4.1)

(HS’s result is the subcase u̇α = 0 = ωαβ .)
Equation (4.1) has the appearance of being exact and covariant. Unfortunately, it

is neither. As we show below, its derivations, both by HS and by Flanagan, contain
approximations (some not explicitly spelled out) and involve averaging over directions,
which produces coordinate-dependent results at locations corresponding to coordi-
nate singularities. Approximations may be good for some purposes, but not when one
intends to show that some quantity is positive.

Below we note instances where HS and F introduced approximations in their
reasoning.

4.1 HS’s equation (26)

We have no objections to the reasoning of HS up to their eq. (25). Having established
the relation between the luminosity distance DL and the redshift z (their (24)), and
between the radiation amplitude and the expansion scalar θn of the radiation field (their
(25)), HS then copy a relation between θn (θ̂ in HS’s notation) and the affine parameter
v from Ref. [19] (HS’s eq. (26)). This requires a comment.

To obtain this relation one considers another family of rays, originating at the centre
of a source (call it a star for brevity). The star is assumed spherical and having the
radius R. One of the rays hits the observer. The values of the affine parameter along
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Misunderstandings about accelerated expansion 2459

this ray are v = 0 at the observer, vs at the surface of the star and (vs + �vs) at the
centre of the star. The relation is then

θn = 2

v − (vs + �vs)
+ O[v − (vs + �vs)]. (4.2)

In Ref. [19] this is obtained as an approximate solution of the Raychaudhuri equation
for null geodesics, which is

kγ θn,γ + 2(σn
2 − ωn

2) + 1

2
θn

2 = −Rργ kρkγ , (4.3)

where θn = kμ;μ, σn and ωn are, respectively, the expansion, shear and rotation of the
null congruence kμ = dxμ/dv and Rργ is the Ricci tensor in spacetime.

Equation (4.2) without the second term on the right is the exact solution of (4.3)
in the case σn = ωn = 0 = Rργ kρkγ . Thus the approximation involved in (4.2) is
that the contributions to kγ θ,γ from shear, rotation and lensing by matter are negli-
gible compared to θn

2. These are additional assumptions about light propagation in
spacetime (σn and ωn negligible) and about the spacetime itself (Rργ kρkγ negligible).

However, HS’s (38) is used by VFW as if it were exact. When σn = 0 = Rργ kρkγ

hold exactly, the Goldberg–Sachs theorem [20] applies, which says that the spacetime
must be algebraically special, with kμ being the double principal null congruence of
the Weyl tensor. The assumption Rργ kρkγ = 0, when imposed on the L–T spacetime,
reduces it to the Schwarzschild solution. Therefore, HS’s equation (38), when treated
as exact, involves strong assumptions that don’t apply to the L–T model, or even the
FLRW model.

4.2 The two errors that cancelled each other

The two errors shown below have no meaning for the final result because (in the
approximation in which HS worked) they cancelled out in the end, but they might be
confusing. HS’s equation (27) should actually read

�vs = − R

1 + z
, (4.4)

i.e. it is the inverse of what they wrote. Similarly, their equation (28) should actually
read

A(vs)

A(0)
= 1 + vs

�vs
(4.5)

(where A is the radiation amplitude), i.e. again the inverse of their result. Since HS
assumed |�vs | � |vs |, the above is approximately equal to

A(vs)

A(0)
= vs

�vs
= −vs

1 + z

R
, (4.6)
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which results in HS’s eqs. (29)–(31) being right again. Since we will later refer to their
(31), we copy it here:

z = −Ki j n
i n j DL − 2

(
Ki j n

i n j
)2

(DL)2

+1

2

(
K̇i j + Ki j |knk + 4Ki

k Kkj

)
ni n j (DL)2 + O(DL

3). (4.7)

The meaning of the symbols in (4.7) is as follows. Since HS work under the assump-
tion that ω = 0 for the cosmic fluid, comoving and synchronous coordinates exist
in which the metric gαβ has the properties g00 = 1, g0i = 0, where x0 = t is the
time coordinate and xi , i = 1, 2, 3, are the space coordinates. Then hi j = −gi j is the
metric of a space of constant t , and Ki j is the second fundamental form of this space;

in these coordinates Ki j = −(1/2)(∂/∂t)hi j
def= − (1/2)ḣi j . Then the geodesic null

vector kα can be normalised at the observer so that k0 = 1 and its space components

ki def= ni form a 3-dimensional unit vector, hi j ni n j = 1.

4.3 The problem with averaging

There is a problem with averaging products like ni n j and ni n j nk at coordinate sin-
gularities in space, and the centre of symmetry in L–T is a singularity of the spherical
coordinates. For example, a general unit vector in Euclidean space attached at a point
O, when referred to Cartesian coordinates and parametrised by spherical angles (α, β),
has the components (nx , ny, nz) = (sin α cos β, sin α sin β, cos α). In this case, the
averages2 are 〈ni n j 〉4π = (1/3)δi j , 〈ni n j nk〉4π = 0, 〈ni n j nknl〉4π = (1/5)δ(i jδkl).
The first and last of these are special cases (in Euclidean space) of the covariant
equations

〈ni n j 〉4π = (1/3)hi j , (4.8)

〈ni n j nk〉4π = 0, (4.9)

〈ni n j nknl〉4π = (1/5)h(i j hkl) ≡ (1/15)
(

hi j hkl + hikh jl + hilh jk
)

. (4.10)

However, these results of averaging change when we transform to spherical coordinates
centred at O. When the components of the unit vector ni in Euclidean space are referred
to the spherical coordinates, they are (n1, n2, n3) = (1, 0, 0) (with (x1, x2, x3) =
(r, α, β)), and then the averages are 〈ni n j 〉4π = δi

1δ
j
1 , 〈ni n j nk〉4π = δi

1δ
j
1δk

1. Explicit
calculation done in Sect. 5 for the L–T model will show that the general formulae

2 The averages are defined by

〈ni n j 〉4π = 1

4π

∫ π

0
dα

∫ 2π

0
dβni n j sin α,

and similarly for < ni n j nk >4π .
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Misunderstandings about accelerated expansion 2461

(4.8)–(4.10), in particular (4.9), lead to incorrect results when applied at the centre of
symmetry.

Since (4.1) is supposed to follow from (4.7) by this kind of averaging, the argu-
ment above invalidates (4.1) at the centre of symmetry of the L–T model even as an
approximate equation.

5 The sign of q3′ can be any

We will now use (4.7) to estimate HS’s deceleration parameter q3′ at the centre of
the L–T model without averaging over directions. Identifying the coefficient of DL in
(4.7) with the H3′ of (3.3) we find from (3.3):

q3′ = 1 + 1

H3′ 2

[
−4

(
Ki j n

i n j
)2 +

(
K̇i j + 4Ki

k Kkj

)
ni n j + Ki j |kni n j nk

]
.

(5.1)

In the coordinates of (2.1) we have, with (x1, x2, x3) = (r, ϑ, ϕ):

(h11, h22, h33) =
(

R,r
2

1 + 2E
, R2, R2 sin2 ϑ

)
, (5.2)

(K11, K22, K33) =
(

− R,r R,tr

1 + 2E
,−R R,t − R R,t sin2 ϑ

)
, (5.3)

K11|1 = R,rr R,tr − R,r R,trr

1 + 2E
, (5.4)

K12|2 = K22|1 = K13|3
sin2 ϑ

= K33|1
sin2 ϑ

= R,t R,r − R R,tr , (5.5)

the components not listed are zero.
At a general point of an L–T manifold, the unit spatial vector ni must obey hi j ni n j =

1, and so, in consequence of (5.2), its components are constrained by

n1 = ±
√

1 + 2E

R,r

√
1 − R2

[(
n2

)2 + sin2 ϑ
(
n3

)2
]
. (5.6)

At the centre of symmetry each vector ni is necessarily radial, so n2 = n3 = 0, and
(5.6) gives

n1(0) =
√

1 + 2E

R,r
, (5.7)

which is finite by (2.9) and (A.4).
However, (5.6) and (5.7) imply that at the centre of symmetry the angle-average of

(4.7) is discontinuous. Namely, as long as the vector ni is attached off the centre, its
n1 = nr component may point in the direction of increasing r (in which case we take
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(5.6) with the + sign) or toward decreasing r (in which case we take − in (5.6)). Then
the average comes out zero. But when the vector ni is attached at the centre of sym-
metry, n1 may point only toward increasing r , so n1 > 0 on the whole sphere, while
n2 = n3 = 0. Thus, (n1)3 > 0 everywhere on the sphere, while all other components
of ni n j nk are zero. Consequently, 〈(n1)3〉4π > 0, while all the remaining averages
are zero. Thus, in the spherical coordinates, 〈ni n j nk〉4π is discontinuous at the centre
of symmetry.

Let us apply (5.1) at the centre of symmetry in the L–T model. Using (5.2)–(5.7)
and

H3′ = −Ki j n
i n j −→

r→0
lim
r→0

(
R,tr

R,r

)
(5.8)

in (5.1) we find

q3′(0) = lim
r→0

{
− R,r R,t tr

R,tr
2 + √

1 + 2E

(
R,rr

R,r R,tr
− R,trr

R,tr
2

)}
. (5.9)

In order to clearly see the contribution of the inhomogeneous part of the geometry,
we will separate R and E into the part that survives in the Friedmann limit and the
part that disappears in that limit. Note that the whole calculation will be exact, and
our definitions for M , E and R will ensure they automatically obey the conditions of
regularity at the centre (2.9).

We define:

R = r(S + P), lim
r→0

P = 0, (5.10)

E = r2(−k/2 + F), lim
r→0

F = 0, (5.11)

where k is a constant (the familiar FLRW curvature index, so it may be of any sign,
also zero) and S(t), F(r) and P(t, r) are functions (S being the FLRW scale factor).
The terms rP and r2 F represent non-Friedmannian contributions to R and E , respec-
tively; with P = F = 0 the L–T model reduces to that of Friedmann. In calculating
the limits at r → 0 we will assume that the derivatives of F and tB do not diverge too
fast, that is

lim
r→0

[
r
(

F,r , F,r
2, F,rr , tB,r , tB,rr

)]
= (0, 0, 0, 0, 0). (5.12)

Since some of the functions will be complicated, we introduce the following
abbreviations:

V
def=

√
2M0

S + P − k + 2F, (5.13)

L def= 2(S + P)F,r

k − 2F
− V

[
3F,r

k − 2F
(t − tB) + tB,r

]
(5.14)
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(it can be verified that L = P,r ), and the subscript 0 will denote the limit at r → 0,
thus

V0 =
√

2M0

S
− k, (5.15)

L0 = 2SF,r (0)

k
− V0

[
3F,r (0)

k
(t − tB(0)) + tB,r (0)

]
. (5.16)

The formulae for the derivatives of R and their limits at r → 0 are given in Appen-
dix A. We see from there that all the terms entering q3′ in (5.1) have nonzero and
nondivergent limits at r → 0.

For H3′ we get from (5.8):

lim
r→0

H3′ = V0

S
. (5.17)

Using (5.2)–(5.17) and (A.1)–(A.8) in (5.9) we now obtain:

lim
r→0

q3′ = M0

SV0
2 − 2F,r (0)

V0
3

−3M0/S − k

SV0
2

{
2tB,r (0) + 2F,r (0)

kV0
[−2S + 3V0 (t − tB(0))]

}
. (5.18)

The terms proportional to F,r (0), tB,r (0) and F,r (0)/k can each have any sign, and
so each one can make q3′(0) negative. Note that F,r (0) (which comes from the non-
Friedmannian contribution to the energy function) alone can cause q3′(0) < 0 (when
tB,r = 0), and so can tB,r (0) alone (when F = 0).

At the centre of spherical symmetry, q3′ = q3 = q4. This confirms that HS’s result
is not correct at r = 0, and a negative q4, as found by INN, is perfectly possible.

The reason why HS concluded that q4 ≥ 0 is that they found 〈Ki j |kni n j nk〉4π = 0
while averaging (5.1) which is not true at a spherical centre in spherical coordinates.
In consequence, they dismissed all terms in (5.18) which come from Ki j |kni n j nk , i.e.
all except the first one. With only the first term, one obviously gets limr→0 q3′ ≥ 0.

Since nothing can be concluded in general about the sign of q3′(0), there would be no
contradiction involved in certain L–T models imitating a negative FLRW deceleration
parameter even if Eq. (5.1) were exact. But we recall: this equation being approximate,
using it to evaluate the sign of q3′ cannot lead to an unambiguous conclusion, so the
alleged contradiction was a nonexistent problem.

There is one more piece of evidence that HS’s method of averaging is not univer-
sally correct. Suppose (5.1) is applied at the centre of symmetry of an L–T model.
Then each component of the sum in (5.1) is invariant under the group SO(3). Thus,
averaging over directions should be an identity operation and change nothing. This is
indeed the case when one uses (5.3)–(5.5) for Ki j and Ki j |k , applied at r = 0, and
(5.7) for ni (0); actually one gets (5.17)–(5.18) again. However, if one uses HS’s pre-
scription for averaging, then the whole term 〈Ki j |kni n j nk〉(0) still drops out in spite
of being spherically symmetric and nonzero initially.
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6 Problems with Flanagan’s eq. (5)

Flanagan’s paper [18] addressed the question of whether superhorizon perturbations
can cause apparent acceleration. He concluded that if their effect on q is negative, it
must be too small to be responsible for the acceleration of the universe. The paper
was not intended to be applied to exact inhomogeneous cosmological models, so
the author should not be blamed for the incorrect use made later of his equation.
But the HS subcase of that approximate equation was used by VFW as if it were
exact.

In this section we follow F’s reasoning in order to identify the approximations
assumed along the way.

6.1 Comments to F’s reasoning up to eq. (13)

The correct form of Flanagan’s eq. (9) is:

uα(x, x ′) = uα(x) + uαβ(x)σ;β(x, x ′) + 1

2
uαβγ (x)σ;β(x, x ′)σ;γ (x, x ′) + O(s3).

(6.1)

The meaning of the symbols is as follows: x is the set of coordinates of the observer
at the point P , x ′ is the set of coordinates of the light source at the point Q, uα(x)

is the four-velocity of the cosmic medium at P (the observer is comoving), uα(x, x ′)
is the four-velocity of the medium parallel-transported from Q to P along the light
ray, σ(x, x ′) is Synge’s [21] world function for P and Q, and the coefficients are
uαβ(x) = −uα;β(x), uαβγ (x) = uα;(βγ )(x).

The quantity in (6.1) is apparently only needed to calculate the redshift, which F
writes as

1 + z = uαkα

uαkα

, (6.2)

where kα is the tangent vector to the ray at P . Usually the numerator is taken simply
at Q, without parallel-transporting it to P [7]. Nevertheless, it is easy to verify that
(6.2) is equal to the usual formula.

F then considers two families of light rays: one converging at P , with the affine
parameter s and tangent vectors k normalised so that kαuα = −1 at P , and another
one diverging from Q, with the affine parameter λ and tangent vectors l normalised so
that lαuα = −1 at Q. In consequence of this, and of (6.2), the two affine parameters
are related by

λ = s(1 + z). (6.3)
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6.2 The θn approximation

Below his (13), F writes: We choose the normalization of A so that A ≈ 1/λ for
λ → 0 near Q. This is an assumption equivalent to HS’s (26)–our (4.2) (A is the same
quantity as in (4.5)), and F makes use of it further on (see below our Eq. (6.7)). This
normalization also defines the units for λ as the units of distance.

6.3 F’s equation (14)

In the paragraph of F’s paper that contains eqs. (14)–(16) the quantities referring to
P and to Q are mixed up. The text below is our interpretation of this segment of F’s
reasoning, in which we take care about properly distinguishing between these two
points.

From the definition of the energy flux at P one obtains:

dEP

dt d2 A
= Tαβ(P)uα

P uβ
P = AP

2 (
lαuα

)2
P

= AP
2 (

kαuα
)2

P /(1 + z)2 = AP
2/(1 + z)2, (6.4)

whereby a rewriting error was corrected above: F’s (kαuα)2 should read (lαuα)2. The
following information was fed into (6.4) at the consecutive equality signs: the defi-
nition of energy flux, the definition of the radiation energy-momentum tensor at Q,
Eq. (6.2), the normalization of kα at P .

Integrating the energy flux at Q over a sphere of small radius λQ , one obtains for
the luminosity at Q, again from the definition:

dE

dt
= AQ

2 (
lαuα

)2
Q × 4πλQ

2 = 4π AQ
2λQ

2; (6.5)

the simplification occurs because of the normalization assumed at Q. Putting (6.2)
and (6.3) into the definition of the luminosity distance (which we denote here by DL

for consistency with the previous sections) one obtains

AQλQ = DL AP

1 + z
. (6.6)

In the next step F uses the assumed normalization of AQ to write the above as
DL = (1 + z)/A, but then gives up on it and uses (6.3) to rewrite (6.6) as follows:

DL = (1 + z)2sQ AQ/AP = (1 + z)2sQ/(APλQ) (6.7)

(the second equality follows by the assumed normalization of A at Q). Then F cites
Visser [22] for the result

APλQ = 1 + O(sQ
2). (6.8)
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Thus finally, up to s2-terms:

DL ≈ (1 + z)2sQ, (6.9)

which is the same equation as HS’s (29). Just as in the HS paper, this equation is
approximate, where in addition to HS’s (26) (our (4.2)), Flanagan used one more
approximation—our (6.8).

From (6.9) and from eqs. (1) and (11) in F’s paper, F’s equations (15) and (16)
follow by simple substitution.

6.4 Choice of averaging procedure

Below his eq. (16), Flanagan notes that there is no unique way to choose the order in
which the coefficients in the DL(z) equation should be averaged over directions, but
dismisses this problem by saying:
Thus the different averaging prescriptions give different answers. However the frac-
tional differences are of order σ 2/θ2, which we have argued above is of order ε and
is small.
This is correct in the context of his paper. However, this indicates that there is a further
approximation involved in the reasoning, and this one is quite arbitrary and unpredict-
able. Namely, it depends on the will of the person doing the calculation exactly which
quantity he or she wishes to average first. F himself uses H0 = 〈A−1〉 to obtain the
H0 of his eq. (4), but H−1

0 = 〈A〉 for computing his J . This is perhaps the strongest
indication that it makes no sense to use the resulting final equation for determining
the sign of any quantity. Note that the same problem exists for the HS derivation, but
it was not mentioned in the HS paper.

6.5 The problem with rotation

The averaging over directions is defined only in a certain 3-space S3, not in spacetime.
Without fixing S3, the directional angles of the light rays are not defined. When the
rotation of the cosmic fluid is zero, as in HS’s paper, S3 is the 3-space orthogonal to
the fluid’s flow lines.

However, when the cosmic fluid has nonzero rotation, such S3 do not exist—not
even locally, because the 3-volume elements locally orthogonal to the flow lines, when
followed around any flow-tube, refuse to connect up to a 3-space. One could consider
a 3-space of constant time-coordinate, which is not orthogonal to the flow lines, but
then the metric in this space is not the hαβ = gαβ + uαuβ assumed by F. Thus,
in the presence of rotation, the whole calculation should be reformulated. Without
that, for the averaging over angles considered by F there exists no space in which it
occurs.
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7 VFW’s weak singularity is not a singularity

In the paragraph containing their eq. (2.18) VFW say:
We expand the density (2.5) to second order in r as

ρ(r, t) = ρ0(t) + ρ1(t)r + ρ2(t)r
2 + O(r3). (2.18)

The weak singularity occurs when ρ1(t) is nonzero, in which case the gravitational
field is singular since �R → ±∞ as r → 0, where R is the Ricci scalar. In other
words, second derivatives of the density diverge at the origin, independent of where
observers may be located. This is true both in flat spacetime and in the curved LTB met-
ric when we have a density profile of the form (2.18). The singularity is weak according
to the classification scheme of the literature on general relativity [28]. (Ref. [28] in
this quotation is [6].)

In truth, whether a curvature singularity is there is decided by curvature alone, and
not by secondary constructs like the d’Alembertian of the curvature scalar. We do not
know about any physical or geometrical interpretation of this quantity, and VFW do
not mention any, nor have they shown that their ‘weak singularity’ causes any prob-
lems at the origin. As we show below, the curvature of the L–T model at the centre of
symmetry is nonsingular provided that ρ is finite there.

For the metric (2.1), the orthonormal tetrad components of the curvature tensor, in

the basis defined by e0 def= dt , e1 def= R,r dr/
√

1 + 2E , e2 def= Rdϑ , e3 def= R sin ϑdϕ,
are

R0101 = 2M

R3 − M,r

R2 R,r
, R0202 = R0303 = − M

R3 ,

R1212 = R1313 = M

R3 − M,r

R2 R,r
, R2323 = −2M

R3 .

(7.1)

The quantities given above are all scalars, so any scalar polynomial in the curvature
components will be a polynomial in the quantities given in (7.1). If these are nonsin-
gular, then there will be no scalar polynomial curvature singularity.

Let r = rc be the radial coordinate corresponding to the centre of symmetry R = 0.
The requirement of no point-mass at the centre implies M(rc) = 0. It can be seen that
with M(rc) = R(t, rc) = 0 all we need to make the curvature nonsingular at r = rc

is a finite limit of M/R3 at r = rc. We have, using (2.4)

lim
r→rc

M

R3 = lim
r→rc

M,r

3R2 R,r
= (4/3)πGρ(t, rc), (7.2)

so the curvature is finite at r = rc if and only if ρ(t, r) is.
As regards geodesic completeness, the geodesic equation is well behaved through

the origin. Geodesics passing through the origin must be purely radial, and radial geo-
desics stay radial. The only Christoffel symbols that diverge at R = 0 are �ϑ

rϑ =
�ϕ

rϕ = R,r/R, but these do not appear in the equations of radial geodesics, so cannot
cause any problem.
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The condition �R → ±∞ is not a criterion for a singularity in any accepted
sense. The paper of Tipler [6] contains a proposal of a definition of a strong singular-
ity, but does not mention a ‘weak singularity’ anywhere and contains no ‘classification
scheme’. For a singularity to be ‘weak’ (i.e. not strong), it first has to be a singularity.
An accurate description of the feature that VFW had in mind is ‘the density profile is
not C1 through the origin’.

Therefore, VFW’s weak singularity is not a singularity, so its presence is no reason
to dismiss models containing it. There is nothing wrong with a jump in the density
gradient at the centre. Since our Galaxy is centrally concentrated and has a central
black hole, a pointed density profile is a good approximation. The NFW density profile
[23] for galaxy clusters is divergent at the centre. A jump in the density and its gradient
exists, for example, at the surface of the Earth, thus we deal with a ‘weak singularity’
in everyday life.

8 Transcritical solutions are generic

A large part of VFW’s paper is devoted to considering the inverse problem and arguing
that only FLRW models have rays that cross the apparent horizon—what they call the
critical point. (Their problem is inverse to the ‘direct problem’ first considered in the
literature in Ref. [24].) We here dispel the impression they convey, that transcritical
solutions are well-nigh impossible to find for non-homogeneous models that account
for observations. We emphasise (a) that all L–T models with a decelerating expansion
phase have apparent horizons that are crossed by large families of light rays, and (b)
no cosmological model has been shown to solve the inverse problem (as distinct from
the fitting problem) relative to real data.

VFW correctly point out that the differential equations (DEs) of the inverse prob-
lem, i.e. the DEs determining the L–T model that reproduces given observational data,
contain terms that would diverge unless a certain condition is met. They call such
loci critical points, and they correctly claim that such points are generic to these DEs.
This was actually pointed out by Mustapha, Hellaby and Ellis [25], solved by Lu and
Hellaby [10], discussed as an observational feature in [11], and used to advantage by
McClure and Hellaby [12]. These papers develop a numerical procedure for extracting
the metric of the cosmos from observational data.3

In their analysis of the inverse problem, VFW consider only flat L–T models, which
are a subset of measure zero in the family of all possible L–T models. They say that
FLRW models provide examples of transcritical solutions (i.e. those that do not cause
any divergence of the DEs), but they fail to find any other viable solution.4 They then
conclude that physically reasonable solutions must be very exceptional indeed, and
although they have not tried the E �= 0 case, they opine that generic solutions with

3 This problem persists even in the fluid-ray coordinates (observer coordinates): in [29], the differential
equations (59)–(65) contain ∂C/∂z in the denominator, and on the observer’s past null cone w = w0, this
is ∂ R̂/∂z here, so it is again zero at the apparent horizon.
4 An L–T model is fully specified by two physical functions. We agree that a random combination such as
E = 0 and an arbitrarily chosen DL (z), specified via rF RW (z) or V (z), may well produce an L–T model
with unrealistic features.
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E(r) �= 0 would have all the singularities and observational problems they encoun-
tered, and in this case too transcritical solutions do not appear to be likely.

In assessing the likelihood of finding a ‘transcritical solution’ it is important to
understand the physics and geometry of the problem. For any given cosmological
metric, the DEs that determine the path of the light ray and the variation of z and
DA(z) along it (for example (2.5), (8.2), (2.6)) are free of critical points. However, the
path followed by an incoming light ray depends on the geometry it passes through,
and this affects the observations, z, DA(z) etc. All known expanding cosmologies
with a deceleration phase have a past apparent horizon (AH−); relative to a given
worldline (observer), it is the locus where incoming light rays overcome the cosmic
expansion and start to make progress inwards. The maximum in the area distance
DAm = R̂m occurs where an observer’s PNC crosses her past apparent horizon. The
fact that d R̂/dz = 0 at this maximum is the cause of the critical behaviour. This
behaviour is a generic feature of the L–T and Friedmann models. We express this in
the following theorems. We consider only models that: (i) have a big bang and after
14 billion years are still expanding, so any recollapse is to the future, and times well
beyond the present are not considered; (ii) have no shell crossings [26]; (iii) are large,
e.g. if the curvature is positive, then any spatial maximum where M,r = 0 = R,r is
well beyond observational range, which means M,r > 0 and R,r > 0; (iv) if � > 0
its effect is only discernable in fairly distant observations. We will call such a model
an rLTc: a realistic L–T cosmology.

Theorem 1 In every rLTc, every light ray arriving at the origin is a transcritical ray.

Proof The areal radius R(t, r) obeys

R,t = �

√
2M
R + 2E + �R2

3 , (8.1)

where � = +1 if R is increasing (expansion) and −1 if it is decreasing (contraction).
Worldlines with 2E ≥ −(9M2�)1/3 are ever-expanding and the rest are recollapsing.
Those that recollapse reach their maximum R where 6M + 6E R +�R3 = 0 and this
maximum is ≤ (3M/�)1/3.

The incoming radial light rays satisfy (2.5), so the variation of R along a ray is

d R̂

dr
=

[
R,t

d̂t

dr
+ R,r

]
∧

=
⎛
⎝−�

√
2M/R̂ + 2E + �R̂2/3√

1 + 2E
+ 1

⎞
⎠ R̂,r

= −R̂,r√
1 + 2E

d R̂

dt
. (8.2)

The past apparent horizon is the locus where d R̂/dr = 0 for all rays, which implies

6M = 3R − �R3 (8.3)

and the past apparent horizon has � = +1. For a given M > 0, (8.3) has either two,
one or zero solutions in the range R > 0. The smaller R solution corresponds to the
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regular (� = 0) AH, and the larger one corresponds to the de Sitter horizon, but the
two merge on the 3M

√
� = 1 worldline.

Near the origin, R(t, 0) = 0 ∀t , regularity [16,27,28,30] requires R ∼ M1/3 and
2E ∼ M2/3, so by (8.1) R,t → 0 and by (8.2) d R̂/dr → R,r there. This means
6M < 3R − �R3 for incoming rays near the origin. Following the rays outwards
and back in time, (2.5) shows r and therefore M is increasing, and (8.2) shows R̂
is increasing near the origin. Provided R,r stays positive as assumed, (2.5) may be
integrated all the way to the big bang; and here we have M > 0 and R → 0, so
6M > 3R − �R3. Therefore the rays have crossed AH−. This argument applies to
every ray arriving at the origin before the big crunch, if there is a crunch.

The DEs for the general L–T ‘inverse problem’ are given in [10,12], and it is evident
that the critical points are where d R̂/dr = 0 = d R̂/dz. If a ray crosses the past AH,
then by definition it (a) has d R̂/dr = 0 there, and therefore (b) it is transcritical. ��

If � > 0 then there could5 be worldlines with M > 1/(3
√

�). These worldlines
never encounter a solution to (8.3), so every incoming ray crossing them has d R̂/dr <

0 and d R̂/dt > 0. In ever-expanding models, AH− asymptotically approaches R =√
3/� (and M = 0) towards the future, and it separates incoming light rays that

always have increasing R from those that reach the origin. Therefore there are rays
emerging from the bang that neither cross AH−, nor reach the origin.

Theorem 2 Every incoming radial light ray in every � = 0 L–T model with a big
bang is a transcritical ray.

Proof When � = 0, (8.3) becomes the familiar

R = 2M (8.4)

and such apparent horizons have been well studied in [31,32]. In this case, every
worldline encounters AH−, which is at R > 0 except at an origin, and every light ray
starts on the big bang. Therefore, of the rays emerging from the bang and arriving at
the crunch or R = ∞, only those starting at an origin may be said to have not crossed
the past AH. Models usually have one origin, but closed models normally have two.
The rays emerging from the local origin are outgoing, not incoming, and the rays
emerging from an antipodal origin may eventually be locally incoming, but in an rLTc
this would happen long after the present, if at all. ��
Theorem 3 Transcritical rays of inhomogeneous models that reproduce the observed
DA(z) do exist.

Proof See e.g. [33,34]. The point here is that if a chosen model produces a DA(z) and
DL(z) that fits the observations for a given PNC, out past a maximum in DA, then that
PNC is necessarily transcritical. ��
Theorem 4 Any reasonable DA(z) can be reproduced by a � = 0 L–T model.

5 In E < 0 models, it is possible the maximum M does not reach 1/(3
√

�).
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Proof This is a special case of the theorem in [25], which claims any pair of reason-
able observational functions, DA(z) or DL(z) and μn(z) can be reproduced by an L–T
model. Here n(z) is the number density of sources (e.g. galaxies) in redshift space, and
μ is the mean mass per source, which may also vary with z. Essentially the two arbi-
trary functions in an L–T model allow one to reproduce two observational relations.
In fact [10–12] have demonstrated how to solve the ‘inverse problem’ numerically for
both observational functions, and shown that the conditions at the AH do impose a
significant constraint that holds only at a single z value. But with only DL(z) given,
the two L–T functions allow the observations and the constraint to be fitted easily. ��

Together these results show that there is a plentiful supply of transcritical solutions
amongst the L–T models, and that there is a well defined procedure for extracting an
L–T model that fits the observed DA(z).

More important, however, is the fact that VFW do not try to find an L–T model
that reproduces real observational data, but the one that reproduces a chosen idealised
function for DL(z).

VFW write as if FLRW models are known to solve the inverse problem. To date the
‘inverse problem’ has never even been attempted with real data. What is usually done
is to solve the fitting problem: choose your favourite type of cosmological metric and
find the free functions and parameters that make it best fit the data.

Even models that are arbitrarily close to reproducing the observations will fail this
test. For example, take the ‘observational’ relations of a given FLRW model, add small
random or systematic errors, and use this ‘data’ as input to the inverse problem. The
DEs of the inverse problem will return the given FLRW model quite closely, but (8.3)
will not be exactly satisfied where d R̂/dz = 0, so they will still diverge (see [12]). The
chances of an FLRW light ray being exactly transcritical relative to real observational
data are distinctly less than for an L–T model.

The failure of a proposed solution to be transcritical does not indicate any physical
problem with the underlying L–T or FLRW model; at worst it indicates that a par-
ticular ray in a particular model does not (exactly) reproduce the given observational
function(s).

As discussed in [10–12,34,35], when attempting to reproduce two observational
functions with an L–T model, the AH constraints do provide a significant challenge.
In overcoming this challenge it was shown [11,12] the AH can give us useful obser-
vational information.

9 Conclusions

We have corrected a number of inaccurate statements appearing in the HS [2],
Flanagan [18] and VFW [1] papers. At least two of these misunderstandings are
widespread and therefore it is worth putting the record straight.

The first error-correction to be made is that a conical density profile at the origin is
not a singularity in any accepted sense, and there are no physical problems associated
with it. In some situations a conical profile may be a good model of structures that are
strongly centrally concentrated.
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Secondly, critical points in the inverse problem are generic. When solving the
‘inverse problem’ as defined in Sect. 8 for a realistic L–T or FLRW model, and find-
ing that the differential equations diverge at some redshift, one must be aware that this
is an inevitable consequence of the apparent horizon, where the diameter distance is
maximum. The chances that real observational data exactly satisfy the full transcriti-
cality conditions for any given model, homogeneous or not, are essentially zero. Such
divergent behaviour does not indicate any physical problem with the underlying L–T
or FLRW model, and transcritical solutions in a variety of models that closely repro-
duce the observed DL(z) do exist. Actually this point seems not to be well understood
and other examples of this misunderstanding can be found in the literature (see, e.g.
[3,36]).

Our point three is that one should be careful when extending FLRW definitions
of some functions to other cosmological models. In most such cases, when inhomo-
geneities are present, the FLRW parameters do not mean the same thing as in the
homogeneous case.

It is very common to get acceleration and supernova dimming mixed up. The inter-
pretation of the supernova dimming as an accelerated expansion (which is due to the
use of FLRW models) has firmly taken root, which is why some have focussed on
acceleration in the fluid expansion. In the L–T models, the ‘acceleration’ defined from
z(DL) using (3.3) exhibits a behaviour different from the q1 of the fluid flow defined
by (2.1), even though they coincide for FLRW models. We hope our paper will help
establish the difference between ‘accelerated expansion’ and ‘supernova dimming’ in
the observed magnitude–redshift relation.

We summarise and discuss different misunderstandings related to inhomogeneous
cosmology in Table 1.
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Appendix A: A Behaviour of derivatives of R(t, r) in the neighbourhood
of the symmetry centre

The formulae below are obtained using the coordinate r introduced in (2.8), the sym-
bols introduced in (5.10)–(5.11), and eq. (2.2). We show the intermediate expressions
in order to demonstrate that all terms that could cause divergencies cancel out before
the limit is taken. The first two equations follow trivially from (2.2).

R,t =
√

2M

R
+ 2E = r V −→

r→0
0, (A.1)

R,t t = − M

R2 = − M0r

(S + P)2 −→
r→0

0, (A.2)

To evaluate the behaviour of R,r and R,rr in the neighbourhood of r = 0 we use the
following equation [37]:
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Table 1 Summary of misconceptions and misunderstandings related to inhomogeneous cosmology

Misconceptions and misunderstandings Corrections and clarifications

Weak singularity
�R → ∞ is a singularity. Models

with �R = ∞ are unphysical
�R → ∞ is not a curvature singularity and has no physical

interpretation. Many objects have �R = ∞, among them the
Earth at its surface

Deceleration parameter
There are general theorems that

prohibit q0 < 0 where
q0 ≡ q(z = 0), presented in
Refs. [18,2]

There are two distinctive deceleration parameters: qobs based
on a Taylor expansion of the luminosity distance and the
invariantly defined qinv which measures the acceleration of
expansion. If � = 0 = ωab = u̇α and ρ + 3p > 0 then
qinv > 0, however for the same case qobs may be negative.
F’s & HS’s equations relating qobs to the flow invariants are
approximate and coordinate-dependent, thus they do not exist
as covariant laws. The approximately correct intermediate
relation does not exclude qobs < 0 in the L–T model

There is a local singularity in models
with q0 < 0

�R → ∞ when q0 < 0 and the observer is at the centre of
spherical symmetry. However, this is not a singularity. Away
from the the centre of spherical symmetry q0 < 0 does not
imply divergence of �R

Other singularities arise in models with
q(z) < 0. In such models there is a
class in which
q(z) = −1 + 1+z

H(z)
d H(z)

dz → ∞ at
some z, where

H(z) =
[

d
dz

(
DL
1+z

)]−1

q defined in this way diverges when d
dz

(
DL
1+z

)
= 0 but this is

not a singularity. In fact, if one applies these definitions to a
zero-� dust FLRW model, one obtains regions where q < 0
when �k0 > 0.6 This is because such H(z) only applies
when k = 0

Inverse problem
In solving for the model that gives a

selected DL (z), one encounters a
‘pathology’ or ‘critical point’,
beyond z ∼ 1 and the solution
generally breaks down there

The ‘critical point’ is the apparent horizon, where the diameter
distance is maximum. It is a general property of expanding
decelerating � = 0 models such as L–T and FLRW, long
known in the FLRW case. This point requires special
treatment, but has useful properties [10–12]

Only FLRW models have
“transcritical” solutions

“Transcritical” rays, that cross the apparent horizon, are generic
in L-T and FLRW models. With small errors in observational
data, all L-T and FLRW models will technically fail the
apparent horizon conditions, but this can be fixed [12].
Arbitrary choices such as E = 0 and a given DL (z) may well
fail to be transcritical

Fitting observations
Inhomogeneous models are exposed to

singularities. Non-singular models
are exceptional and rigid, hence
unable to account for observations

Inhomogeneous models like the L–T models include the FLRW
models as a subcase. Thus, if the FLRW models are
considered good enough for cosmology, then the L–T models
can only be better: they constitute an exact perturbation of the
FLRW background, and can reproduce the latter as a limit
with an arbitrary precision

qobs
0 < 0 is essential to account for
observations

Derivation of qobs in an inhomogeneous model involves
approximations—one of them linearity, so the sign of qobs

cannot be determined. One can have a very good fit to
observations with qobs

0 > 0 [38,39]
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R,r =
(

M,r

M
− E,r

E

)
R +

[(
3

2

E,r

E
− M,r

M

)
(t − tB) − tB,r

]
R,t . (A.3)

The above applies also with E = 0 if we neglect the E,r/E terms (as verified by direct
calculation). From (A.3) we obtain:

R,r = S + P + rL −→
r→0

S. (A.4)

The next equations below follow by consecutively differentiating (A.1)–(A.3) by r
and using (A.3)–(A.4) in the result:

R,t tr = − M,r

R2 + 2M R,r

R3 = − M0

(S + P)2 + 2M0rL
(S + P)3 −→

r→0
− M0

S2 , (A.5)

R,tr = 1

R,t

(
M,r

R
− M R,r

R2 + E,r

)
= V + r

V

[
F,r − M0L

(S + P)2

]
−→
r→0

V0, (A.6)

R,trr = − 1

R,t
3

(
M,r

R
− M R,r

R2 + E,r

)2
+ 1

R,t

(
M,rr

R
− 2M,r R,r

R2 − M R,rr

R2

+2M R,r
2

R3 + E,rr

)
= 1

V

{
− M0

(S + P)2 R,rr + 2F,r + r

[
F,rr + 2M0L2

(S + P)3

]}

− r

V 3

[
F,r − M0L

(S + P)2

]2
−→
r→0

1

V0

[
− M0

S2 R,rr (0) + 2F,r (0)

]
, (A.7)

R,rr = 1

−k/2 + F

[
−(S + P) + 3

2
V (t − tB)

] [
2F,r + r

(
F,rr − 2

F,r
2

−k/2 + F

)]

−V

[
2tB,r + r

(
tB,rr + F,r tB,r

2(−k/2 + F)

)]

+ r

V

[
3

2

F,r

−k/2 + F
(t − tB) − tB,r

] [
F,r − M0L

(S + P)2

]

−→
r→0

− 2F,r (0)

k
[−2S + 3 (t − tB(0)) V0] − 2tB,r (0)V0. (A.8)
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