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STRUCTURE FORMATION IN THE LEMAITRE-TOLMAN
COSMOLOGICAL MODEL (A NON-PERTURBATIVE APPROACH)

ANDRZEJ KRASINSKI*
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Structure formation is described by a Lemaitre-Tolman model such that the initial density perturbation
within a homogeneous background has a smaller mass than the structure into which it will develop, and
accretes more mass during evolution. It is proved that any two spherically symmetric density profiles
specified on any two constant time slices can be joined by a Lemaitre-Tolman evolution, and exact
implicit formulae for the arbitrary functions that determine the resulting L-T model are obtained.
Examples of the process are investigated numerically.

1 The problem

Attempts to describe the structure formation in the Universe are dominated by the per-
turbative approach. In this approach, one assumes that proto-galaxies, or proto-clusters of
galaxies appeared as small-amplitude condensations in a homogeneous background (caused
by means poorly understood, although much speculated about), and were later enhanced by
“ogravitational instability”. This means, additional matter was captured onto these initial
condensations by their gravitational attraction. The basic weakness of this approach is that
the evolution of the condensations cannot be followed to the present time because the current
density amplitude is no longer small. '

This calls for the use of exact solutions of Einstein’s equations. Here, we shall use
the Lemaitre-Tolman®? (L-T) model. Its weaknesses are: 1. Spherical symmetry — which
does not allow to include rotation in the description, and 2. Dust source — which excludes
thermo/hydrodynamics in the early stages of evolution. In spite of this, the model can de-
scribe the formation of a galaxy cluster with remarkable accuracy.

The very existence of inhomogeneous cosmological models shows that non-Friedmannian
distributions of density and velocity would have been coded in the Big Bang and need not
be “explained” as fluctuations that appeared within a homogeneous background during evo-
lution. Moreover, since the L-T collection of models is labelled by two arbitrary functions
of mass, that reduce to specific forms in the Friedmann limit, it follows that the Friedmann
models are very improbable statistically. Assuming that our physical Universe is homogeneous
indeed, one needs to explain how homogeneity might have come about out of inhomogeneous

*THIS RESEARCH WAS SUPPORTED BY THE POLISH RESEARCH COMMITTEE GRANT NO 2
P03B 060 17 AND BY A GRANT FROM THE SOUTH AFRICAN NATIONAL RESEARCH FOUNDATION
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initial data, not the other way round. However, in this paper we have accepted a high de-
gree of homogeneity at decoupling, and we determined that a sufficiently rapid growth of
condensations to change them into a galaxy cluster by today is possible.

The detailed calculations, although based on exact formulae, had to be carried out nu-
merically.

This report is an abridged version of the published paper Ref. 3.

2 Basic properties of the Lemaitre-Tolman model.

The Lemaitre-Tolman (L-T) model»?* is a spherically symmetric nonstatic solution of the
Einstein equations with a dust source. Its metric is:

R..2
1+ 2E(r)
where F(r) is an arbitrary function, R,. = 0R(t,r)/0r, and R obeys

ds? = dt? — dr? — R2(t, r)(d¥? + sin® 9dy?), (2.1)
R, = 2B(r) + 2M(r)/R+ %AR{ (2.2)

where A is the cosmological constant. Eq. (2.2) is a first integral of one of the Einstein
equations, and M(r) is another arbitrary function. The matter-density is:

2M,,. 8rG
Kp = R, where K = - (2.3)
In the following, we will assume A = 0. Then the solutions of eq. (2.2) are:
When E < 0:
M
R(t,’l") - —ﬁ(l - 00577),
—2F)3/2
n—sinn = (—M)_(t—tB(T))- (2.4)
where 7 is a parameter; when E = 0:
9 41/3
R(t,r) = [iM(t —tp (7"))2:] ) (2.5)
and when £ > 0:
M
el ~1
R(t,r) 5E (coshn — 1),
2E)(3/2)
sinhn —n = %—(t—tfg(r)), (2.6)

where tp(r) is one more arbitrary function (the bang time). Note that egs. (2.1) - (2.6)
are covariant under arbitrary coordinate transformations r = g(r’). This means one of the
functions E(r), M(r) and tp(r) can be fixed at our convenience by a choice of g.

The Friedmann models are contained in the Lemaitre-Tolman class as the limit:

tp = const, |E|3/2 /M = const, (2.7)

and one of the standard radial coordinates for the Friedmann model results if, in addition, the
coordinates in (2.4) — (2.6) are chosen so that M = Mor®, where Mj is an arbitrary constant;
then it follows that E/r? = const := —k/2.
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It will be convenient to use M (r) as the radial coordinate (i.e. ' = M (r)). This is possible
because in the structure formation context one does not expect any “necks” or “bellies”
where M, = 0, so M (r) should be a strictly increasing function in the whole region under
consideration. Then:

HpZQ/(RQR,M) E6/(R3),M. (2.8)

We will also assume that there are no shell crossings® because the L-T co-moving description
breaks down there.

3 The evolution as a mapping from an initial density to a final density.

The evolution of the L-T model is usually specified by defining initial conditions, e.g. the
density p(t1, R) and velocity R (t1, R) at an initial instant ¢ = ¢;. In this approach, one tries
to “shoot” into the desired final state. It is, however, possible, to approach the problem in a
different way: to specify the density distributions at two different instants, ¢t =¢; and t = %5,
calculate the corresponding F(M) and tg(M), and in this way obtain a definite model. It will
be proven below that any initial value of density at a specific position (r, M = const) can be
connected to any final value of density at the same position by one of the Lemaitre-Tolman
evolutions (either E > 0, or E < 0, or, in an exceptional case, £ = 0). In the Friedmann limit,
any two constant densities can be connected by one of the k > 0, k < 0 or k = 0 Friedmann
evolutions. (The shell crossings have to be checked for after the model is constructed.)

It will be assumed that to > t1, and that the final density p(t2, M) is smaller than the
initial density p(t1, M) at the same M, for each M. This means that matter has expanded
along every world-line, but the proof can be adapted to the collapse situation.

3.1 Hyperbolzc regions

Let us consider the L-T model with £ > 0. Let the initial and final density distributions at
t =ty and t = to be given by:

p(ty, M) = p1 (M), p(t2, M) = p2(M). (3.1)
From (2.3) we then have, for each of t1 & ta:

M
6
R3(t;, M) — R3 ... =/ 0T dM' = R;*(M), i=1,2 (3.2)

and Re(M) > R;(M) in consequence of p(te, M) < p(t1,M). We will assume there is an
origin where M = 0 and R(t;,0) = 0, so that Rmin; = 0 = Mmnin is valid. Solving (2.6) for
t(R,r) and writing it out for each of (¢1, R1) and (t2, R2) leads to:

M
(2 E (2E)3/2
and then eliminating ¢p between the two versions of (3.3) we find:

V(1 +2ERy/M)2 — 1 — arcosh(1 + 2ERy/M)

tp =1t — [\/(1 Y 2ER,/M)? — 1 — arcosh(1 + 2ER; /M)} i=1,2, (3.3)

—/(1 +2ER;/M)? — 1 + arcosh(1 + 2ER, /M) = [(2E)*/? /M (t2 — t1). (3.4)
For ease of calculations, let us denote:

z:=2E/M?3,  a;=R;/MY3 i=1,2;
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Yu () == /(1 + asz)? — 1 — arcosh(1 + agz) — /(1 + a1z)? — 1+ arcosh(l + a1 x)

—(tg — t1)z/2. (3.5)

Our problem is then equivalent to the following question: for what values of the parameters
az > a1 and t3 > t1, does the equation ¥ (z) = 0 have a solution = # 0?

By an elementary analysis of the properties of the function g (z), it can be verified that
Y (z) = 0 has a positive solution if and only if

2
tz — tl < \/?— (a23/2 — a13/2> y (3.6)

and that the solution is unique (see Ref. 3). Hence, this is a necessary and sufficient condition
for the existence of an E' > 0 evolution connecting R(t1, M) to R(ts, M). Eq. (3.6) is
equivalent to the statement that between ¢1 and to, R(t, M) increased by more than it would
have increased in the F = 0 L-T model. '

For the numerical calculation of E(M) it is useful to know that the zgz > 0 for which
Yu(zg) = 0 obeys g < x4, where

(3.7)

(see Ref. 3 again).

3.2 Still-expanding elliptic regions

For E < 0, a similar result holds, but with one refinement: depending on the value of (ta—t1),
the final density will be either in the expansion phase or in the recollapse phase.

If the final density is still in the expansion phase, then n € [0, 7] for both values of t. The
analogs of egs. (3.3) and (3.4) are then:

by =t — W%W [avccos(1 + 2B Rs/8) ~ /T~ (1 + 2BR,/MP) (3.9)
¥x(z) =0, (3.9)
where this time
z = —2E/M?/3,

¥x () := arccos(l — azx) — /1 — (1 — azx)? — arccos(1 — a1z) + /1 — (1 — a1x)?

—(ty — t1)2*/?, (3.10)
the definitions of a; being still (3.5).
This time the arguments of arccos must have absolute values not greater than 1. This
implies < 2/a; for both 4, and so, since as > a1

0<z<2/ay, (3.11)

which means: if there is any solution of (3.9), then it will have the property (3.11). The two
square roots in (3.10) will then also exist. Eq. (3.11) is equivalent to the requirement that
(R,+)? (in (2.2) with A = 0) is nonnegative at both #; and #s.
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Here, the necessary and sufficient condition for the existence of a positive solution of
¥x(x) = 0 is the set of two inequalities
V2

? ((123/2 - CL13/2) < tz - tl

< (ag/2)%/? [w — arccos(1 — 2a;/az) + 2+/a1/as — (al/a2)2] : (3.12)

The first inequality means that the model must have expanded between ¢; and t2 by less than
the E' = 0 model would have done. The second one just re-expresses the fact that t5 is not
later than the maximal expansion stage (see Ref. 3 for details).

3.8 Recollapsing elliptic regions

The reasoning above applied only in the increasing branch of R in (2.4). For the decreasing
branch, where 7 € [, 27, instead of (3.9) — (3.10) we obtain

tp =t — % [arccos(l Y 2ER, /M) — /1— (1 +2ER, /M)? ]
= tg — (72%%575 [7‘( + arccos(—1 — 2ERy /M) + /1 — (1 + 2ERy/M)2 } (3.13)

and

Ve =0, where

Yo(z) = m 4 arccos(—1 + agz) + /1 — (1 — agz)? — arccos(1 — a1z) + /1 — (1 — a12)2

—(tz — t1)$3/2. (314)

The necessary and sufficient condition for the existence of an z > 0 obeying ¥ (z) = 0 is

to —t1 > (a2/2)3/2 [w —arccos(1 — 2a1/ag) + 2\/a1/a2 — (al/ag)Q} ) (3.15)

3.4 General remarks

The above analysis considered only single world-lines, that is, single M values. We extend
this to the whole of p;(M) by noting that E(M) and tp(M) are arbitrary functions in the
L-T model, and so continuous p; will generate continuous F & tp.

In (3.6), at M values where to — t; = (v/2/3)(a2®/? — a13/2), the final state results from
the initial one by a parabolic (E = 0) evolution. In (3.12) and (3.15), for M values where the
equality holds, the final state is at the local moment of maximal expansion.

When E < 0, the signature of the metric requires that

E(M) > -1/2, (3.16)
and so, once E(M) has been calculated, (3.16) will have to be checked. Note that the k < 0
Friedmann model in standard coordinates has this problem, too — with 2E = —kr2, blindly

continuing through r =1/ Vk will make E < —1 /2 and M > Mynpiverse-

The shell crossings, where the density diverges and changes sign, may occur, and so the
conditions on E(M) & tg(M) for avoiding them® must also be checked. However, if they
occur before t; or after t5, this may not be of much concern.
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Our result can be stated as the
Theorem Given any two times ¢; and ¢3 > ¢1, and any two spherically symmetric density
profiles 0 < p2(M) < p1(M) defined over the same range of M, a L-T model can be found that
evolves from p; to ps in time ¢5 —¢;. The inequalities (3.6)/(3.12)/(3.15) will tell which class
of L-T evolution applies at each M value. The possibilities of shell crossings or excessively
negative energies must be separately checked for.

Note that the individual values of ¢; and t5 have no physical meaning. It is the difference
(t2 —t1) that, together with p; and py, determines a L-T model, i.e. determines the functions
E(M) and tg(M). The “age of the Universe” (which is a local quantity in the L-T models)
at the initial and final instant is then calculated as (t; — ¢tg) and (t2 — tg), respectively.

4 Implications for the Friedmann models.

These considerations apply to the Friedmann limit, provided one retains the curvature index
k as an arbitrary constant. If one starts out with the curvature index already scaled to +1
or —1 when it is nonzero, unexpected difficulties appear. For example, the Friedmann limit
of the inequality (3.6) does not appear at all, and one gets the false illusion that each pair of
(ts, ps) states can be connected by a k > 0 Friedmann evolution. The remaining part of this
section is meant to explain the source of this difficulty.

The quantity z = 4+2F/M?/3 that was being determined in sec. 3 by the assumed
density distributions, becomes Tk/My>/? in the Friedmann limit, where My = (4/3)7(G/c?) x
p(t)S3(t) is the Friedmann mass integral. With & < 0, it is k that determines the model, and
My only characterizes the sub-volume of the model that we follow. To see this, recall the law
of evolution of S that results from (2.2) in the limit given by A = 0 and (2.7):

S? = —k+2M,/S. (4.17)

When k < 0, the lifetime of the model is infinite, and different models differ by the asymptotic
velocity of expansion, limg_, S+ = v/—k — which is independent of My. When & > 0, both
k and My determine the model (M is proportional to the mass of the Universe, and & is a
measure of the total energy — gravitational potential energy + the kinetic energy of expansion).
When k =0, My can be scaled to any value by coordinate transformations.

Now let us see what happens when k # 0 is scaled to +1 by coordinate transformations.

Fig. 1 shows the evolution of Friedmann models with different values of k. The metric is:

dr?

1—kr?
In order to achieve k = +1, we transform:

r=r1'/\/]kl, S =5//|k|. (4.19)

In the limit k¥ — 0, S — oo at all values of ¢, i.e. the k = 0 graph in Fig. 1 becomes
the vertical straight half-line {¢t = to, S > 0}, the part of Fig. 1 that was above that graph
disappears — and the illusion arises that any two points in the quarter-plane {t > o, S > 0}
can be connected by a k > 0 evolution. If the rescaling |k| — 1 is done first, taking the limit
k — 0 within the Friedmann family becomes impossible, and the Friedmann limits of the
inequalities (3.6) and (3.12) do not come up.

Now, comparing different Friedmann models and choosing the one that best fits the obser-
vational constraints is what observational cosmology is mostly about. However, astronomers
use the models with k already scaled to £1...

ds? = dt? — S%(¢t) + 7% (d9? + sin® 9de?) | . (4.18)
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Figure 1. The functions S(t) corresponding to Friedmann models with different values of k. When k — 0, the
rescaling of S required to achieve |k| = 1 maps the k = 0 graph into the vertical straight line at ¢t = ¢g, and
no place is left for the k < 0 models.

5 Numerical Example

5.1 Past null cones, horizons and scales on the CMB sky

The age of the universe is currently believed to be about 14 Gyr. In a k = 0 dust (Friedmann)
model, Hy = 65 km/s/Mpc implies to = 2/3Hy = 10 Gyr, which puts ¢, at 10° yr. We shall
assume this Friedmann model (with A = 0) as the background.

The physical radius of the past null cone in a k = 0 Friedmann model (S o t2/3) is

to 1
L(t) = S/t & dt = 3e (/1% — 1), (5.1)
so an observed angular scale of § on the CMB sky has a physical size at recombination of
Ly = L(t)6 = 3¢ (t5/*>/® — ,) 6. (5.2)

The present day size of the observed structure — assuming it doesn’t collapse — is merely

scaled up by the ratio of scale factors ’
So

Lo=L,—. 5.3

0 T S,r ( )

The condensed structures (stars, galaxies, clusters of galaxies, etc) that exist today had not

yet existed at the recombination time. To determine the angle that they would subtend on

the CMB sky, we calculate the radius that the matter of a given object would fill if it were
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diluted to the present background density; it is

30, 1/3
LcO - 4 )
TTPb,0

and then the corresponding size L., at t, is calculated from (5.3).

5.2  Scales in the perturbation

We imagine that present day structures accreted their mass from a background that was close
to Friedmannian, and therefore the scale of the matter that is destined to end up in a present
day condensation is fixed by its present day mass.

The COBE data shows 67/T ~ 107° on scales of 10°, and the density perturbations
are 6p/p = 30T /T < 3 x 1075.7 COBE’s measurements had a resolution of ~ 10°, while
BOOMERANG’s and MAXIMA’s were ~ 0.2°. These angular scales correspond to length
scales of 2 Mpc and 50 kpc at the time of decoupling, and thus to 2 Gpc and 50 Mpc today.
Thus we are only just beginning to detect void scale perturbations in the CMB. Although
the magnitude of galaxy scale or even supercluster scale perturbations, are not yet directly
constrained by observations, we will retain the figure of ~ 1075,

The scales associated with present day structures are summarised in the following table.

Table 1.

Approximate scales associated with present day structures. The masses

associated with the resolution scales of COBE, MAXIMA & BOOMERANG are obtained

by assuming a density equal to the parabolic background value p,, as

‘(1)" in the density coulmn.

indicated by

Useful collections of data can be found at http://www.obspm.fr/

messier/, http://adc.gsfc.nasa.gov/adc/sciencedata.html, and http://www.geocities.com/

atlasoftheuniverse/supercls.html.

Radius Density Angle

today Mass of sphere | on CMB

(kpe) (Mo) (pv) sky (°)
star 2 x 1071 1 2x10% | 8x 1077
globular cluster 0.1 105 2x10% | 4x107°
galaxy 15 101t 6x10* | 4x 1073
Virgo cluster 2000 2 x 1013 5 0.02
Virgo supercluster 15000 5x 1014 0.3 0.06
Abell cluster (example) 800 105 4000 0.08
void 6 x 10% ? 0.4
COBE resolution 1.6 x 106 | 1.9 x 10%! (1) 10
BOOM/MAX resolution | 3.1 x 10* | 1.5 x 10%¢ (1) 0.2

We will use geometric units such that ¢ = 1 = G, and the remaining scale freedom of GR
is fixed by choosing the present day mass Mg of the condensation being considered as 1. The
corresponding geometric length and time units are then:

Lg=MgG/?

5.8 The Model

TG = Mc;G/CS.

(5.5)

The principal limitation of the L-T model in the post-recombination era is the absence of
rotation. However, once rotation has become a significant factor in the collapse process, there
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is already a well defined structure. Later on pressure and viscosity will become important,
but these factors only come into play once collapse is well underway. Because of the lack of
rotation etc, all of which tend to delay or halt collapse, we expect our model to be rapidly

collapsing rather than stationary at the present day.

We choose to model a cluster of galaxies chosen at random from the Abell catalogue:

Mapen Cluster = 107° Mg,
RAbell Cluster = 800 kpC“

From (5.5) and the above table the associated geometric units are

1 Mg = Mabell Cluster
1 Lg = 48 pc,
1 Tg = 156 years,
— R gpell cluster = 16800 Lg,
ty = 6.4 x 107 Tg.
At ty = 10 Gyrs = 6.4 x 107 T, we assume the final density profile to be
p2(M) = py2 (7000 e_(4M)2> .
Now the Friedmann density at tg is:
ph2 =1.3x 1071 Mg/L% = 8x 1072 kg/m®,

so the radius in the Friedmann ‘background’ that contains this mass is

3]\4-Abell Cluster
Rpo =

1/3
) = 260000 L.
4 pp 2

Thus we find
oy = [ S =
2 Jo Admpa (M) ~2240004/7 pp 2

and the reéulting p2(R) is shown in fig. 2.

erfi(4M).

(5.6)
(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

At t; = 100 kyears = 1075 t5 = 641 T we assume the initial density perturbation to

have the density enhancement

for which the chosen profile is:

p101) = g
The Friedmann density at ¢1 is:
pp1=13%x10"" Mg/L% = 8x 10717 kg/m®,

and the radius in the ‘background’ that contains the total mass is:

M . 1/3
Ry = ( A4bell Clu ter) — 57000 Le.
T Pv,1

1.00003 (14 100 M)
1+ 100.003 M

The resulting Ry (M) is

M
(R (M))? = / 3 _amr =3 <M 0°000031n(1+100M)>,
0

drp (MY " T 4zmpes \U 100.003

and the corresponding p;(R) is shown in fig. 2.
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Figure 2. The density profile p2/py 2 against areal radius Ry (upper left); the density profile p1/pp,1 against
areal radius Ry (upper right); the L-T energy function E(M) obtained from solving for the L-T model that
evolves between p1 (M) and pa(M) (lower left); and the L-T bang time function ¢t (M) obtained from solving
for the L-T model that evolves between p1(M) and p2(M) (lower right). All axes are in geometric units. The
symbols “EC”, “EX” & “H” indicate regions that are respectively elliptic and recollapsing at t2 (EC), elliptic
and still expanding at t2 (EX), and hyperbolic (H).

5.4 Model Results

A Maple program was written to generate the formulas and then solve for E(M) and tg(M)
numerically, as explained in sec. 3. The results are shown in figs. 2 and 3.

We see that E is of order 10~° which gives a recollapse timescale of 107 T = 1.7 x 10 yr,
so that the curvature in the condensation is of order Mty/(2E)3/? ~ 0.17. The bang time
perturbation is of order 2 T = 300 years, and is quite negligible.

Strictly speaking, an increasing tp creates a shell crossing, but for such a slight variation
in tp it occurs very early on, long before ¢; when the model becomes valid.

The ‘velocity’ R ; would, in a homogeneous model, increase as M*/3, so plotting R ; /M /3,
as in fig. 3, indicates the velocity perturbation.

In this case, the perturbation is within 3.1075 for 0 < M < 0.6, where ps is large, but
increases to 8.107* in the near vacuum region 0.6 < M < 1. This slight excess is due to
choosing aps (M) that falls off outside the condensations, requiring a too strongly hyperbolic
evolution that expands too rapidly. Still, this is within the limits allowed by CMB observations
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Figure 3. (a) The velocity perturbation R/M*'/3 at time t1 (top). A constant value would indicate no pertur-
bation. (b) The evolution of p(t, M) for the derived L-T model (bottom). All axes are in the geometric units
of (5.5) & (5.8). In the range 0 < M < 0.795 the evolution is elliptic and already recollapsing at time ¢z, in
0.795 < M < 0.865 it is elliptic but still expanding at t2, and for M > 0.865 it is hyperbolic. In practice,
recollapse would be halted at some point by the effects of pressure, rotation, etc. The initial and final density
profiles calculated at times t1 and t2 coincide with those originally chosen and shown in fig. 2.

and their interpretation.®

As a cross-check, these derived functions were used in a separate MATLAB program that
plots the evolution of a L-T model, given its arbitrary functions. The initial and final density
profiles were recovered to high accuracy, see fig. 3.

6 Conclusions

We proved that an L-T model can evolve any initial density profile on a constant time slice,
to any final density profile a given time later. Our numerical experiments show that realistic
choices of the density profiles and the time difference generate reasonable models.

Our numerical example created an Abell cluster in a realistic timescale. It started from
recombination, with a density perturbation §p/p ~ 3.107°. It then ‘accreted’ most of its
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final mass. In fact this ‘accretion’ consists of lower expansion rates near the centre, and more
rapid expansion further out. Only at late stages does actual collapse begin at the centre. The
initial velocity perturbation turned out to be dv/v ~ 3.107° within the future condensation
and ~ 8.10™* in the future vacuum region, still within allowed limits.®

The theorem plus the numerical example demonstrate that the L-T model provides a very
reasonable description of post-recombination structure formation.

These two points also indicate that post recombination structure formation in a dust
universe has an important kinematical component — the initial distribution of velocities has
as much bearing on whether or not a condensation forms, as the initial density distribution.
These initial distributions of density and velocity are generated by the functions E(M ) and
tg(M), i.e. coded in the initial conditions. It is the interplay between the initial density
and initial velocity distributions that determines what structures are created. For example,
as shown by Mustapha and Hellaby in an earlier paper,® there exists such a choice of initial
conditions with which an initial condensation will evolve into a void.

At the time of writing this note, we have just completed further research into this topic.°
We provided another example of a density to density evolution, with more realistic profiles at
both #; and t3. The profiles at to were models of galaxy clusters and voids. We also showed
that corresponding theorems and numerical schemes exist for the cases when either the initial
state or the final state, or both, are specified by the velocity distribution R,; (M, t;),7 = 1, 2.
We provided more numerical examples in each case. These schemes should carry over to more
general cosmological models, once they are found.
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