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ABSTRACT
We develop models of void formation starting from a small initial fluctuation at recombina-
tion and growing to a realistic present-day density profile in agreement with observations of
voids. The model construction is an extension of previously developed algorithms for finding a
Lemaı̂tre–Tolman metric that evolves between two profiles of either density or velocity speci-
fied at two times. Of the four profiles of concern (those of density and velocity at recombination
and at the present day), two can be specified and the other two follow from the derived model.

We find that, in order to reproduce the present-day void density profiles, the initial velocity
profile is more important than the initial density profile.

Extrapolation of current cosmic microwave background (CMB) observations to the scales
relevant to protovoids is very uncertain. Even so, we find that it is very difficult to make both
the initial density and velocity fluctuation amplitudes small enough and still obtain a realistic
void by today.

Key words: cosmic microwave background – cosmological parameters – cosmology: theory –
early Universe – large-scale structure of Universe.

1 A I M

Voids are vast regions of the Universe with a high negative density
contrast, which are fundamental parts of the large-scale structure
of the Universe. Although the mean radius of voids is 10 h−1 Mpc,
they contain only a few galaxies. According to the data from the
2-degree Field Galaxy Redshift Survey (2dFGRS)1 processed by
Hoyle & Vogeley (2004), about 40 per cent of the volume of the
Universe is taken up by voids.

The aim of this paper is to describe the non-linear growth of voids
out of small initial density and velocity perturbations on a homo-
geneous background at the moment of last scattering. We intend to
remain within the solidly established physics and to do without un-
observable entities that are currently in vogue, like cold dark matter.
We use the inhomogeneous, spherically symmetric dust (Lemaı̂tre–
Tolman; L–T) model, an exact solution of Einstein’s equations. This
paper also reports on the main factors responsible for the formation
of voids, and a simulation of void evolution is presented. As fol-
lows from our previous papers (Krasiński & Hellaby 2002, 2004),
the final state is sensitive not just to the amplitude, but also to the
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exact profile of the initial perturbations. So although velocity per-
turbations of relative amplitude (�V /V ) around 8 × 10−3 were
needed in our models to reproduce realistic voids, it is still possible
that other profiles can be found for which a smaller initial velocity
amplitude will suffice.

2 A H I S TO R I C A L OV E RV I E W

The discovery of large-scale cosmic voids became possible when
astronomers started to measure the distribution of galaxies in space.
Since William and John Herschel’s researches, i.e. from 19th cen-
tury, it was known that galaxies cluster (for example in the Virgo
or Coma cluster). However, there could be no certainty that these
clusters were not just caused by the galaxies being projected on the
celestial sphere. This changed with the publication of the Hubble law
in 1929. Five years later Tolman (1934) and, immediately after, Sen
(1934) studied the stability of the Friedmann models with respect to
inhomogeneous perturbations and concluded that they are unstable
against a rarefaction caused by a negative perturbation of either the
initial density or the initial velocity. Consequently, there should be
condensations as well as underdense regions in the Universe.

Nevertheless, it was only at the end of 1970s that voids were
discovered. However, the very first sign of their existence had been
known 20 yr earlier. In 1960, Mayall had measured the redshift of
50 galaxies in the Coma cluster (Mayall 1960). His survey covered
33 deg2 of the celestial sphere. The Coma cluster was also studied
by Chincarini & Rood (1975), but it was the large survey of Gregory
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Table 1. The void hierarchy (from Lindner et al. 1996).

Type of object Mean size

Rich clusters (Abell Catalogue) 100 h−1 Mpc
Poor clusters (Zwicky Catalogue) 37 h−1 Mpc
Bright (M � −20.3) elliptical galaxies 30 h−1 Mpc
Galaxies brighter than M = −20.3 23 h−1 Mpc
Galaxies brighter than M = −19.7 16 h−1 Mpc
Galaxies brighter than M = −18.8 13 h−1 Mpc

& Thompson (1978) that ended with the discovery of a void. Their
survey covered 260 deg2 of the sky and comprised galaxies up to 15th
magnitude, which is equivalent to a radial velocity of approximately
8000 km s−1.

Also, Jõeveer, Einasto & Tago (1978) observed voids in their
redshift survey. At the beginning of 1980s the term ‘void’ was first
used to call the regions avoided by galaxies (Rood 1988).

Next, researchers discovered extremely large regions avoided
by galaxies called supervoids. The classical example is the void
discovered by Kirshner et al. (1981). From the late 1970s, they
were observing the galaxies in the Bootes and Corona Borealis
constellation and discovered an almost empty region with the size
of 50–100 h−1 Mpc, (where h is the Hubble parameter in units of
100 km s−1 Mpc−1). More up-to-date measurements determine this
size to be approximately 60 h−1 Mpc and prove that this region is not
entirely empty. Dey, Strauss & Huchra (1990) observed 21 galaxies
within this region and estimated the mean density contrast to be

δ = ρmat − ρmat

ρmat
∈ (−0.84, −0.66), (1)

where ρmat and ρmat are the density and mean density of matter in
the Universe.

Other discoveries of voids followed very fast. In 1982, after a
five year survey, the Centre for Astrophysics (CfA) galaxy redshift
catalogue was finished. Huchra et al. (1983) measured redshifts
for over 2400 galaxies with luminosity below magnitude 14.5. The
amount of data increased in later surveys. For example, the current
Sloan Digital Sky Survey (SDSS)2 covers one-fourth of the celestial
sphere and will measure redshifts for over 108 objects.

3 S I Z E S A N D S H A P E S O F T H E VO I D S

The size of a void depends on the luminosity of the galaxies that
surround it. The research done by Lindner et al. (1995) has shown
that the mean void size, as estimated by bright elliptic galaxies,
varies between 13 and 36 h−1 Mpc, whereas the size evaluated by
the measurement of fainter galaxies drops to 9–25 h−1 Mpc. This
phenomenon is known as the void hierarchy, whose characteristics
are listed in Table 1 (Lindner et al. 1996).

According to the data from the 2dFGRS, the average radii of
voids in the North Galactic Pole (NGP) and in the South Galactic
Pole (SGP) are 14.89 ± 2.67 and 15.61 ± 2.48 h−1 Mpc respec-
tively (Hoyle & Vogeley 2004). The maximal radius of a sphere
inscribed into a void is 12.09 ± 1.85 h−1 Mpc in NGP and 12.52 ±
1.99 h−1 Mpc in SGP. These sizes were estimated using galaxies
whose luminosity M lim − 5 log(h) varied from −18 to −21.

The computer algorithm employed by Hoyle and Vogeley in their
void search used a similar rule to that invented by El-Ad & Piran
(1997). Firstly, the algorithm decides whether a particular galaxy

2 www.sdss.org

should be assigned to the wall (a region of higher density surround-
ing the void) or to the void itself. Then the voids are filled with
spheres.

It is apparent that the shapes of small voids are close to spherical,
while the largest voids are more irregular. However, they can still
be divided into smaller spherical voids. Sato (1982, 1984) hypothe-
sized that spherical voids collide with each other as they expand, to
produce Zeldovich’s ‘pancakes’. The fact that large non-spherical
voids can be divided into spherical regions may thus indicate that
they are conglomerates of smaller spherical voids that had already
collided. Together with another result that for voids the spherical
shape is stable (Sato & Maeda 1983), this shows that the L–T solu-
tion is the right device to model voids.

4 D E N S I T Y C O N T R A S T

While considering the above data, the following question arises:
are these regions really empty? Or are some objects just not bright
enough to be detected by galaxy surveys? This issue was inves-
tigated by Thuan, Gott & Schneider (1987). They examined the
distribution of faint, dwarf and irregular galaxies from the Nilson
Uppsala General Catalogue of Galaxies (UGC) and concluded that
faint galaxies do not form any separate large-scale structures but
occur together with bright galaxies. Similar results were obtained
by Peebles (2001), who analysed the data from the Optical Redshift
Survey (ORS). The conclusion is that, because there are no bright
galaxies in voids, there should be no faint ones, either. Some ob-
servational studies of dwarf galaxies in the nearest neighbourhood
(Pustil’nik et al. 1995; Kuhn, Hopp & Elsaesser 1997; Popescu,
Hopp & Elsaesser 1997; Grogin & Geller 1999) found galaxies in
voids. However, these were only single objects, so the deduction
of Thuan et al. (1987) and Peebles (2001) was qualitatively right.
Today voids are defined as regions of low density, or as regions
avoided by certain type of objects, for example bright galaxies. Ac-
cording to these definitions, voids do not have to be empty. Rojas
et al. (2004) focused on the photometrical properties of galaxies in
the voids from the SDSS data. They defined the voids as regions of
density contrast δ � −0.6. In their study, they measured galaxies
up to z = 0.089. From 155 000 galaxies they extracted a sample of
13 742, in which 1010 were galaxies in voids. Their analysis shows
that galaxies in voids are fainter, more blue and more compact than
galaxies in the walls.

Of the galaxies from the 2dFGRS, 5 per cent are void galaxies.
The average density contrast for voids in this survey is presented in
Fig. 1. The mean density contrast in the central region is δ =−0.94 ±
0.02 in NGP and δ = −0.93 ± 0.02 in SGP.

However, data obtained from observations of galaxies give in-
formation about the luminous matter, while dark matter does not
have to concentrate in galaxies. Peebles (2001), referring to the ex-
isting radio-astronomical observations of 21-cm waves (sensitive to
H I clouds; Weinberg et al. 1991; Hoffman, Lu & Salpeter 1992;
Szomoru et al. 1996; Zwaan et al. 1997) and to the results of ob-
servations of Lyman α absorption line system (Bergeron & Boisse
1991; Steidel, Dickinson & Persson 1994; Lanzetta et al. 1995),
concluded that not only galaxies but also gas clouds avoid voids.
This conclusion can only be justified indirectly because there are no
direct observations of Lyman α clouds in voids.

The voids that are discovered in surveys are defined by galaxies
with low redshift. For example, the maximal redshift used by Hoyle
& Vogeley (2004) to find voids in the 2dFGRS was z = 0.138. For
such a small redshift, the Lyman α line (λ = 1216 Å) is in the ultravi-
olet, which is beyond the reach of observations from the ground. The
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Figure 1. The average density contrast for voids in the 2dFGRS, in units
of void radius (figure taken from Hoyle & Vogeley 2004).

resolution of the IUE (International Ultraviolet Explorer) satellite
was not sufficient to detect the Lyman α clouds.

One must ask whether luminous matter is a good tracer of mass,
or is there a significant amount of dark matter within voids? Is the
density contrast for dark matter the same as for luminous matter, or
do galaxies prefer regions of higher density contrast? In the second
case, the real density contrast would not be as low as the one in
Fig. 1.

Answers to these questions suggested by cold dark matter N-body
simulations are inconclusive. In these simulations, the positions of
test particles in a chosen part of space are traced. Progress in this field
depends on the computing power. Arbabi-Bidgoli & Muller (2002)
used 2563 particles of masses 1011 h−1 M� and 4 × 1010 h−1 M�.
They obtained density contrasts from δ ∼−0.6 for the voids with the
mean diameter 10–16 h−1 Mpc to δ ∼ −0.8 for the voids with mean
diameter 36–50 h−1 Mpc. Benson et al. (2003) used 5123 particles
of masses 109 h−1 M�. Their simulations implied that the density
contrast should be δ ∼−0.8, 0.85. Gottlöber et al. (2003) used 10243

particles of 4 × 107 h−1 M� and obtained the density contrast of
approximately δ = −0.9. Some N-body simulations face a cru-
cial problem, as they predict that voids should be filled with dwarf
galaxies.

In our models, we assume that the real density contrast in voids
is the same as the one obtained from galaxy observations.

5 T H E L E M A Î T R E – TO L M A N M O D E L

5.1 Formulae and general properties

The L–T model is a spherically symmetric solution of Einstein’s
equations with a dust source. In comoving and synchronous coor-
dinates, the metric is

ds2 = c2 dt2 − R2
,r (r , t)

1 + 2E(r )
dr 2 − R2(t, r )d �2, (2)

where d �2 = d θ2 + sin2 θ d φ2 and E(r) is an arbitrary function of
r. Because of the signature (+, −, −, −), this function must obey
E(r ) � − 1

2 .

The Einstein equations reduce to the following two:

κρc2 = 2M,r

R2 R,r
, (3)

1

c2
R2

,t = 2E + 2M(r )

R
+ 1

3
�R2, (4)

where M(r) is another arbitrary function and κ = 8πG
c4 .

When R ,r = 0 and M ,r �= 0, the density becomes infinite. This
happens when shell crossings occur. Equation (4) is similar to its
Newtonian counterpart for a spherical dust distribution:

1

2
R2

,t = E
m

+ GM
R ,

where R, E and M are respectively the radial coordinate, the en-
ergy of the particles and the mass within radius R (in Newtonian
mechanics, the cosmological constant is not considered). Therefore,
M(r )c2/G is the mass inside the shell of the radial coordinate r, and
E(r )c2 is the energy per mass unit.

Equation (4) can be solved by simple integration:∫ R

0

dR̃√
2E + 2M

R̃
+ 1

3 �R̃2

= c [t − tB(r )] , (5)

where tB appears as an integration constant and is an arbitrary func-
tion of r. This means that the big bang is not a single event as in
the Friedmann models, but occurs at different times for different
distances from the origin.

When � = 0, the above equation can be solved in parametric
form, as follows.

(i) For E < 0:

R = − M

2E
(1 − cos η),

η − sin η = (−2E)3/2

M
c[t − tB(r )]. (6)

Eliminating η, one can write this as3

ctB = ct − M

(−2E)3/2

[
arccos

(
1 + 2

E R

M

)

−
√

1 −
(

1 + 2
E R

M

)2

 . (7)

(ii) For E = 0:

R =
{

9

2
Mc2[t − tB(r )]2

} 1
3

. (8)

(iii) For E > 0:

R = M

2E
(cosh η − 1),

sinh η − η = (2E)3/2

M
c[t − tB(r )]; (9)

3 Equation (7) applies with η < π, i.e. in the expansion phase. We do not
consider the recollapse phase in this paper.
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or equivalently,

ctB = ct − M

(2E)3/2




√(
1 + 2

E R

M

)2

− 1

− arcosh

(
1 + 2

E R

M

)]
. (10)

Thus, the evolution of an L–T model is determined by three ar-
bitrary functions: E(r ), M(r ) and t B(r ). The metric and all the for-
mulae are covariant under arbitrary coordinate transformations of
the form r = f (r ′). Using such a transformation, one function can
be given a desired form. Therefore the physical initial data for the
evolution of the L–T model consist of two arbitrary functions.

5.2 The Friedmann limit

The L–T model is a generalization of the Friedmann models and
becomes a Friedmann model when the following conditions are
fulfilled.

(i) tB = constant. (11)

This constant is usually set to zero.

(ii)
|E |3/2

M
= constant. (12)

In the Friedmann limit, the density distribution is a function of the
time coordinate only and is expressed by the formula

κρc2 = 6M

R3
. (13)

The above conditions are invariant under any coordinate trans-
formation. In the class of coordinates used here, one can choose the
radial coordinate as

R(r , t) = r S(t), (14)

where S is the scale factor of the Friedmann models, and then

M(r ) = M0r 3, E(r ) = Eor 2. (15)

The Friedmann limit is an essential element in our approach. As
mentioned above, our model of void formation describes a single
void in an expanding Universe. Far away from the origin, the density
and velocity distributions tend to the values that they would have in
a Friedmann model. The mean sizes of voids presented in the litera-
ture are estimated in the Friedmann models (each estimate uses one
specific model, but for low redshifts the differences between differ-
ent models are negligible). Using equation (14) one can identify the
areal radius of a void R(r v , t 0) with the mean void radius given in
the literature.

6 BAC K G RO U N D M O D E L S

The aim of this paper is to describe the formation of voids from ini-
tial density and velocity perturbations at the time of last scattering
and also to check how the evolution of a void depends on the back-
ground model. This requires knowledge of the density and velocity
perturbations and also of the age of the Universe at the moment of
last scattering. Although not all the background models used here
are consistent with observations, even those excluded by observa-
tions will clarify some mechanisms responsible for void formation.
The astronomical data put limits on the values of some parameters.
From the observation of the oldest stars, the lower limit for the age

of the Universe is estimated to be approximately 12–14 × 109 yr
(Spergel et al. 2003). From the measurement of the movement of
galaxies in clusters and of matter in galaxies, one can estimate the
mean matter density. In the critical density units, this value is �mat ∼
0.3. Observations of Type Ia supernovae and of the microwave back-
ground radiation suggest a non-zero cosmological constant, of ap-
proximate value �� ∼ 0.73 (Bennett et al. 2003).

In the following, the subscript b indicates a background value,
0 indicates a present-day value and ls indicates a value at last
scattering.

6.1 Background models without cosmological constant

6.1.1 The Einstein-de Sitter universe

The Einstein-de Sitter universe is the flat Friedmann model filled
with matter and without the cosmological constant. This model can
be obtained from the L–T model. From equations (13) and (11) with
E = 0, it follows that the density of the homogeneous background
is

ρb = 6M

κc2 R3
b

= 1

6πGt2
. (16)

Substituting above the critical density obtained from the Hubble
constant H 0 = 72 km s−1 Mpc−1 (Bennett et al. 2003), one can ob-
tain that the present age of the Universe is 9.053 × 109 yr. The last
scattering photons on electrons took place when z ≈ 1089 (Bennett
et al. 2003). It was not a single event, but a process extended in time.
In what follows, it will be assumed that the last scattering took place
when z = 1089. At that instant, the background density was equal
to

(ρls)b = (ρ0)b(1 + z)3, (17)

so from equation (16) we obtain that the Universe was 252 000 yr
old.

The following quantity is a measure of the velocity:

b = R,t

cM1/3
. (18)

In the flat background this becomes

bb = (R,t )b

cM1/3
=

(
4

3ct

) 1
3

. (19)

6.1.2 The hyperbolic background

The hyperbolic background is the k < 0 Friedmann model. The age
of the Universe at the moment of last scattering can be calculated
using equation (19). In the Friedmann models, the factor M/E3/2 is
constant and one can calculate it assuming that the current expan-
sion rate of the homogeneous background is given by the Hubble
constant:

H 2
0 = R,t

2

R2

∣∣∣∣
0

= 2Ec2

R2
0

+ 2Mc2

R3
0

= 2Ec2

R2
0

+ 1

3
κc4ρ0. (20)

From this, one obtains

2E

M2/3
= 1

3
κc2(ρcrit − ρ0)

(
6

κρ0c2

)2/3

, (21)

where ρ crit = 3H 2
0/κc4 is the density of a k = 0 Friedmann model.

Substituting the above result in the first equation of (9), one obtains

ηls = arcosh

[
2

1 + �mat

�mat(1 + z)

]
, (22)
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where �mat = ρ 0/ρ crit = κc4ρ 0/3H 2. From the above formula and
from equations (21) and (9), it follows that the age of the Universe
with �mat = 0.27 when z = 1089 is equal to 477 000 yr. The present
age is 11.1 × 109 yr. In the model with �mat = 0.391 (this model
has a similar present-day velocity to the model with �mat = 0.27
and �� = 0.73), one can obtain 402 000 yr for the instant of last
scattering and 10.6 × 109 yr for today. The value of the background
density was calculated from equation (17).

The background velocity in the hyperbolic model is

bb = (R,t )b

cM1/3
=

√
2E

M2/3
+ 2M1/3

Rb

=
√

2E

M2/3
+ 2

(
1

6
κρbc2

)1/3

. (23)

6.2 The elliptic background

The elliptic background is the k > 0 Friedmann model. The proce-
dure is similar to the one above. To calculate the age of the Universe,
one must use equation (6) and a value of η of

ηls = arccos

[
1 − 2

�mat − 1

�mat(1 + z)

]
.

The age of the Universe in the model with �mat = 11 is 76 000 yr
at last scattering and 4.6 × 109 yr today.

6.3 Background models with the cosmological constant

6.3.1 The flat background

When E = 0, equation (5) can be solved explicitly:∫ R

0

dR′ 1√
2M
R + 1

3 �R2

=
√

4

3�
ar coth

(
3

�

√
2M

R3
+ �

3

)
= c(t − tB); (24)

or equivalently,

R3 = 6M

�
sinh2

(
ct

√
3�

4

)
. (25)

It follows that the background density is

κc2ρb = �

sinh2
(

ct
√

3�

4

) . (26)

The age of the Universe can be calculated from the formula given
above. Substituting the values suggested by astronomical observa-
tions, �mat = 0.27 and �� = �c2

3H2
0

= 0.73, we obtain that the density

is equal to the critical density, the Universe is 13.48 × 109 yr old
today, while at the moment of last scattering the age of the Universe
was 484 000 yr.

The background velocity in the flat Universe with the cosmolog-
ical constant is given by the formula

bb = (R,t )b

cM
1
3

= 2

3

(
6

κc2ρb

) 1
3
√

3�

4
coth2

(
ct

√
3�

4

)
. (27)

Table 2. The age of the Universe at the present epoch and at the moment
of last scattering.

Model Present age of Age at last
the Universe (yr) scattering (yr)

�mat = 1, �� = 0 9.053 × 109 252 × 103

�mat = 0.27, �� = 0 11.1 × 109 477 × 103

�mat = 0.391, �� = 0 10.6 × 109 402 × 103

�mat = 11, �� = 0 4.6 × 109 76 × 103

�mat = 0.27, �� = 0.73 13.48 × 109 484 × 103

�mat = 0.27, �� = 1.64 32.46 × 109 485 × 103

6.3.2 Non-flat background models

We follow an analogous procedure to the � = 0 case and calculate

2E

M2/3
= 1

3
κρcritc

2(1 − �mat − ��)

(
6

κρ0c2

)2/3

, (28)

where �� = (�/κc2)/ρ crit = �c2/3H 2. When E �= 0, equation (5)
does not have an analytic solution. Let us denote

Rb

M1/3
= a,

2E

M2/3
= α,

then equation (5) can be written
a∫

0

dx√
α + 2

x + 1
3 �x2

= ct . (29)

In the model with �mat = 0.27 and �� = 1.64, one finds that the
age of the Universe at the moment of decoupling was 485 000 yr
and at present it is 32.46 × 109 yr. The background velocity is

bb = (R,t )b

cM1/3
=

√
2E

M2/3
+ 2M1/3

Rb
+ 1

3
�

R2
b

M2/3

=
√

2E

M2/3
+ 2

(
1

6
κρbc2

)1/3

+ 1

3
�

(
6

κρbc2

)2/3

. (30)

The parameters of the various background models are summa-
rized in Table 2.

7 P E RT U R BAT I O N S AT T H E M O M E N T
O F L A S T S C AT T E R I N G

The microwave background radiation is a relic from the epoch when
the Universe was young and hot. When the temperature of the Uni-
verse dropped below 3000 K, the free path of photons became com-
parable to the Hubble radius and radiation stopped interacting with
matter. Consequently, an analysis of this radiation can give us in-
formation about the state of matter at that moment. The spectrum
of the cosmic microwave background (CMB) is the spectrum of the
blackbody with the mean temperature of T ≈ 2.725 K (Mather et al.
1999). More precise observations measure the fluctuations with am-
plitude δT /T ∼ 10−5. These are related to the density fluctuations
at last scattering. Unfortunately, this relation is complicated: one
must take into account several effects.

7.1 Linear and angular diameters

The observations of the microwave background radiation mea-
sure differences in temperature between two points of the celestial
sphere. The angular resolution of the instruments is not high. The
Wilkinson Microwave Anisotropy Probe satellite (WMAP) measures
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Figure 2. The temperature fluctuations (�T ) measured by WMAP (based
on data from http://lambda.gsfc.nasa.gov/product/map/).

the radiation in five different ranges and, depending on the range, has
the resolution from 0.◦82 to 0.◦21 (Bennett et al. 2003). The results
of the temperature measurement are presented in Fig. 2.

The following question arises: what are the linear diameters of
the regions that WMAP can still see as separate? Also, is this resolu-
tion sufficient to observe the regions that evolved into the currently
observed voids?

The linear diameters can be estimated using the scale law of the
Friedmann models:
L0

Ldec
= χ (r )S0

χ (r )Sdec
= 1 + z, (31)

where χ (r ) is the distance in the space t = const,

χ (r ) := [1/S(t)]

∫ r

0

grr (t, r ′) dr ′. (32)

These diameters are related to the angular diameters:

L = D�θ, (33)

where D is the angular distance; in the Friedmann models, it is
determined by

D = So

1 + z
F (d), (34)

where

F (d) =
{

sin(d), when �mat + �� > 1
d, when �mat + �� = 1

sinh(d), when �mat + �� < 1
(35)

and d is given by the formula

d = c

H0 So

z∫
0

dz′ 1√
�c(1 + z′)2 + �mat(1 + z′)3 + ��

, (36)

where �c = 1 − �mat − ��. Assuming that the moment of last
scattering was when z = 1089 and that the mean void diameter is
25 h−1 Mpc, for different models one obtains the results shown in
Table 3.

Comparing data from Table 3 with Fig. 2, one sees that the res-
olution of the WMAP instruments is not sufficient to make direct
measurements of the temperature fluctuations in the regions that
became voids.

Table 3. Angular diameters of the pre-void
region.

Model �θ

�mat = 1, �� = 0 0.◦246
�mat = 0.27, �� = 0 0.◦071
�mat = 0.27, �� = 0.73 0.◦143

7.2 Initial fluctuations

As the starting point of further considerations, we need a rough es-
timate of the initial conditions. The procedure for estimating the
density fluctuations from the observed temperature fluctuations is
complicated. The main contributions to the observed temperature
perturbation are from the intrinsic temperature fluctuations of the
emitting fluid, the frequency shift as light emerges from a fluctu-
ation in the gravitational potential (Sachs–Wolfe effect), and from
the Doppler effect (motion of the emitter). The moment of last scat-
tering also depends on the cosmological background model, but
for different models the differences are negligible. For complete-
ness, one should take into account what happened to the radiation
on the way to the observer: the integrated Sachs–Wolfe effect (the
effect of gravitational perturbations along the line of sight), the
Rees-Sciama effect (the influence of changes of the gravitational
potential with time), the Sunyaev–Zeldovich effect (radiation inter-
acting with galaxy clusters) and the non-linear consequences of the
photons travelling in an inhomogeneous space.

It is found (e.g Padmanabhan 1996) that the intrinsic temperature
fluctuations obey (�T /T )intrinsic ∼ �ρ/3ρ. The magnitude of ve-
locity perturbations is usually not given.4 Fluctuations in the fluid
motion of magnitude �V (away from uniform expansion) must con-
tribute a Doppler term (�T /T )Doppler = �V /c, so observations of
�T /T � 10−5 put an upper limit of 10−5 c on �V . On the other
hand, because the fluctuations are acoustic oscillations, the three
contributions to (�T /T )observed must be of comparable magnitude,
(�T /T )intrinsic ∼ �/3 ∼ �V /c. Indeed, for an oscillating fluid with
a relativistic equation of state (∂p/∂ρ = c2), we must have �V ∼
c�ρ/3ρ.

However, the major problem is not with calculations, but with the
data. The present data are available for scales larger than the scale of
a single void and all these calculations must rely on extrapolations.

The WMAP data that were used as the source for Fig. 2 have such
a large scatter for scales around 0.◦2 that the temperature fluctua-
tion could be anything from 10−4 to 10−6. Using the extrapolation
proposed by the WMAP team, one would get �T /T ≈ 2 × 10−5.

To estimate ν = �V /V b = �b/bb for a present-day scale of
L 0 = 12 Mpc, we write L = L 0/(1 + z), H = H 0(1 + z)1/n , V b =
LH and n = 2/3 for an Einstein-de Sitter model. Thus we find, for
H 0 = 72 km s−1 Mpc−1 and z = 1089, that

ν ≈ 2 × 10−4. (37)

8 F O R M AT I O N O F VO I D S

In this section, we will check whether it is possible to evolve the
voids from a small initial density and velocity perturbation imposed

4 It is commonly stated by specialists that �V /c ∼ 10−5 but we have not
been guided to a reference that says this or something equivalent.

C© 2005 RAS, MNRAS 362, 213–228



Formation of voids in the Universe 219

on a homogeneous background. We will also check what is the
influence on the structure formation of the following factors:

(i) the shape and the amplitude of the initial perturbations;
(ii) the evolution time;
(iii) the expansion rate; and
(iv) the outflow of mass from central parts of the void.

The evolution of the void will be calculated with six different
background models. Some of these models, especially the elliptic
ones with and without cosmological constant, are inconsistent with
the observations. These are used not in order to obtain a model of
the observed Universe, but to check which of the factors listed above
are more important in the process of void formation. For comparing
the various models, let us assume that the initial conditions are
independent of the background model.

To determine the evolution of the L–T model, one needs to know
two functions. In this paper, these functions will be the initial density
and velocity distributions. This is not the only method to specify
the evolution in the L–T model. The evolution can be determined
also by giving the initial and the final density profiles (Krasiński &
Hellaby 2002) or the initial velocity distribution and the final density
distribution (Krasiński & Hellaby 2004).5

8.1 The algorithm

The computer algorithm used to calculate the evolution of a void was
written in FORTRAN and consisted of the following steps. Numerical
methods are from Press et al. (1986) and Pang (1997).

(i) The initial time t i was chosen to be the time of last scattering.
This moment was calculated as described in Section 6.3.2 Equation
(29) was integrated using Bode’s rule with the step of value 10−6 ×
[6/(κρ crc2�mat)]1/3. The homogeneous background density and ve-
locity were calculated from equations (17) and (30) as described in
Section 6.3.2

(ii) The initial density and velocity fluctuations, imposed on this
homogeneous background, were defined by functions of radius �,

δ(�) and ν(�),

as listed in Tables 4 and 5, and the actual density and velocity fol-
lowed from

ρi(�) = (ρb)i[1 + δ(�)] and b(�) = (bb)i[1 + ν(�)],

with ρ measured in units of 1045 M� kpc−3 and b in kpc−1/3. The
parameter � is defined as the areal radius at the moment of last
scattering, measured in kiloparsecs, and is also used for the radial
coordinate, i.e.

r = � = Ri/d = R(r , ti)/d,

where d = 1 kpc.
(iii) Then the mass inside the shell of radius Ri, measured in

kiloparsecs, was calculated by integrating equation (3):

M(�) − M(0) = κc2

2

∫ �

�min

ρi(�
′)�′2d�′

∣∣∣∣
t=tls

. (38)

Because the density distribution has no singularities or zeros over
extended regions, it was assumed that �min = 0 and M = 0 at � = 0.

The integration was done using Bode’s rule, with step size 2.5 pc.

5 The numerical examples in those papers used the present day for the final
time.

(iv) E was calculated from R i, V = (R ,t )i, M and a chosen �

value, using equation (4).
(v) Then tB was calculated from equation (5) using Simpson in-

tegration, with step size 10−5 �.
(vi) Once M, E and tB are known, the state of the L–T model

can be calculated for any instant. Solving equation (4) with the
second-order Runge–Kutta method for R(t , �) along each constant
� worldline, we calculated the value of R(t , �) and R ,t (t , �) up to
the present epoch. The time step was 5 × 105 yr.

(vii) The density ρ(t , �) was then found from equation (3) us-
ing the five-points differentiating formula. The adjusted differences
between adjacent worldlines, used in estimating derivatives, was
10 pc.

(viii) The density contrasts presented in Section 8.2 were esti-
mated from equation (39).

8.2 The void models

8.2.1 Initial perturbations of homogeneity

Because of a lack of precise observational data, it is not possible
to calculate the exact profile of the initial density and velocity per-
turbations. From the measurements of the microwave background
radiation, one can estimate only the amplitudes of these profiles. It
can be intuitively expected that the region that in the future would
become a void should have, at the initial instant, a minimum of
density and a maximum of velocity at the centre.6

The chosen initial density and velocity distributions fulfilling the
above conditions are presented in Fig. 3. These profiles conform to
the amplitudes estimated in Section 7.2. They were defined by the
functions presented in Tables 4 and 5.7

From the current observations, only the average density contrast
is known. For the purpose of comparing our results with the ob-
servational data (Fig. 1), the results shown in Fig. 4 (and also the
figures showing the final density contrast in what follows) do not
present the real density contrast, but the average one, i.e.

δ = 〈ρ〉
ρ

− 1, (39)

where ρ is the present background density

〈ρ〉 = 3Mc2

4πG R3
. (40)

Unfortunately there are no astronomical data for the current ve-
locity distribution in the void. It is more practical to measure the
expansion rate by the equivalent of the Hubble parameter (R ,t/R).
The results are presented in Fig. 4.

Fig. 5 shows the redistribution of mass resulting from void for-
mation. Curve 0 is the function M(R) at the initial time t = t ls [i.e.
M(r) versus R(r , t ls)] and the other curves show the calculated M(R)
at the present time, t = t 0, for different background models.

Curve 6 in Fig. 4 is truncated. At the cut-off point, a shell crossing
occurs: the inner shells catch up with the outer shells. This results
in a singularity that probably does not occur in the real Universe.

6 However, see the papers by Mustapha & Hellaby (2001) and by Krasiński
& Hellaby (2002): maxima and minima can be reversed during evolution,
and it is not at all necessary that a void begins with a minimum of density at
the centre.
7 The form of these initial density and velocity distributions is a result of
consecutive adjustments made in order to test the influence on void formation
of the various factors mentioned at the beginning of this section.
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Table 4. The initial density perturbations used in the runs. All the values in the table are dimensionless and the distance parameter is the areal radius in
kiloparsecs � = R i/1 kpc. Note that the output figures depend on the initial perturbation in both density and velocity.

Section Model Density perturbation Parameters Graph Output

8.2.1 1–6 δINIT(�) = A(b arctan c − d� A = 1.1 × 10−5 Fig. 3 Figs 4, 5
− f e−g2 − e−h2 − ie− j2

)k b = 4
c = 0.16� − 2.2
d = 1/7
f = 0.5
g = (� − 7)/6
h = (� − 9)/7
i = 1.4
j = (� − 11)/3
k = 1/(1 + 0.03�)

8.2.2 1–6 δ = δ INIT (�) Fig. 3 Fig. 6

8.2.3 1–6 δ = 0 Similar to Figs 4, 5

8.2.4 1–6 δAMP(�) = A(b arctan c − d� A = 7.5 × 10−4 Fig. 7
− f e−g2 − e−h2 − e− j2

)k b = 4
c = 0.08� − 1.1
d = 1/11
f = 0.4
g = �/4
h = (� − 2)/7
j = (� − 4)/3
k = 1/(1 + 0.03�)

8.2.5 1, 2, 3 δ1,2,3 (�) = 100 δ INIT (�) Fig. 8 Figs 9, 10, 11

8.2.5 4 δ4 (�) = 2 δ1,2,3 (�) Fig. 8 Figs 9, 10, 11

10.2.1 both δRAD(�) = A(b arctan c − d� A = 7.5 × 10−4 Fig. 16
− f e−g2 − e−h2 − e− j2

)k b = 4
c = 0.08� − 1.1
d = 1/11
f = 0.4
g = (� − 2)/4
h = (� − 4)/7
j = (� − 6)/3
k = 1/(1 + 0.03�)

Before it happens, the gradient of pressure would become significant
and the L–T model would become invalid.

From the figures presented above, some initial conclusions can be
made. One can say that the current depth of the void depends on the
amount of mass redistribution, i.e. the mass outflow. This outflow
depends on the expansion rate and on the age of the void. The major
influence on the structure formation is from the shell expansion.

In models 4 and 5, the expansion rate is bigger than in models 1–
3, and the final density contrast in models 4 and 5 is much more
negative than in models 1–3, even though the age of the Universe in
these models is much lower.

Unfortunately, models 1–5 cannot recover the observed density
contrast of the voids of today. The proper depth can be obtained only
in model 6, where the age of the Universe is significantly larger.

The age of the void (in limits estimated by the various astro-
nomical observations) is of lesser importance, compared with the
expansion rate. In models 2 and 3, the expansion of the shells is
similar and the final density contrast in model 3 is lower due to the
time available for evolution being 2 × 109 yr longer.

We now check how big the influence of the initial shape of the
density and velocity perturbations is.

8.2.2 Homogeneous velocity profile

For this case, the initial density profile δ is as in Fig. 3, while the
initial velocity profile is ν = 0. The explicit formulae for these
profiles are presented in Tables 4 and 5.

The results shown in Fig. 6 seem to be surprising. The mass redis-
tribution is almost the same in all the models (except model 6), the
diameters are similar, but the current density profiles are different.
In this case, a second factor responsible for the void formation is
seen, which is the faster expansion rate. The faster expansion of the
void compared with the homogeneous background causes that the
difference between the density in the central regions of the void and
the density in the background increases with time, even when the
mass of the shell inside the region of R(t , r ) is not changing very
much. Consequently, in the models with a higher expansion rate,
the density contrast is most negative.
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Table 5. The initial velocity perturbations used in the runs. All the values in the table are dimensionless and the distance parameter is the areal radius in
kiloparsecs � = R i/1 kpc. Note that the output figures depend on the initial perturbation in both density and velocity.

Section Model Velocity perturbation Parameters Graph Output

8.2.1 1–6 νINIT(�) = A(b arctan c − d� A = −4 × 10−5 Fig. 3 Figs 4, 5
− f e−g2 − e−h2 − ie− j2

)k b = 4
c = 0.16� − 2.2
d = 1/7
f = 0.5
g = (� − 7)/6
h = (� − 9)/7
i = 1.4
j = (� − 11)/3
k = 1/(1 + 0.03�)

8.2.2 1–6 ν = 0 Fig. 6

8.2.3 1–6 ν = ν INIT (�) Fig. 3 Similar to Figs 4, 5

8.2.4 1–6 νAM P (�) = A(b arctan c − d� A = −7.5 × 10−4 Fig. 7
− f e−g2 − e−h2 − e− j2

)k b = 4
c = 0.08� − 1.1
d = 1/11
f = 0.4
g = �/4
h = (� − 2)/7
j = (� − 4)/3
k = 1/(1 + 0.03�)

8.2.5 1 ν1(�) = 37.5 ν INIT (�) Fig. 8 Figs 9, 10, 11

8.2.5 2,4 ν2,4(�) = A(b arctan c − d� A = −3.5 × 10−3 Fig. 8 Figs 9, 10, 11
− f e−g2 − e−h2 − e− j2

b = 4

−me−n2
)k + p c = 0.02� − 0.02

d = 1/11
f = 0.7
g = �

h = (� − 1)/7
j = (� − 3)/3
m = 1.225
n = (� − 39)/12
k = 1/(1 + 0.03�)
p = 5 × 10−4

8.2.5 3 ν3(�) = A(b arctan c − d� A = −3.5 × 10−3 Fig. 8 Figs 9, 10, 11
− f e−g2 − e−h2 − e− j2

b = 4

−me−n2
)k + p c = 0.02� − 0.02

d = 1/11
f = 0.7
g = �

h = (� − 1)/7
j = (� − 3)/3
m = 0.7
n = (� − 39)/12
k = 1/(1 + 0.03�)
p = 5 × 10−4

10.2.1 both νRAD(�) = A(b arctan c − d� A = −7.5 × 10−4 Fig. 16
− f e−g2 − e−h2 − e− j2

)k b = 4
c = 0.08� − 1.1
d = 1/11
f = 0.4
g = (� − 2)/4
h = (� − 4)/7
j = (� − 6)/3
k = 1/(1 + 0.03�)
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Figure 3. The initial density (upper) and velocity (lower) perturbations for
data discussed in Section 8.2.1

8.2.3 Homogeneous density profile

In contrast to the above, we now set the initial density profile to
δ = 0, while the initial velocity profile, ν, is as in Fig. 3. The explicit
formulae for the profiles are presented in Tables 4 and 5.

The final results are not very different from the one shown in
Fig. 4. This proves that the velocity distribution in the formation of
voids is very significant, while the density distribution is of lesser
importance.

8.2.4 Amplitude

In this subsection, the amplitude of the initial fluctuations is in-
creased compared with the one used in Section 8.2.1 and is 4 × 10−3.
The profiles of the initial perturbations are presented in
Tables 3 and 4, and the final results in Fig. 7.

The increased amplitude of the initial perturbations results in a
void with a higher negative density contrast. To obtain a density
contrast near δ ∼ −0.9, we needed to increase the amplitude of
the initial density profile more than 70 times and the amplitude of
the velocity profile 20 times, compared with the values estimated
from CMB fluctuations. Even so, the value δ = −0.94 of the density
contrast in the void was not reached, except in the two non-realistic
background models. In model 4, the minimum value is −0.908 and,
in model 3, it is −0.873. Unfortunately, increasing the amplitude
leads to a shell crossing singularity in some models.

8.2.5 Observation and a model: a crosscheck

In the previous sections, we had problems generating voids from
small initial density and velocity fluctuations. The only alternative
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Figure 4. The current density contrast and the Hubble parameter for data
discussed in Section 8.2.1, in six different background models: 1, �mat =
0.27, �� =0; 2, �mat =0.39, �� = 0; 3, �mat =0.27, �� = 0.73; 4, �mat =
1, �� = 0; 5, �mat = 11, �� = 0; 6, �mat = 0.27, �� = 1.64. Shell crossing
denoted by ∗.

Figure 5. The mass redistribution for data discussed in Section 8.2.1 R0 is
the smallest R value at which the density takes the background value. M0

is the mass inside the shell of areal radius R0. 0, the initial condition; other
labels as in Fig. 4.
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Figure 6. The current density contrast and the Hubble parameter for the flat
initial velocity profile in different background models. Labels as in Fig. 4.

was to use a background model with an extremely large age of the
Universe (inconsistent with limits estimated by the various astro-
nomical observations).

In this subsection, we will try to choose the initial profiles that lead
to the best fit with observational data. We focus only on one back-
ground model, preferred by the astronomical observations, which is
�mat = 0.27 and �� = 0.73. It should be noted that the difference
between void evolution in this model and in the Einstein-de Sitter
model is not big, so the problem of void formation is in the initial
conditions rather than in the background model.

So far none of the results obtained has recovered the observational
data, presented in Fig. 1. This figure presents the density profile of
the void with very smooth edges. Unfortunately, this profile does
not reach to regions where the density is higher than the background
density and where the superclusters of galaxies would be found. The
mean value of the density contrast inside the void is δ ∼ −0.94. The
density contrasts of the voids obtained so far have been too shallow
or had steep edges.

The initial fluctuations are presented in Fig. 8. The profiles are
presented in Tables 4 and 5. The results are shown in Figs 9 and 10.
Model 2 has both a proper density contrast and smooth edges. The
conclusion from numerical experiments with different shapes of the
initial profiles is that a model of a void consistent with observational
data (with the value of density contrast less then δ = −0.94, smooth
edges and high density in the surrounding regions) is very hard
to obtain within the L–T model, without the occurrence of a shell
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Figure 7. The current density contrast and the Hubble parameter for the
initial data with higher amplitude of density and velocity perturbation, in six
different backgrounds models. Labels as in Fig. 4.

crossing singularity. The final state of model 2 was very close to this
singularity and in model 4 a shell crossing occurred.

The main factor responsible for void formation is the velocity
perturbation, with an amplitude of ∼8 × 10−3, near the centre, and
dropping below zero in the outer regions (model 3 did not fulfill
this condition). The density fluctuation is of lesser importance. The
models 1–3 had the same initial density fluctuations and in model 4
the amplitude was 2 times greater. In spite of these differences, the
final results differ only in shape and not in the depth of the final
density contrast.

In simulations with higher values of background density, the ini-
tial velocity and density perturbation needed to obtain similar final
results are smaller (see Section 8.2.4).

9 E VO L U T I O N

As it can be seen from Fig. 11, model 2 fits the observational data
the best.

Let us take a closer look at the evolution of model 2.
Fig. 12 shows the density distribution in eight different moments

of time. In this section, the figures do not present the density contrast,
but the real density distribution calculated from equation (3).

Figs 13–15 show respectively the functions M(R), t B(R) and
E(R), where R is the areal radius at the initial instant (curves O) and
at the final instant (curves 1). The pictures demonstrate the evolution
of the structure: in the expanding void, mass moves outwards.
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Figure 8. The initial density (upper) and velocity (lower) perturbations for
the results presented in Figs 9 and 10.
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Figure 9. The current density contrast for the models discussed in
Section 8.2.5

As one can see from Fig. 14, the difference in the value of the
bang time function between outer and central regions of the void is
of the order of hundreds of years. This is negligible compared with
the age of the Universe, which at the moment of last scattering was
of the order of 105 yr.
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Figure 10. The Hubble parameter for the models discussed in Section 8.2.5
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1 0 L I M I TAT I O N S O N T H E I N I T I A L
C O N D I T I O N S

An exact reconstruction of the initial conditions that held at the
time of decoupling in the region that would become a void is not

possible due to the lack of precise data. Nowadays, the only way
to reconstruct the initial conditions is the theoretical approach. The
linear theory is often used for this purpose because of its simplicity.

10.1 Initial conditions in the linear theory

In linear theory, the shape of the density perturbation is constant in
time. Only the amplitude is changing, according to the formula

δ(t) = Dδ0, (41)

where δ0 is the current value and D is the linear growth factor. In
the Einstein-de Sitter universe, it is equal to

D = 1

1 + z
, (42)

and, in the general case,

D(a) = 5�M

2a f (a)

∫ a

0

f 3(a′) da′, (43)

where

f (a) = 1√
1 + �M

(
1
a − 1

) + ��(a2 − 1)
, (44)

while a = 1/(1 + z). For large redshifts in any model,

D(a) → 1

1 + z
. (45)

In the linear regime in the spherically symmetric case, the peculiar
velocity of the density perturbation is given by the formula (Peebles
1993, pp. 115–116)

v(r ) = −1

3
f H Srδ, (46)

where H is the Hubble constant, S is the scale factor and f is the
velocity factor. For large redshifts in any cosmological model, this
asymptotically becomes unity. Because

H = S,t

S
, R,t = r S,t , (47)

the velocity fluctuations are determined by the formula

ν = −1

3
δ. (48)

That implies that to calculate the evolution of the void one needs
the initial density and velocity perturbations with the amplitudes

δ ≈ 9 × 10−4, ν ≈ 3 × 10−4. (49)

These results are more than 10 times smaller than in the L–T model,
where the amplitude needed is 8 × 10−3

Because the current evolution is not linear, one cannot use the
linear theory to predict the initial conditions in the young Universe.
However, the initial conditions could be obtained with the help of
the L–T model, because it is an exact solution of the Einstein filed
equations. There still remains the question about its accuracy, be-
cause the L–T universe is a very simple model of a void. One can
try to answer this question by a careful look at the restrictions of the
L–T model.

10.2 Main limitations of the Lemaı̂tre–Tolman model

The L–T model is spherically symmetric, so it cannot take rotation
into account. The density and velocity distributions can only de-
pend on the radial coordinate. However, astronomical observations
show that for voids these conditions are fulfilled with a satisfactory
accuracy.

The next limitation is the dust energy-momentum tensor, which
means that the pressure of matter and of radiation are neglected. At
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the present epoch this is correct, but one can ask about the error
at the moment of the last scattering implied by this assumption. For
the purpose of estimating that error, a general Friedmann–Lemaître–
Robertson–Walker (FLRW) model will be used.

(i) The pressure: the equation of state for the perfect gas is

p = ρkBT

µmH
, (50)

where kB is the Boltzmann constant and mH is the proton mass.
Because of lack of data about the nature of dark matter, let us as-
sume that the mean molecule weight µ = 1. In FLRW models, T =
T 0(1 + z), where T 0 is the present value of the background temper-
ature. Substituting the numerical values, we obtain that the ratio of
the pressure to the density of matter is

p

ρc2
≈ 2.75 × 10−10. (51)

(ii) The radiation energy density: the expression for the density
of the radiation energy is

εrad = aT 4 = aT 4
o (1 + z)4, (52)

where a = 4σ

c and σ is the Stefan–Boltzmann constant. The density
of matter in the FLRW models is

ρ = ρo(1 + z)3. (53)

If we assume that that the present value of density is equal to the
critical density in the flat FLRW model, then the ratio of the radiation
energy density to the matter energy density will be

εrad

εmat
= aT 4

o

ρoc2
(1 + z) ≈ 0.054. (54)

From the above, one can see that the gas pressure is negligible.
Ignoring the radiation, one makes a small error, which at first seems
to be of little importance. However, from the above simulations with
different background models, it can be seen that if the initial energy
density is higher then the final contrast of matter density is deeper.
Unfortunately, this leads to a shorter age of the Universe. To obtain
the proper age of the Universe, a higher value of the cosmological
constant is needed.

Radiation avoids this problem because during the evolution it be-
comes less and less significant and the age of the Universe does
not change so much. Is it possible then that a model of void forma-
tion that includes radiation could predict the voids observed today
starting from smaller initial perturbations?

10.2.1 Radiation

The Einstein field equations for the spherically symmetric perfect
fluid distribution can be reduced to the two following equations
(Lemaı̂tre 1933):

κ R2 R,rρc2 = 2M,r , (55)

κ R2 R,t p = −2M,t , (56)

where ρ is the energy density, while p is the pressure. M is defined
by the formula

2M(r , t) = R(r , t)R,t
2(r , t) − 2E(r )R(r , t) − 1

3
�R3(r , t). (57)

As in the case without radiation, Mc2/G is equal to the mass inside
the shell of radial coordinate r. In this case, the mass is not constant
in time and in the expanding universe it decreases.

From the equations of motion T αβ
; β = 0, we obtain

p,r = 0,

p,θ = 0,

p,φ = 0, (58)

ρ,t +
(

ρ + p

c2

)(
2R,t

R
+ R,r t

R,r

)
= 0. (59)

Equations (58) require that pressure can only be a function of time.
If inhomogeneous radiation should be included in the model, the
metric form should be changed: the g00 component should be a
function of the radial coordinate. This would require finding a new
exact solution of the Einstein equations.

However, it is instructive to know what changes are caused by
homogeneous radiation. The time dependence is the same as in the
Friedmann models:

εrad = aT 4 = εdec

(
tdec

t

)8/3

,

prad = 1

3
εrad.

For the purpose of comparing with the previous results, the back-
ground model is the flat Friedmann model with � = 0. The initial
density and velocity distributions are presented in Tables 4 and 5.

The computer algorithm implemented to do the calculation was
similar to the one used in models without radiation. The only dif-
ference is that instead of solving one equation (equation 4), the
second-order Runge–Kutta method was used to solve simultane-
ously equations (56) and (57).

Fig. 16 shows the comparison between the models with and with-
out radiation. The final density contrast in the model with radiation
is a little lower inside the void, but higher at the edge compared with
the model without radiation.

As one can see, homogeneous radiation is not of great importance
in the formation of voids. The difference from the model without
radiation is not big because, in spite of higher energy density, as one
can see from equation (56), the mass of the shell is decreasing. The
decrease of the mass implies, via equation (57) with � = 0, that the
velocity of the shell is also decreasing with time. Consequently
the evolution of the structure slows down and the final results do
not show significant differences compared to the model without
radiation. These results suggest that the error estimated with equa-
tion (54) is indeed of little importance and even the model with
inhomogeneous radiation should not lead to significant differences
in the final results.

1 1 C O N C L U S I O N

The main aim of this paper was to produce a non-linear model
of void formation, starting from small initial density and velocity
fluctuations that existed at last scattering, and to investigate what
factors are necessary to reproduce current observations.

(i) In the numerical experiments that we carried out, the pertur-
bations that were needed to form a realistic present-day void had
to have a density amplitude of δρ/ρ ≈ 5 × 10−3 and a velocity
amplitude δV /V ≈ 8 × 10−3 (in the model with �mat = 0.27 and
�� = 0.73).

(ii) It was found that density perturbations are of lesser signifi-
cance than velocity perturbations in the process of void formation.

(iii) There was no significant difference between the evolution of
the void in the model with and without the cosmological constant.
In this latter case, the amplitude of the initial velocity fluctuation
needed for this purpose was a little smaller.
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Figure 16. The final density contrast and the Hubble parameter in the model
with (+) and without (×) the radiation.

(iv) The existence of voids is closely related to the existence
of regions of higher density surrounding the voids. In our simula-
tions, there were problems obtaining reasonable profiles for these
high-density regions, because shell crossing singularities tended to
occur. The L–T model breaks down at shell crossings, so to trace
the further evolution of the void we had to focus on the central
regions of the void. (In reality, as density increases, a gradient
of pressure would appear, which cannot be described in the L–
T model.) Because superclusters are observed on the edges of the
voids, we interpret this singularity as an indicator of the presence of a
supercluster.

Thus, our numerical experiments were not entirely successful at
generating a void consistent with observational data, out of perturba-
tions at last scattering that would be as small as indicated by current
structure formation theories. Either the initial perturbations had to
be larger than the conventional values, δρ/ρ ≈ 10−5 ≈ δV /c, or else
the present-day void was too shallow. This discrepancy calls for an
explanation. In attempts to explain it, several hypotheses might be
considered. We list a set of such hypotheses in the order of decreas-
ing probability of being correct; this is of course our subjective
evaluation.

(i) The experiments, here and in Paper II (Krasiński & Hellaby
2004), showed that the final state is sensitive not just to the amplitude
of the initial velocity perturbation, but also to its profile (the density
perturbation is less significant). We may not have identified the

profile that gives the best consistency with observations. Work on
this will be continued. We tried one approach already, but the results
were not encouraging. We took the density distribution in the void
at present as given and the density distribution at recombination
homogeneous. We calculated the implied velocity distribution at
recombination, which was 40 times too large (see Section 8.2.5).
Then we numerically decreased the values of that velocity by the
factor of 40, took it as part of the input data and calculated the
implied density distribution at recombination. It was again too large,
so we decreased it numerically by the appropriate factor, took it as
input and calculated the implied velocity field at recombination.
This iteration quickly converged to stable values of the amplitudes:
6 × 10−5 for density and 7 × 10−3 for velocity. Clearly, this does
not solve our main problem.

(ii) Voids may not be as empty as they appear. It is possible
they contain a significant amount of unobserved matter, such as
gas or other baryonic ‘dark matter’. A present-day density con-
trast of smaller absolute value is easier to produce with small initial
fluctuations.

(iii) Matter may have more components than comoving dust and
these other components may be dynamically significant. Including
other components in a fully non-linear description and allowing for
the possibility that the various kinds of matter do not co-move re-
quires finding solutions of Einstein’s equations with two or more
independent streams of matter as a source, which is an extremely
challenging problem. Some possible matter components are as fol-
lows.

(a) Cold dark matter, i.e. some form of non-baryonic matter
that decouples from normal matter very early on and starts form-
ing structures before last scattering. The amplitude of such fluc-
tuations could be larger than what CMB measurements allow for
baryonic matter. Whilst there is evidence for some non-luminous
matter from galaxy rotation curves, galactic interactions and grav-
itational lensing, it is less than the required ‘concordance’ value
and of unknown composition. The difficulty with this hypothesis
is that cold dark matter is not based on any confirmed physical
theory and has yet to be detected.

(b) A radiation component that is still significant just after last
scattering.

(iv) Observations give the Galaxy distribution in redshift space,
and void sizes are deduced by using a Hubble law based on a ho-
mogeneous Friedmann model. Because the density distribution thus
obtained is clearly not homogeneous, the use of a Friedmann model
is really not correct. This may introduce quite significant errors in
the density and velocity profiles of voids. The well-known ‘finger
of God’ effect is an example of a large discrepancy between true
positions and the Friedmann-based mapping from redshift space to
physical distances. Consistency with Einstein’s equations requires
use of an inhomogeneous cosmological model to correctly map red-
shift space into physical distances and thus determine how velocities
vary with distance. At present, neither the density distribution nor
the velocity field of galaxies is known with confidence.8 Had we
known both these fields with a reasonable precision, we might use
the L–T model to calculate the fluctuations in density and velocity
at recombination.

8 The velocities are measured, but then, without the inconsistent assumption
of homogeneity, we do not know to which points in the curved manifold of
the Universe they should be attached.
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(v) Reliable measurements of temperature fluctuations of the
CMB radiation are available only for angular scales larger than 0.◦5
(see Fig. 2), with the scatter becoming large at 0.◦2. On the other
hand, as shown in Paper I (Krasiński & Hellaby 2002) and in Sec-
tion 7.1, the angular diameters, in the CMB sky, of structures the
right size to evolve into voids, are less than 0.◦25. Though current
theory suggests the amplitude decreases at smaller scales, this has
yet to be confirmed by improved CMB temperature measurements.

(vi) Solid observational data give the temperature fluctuation of
the CMB radiation at present, �T /T , separately for different modes
of perturbation. However, there are several factors contributing to
�T /T (see Section 7.2), which may partially cancel each other.
We were interested in the magnitude of the fluid velocity at last
scattering, as an initial condition for our models, but we were not
able to locate a formula relating the fluid velocity to the observed
�T /T . Thus, our estimate of �V may be inaccurate. We ourselves
do not plan to enter this field, however we would welcome an explicit
calculation with a reliable result.

(vii) The Universe may be much older than currently believed,
making the time available for void formation much longer. This
would require adjustment of the matter content of the universe,
of the value of the cosmological constant or of the value of the
Hubble constant, each of which may affect the structure-formation
time-scale.

(viii) General relativity (GR) may not be the right theory of the
evolution of the Universe. There is certainly no lack of proposed
modifications or alternatives. While some would gladly accept this
conclusion and no-one can claim with certainty that GR will survive
all future scrutiny, we wish to stress that GR has a much stronger
experimental basis than any cosmic structure formation theory.
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