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More examples of structure formation in the Lematre-Tolman model
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In continuing our earlier research, we find the formulas needed to determine the arbitrary functions in the
Lematre-Tolman(LT) model when the evolution proceeds from a given initial velocity distribution to a final
state that is determined either by a density distribution or by a velocity distribution. In each case the initial and
final distributions uniquely determine the LT model that evolves between them, and the sign of the energy
function is determined by a simple inequality. We also show how the final density profile can be more
accurately fitted to observational data than was done in our previous paper. We work out new numerical
examples of the evolution: the creation of a galaxy cluster out of different velocity distributions, reflecting the
current data on temperature anisotropies of cosmic microwave background, the creation of the same out of
different density distributions, and the creation of a void. The void in its present state is surrounded by a
nonsingular wall of high density.
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I. SCOPE The paper is arranged as follows. We recall the basic
properties of the LT model in Sec. Il. In Sec. Il we describe
how the final profile can be adapted to observational data
more exactly than in paper I. In Sec. IV we find the implicit
formulas to define the LT functions&(M) andtg(M) when

the initial state is specified by a velocity distribution and the
final state by a density distribution. In Sec. V we do the same
for both states being specified by velocity distributions. In
Sec. VI we deduce the amplitude of the velocity perturbation
att, allowed by observations of the CMB radiation. In Sec.
VII we specify our choices of density and velocity profiles
for numerical investigations. Sections VIII and IX contain
the presentation of numerical results in several figures. The
results are summarized and interpreted in Sec. X, and brief

In a previous papefrl], which we shall call paper I, we
showed that one can uniquely define the LéneaTolman
(LT) cosmological mode]2,3] by specifying an initial den-
sity profile (i.e. the mass density as a function of the radial
coordinate at an initial instant=t;) and a final density pro-
file. The formulas defining the LT functiong&(M) and
tg(M) (whereM is the active gravitational mass, used here
as a radial coordinateare implicit but unique, and can be
solved forE andtg numerically.[For definitions ofE andtg
see Egs(2.1) and (2.2).] We also worked out a numerical
example in which a galaxy-cluster-like final profile was cre-
ated out of an initial profile whose density amplitude and : .
. . conclusions follow in Sec. XI.
linear size were small.

The approach presented in this and in paper | is more
In the present paper, we develop that study for new eleéuited to astrophysical practice than the traditional approach
ments: we show that instead of a density distribution, one phy P P ’

. o ) : ..~ In which we first try to deduce the initial state of the Uni-
can specify a velocity distributiofstrictly speaking, this is : .
13 . AT verse from various kinds of data, and then proceed to calcu-
R{/M**—a measure of the velocityt either the initial in-

stant or the final instant or both. We prove a theorem analoIate the evolution of the cosmological model, in order to
ous 1o the one proven in pa ér I piven the initial a’nd thecompare its final state with the observations of the current
g P paper 1. g . state of the actual Universe. Our approach allows one to

fln_al profile, the_ LT model that evolves between the.m. 'Smake simultaneous use of the data on the initial and on the
uniquely determined. We also show how to adapt the |n|t|aﬂ1

. . , . nal state of the Universe—the real astronomical data are
and final density profiles to the astrophysical data more pre-

cisely than it was done in paper |. We provide numericalindeed such a mixture.,
y . paper 1. We p Naturally the LT model can describe the actual astrophysi-
examples of LT evolution between an initial profilef den-

; : ) . N cal process of structure formation only approximately. The
sity or velocity consistent with the implications of the cos- P Y app y

2 back €CMB) ‘ daf obvious limitation is spherical symmetry, in consequence of
mIC microwave backgrountLvib) measurements, and a fl- -, nicn e cannot take into account the rotation of the objects
nal profile that corresponds either to a galaxy cluster or to

Formed. Thus, no matter how well we reproduce the profile

void. of a galaxy or cluster, the LT model will continue to evolve,
and the profile will look quite different after $0years or
less, whereas real galaxies and clusters are fairly stable over
*Electronic address: akr@camk.edu.pl 10° years. However, we hope that the method presented here
"Electronic address: cwh@maths.uct.ac.za will be a starting point for generalizations that will be done
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once (and ify more general exact cosmological models are The Friedmann models are contained in the Léreal
discovered. Tolman class as the limit
tg=const, |E|¥*¥M=const, (2.7
and one of the standard radial coordinates for the Friedmann
The LT model[2,3] is a spherically symmetric nonstatic model results if, in addition, the coordinates in E(®&4)—
solution of the Einstein equations with a dust source. It2.6) are chosen so that

IIl. BASIC PROPERTIES OF THE LEMAI TRE-TOLMAN
MODEL

metric is
2
T

2_ p2_
ds"=d"= T %Em

dr2—R4(t,r)(d9?+ sir? 9de?),
(2.1

whereE(r) is an arbitrary functiorfarising as an integration
constant from the Einstein equation®,,=JR/dr, andR
obeys

Ri=2E+2M/R+3;AR?, (2.2)
where A is the cosmological constant. Equati@®2) is a
first integral of the Einstein equations, alWir) is another

M=M,r3, 2.9
where M, is an arbitrary constant. This implieE/r?
=const=—k/2, k being the Robertson-Walker curvature in-
dex.

It will be convenient in most of what follows to usé(r)
as the radial coordinafée.r’=M(r)] because, in the struc-
ture formation context, one does not expect any “necks” or
“bellies” where M (=0, and soM(r) should be a strictly
increasing function in the whole region under consideration.
Then

arbitrary function that arises as an integration constant. The

mass density is

2M,,
R°R,,

87G

c

Kp= where k= (2.3

See[4] for an extensive list of properties and other work on

this model. In the following, we will assum&=0. Then Eq.
(2.2) can be solved explicitly. The solutions are the follow-
ing.

Elliptic case[5], E<O:

R(t,r)=— E(l—cosn), (2.4a
o (—2E)
n—siny= T[t_tg(r)], (2.4b
where 7 is a parameter.
Parabolic casez=0:
R(t,r)=[3M(t—tg(r))*]"". (2.5
Hyperbolic caseE>0:
R _M hnp—1 2.6
(t.,r)=5g (coshy—1), (2.6a
(ZE)(3/2)
sinhy—n= T[t—tB(r)], (2.6b

wheretg(r) is one more arbitrary functiotthe bang timg

kp=2/[(R?R,)=6/(R®) (2.9
from which we find
R3(M)—R3—i M _du (2.10
0 m Mop(u), .

whereR, and Mg will commonly be zero.

In the present paper we will apply the LT model to prob-
lems of a similar kind to that considered in paper I: Connect-
ing an initial state of the Univers@lefined by either a mass-
density distribution or a velocity distributigrio a final state
(also defined by one of these distributipiey an LT evolu-
tion, and in particular to the formation of galaxy-cluster-like
and void-like objects out of initial perturbations of density or
velocity that are small in amplitude and in some cases small
in mass compared to the final object.

IIl. MODELLING THE FINAL DENSITY PROFILE

We will now incorporate in our models the observational
data on mass distribution in galaxy clusters in a more de-
tailed way than in paper I.

The quantities of interest in the profile are the following:
the maximal densitywith the shapes we assume below and
later, this will be at the center of the objgdhe radius of the
object(assumed spherically symmefirithe mass of the ob-
ject, the average density of the cosmic background, and the
compensation radiuglefined below

We define the following parameters.

M —the mass of a galaxy cluster, out to some radius; to
be taken from astronomical tables.

R—the radius within which the madd ,, is contained,;
also to be taken from astronomical tables. In fact there may

Note that all the formulas given so far are covariant undebe two or moreM,—R,, pairs available for some clusters

arbitrary coordinate transformatioms=g(r’), and sor can

(see Sec. VIIC 1L

be chosen at will. This means one of the three functions p(M,,)=p,d—this is the geometrical definition of the

E(r), M(r) andtg(r) can be fixed at our convenience by the
appropriate choice of.

massM ,, (M =M, at that value oR=R,, at whichp equals
a certain specified multiple of the background dendi6j.
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We do not assume any valueaét this point yet, except that B. An example of fitting a profile

1sd<pmadpp. _ _ Since little is known about mass distribution within gal-
_The compensation radig=R., at which the total mass 5y clusters, we cannot attempt to model any actual cluster
within R=R. is the same as the background mass would bg, 3y significant accuracy. However, we wish to show that
if no inhomogeneity were created. This is needed to let ug,ch ‘modelling is in principle possible. Therefore, for the
know roughly where our inhomogeneity is maiched to thepeginning, we will use the profile from paper | and will show

Friedmann background. See Sec. Il A. below that its free parameters can be made equal to some
observed/observable quantities.
A. Compensation radius and mass Lelt;)pb be the background density. We choose the profile at
tz to be

The matching of contained massRtis not sufficient for
a Swiss-cheese-type matching, as we have not required the p(M)szpbef(M/,uz)Z, (3.4
time since the bang to match up at this location, and there-
fore is technically the wrong definitiofv]. However, it has  where B, and u, are free parameters to be adapted to the
the advantage that it can be calculated knowing only thepservational constraints.
density profile at a given time, and under the circumstances Given two pairs of M,,,R,) data, M,,R,) and
used here is a fairly good estimate. All our models are theqm, ,R,), we have
calculated out taVl;, i.e. 0=M=<M,.

We can put upper and lower limits on the compensation 3u,
radius and mass. For a condensation of measured Mass R¥=——=——erfi(M/ ) (3.9
the M. value obviously cannot be less than this. In fact the 8‘/;82’%
region around the visible condensauon,.though of low deni‘or each of them, and each can be solvedBer so that
sity, is of large volume, and will add noticeably to the mass
to be “compensated for.” Therefore,

3uzerfi(Mal po) 3w erfilMy/ u)

13 =B,=
SMm ) (3.1) 8\/;Rgpb 8\/;Rgpb
47pr,today

(3.6
Mc,min> va Rc,min>(

This is solved numerically fog,, andB, follows.

The compensation radiug; is determined by the condi-
tion that the mean density out td equals the background
density:

where Eq(7.2) givespy, 1oday=4.075< 10~ g/cc in the cho-
sen parabolic background, or more conveniently

Re,min>1.58<10 (M, /M) inMpc. (3.2 M. 2B,ppM
PoT4aRIMQ%I3  JrugerfiM o/ y)

(3.7

On the other hand, the observed average separation of
condensations puts an upper limit Bg. Since the contents This is solved forM. numerically, andR, follows from
of the Universe are a mixed bag of galaxy clusters, rich(3.5).
clusters, superclusters, field galaxies, voids, walls, etc., the
average separation of rich clusters, say, is not meaningful for C. Profiles inspired by astronomy
this purpose. So we instead argue that there are around
3% 10° large galaxies and810’ dwarf galaxies within 19
light years. At say 18M and 16°M,, respectively, this
gives a mean density of around 49I0°M, per Mpc
=3.36x 10 28 kg/m?=0.0826}, 1oday. Therefore an object
of massM, in Mg should on average occupy a volume of
radius of about

We looked for density profiles that are considered realistic
by astronomers. As it turned out, there is no general agree-
ment as to which profile best describes observations, and no
generally accepted definition of the radius of a galaxy cluster
exists. Howeversee the Acknowledgmentshe following
“universal profile” is one of the more commonly used for-
mulas for density vs distance profilf8—10]:

Re.max—3.64<10° %M ,/M)¥® inMpc. (3.3

p({)=ppo (3.9

(L1E(1+81E)*

For a galaxy of 18'M, these two limits are 0.735R,
<1.69 Mpc; whereas for an Abell Cluster of ®®,, these wherep, is the average density in the Universejs a di-
two limits are 15.8<R;<36.4 Mpc. mensionless factor anf is a scale distancéThis is a New-

For a void, the interior density will not be zero, but is not tonian formula, in which{ is the Euclidean distangeAc-
well known, and the radius is of the order of 60 Mpc. Only cording to the authors of Refi8—10], this profile applies for
by including some of the galaxies in the surrounding walls{ changing by two orders of magnitude.
can one bring the average density up to the background For our procedure, we need the density given as a func-
value. SoR.>60 Mpc, which at background density gives tion of mass, which cannot be found analytically for the
M >5.5X 10"M, . above profile[11]. The calculationp({)—M(Z)— (M)
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—p(M) can always be done numerically, but it is more in- We choose for this profile the cosine shape
structive to have exact explicit formulas.

We therefore approximathl ({) separately in the ranges (M)= B.(1+cogmM/My))+p, for Me[OM,]
{<{sand{> (. pRR= pp=const for M=M,

For /< a Taylor series around=0 up to? gives (3.19

M({)~2mpydLs%:=B2% — (~MIB, (3.9 with B,>0. Thenp(0)=py(1+A) is the maximal value of
density, withAp/p,=A=2B,/p, being the density ampli-

which converts profil€3.8) to tude from astronomical data, whild, is the total mass of
the initial perturbation.
1 The radiusR(M) is given from Eq.(2.10 by
p1<M>=pbﬂégsﬁ. (3.10
M 3M,
\/M 1+ R3(M)=
ﬁgs 27T2\/pb(pb+281)
Like the original profile, this one has the unpleasant property Pb M
that the density becomes infinite sit— 0, so we modify it X arcta B tar<2M ) for M<My,
to Pb 1 1
(3.15
pPoBOLs
pZ(M): \/M 2 (31]) RS(M): 3M1 + 3 (M—Ml)
Jou(pp+2B,) 4
(6+ \/M) 1+ﬂ_§ 4 pb(pb+281) TPb
S

for M=M, (3.1
where € is small compared t@Bdl, and this can be inte-
grated to giveR(M).

When {>{,, the approximation

where the first term on the right-hand side in E3}16) is the
common value oR® atM =M.
We did one run with this kind of initial profile di4 in

~ . Table V) in order to demonstrate more clearly the point we
M(O=4mppolsin(l+ Llds)=yIn(1+ L), made in paper I: that the mass of the “seed” structure exist-
—I=r(eM7-1), (3.12 ing at timet; can be much smaller than the mass of the

galaxy cluster into which it will evolve. The other initial

substituted into Eq(3.8) gives profiles are either flagsee Table VIl and Sec. X for reasons

or go into the background only asymptotically.

IV. THE EVOLUTION FROM A GIVEN VELOCITY
DISTRIBUTION TO A GIVEN

wherev has again been added into the denominator to permit DENSITY DISTRIBUTION

a non-divergent central density. The correspondRigM) is

still elementary[12].

Profiles(3.11) and (3.13 were the starting point for our
considerations. The profiles actually used in numerical ex- b=R./MY3 (4.1)
amples were various modifications of thesee Sec. Vi), !
done in order to better fit our profiles to observational data.This is constant in any Robertson-Walker model, so its non-

constancy is a measure of the velocity inhomogeneity.

D. The initial density profile Suppose we wish to adapt a LT model to a given initial
velocity distributionb=b,(r) att=t,, and to a given den-
sity distributionp=p,(r) att=t,. This is a different set of
data from the one considered in paper |, and so the existence
5f such an evolution has to be proven. The functions appear-

104(|\/|)IPbLe’ZM’7 (3.13
eMr—149

The quantity that is a measure of the velocity distribution
of the dust in an LT model is

We assume that the condensed objewbvdel of a galaxy
clustey was created out of a small localized initial density or
velocity perturbation, superimposed on the homogeneou

spatially flat Friedmann background. During the eVOIUtlon.’ing along the way are different, but the overall mathematical

the perturbation was increasing in density amplitude and " cheme is essentially the same. As before, we will mostly be

g?lsdsénir;?i;?\urz V;loar? ;jftegft%e;ysg:?g&'gginmok:gm”éazsngggst?ﬁ_sing the mas$/ as the radial coordinate, and in each case
9 9 9 Se will assume that at the initial instaht the configuration

gion[13,14. . .
At t=t,, the profile need not be compensated. For anIS expanding, so
uncompensated profile, it is good if it is localizéice. the R(t1,M)>0=b;(M)>0. 4.2

perturbation is zero foM>M,, whereM, is the assumed
mass of the initial perturbatignThen the definitions of the Analogous reasoning can be carried out for matter that is
radius and mass of the perturbation are straightforward. initially collapsing, but this situation is just covered by the
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time reverse of the method given here and is not relevant for From Eq.(4.11) we now findtg:
the problem of structure formation.

1
A. Hyperbolic evolution tg=t,— ?2[ V(1+a,x)?—1—arcoslil+a,x)], (4.12
X

We have, forE>0;
and substituting this in Eq4.10 we obtain the following

M equation to determing
R=——(1+2ER/M)2~1. (4.3
2ER dy(x)=0, (4.13
If where
3 b2+x\°
Ry/M Y =by(r) 4.4 BN el ( ; ) i
bi—x
is the data, then denotir@|t:t1= R; and solving the above !
for Ry we find b2+ x
—arcoshil+a,x)+arcos
M3 b2—x
e A —— 4.
Y p2-2E/M23 4.9 —x3(ty—ty). (4.14
and so from the evolution equations We will use the function®,(M) anda,(M) implied by the

assumed ; (M) andp,(M) to find E(M) andtg(M), and
then to findp(t;,M). This will tell us about the relative

bi+2E/M?3
, importance of the velocity and density distributions for struc-

n,=arcoskil+2ER;/M)= arcos?(

h2_ oE/n2/3
b1—2E/M ture formation. In particular, wittb;=const, thep(t;,M)
(4.6 will show how big the initial density inhomogeneity has to
5 be when the initial velocity distribution is exactly homoge-
\/( b2+ 2E/M?? ’6 b3+ 2E/M?? neous, while the final structure is given.
—— | —l-arcosh ———
b%—2E/M?3 b%—2E/M?3 Conditions for solutions to exist
(2E)%2 Now we have to verify whether or not the equation
= (ty—tg). 4.7 ®,(x)=0 determines a value of. We see thatb(x) is
M defined in the range
Irlis is the equation that will be used as initial datatat 0<x<b?. (4.15
=t,.
The equation at=t, will be the same as E(3.3) in It is easily seen tha®y(0)=0. Forx—b?, the second and
paper | fori=2, viz. fourth terms in Eq(4.14 tend to (—=) and to (+=), re-
spectively, while all the other terms are finite. Since
V(1+2ER,/M)?—1—arcoslil+2ER,/M)
arcosfi(b2+x)/(b?—x)
:(ZE)Slz(t ~tg) 4.9 fim Z}ﬁ( 2 = 2 SORRCET
mozek - o2 VL(bT+X)/(b1—x)]?~1
Here, the quantityR,=R(t,,r) is calculated from the given the second term is dominant. Hence,
p2(r)=p(ts,r) using Eq.(2.10. _
Just as in paper |, we introduce the symbols ||m2q>H(X): — 0o, (4.17
X~>bl
x=2E/M?3  a,=R(t,,M)/M*"3, 4.9  We also have
The set of equations to determie€M) andtg(M) is then a,3? 2b, 3
[from Eqgs.(4.7) and(4.8)] Dy (X) = JX — ——(t,—ty)
X V2+ax  (bi-x)? 2
b2+ x b2+ x
; —1—arcos ; =x3(t,—tg), = XN u(X). (4.18
bi—x bi—

(410  Since Ny = —38,"%(2+a,x)¥?—4b, /(b?—x)3<0, the

function A (x) is strictly decreasing and may have at most
V(1 +a,x)?—1—arcoshil+ax)=x>qt,— tg). one zero. Henced , can be positive anywhere only if
(4.1)  \y(0)>0, i.e. if
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\/E 3/2 4

t2—t1<?a2

: (4.19
3b3

Since we consider the evolution fromto t,, it is natural to
assume,>t;. Then, Eq.(4.19 can be fulfilled only if

(4.20

This inequality is easy to understand if we use EQ5) for
b? (with R=R;), and recall the definition o#,, Eq. (4.9).
Then Eq.(4.20 is equivalent to

2la,<b?.

2 2 2E

R_2<R_1+ R (4.21

This in turn implies thaR,>R;; otherwise there will be no

E>0 evolution fromR; to R,. Thus, in passing, we have

proven the intuitively obvious.

Conclusion.If matter is expanding at=t,, then anE
>0 LT evolution fromR(t;,M) to R(t,,M) will exist only
if R(t,,M)>R(t;,M). |

Note thatR(t,,M)>R(t;,M) does not implyp(t,,M)

<p(t;,M), contrary to the intuitive expectation, and in con-
trast to the Friedmann models. This point is discussed i

Appendix B.
Equation(4.19 may be rewritten as

4 2
3b§>

1/3
a,>

which means that between andt, the model must have
expanded by more than tHe=0 model would have done.

(Applying definitions(4.4) and(4.9) to (2.5 and(4.5) for the
E=0 case shows, — 4/(3b3) =tg anda,=[3(t,—tg)?]*°.)

If Eq. (4.19 is fulfilled, then®(x) starts as an increas-

ing function in some neighborhood @=0, beyond which

there is exactly one maximum, and finally it decreases t
—oo atx=b?, thus passingonly once through a zero value

somewhere between the maximum andb?. Hence, Egs.

(4.19 and(4.20 are a necessary and sufficient condition for

the existence of aB>0 LT evolution connecting the initial
state[defined by the velocity distributiof4.4)] to the final
state defined by the density distributipp(M). As before,

PHYSICAL REVIEW D 69, 023502 (2004

has to hold for arE<0 evolution anyway. In place of Egs.
(4.6) and(4.7) we obtain att=t;

b3+ 2E/M??
: (4.23

n= arcco{

b3+ 2E/M?3
arccoy —

2

b3—2E/M?3
b3+ 2E/M?3
bf—2E/M?3

A
(_2E)3/2

:T(tl_tB)-

b2 —2E/M?3
(4.24

Since we assumed the final statetatt, to be in the
expansion phase, too, the equation-at, is the same as Eq.
(3.15 in paper | fori=2:

arccogl+2ER,/M)— V1—(1+2ER,/M)?

(—ZE)3/2
= T(tz_ts)- (4.29
|¥Ve introducea, by Eq.(4.9) and
x=—2E/M?3, (4.26

then Eqgs(4.24) and(4.25 become

b?—x b2—x\?
arcco - 1- =x¥(t;—tp),

b+ x b2+ x
(4.2
arcco$l—a,x) — V1—(1—ax)?=xt,—tg).
(4.28

grom Eq.(4.28 we have

1
tg=t,— XT/Z[arccom— ayX)—V1—(1—ayx)?],

the resulting model will have to be checked for the possible

existence of shell crossings and regular maxima or minima.

B. Elliptic evolution: The final state in the expansion phase

Assuming that the initial state &tt, is in the expansion
phase of the Universe, we find, similarly to Ed.3), that
with E<O0

M
Vv—2ER

and then using Eq(4.4) we obtain Eg.(4.5 once again.
Since this timeE<0, the inequality MY3¥R+2E/M?*=0
has to be fulfilled, but this is identical toM/R+2E=0 that

R,= V1—(1+2ERM)2, (4.22

(4.29
and substituting this in Eq4.27) we obtain
Py(x)=0, (4.30
where
b2—x 2
Dy(x):=\/ 1- —V1-(1—ayx)?
b3+ x

+arcco$l—aox)

b3 —x
—arcco$ —— | —x¥(t,—ty). (4.3D)
b3+ x

The terms containing; do not impose any extra restriction
on x apart fromx>0 that follows from definition(4.26).
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Sincea,>0 andx>0, the restriction orx imposed by the
other terms is the same as in paper I
x<2/a,,

(4.32

which follows from 2W/R+2E=0 (x=2/a, corresponds to

the givenM shell being exactly at the maximum of expan-

sion att=t,).

Conditions for solutions to exist

PHYSICAL REVIEW D 69, 023502 (2004

m+arcco$—1—a,x) +V1—(1—ax)?=x34t,—tg).
(4.36

The solution fortg is now

1
tg=tp— — [ m+arcco$—1+ax)+V1—(1—ax)?],
X

The calculations are similar to those in the previous sec-

tion; they are described in Appendix C1. Equatidr80 has

a solution if and only if the following two inequalities are

obeyed:

\/E 3/12__ 4

-t >—a —,
3b3

3 (4.33

which is the opposite of Eq4.19, and

tz—t1$(a2/2)3/2 T+

b,v2a, ab?/2—1
T arcco oo
abi/2+1 a,bi/2+1

(4.34

(4.37)
and substituting this in Eq4.27) we get
d(x)=0, (4.39
where
b2—x\?
De(x):=\[1- +V1—(1—ayx)?+ 7
b2+ x

b2 —x
—arcco
b2

1+X
—x¥(t,—t,).

) +arcco$— 1+ a,Xx)

(4.39

As before, we have>0 by definition andx<2/a,.

The solution is then unique. The second inequality is equiva-

lent to Eq.(3.22 in paper |, as can be verified by writing Eq.

(4.5 ash;=+2/a;—x and usingx=2/a,.

It follows that the right-hand side of E@¢4.34) is always
greater than the right-hand side of E¢.33, as proven in
Appendix A to paper |, so the two inequaliti€¢4.34 and

(4.33 are consistent. It follows further, as shown in paper I, t,—t;=(a,/2)%3 =+

that the equality in Eq(4.34) means that the final state gt

is exactly at the maximum expansion. Note that, in conse-

guence ofb;>0,a,>0 and arccos(anythingd =, the right-
hand side of Eq(4.34) is always positive, and so, given,
values oft, obeying Eq.(4.34) always exist.

The set of inequalitie$4.33 and (4.34) constitutes the
necessary and sufficient condition for the existence oEan
<0 LT evolution between the initial state gt specified by
the velocity distribution(4.4) and the final state ab speci-
fied by the density distributiop(t,,M)=p,(M), such that
the final state is still in the expansion phase.

C. Elliptic evolution: The final state in the recollapse phase

We assume now that the initial statetatt; is again in
the expansion phase, so E¢$.22—(4.24) still apply. How-
ever, the final state at=t, is now assumed to be in the
recollapse phase. Instead of E4.25 we then get

m+arccos—1—2ER, /M) +\1—(1+2ER,/M)?

B (_2E)3/2

M (4.39

(ta—tg).

Introducing agaira, by Eq.(4.9) andx by Eq.(4.26), we
obtain the set of equations consisting of E427) and

Condition for solutions to exist

The details of the calculation are shown in Appendix C 2.
Equation(4.38 has a solution if and only if

bi\2a, ayb3/2—1
o . arcco |
apbi/2+1 apbi/2+1
(4.40

and then the solution is unique. This is the necessary and
sufficient condition for the existence of &<0 LT evolu-

tion between the initial state & specified by the velocity
distribution (4.4) and the final state at, specified by the
density distributionp(t,,M)=p,(M), such that the final
state is in the recollapse phase.

D. The meaning of parameters

It should be noted that the values of the time coordinate
andt,, at which the initial and final states are specified, do
not play individual roles in the calculations. The meaningful
parameter ist,—t4); it is this value that determinds(M),
and then the corresponding is calculated. The “age of the
Universe” at the two instants then follows, being, € tg)
and ¢,—tg), respectively. This conclusion applies as well to
paper I; and the same is still true in the Friedmann limit,
wherex, a;, a, andb, are no longer functions d¥l, but just
constants. Hence, the physical input data for the procedure,
both here and in paper I, are the initial and final distributions
of density or velocity and the time interval between them,
(to,—t4). The individual values of; andt, do not have a
physical meaning.
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V. THE EVOLUTION FROM A GIVEN VELOCITY
DISTRIBUTION TO ANOTHER VELOCITY
DISTRIBUTION

For completeness, we shall also consider the case when
both the initial and the final state are defined by velocity

PHYSICAL REVIEW D 69, 023502 (2004

d B 2b, 2b, 3
&XH(X)_ \/; (b%—x)z - (bi—x)z - E(tz_'fl)
= X (X). (5.6

distributions, even though this does not seem to be directlyVe also have to know which is greatds; or b3. As ex-

useful for astrophysics.

A. Hyperbolic evolution

Equation(4.7) still applies. Definingc<=2E/M?? as in the
previous cases, we again obtain E4.10), while instead of
Eq. (4.11) we now have

2 2
b3+ x b3+ x
—1-—arcos =x¥t,—tg),
b2—x ’<b§— ete
(5.1
where
b=R/M¥_,. (5.2)

Since the hyperbolic expansion cannot be reversed to b

come collapse, and since we assummsd>0 (expansion

rather than collapse at), it follows thatb,>0 is a neces-

sary condition here.
From Egs.(4.10 and(5.1) we obtain two equations

1 { b2+x\° . }{bi2+x
—| \/| =5—| —1—arcos
x3/2 b2—x b2—x

tB:ti_

(5.3
i=1,2,
sox is the solution of
(5.4

where

XHZO,
b3+ x :

2
XH(X)‘Z\/ 2 _1_\/

b2+x b2+ x
—arcos>< 2 )+arcos?€b; )—X?”Z(tz—tl).

b3+ x

b2 —x

2
2
b5—x 1

(5.9

Note that Eq.(4.5 and its analogue at, imply b?—x
=2/a;>0, i=1,2, i.e.x<b? at bothi=1 andi=2. This,

together withx>0, guarantees that the argument of arcosh
will be always=1, as it should be. Simultaneously, it guar-

antees that both square roots will be real.

Conditions for solutions to exist

Details of the calculations are shown in Appendix C 2.

pected, it turns out that in consequence of the assumptions
made ¢,>t; and Ryl >0, i.e. b;>0), bf must be
greater, or else th&>0 evolution between the two states
will not exist—see Appendix D.

Therefore we take it for granted that

(5.7

i.e. that at every point the velocity of expansiortamust be
smaller than at; at the same comoving coordingie With
b,>b,, we have

b;>b,,

x<bZ, lim puy(x)=+o, (5.8

X~>b2

and, in a similar way as in Appendix D, it can be proven that

é1_ow,ug(x)>0 for all x>0. Consequentlyy(x) may have

at most one zero, and it will have one only.f;(0)<0, i.e.

if
: t>4( : 1) 59
2~ li-g| 737 3 :
SIS
Unlike in those cases where the profile was specified by den-
sity, the time difference between the initial and the final state
must be sufficientlylarge. The inequality becomes more in-
telligible when it is rewritten as
i
3
— = (5.10
1+ gbit—t)
which means that a&B>0 evolution between the two states
will exist provided the velocity of expansion &t is greater
than the velocity of expansion of tie=0 model, for which
b3=4/[3(t—tg)], giving an equality in Eq(5.10.
Since the range ofis limited to (0b3), findingx numeri-
cally will pose no problems.

B. Elliptic evolution: The final state in the expansion phase

Expansion at, is equivalent tab,>0. The set of equa-
tions to definex= — 2E/M?® now consists of Eq(4.27 and
its analogue att,, obtained by the substitutionb{,t;)
—(b,,t,). Hence,

2
1 bZ—x b?—x
tg=t;— —| arcco — 1- ,
x3/2 b?+x b?+x

(5.1)

i=1,2,

andx satisfies

For further analysis, we will need to investigate the de-

rivative of y4(x), it is

xx(x)=0, (5.12
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where b,5%—b,53
— 13
5 2 5 5 Xm= (b1b2) b, Y3~ b,
xx(X):=— \/1— = +1\/1- N = (b1b,) ¥3(b, 43+ b,b, Y3+ b, 230,23+ b, Y, + b,*3)
27X 1t+X
5.1
bg—X bi—x . (5.19
+arcco —arcco —x3(t,—t,). From here we find
b3+ x b3+ x L
2 _ .13 bi—b>
(5.13 bi+xm=b; (5.20

b11/3_ b21/3’
This time there is no additional limitation imposed by )
Egs. (5.1)—(5.13—the square roots and the arccos will be @nd SO the value ofx(Xm) is

well defined for every value of>0. The relation betweex (b Y3~ p,13)2 3

andb; is x=2MY¥[R;(b?+1)], and so indeed any value of i, (x,)=2— 2L (b= ) — 2 (t,—1y)
x>0 is allowed, sincd; can have values between 0 at maxi- (bf—b3)? 2

mum expansion and at the Big Bang, whileR; can be 3

arbitrarily large or small, depending on the initial data. How- <— E(tz_t1)<0 (5.2

ever, as always in the elliptic cage= —1/2 has to holdE

= —1/2 indicating a maximum in the spatial section, and this . , . -
will have to be checked while solving E¢.13 for x. (in consequence di;<by). Forx>xy, ux(x) is positive,

e : . e,
Finding x numerically will be no problem also here, since @d S0ux(X) is increasing, but lim__ux(x)=—3(tz—t1)
the natural variables to work with arg,=(b?—x)/(b? s still negative. Hence, in summaryy(x) is decreasing
+x), both of which have the limited range-(1,1) forx  from the value 23— 2/b3—32(t,—t;) at x=0 (which may

>0. be positive or negatiyeto a minimum atx=Xx,, which is
negative, and then keeps increasing, but remains negative for
Conditions for solutions to exist all x>x,,. Thus, from Eq(5.15 it follows that the function
We have Xx is necessarily decreasing farx,=0, wherex, is the
zero of yy(x). Consequently, the equatigpy(x)=0 will
Xx(0)=0, limyx(x)=—oe, (5.19 have a positive solution only ¥,>0, i.e. if there is a neigh-
X—00 borhood of x=0 in which yx(x) is increasing[recall:
xx(0)=0]. Thus, the necessary and sufficient condition for
’ & 2b, 2b, 3 & the e_xistence of a positive solution g (x)=0 is ux(0)
Xx(X) =X (b§+x)2 (bi+x)2 2(t2 tq) Xux(X). >0, i.e. the opposite of Eq5.9):
(5.19 4/1 1
=Xxx(0)=0, lim x}(x)=—c*. (5.16 2 b
X— 00

which now implies that the expansion betwegnand t,
It is known from the evolution equation@.4) that if b, must have been slower than it would be inEBs 0 model.

>0 andt,>t,, then the velocity of expansion gt must be o . . .
smaller tharb,. However, just as in the previous cases, this C. Elliptic evolution: The final state in the collapse phase

can be proven also from the properties of the funcgQ(x), Finally, we shall consider th&€<0 evolution between
and the proof is given in Appendix E. Therefore we will take tyo velocity profiles for the case when the final state is in the
it for granted that COnapse phasd)z<0_
For the initial state, we can still use Ed4.3—(4.7). The
b,<b, (5.17) only difference is that this timb, comes out negative:
in the following. We find M3 2
bzz - + ’ (523
R 213
, 4b, 4b, 2 M
px(X) == ———— ot ———, (5.18 _
(b5+x)°  (bi+x) but the analogue of Eq4.5) has the same form as before:
and souy(0)<0, i.e.ux(x) is decreasing in a neighborhood R.— 2m*3 (5.24
of x=0. It keeps decreasing as longa$ is negative, i.e. as 2 b2—2E/M 213 '
long asx<x,,, wherex,, is the (unique solution of wy(X)
=0: Hence,
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2 2\ 2
1 X_b2 X_b2
tg=t,— —| w+arcco + 1- ,
B™"2 ap

X x+ b3 x+ b3

(5.295

with Eq. (5.17) still applicable at,, and, from Eq(5.25), the
equation to determing= —2E/M?? is

xc(x)=0, (5.26

x—b3 b2—x

+arcco —arcco —x3(t,—t).
x+b3 b3+ x

(5.27)

Conditions for solutions to exist

We have

xc(0)=2m, limyc(Xx)=—oo, (5.28

X—0C

and soyc(x) =0 is guaranteed to have a solution for 0.
The surprising result is thus:
If the final state is in the collapse phase so thaki®,

then an EXO evolution exists between any pair of states

(t1,b1) and(t,,b,).
Consistently with Eq(5.28, we obtain

2by\X ) 2b3 3

Bl ot 2

(5.29

Xc(x)=—

which, in consequence df,<0, is negative for alix>0,
and so the solution ofc(x)=0 is unique.

The initial point for solvingyc(x) =0 numerically can be
conveniently found as follows: each square root and each

PHYSICAL REVIEW D 69, 023502 (2004

VI. AN INITIAL VELOCITY AMPLITUDE CONSISTENT
WITH THE CMB OBSERVATIONS

Recent observations of the power spectrum of the CMB
radiation[15—17 show that the maximal value of the tem-
perature anisotropyA T, is approximately 8QuK, and is at-
tained for perturbations with the wave numiber200, which
corresponds to the angular size of nearly[17-20. (The
numbers in the graphs in Refd8-2(Q imply that the “an-
gular size” meant here is the radius rather than the diameter
of the perturbation.Consequently, one might take @K as
the upper limit of temperature variation and 1° as the upper
limit on the angle subtended by the radius of the perturba-
tion. However, both these parameters far exceed the scale
needed to model the formation of a galaxy cluster, and even
more so for a single galaxy.

For simplicity we take th&k=0 Friedmann model as the
background. The relation between the physical size at recom-
bination and the angle on the CMB sky was given in paper |.

As shown in the table in paper I, the 1° angle on the CMB
sky is more than 10 times the angle occupied by the mass
that will later become an Abell cluster of galaxies, and about
250 times the angle occupied by the mass of a single galaxy.
In order to get the right estimate for a galaxy cluster, one has
to go down to the angular scales below 0.1°. In this region of
the power spectrum observational data are sparse and carry
big error bars(see Refs.[17,19), but the amplitude is
~25 uK. At the angular scales corresponding to single gal-
axies, 0.004°, there are no good data.

One way to get an upper bound on the fluctuations of
velocity is by assuming that the observed temperature varia-
tion is entirely due to local matter motion at recombination
causing a Doppler shift. Now, the cosmological redshift

L = % =1+z

To S
is due to the expansion of the space intervening between the
emission point at recombination and the observation point
today. A velocity fluctuation at recombination—i.e., a fluc-
tuation of the velocity of the emitting fluid relative to the
average background flow—superimposes an additional Dop-
pler redshift

(6.9

AT _AV Av

T v c'’
r

(6.2

arccos term in Eq(5.27 is not larger than 1 at all values of which is unchanged by the subsequent cosmological redshift
x>0, and where two of them equal 1, the two others areof both T and T+AT. Therefore AT/T~10"° implies
strictly smaller than 1. Hence, their sum is strictly smallerAv/c~10"5.

than 4, and

xc()<4+7—x¥t—t))=xc(x).  (5.30
Consequently,x;<x,, where x=x, is the solution of
xc(X)=0, andx=x, is the solution ofyc(x)=0:

4+ |28

(t,—ty) (53D

XA:

To properly estimate the magnitude of velocity fluctua-
tions right after recombination, we use a paper by Dunsby
[21]. His Eq.(84) relates the observed temperature fluctua-
tions to a mode expansion of the velocity perturbati29.
From this and the various definitions elsewhere in the paper,
we find, for a single dominant mode of wavelengthand
relative velocityAuv,

AT 167°S?
Av/c=—

T 3(s)iN° ©9
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and, assuming a wavelength scale containing an Abell cluster TABLE |. Geometrical units. The sets of geometrical units used

mass at recombination; 5.87 kpc, for models of Abell clusters and for voids.
AT 25 uK Object M L T
= 5ok Av/c=0001895. 64 — c ¢ c
: Abell clusters 16M o 47.84 parsecs 156.0 yr
Voids 55< 10"M ¢ 2631 parsecs 8582 yr

This is distinctly more than was estimated by assuniifig
was entirely due to a Doppler shift, and the reason is that the

effects(on the observed T/T) of density, velocity and in-  yi¢terent units for different sized structures. The units used

trinsiq temperature perturbations partially cance_l one anothei,rOr Abell clusters, and for voids are summarized in Table I.
This must now be recalculated as a fluctuation in the ex-

pansion velocity, since our measure of velocity ls
=R /M*3 which is constant in space in the Friedmann

B. Background model

limit. We use thé&k=0 Friedmann model as our background or
We use th&k=0 Friedmann(dus) model to estimaté reference model, and all our compensation radii are calcu-
at recombination. For this moddt,=0 andR(t,r)=rS(t), lated with respect to this model. It is chosen primarily for
21113 simplicity, but any other Friedmann model would do.
— M} (6.5 For this model, withM as the radial coordinate, the areal
2 ' ' radius is
and the past null cone is _ oMt?| 13
b— 2 ’ (71)

6 1/3
= — _ 13__(+ _ 1/3
Fpne (MO) [(to—tg) ™= (t=tg) . ©8  here subscripb indicates the background rather than LT

functions or values, and the density is

Thus
to—to| 13 S 81pr=i. (7.2
Rilone= 2{( = ) _l} 22[ \E_l} =2 Trz-d) *
(6.7  The velocity(rate of change oR) is
We can now write, for recombination, 4M\ 13
Ab/b=AR, /R = (Av/c)/R, (Ruo™ ﬁ) ’ (79
AT 167°S? 1 so that scaled velocity becomes
T T 350N 21tz -1] b:(R,t)b _ i) 3 .4
M3 |3t

=0.001895(2[ Y1+ 1000-1])=9.896x 10 °~10*.
(6.9 We could replacéwith t—tg in all of the above, but we took
tg=0 for our background model.

Returning to inhomogeneous models, what should the ra-
dius of the velocity perturbation be? The initial density pro- C. Choice of density profile att,=1.4X10 yr
file considered in paper | had an initial fluctuation of small
mass which later accreted more mass to form the condensa-
tion. But with a velocity perturbation, accretion would be  The widely used “universal profile{UP) for the variation
caused by a small initial inward perturbation over the wholeof density with radius in condensed structur@sg., Ref.
final mass. [10]), discussed in Sec. Il C was found not suitable because

Nothing is known from observations about the possibleof its divergent central density, and also it does not convert to
profiles of the initial velocity perturbation. As such, we are p(M) in any nice analytic forni23]. We therefore sought a
free to choose the profile that will be easy to calculate with.

1. An Abell cluster

TABLE II. Abell Cluster Data. Data fronj24], giving the ob-

VIl. PROFILES AND FEITTING served masses within 0.2 Mpc and 1 Mpc deduced from x-ray ob-
servations, which is used to fit the profiles in Table Ill to observa-
A. Geometrical units tions.
For convenience of computation, geometrical units were
employed in order to avoid extremely large numerical vaI-Abe” cluster M(0.2 Mpg M(1 Mpo
ues. If a masd/; is chosen as the geometrical unit of mass,a 2199 (0.65:0.11)x 10"M o (2.9£0.3)xX 10"M,
then the geometrical length and time units ateg; A 496 (0.47-0.10)x 10M¢  (3.1+0.3)x 10"M

=GMg/c? andTg=GMg/c3. It was convenient to define
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rho UP
tho 13 14

rho 17

rho 15 FIG. 1. Comparison of density profiles used

for Abell clusters. The curves are identified by the
numbers given in Table Ill. Although each curve
is matched to the same pair d®{M) points(see
Table 1), this only ensures thaveragedensity
within each of those two radii is the same for all
profiles, not the actual density.

rho 16

log(rho / rho_b)

0 5000 10000 15000 20000
R

profile that is similar in the region for which data are known, fitting to the mass-radius data. A comparison of four of these
but had a finite—if large—central density, expressed adits with the UP(also fitted to the same dats shown in Fig.
p(M) and had an analytiR(M). 1, and in Table lll. Several runs were done with each of
To determine the parameters of a profile, we fitted it to thethese.
mass-radius data frorf4] for A2199 and A496, mostly
A2199. They give the mass at 0.2 Mpc and at 1 Mpc for each
cluster, estimated from fitting a model to the ROSAT x-ray The main feature of a void is a low density region sur-
luminosity data(see Table ), so this allows the determina- rounded by walls of higher than background density. Our
tion of two parameters. We also attempted to control thenitial attempt to model a void was to choose a profile with
maximum density and the compensation radius by tryingp(M) increasing, but this was problematic because we did
profiles with a total of 4 parameters, but these adjustmentsot have good control over how high the density became

2. A void

did not have a large effect overall.

before we reached the compensation radius. Thus we de-
We considered quite a variety of functional forms for our signed a profile with a density maximum at the wall, decreas-
profiles. For a number of them we fixed the parameters byng to background at larg®l. In this way no unreasonable

TABLE llI. Abell cluster profiles. The equations and properties of the profiles shown in Fig. 1, that were
used to model the present density distribution in Abell clusters. The parameters given are those that fit the

A2199 datd24]. All nondimensionless values are in geometric units—see Table .

Profile plpp Parameters R. M
P 0 5=77440
r_ . = ,
pfUP m R N R Ro— 3457 ¢ 324600 ¢ 0.944M g
R\" R
p B,e /o2 B,= 7774000,
1,=0.05304/Mg,
pfl3 b N NV o211 374500 ¢ 1.44M ¢
Vot — || 1+ — -
M2 M2 v2=9
P B,e M2 B,=507500
pf15 o [ M| M #2=0.0447Me. 312400;  0.8416V
b vot+— || 1+ — T2= 2,
M2 M2 V=5
P Bz BZZ 103400,
16 r_ 286600 0.650(M
p P T wp=0.0457%/ Mg G G
p B, B,=498500,
f17 r__ = 349800 1.182m
P o 14eMin w>=0.0714M G G
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TABLE IV. Void profiles. The equations and properties of the profiles shown in Fig. 2, which were used
to model the present density distribution in voids. The parameters were chosen to give a low density region
well below the background valugsee[ p/p,]o) within 60 Mpc radius. All non-dimensionless values are in
geometric units—see Table I.

Profile plpp Parameters [p/pplo R. M
p A,=0.01,

pf18  =A,+B,eMr2 B,=0.01, 0.01 22804  0.990Mg
Po 1,=0.0142M,

pf20 ———— C,=1, 0.075 35850  3.848Mig
Po Copyt(M—pp) wy=0.247Mg,

density values are encountered even if the compensation ralot the results were written IMATLAB [26]. Unlike the
dius is well beyond the density maximum. The profiles triedMAPLE programs, the latter did not need large changes from

are summarized in Table IV and Fig. 2. the paper | versions, but were in any case refined and made
more flexible, and in particular were adjusted to handle times
D. Choice of velocity and density profiles at,=10° yr where the big crunch has already happened in parts of the

model [27]. Also the density to density solving program
For velocity fluctuations at recombination, we merely (wapLE) was modified to handle both, > p, and p,=p;.
choose a harmonic wave of very low amplitude, with either 1 As before, slightly different variables from those used in
or 1.5 wavelengths across the diameter of interest. Thehe foregoing algebra were more convenient for the numer-
boundary of the region of interest is the radius that will be-ics. In particular, for the velocity to density case, in place of
come the compensation radius at time 2. See Table V and a,, b, and t;, we usey=xa,, B=b%a, and z

Fig. 3 for the details. =t;/a,%% For the velocity to velocity case we usg
A few runs were done from initial density profiles, which =x/b3, y=b?/b3 andz =t;b3. Expressions for the follow-
are given in Table VI. ing limits at the origin are also needed:
VIIl. PROGRAMS _ R(t;,M) 6 \1® 2
a;(0)= lim TP ©.0) = ,
The foregoing procedure to solve for the LT functions mM—o M Pt b (0)+x(0)

E(M) andtg(M) from given profilesR ;1(M) and p(M) (8.9)
was coded in a set aflAPLE [25] programs that also re-

derived and verified the formulas, and fitted the profiles to b;(0)= lim Rt ’/M) —en/ (20) +x(0) (8.2
M3 2t ’

the data. The programs to evolve the resulting LT model and M—0

37 rho 18
2.81

2.6
2.4
2.2 rho 20

2]
1.81

1.6 FIG. 2. Comparison of density
profiles used for voids. The curves
are identified by the numbers
given in Table V.

rho / rho_b
1.4

1.2
19

0.81
0.64
0.4
0.2

0 5000 10000 15000 20000 25000
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TABLE V. Initial velocity profiles. The equations and properties X. RESULTS
of the profiles shown in Fig. 3, which were used to model the initial ) ) . o )
velocity fluctuations at recombination. The values\of were de- Arun is defined by specifying one of the initial profiles,
termined by the final density profile being used in each run. Allp1 @ndR ;, and one of the final profileg), andR (. The
values are dimensionless. results of a particular run are the two LT functidaéM) and
tg(M)—the local energy/geometry function and the local
Profile R/(Rop Parameters bang time function—that determine the LT model. The
R model so defined may then be evolved over any time range
Vio g or its whole lifetime and in particular, it can be verified that
(Roo the given profiles are reproduced. In addition, of the 4 pro-
R M A Ex10°5 files p1, Ry, p2 andRy,, the two that were not used to
Vi3 R—’t:1+Al 1+co{M—D Ml}roﬁt d,ata define the run are also determined {&(M),tg(M)}, and
(Roo ¢ ¢ 2 ' are of interest, especially the initial one.
e The primary Abell cluster forming rurVi4 pfl6 (Fig. 5),
) R, ™ A;=5X10°, . . X
Vid R =1-Ay| 1+cog - M. from t. data used an improved present day density profile based on ob-
wh ¢ ¢ z ' servational results, and also started from an initial velocit
y
_ 4 profile that was expanding less fast than the background at
. Ry 37M A;=1x10"", o .
Vi5 =1+Aco the center, which is what one would expect to evolve into a
(Ryp 2M, M from t, data, i .
' condensation, see Figs. 3 and 5. Though an Abell cluster
vie R, i 37M A=1%10°* mod;elll\/vashgenerateg _in paper I,I th(e:I 1;ina| proﬁle_ Wlaz not_ SO
Roe™ 41CO M. M, from t, data, carefully chosen, and it was evolved from an initial density

profile. However, the evolution of, R and R is visually
very similar to that given in paper |. The main differences are

o ) att,. Several runs with different initial velocity profiles gave
where the upper sign is for the hyperbolic case and the |°We(5uite similar results—with only, andtg changing signifi-
one for the elliptic casee=+1 is for expansion, and= cantly.

—1 for collapse. Since(0) comes from the solution proce- o primary void forming runyi3 pf20 (Figs. 6-9, used
gure,. we h?.\ll € an expressu;n f?(rj(IO), Whitherk\}/ eloc:ty OF " an initial state that was expanding faster than the background
en_S|ty_ profiies are given, ut fdy;(0) when t € ve ocity at the center, which is what one would expect to evolve into

profile is given, the limit must be calculated using the ex- low densit ion. Usinaf20 for the final densit il
plicit velocity profile function. Alternatively, the velocity a low gensity region. Lsing or the final density profiie
may be given in the fornb,(M). was particularly successful, as _the_ reqwred den5|ty profile
For reconstructing the model evolution from the solutiond€velops smoothly and the density is still decreasing at every
functionsx andtg, the formulas in paper | still suffice. point even at the present time, so there is no sign of immi-
nent shell crossings. It is evident from the plotstoandtg
and the conditions for no shell crossir@8], that there must
IX. RUNS be shell crossing at some time, but these are long before
recombination and well after the present time. A significant
The runs that we did are listed in Table VII, which also feature is the relatively low central density at the initial time.
lists the relevant figure numbers, where appropriate, and th€he evolution of voids in an LT model has been extensively
significance of each run. discussed by Sato and co-workers, see a summary in Ref.

0.0001 =<

V3 V6

5%10°

Delta-Rt / Rt ) -
FIG. 3. Comparison of initial

velocity profiles at recombination.
A The curves are identified by the
’ numbers given in Table V.

5x10°

—0.0001
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TABLE VI. Initial and final density profiles. The equations and properties of the profiles that were used to model the initial density
fluctuations at recombination and the final structure.

Profile ol py Parameters Description

pfo plpp,=1 Uniform background density at time 2.

pi0 plpp,=1 Uniform background density at time 1.

pi3 1 A;=0.1, Central overdensity plus surrounding underdensity of order
NPFM pmi=1. 10"t in region of mass 1M, . Used for the initial profile

in run pi3pf21.

pid 1007M Mc  A1=15x107°  Overdensity of order 810 ° in region of mass 1M,
1+A1 1+cos{ D <1—00 with exactly background density outside it.
c
plp,= Mc
1, M=—
M 100
pf21 1 Po1 A,=0.1, Central underdensity plus surrounding overdensity of order
NPﬁmp—m mo=1. 10’1.in region of mass WM, with a “background”
density equal to that at tintg. Used for the final profile in
run pi3pf21.

[29]. They, too, found that it necessarily leads to a shellis also strongly dictated by,, but turns away from zero
crossing at some time. Our original attempt, usirig@, cre- towardsM=M,.
ated a shell crossingvhere the density diverges and then  Run pi3pf21 (Fig. 11) demonstrates the density profile
goes negativeso soon aftet, that the model evolution pro- inversion, which Ref[30] proved was not only possible but
gram could only generate smooth density profiles up tdikely, and our method makes it easy to obtain such evolu-
0.98,. tions. This same run also shows a model can evolve from
The case of a pure density perturbatidfiDpfl3, was lower to higher density in one region and higher to lower
investigated by choosing a flat initib} evolving to a cluster. in another; and that our method can handle such occurrences.
This shows what initial density perturbation is needed at re- For the two times we have been considerinig—at re-
combination to form the cluster by today—a central overden€ombination and, at the present day—the shape of the re-
sity surrounded by an underdensity, of order 10Similarly, ~ sultant E(M) in any given run is dominated by the final
the case of a pure velocity perturbatignQ pf13, created by density profile, while both initial and final profiles have a
choosing a flat initialp; evolving to a cluster, shows what noticeable effect on the resultaig(M).
initial velocity perturbation is needed—a general underex- We have found that, when choosing the initial velocity
pansion of order 10*, decreasing outwards. The latter is fluctuation with an appropriate magnitude, it is quite difficult
contrasted with the pure velocity perturbation needed to creto keep the initial density fluctuatiofwhich is not chosen
ate a void inpi0pf20—a general overexpansion of order small enough, and vice versa. The main run of paper I, which
10 2, decreasing outwardgSee Fig. 10 for all 3 runsThe  imposed a final density profile of a scale similaptd3, but
rather large size of these perturbations tends to confirm thaess centrally concentrated, and x 30 ° density fluctua-
perturbations in both density and velocity are needed. tion att,, was quite successful in this regard, having a re-
Our entire approach—specifying profiles for an LT modelsulting velocity variation that was within X810°° over
at 2 different imes—demonstrates that two LT models withmuch of its range, only reachingx8L0™* in the outer re-
identicalp(M) [and consequentlR(M)] at a given time, or  gions that evolved into vacuum. This sensitivity to profile
identical R;(M) at a given time, can have quite different shape and better way of choosing initial profiles could be
evolutions. This is shown by comparing ruppfl3 and investigated further.
pi0pf20 (both in Fig. 10; also by runs/i4 pf16 andVi4 pf0; The compensation radius was close to a parabolic point in
and in a small way by the set of 4 runs that all end vyif@. every run. This must in fact be the case to high approxima-
Thus, knowledge of only the densitgr velocity) profile at  tion under the conditions we imposed. Since we are using a
one time does not determine a model’s evolution at all. k=0 Friedmann model as our reference or background
To make clearer the effect of varying the initial velocity model, any LT model which has the samewithin the same
profiles, a set of runs was done with all 4 initilprofiles R at the samet—tgz must be locally the samesame
and the homogeneous finalprofile. We found g has almost  R(t,M.)] as the background, and therefore parabolic. By
the same shape as the velocity perturbalipnE is strongly  definition, the compensation radius is whéteandR are the
influenced byb,, except that it starts from zero M=0, same as in the background, but in general our method does
and returns close to zero Bt=M_; and thep; perturbation not ensuret—tg matches there. At the beginning of the cal-
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TABLE VII. Modelling runs.

PHYSICAL REVIEW D 69, 023502 (2004

Initial  Final Function
profile profile Description (Fig no) list What it shows
pid pfl7  Small localized density E(M) (4), Classic evolution of a
perturbation— Abell tg(M) (4), small initial fluctuation
cluster R(M) (4), with 100th final mass
p(t,M) (4), into a condensation with
realistic density profile at,.
Vi4 pfl6  Low central initial expansion E(M) (5), Evolution of low expansion
rate — Abell tg(M) (5), region, to a realistic
cluster p1(M) (5) density profile at,.
Graphs fairly similar to
paper | model.
Vio pfl3  Uniform initial expansion E(M) (10a, top, Case of a pure density
rate — Abell perturbation—how big a
cluster tg(M) (10a, top, perturbation is needed
p1(M) (10b, top, for a present
p(t,M) (10b, top, day structure?
pi0 pfl3  Uniform initial density E(M) (10a, center Case of a pure velocity
— Abell cluster tg(M) (10a, center perturbation—how
R1(M) (10b, centey, big a perturbation is needed
p(t,M) (10b, center,  for a present day structure?
pi0 pf20  Uniform initial density E(M) (10a, bottom, Together withpiOpfl3,
— \Void tg(M) (10a, bottony,  shows two models with the same
R1(M) (10b, bottor), density profile at one time can
p(t,M) (10b, bottom, have totally different evolutions.
Vi3 pfl8 High central initial expansion (None Not so good example of evolution to a void—it
rate — \Void is so close to a shell crossing @atthat
the evolution program fails at the last time step.
Vi3 pf20  High central initial expansion E(M) (6), Example of evolution to a void with good
rate — Void tg(M) (7), behavior at, and well past it,
p1(M) (8), but initial density perturbation
p(t,M) (9), much too large.
Vi3 pf0  High centr_al initial ex.pansion (None These 4 show very clearly the effect
rate — Uniform density onE(M) & tg(M) of varying initial
Vi4  pf0  Low central initial expansion density or initial velocity.
rate — Uniform density Slnce the final d_en_sny 'S
uniform, the deviation oE(M) and
Vi5  pf0  High central and low outer tg(M) from their FLRW forms is
initial expansion rates- Uniform density entirely due to non-uniform initial profiles.
They also show a given density profile at one
Vi6 pf0  Low central and high outer initial moment can have many different evolutions.
expansion rate» Uniform density
pi3 pf21  Expanding underdensity E(M) (11), An example ofp,<p; and within the
— collapsing overdensity tg(M) (12, same modep,<p,. It
p1(M) (1D, also provides an example of
po(M) (12, density profile inversion.
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FIG. 4. E(M), tg(M), the R ;(M) fluctuation, and the(t,M) evolution for runpi4pfl7. Notice the effect of the central bump in
p1(M) shows up in thég andR ,; curves. Althougtdtg /dM>0 indicates there will be a shell crossing, the small magnitudg efisures
it will occur long beforet;, when the model first becomes valid.

culation, we do not knowt(-tg) yet, it is one of the results Xl. CONCLUSIONS
of the procedure. As explained is Sec. IV D, the individual
values of the time coordinate have no meariBy. Only the by functions such as components of the metric and its de-
differences {;—1y), (tz—tg), (t—1tg), etc., appear in the |jyative or density and velocity, given on some initial sur-
calculations and are physical parameters. Nevertheless, W8ce \We have taken the new approach of specifying one
assume that out, equals {;—tg) in the background. In fynction on an initial surface and another on a final surface,
consequencetg=0 in the background, while in general and demonstrated that, in the case of the LT model, an evo-
tg(M¢) #0 in the perturbation. However, in practice, our use|ution from one to the other can be found. This approach is
of tiny deviations from the background value at recombina+etter suited to feeding the observational data into the model
tion t; ensures that the jump ity can only be very slight. functions.
This is what ensures a close-to-parabolic modeViat In particular, the spherically symmetric evolution from a
As a result of the above, in each of the numerical ex-given initial velocity (or density profile to another given
amplesE(M) has the same sign in the whole range. How-density(or velocity) profile, in any of the four possible com-
ever, the method discussed here and in paper | can be freefynations, can always be found. The solution is a determina-
applied to models in whicktE(M) changes sign at some tion of the arbitrary functions that characterize the model.
M—see paper | for an example. While there is no guarantee that the resulting model will be

It is traditional to think of spacetimes as being specified
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FIG. 6. E(M) for run Vi3pf20, which successfully creates a
present day void. Though shell crossings are inevitable, they do not
occur for a long time after the present.

free of shell crossings, it is a simple matter to check the
arbitrary functions once calculated, and our experience has
shown that reasonable choices of the profiles keep any shell
crossing well before the initial time or well after the final
time.

The solution method has been programmed, and a variety
of runs have demonstrated the practicality of the method.
Models of a void and of an Abell cluster have been generated
and shown to have well behaved evolutions between the ini-
tial and final times. It is worth noting that the void model
was able to concentrate matter into a wall without the forma-
tion of any shell crossings up to the present time and for well
after it.

The effect on the solution of varying the initial and final
profiles was effectively illustrated. Some other previously
known features of the LT model, such as the possibility that
clumps could evolve into voids, were highlighted in the re-
sults section by producing examples.

0.7

FIG. 5. E(M), tg(M) and the p;(M) fluctuation for run
Vi4pfl6, in which a region of initially low expansion rate evolves
into an Abell cluster. In this and other figures, “H,” “EX,” “EC,”
“Pe,” and “Ph” indicate regions that are hyperbolic, elliptic and
still expanding at time,, elliptic and recollapsing at time, ellip-
tic but within the range for a series expansion about the parabolic
model, and hyperbolic but within the range for a series expansion
about the parabolic model.
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APPENDIX A: EXTENSIONS OF PAPER |—THE
EVOLUTION BETWEEN TWO DENSITY PROFILES

1. Models with both larger and smaller densities at later times

It is clear from the method of paper | that, for anyalue,
1 whatever solution is found fop,<p,, its time reverse t(
—t+t,—t, tg—t;+t,—tg) will solve the case when the
density values are interchanged. But could bptlt,,r,)
4 >p(ty,ry) andp(ty,rp)<p(ts,rp) occur at different val-
uesr, andry in the same model? It is obvious that a model
with adjacent expanding and collapsing hyperbolic regions
018 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ must have severe shell crossings, unless they were separated
0 ot 02 03 04 05 06 07 08 05 1 phyaneck32]. But the latter puts the two hyperbolic regions
on either side of a wormhole, so they do not really commu-
FIG. 8. p;(M) fluctuation for the void rurVi3p f20. The am-  nicate. On the other hand, it seems entirely possible that two
plitude of this fluctuation is too large, so the initial velocity profiles world lines in an elliptic region could display such a behav-
need fine-tuning. ior or even a hyperbolic region outside an elliptic region.
In paper |, the conditiorp,(M)=<p;(M) was imposed
ACKNOWLEDGMENTS merely to ensureRZ% R;, which allowed us to know t.here
was always a bang in the past, and hence a well defiged
We thank Stanistaw Bajtlik, Andrzej Softan and Michat However, we note that this condition did not exclude other
Chodorowski for useful instructions on the power spectrumequally unreasonable possibilities, such as an elliptic region
of the CMB radiation and on the mass distribution in galaxyoutside a hyperbolic regiofsee[28]).
clusters. We also thank Peter Dunsby for guidance on esti- Thus, if we relax this requirement, and allow al|>0
mating velocity amplitudes at recombination. C.H. is mostand allp,>0 profiles, we merely have to note which Bf
grateful to the N. Copernicus Astronomical Center of theandR, is larger before generating the “forwards” or “back-
Polish Academy of Sciences and the Institute for Theoreticajvards” solution.
Physics at Warsaw University for generous provision of fa-  We, in any case, have to check whether the conditions for
cilities and support while the majority of this work was done, no shell crossing$28] are satisfied, or whether a regular
and particularly to his host Andrzej Krasii for making the  maximum or minimum has been reached, and this merely
arrangements and ensuring a very enjoyable and fuffillingadds one more thing to check—whether the bang and crunch
visit. The research of A. K. was supported by the Polishfunctions are sufficiently continuous.

o
[

Delta rhol / rhol
o
o
(s3]

0.12

0.14

0.16

2. Including regions of zero density in the profiles

a. Transient zeros in the density
.hmw.'.‘.mml".'.'.\\\\ Gi_ven the expression_ for the density, 8.3, it is clear
i ..‘.‘.%%%%“555&“““:{“‘:‘:‘:‘:‘:\\\:\:‘:‘3‘:‘:‘:‘““{& that if M ,=0 for a partlgularr, butE , anq ts) are not.
'i%ﬁ'ﬁg5'.".“.“-555,',-.:.:\:\:\:\:\\53:‘\:\:\‘:‘&:\‘\\\\\&‘&‘{‘&9\\\\\“‘ zero, the density there will be zero for all time. Is it possible
\\\\‘\:\\\‘\‘\‘\Q‘Q‘Qg{{{%{&\\\\\\\\\\‘ that p=0 at isolated events or on non-comoving world-
NN sheets?
AssumingM ,#0 and 0<R<, the only way for this to

happen would be foR, to diverge without changing sign,
while M ; remains finite. We immediately see that divergent
R, makesg,, divergent, which suggests bad coordinates at
the very least. However, for alE values we may write
[33,34

t —

R, (M, E, M, 3E,
M E R—|(tg),r+ M 2E )(t te) Ry,
FIG. 9. p(t,M) evolution for the void runvi3pf20. Note that (A1)
p2(M) is the same profile gs,(R) shown in Fig. 2, though it looks
quite different. The reason is that there is very little mass in the voicand it is clear thatg (R is only divergent on the bang or
interior, so a large increase in distance corresponds to a small irsrunch, while {—tg)R, is zero there, becaus® ~(t
crease in mass. —tg) ¥ at early times. So one possibility is thgt inter-
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(a)

FIG. 10. () E(M) (left) andtg(M) (right) for runsVi0pfl13, pi0pfl3 andpiOpf20 (top to bottom. The upper and middle rows show
the pure density and pure velocity fluctuations needed at recombination to create an Abell cluster today. The middle and bottom rows show
the difference in the pure velocity fluctuations needed at recombination to create an Abell cluster and a voild)t@tey; (M) or R (M)
fluctuation(left) and thep(t,M) evolution (right) for the corresponding graphs (a).
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FIG. 11. E(M), tg(M) and thep;(M) and p,(M) fluctuations for runpi3pf21. The densitiep,; and p, at timest, andt, are of
comparable magnitud@vhich makesp, around 2x< 10* times the parabolic background ). In particular,p;>p, at the centerM =0,
andp,>p; at the edgeM =1.

sects a non-simultaneous bang whil@oes not intersect the first determine what kind of zero we might expectafM).
crunch at the same value, or vice versa. This of course Working in flat 3D space, let

means that the constant time surface cannot be extended be-

yond this point, which is not really satisfactory. The only p(R)~A|R—R,|", A,n constand>0 (A2)
other possibility is forE ; or tg, to diverge[35]. But this

would give a comoving zero of density, and a coordinatenear a zero irp. Then

transformation would maké& , and/ortg, finite and M
zero.

Thus we conclude that, apart from the case of the initial or
the final surface intersecting the bang or crunch, the density
along a particle world line cannot be zero at one time and
non-zero at another. Thus zeros of density have to be perma-
nent and comoving.

R
|M—MZ|=47TJ p(R")R'2dR’
RZ

|R_ Rz|nJr3 2R2|R_ Rz|n+2
n+3 n+2

=47TA<

R o)

b. p(M)=0 at a singleM value n+1

To look at the question of whether zero density at a single
M value can be accommodated in the methods of paper I, wgo, to lowest order
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In order to allow the possibility thai(t; ,r) is zero over a
(A4) finite range, the choicp;=p;(M) must be abandoned as all
points in the zero density region will have the same mass, so
M will be a degenerate coordinate there.
Whatever alternative possibilities we choose must allow
us to identify the corresponding comoving coordinate points
on each of the density profiles gt andt,. ThusRis not a
(A5)  suitable coordinate, as the tviR(t; ,r) are different.
Thus we instead consider the following alternatives:
(1) Specifyp;= p;(r) and M=M(r). This parametric ver-

RZR—R,"*?

IM=M,|~4mA——

(n+1)M—m,| "

R—R,|~
R=Rd 47AR2

which means

n/(n+1)

(n+1)[M—M,| , (A6)

p(M)=A ATAR?

sion of choosingp(M) allows p;(r)=0 and M(r)=const
over some range af but actually is not sufficient, as we still
have no idea how mucR;(r) increases over this range—

how much space is there between ti@n-vacuunregions.
In other words, in such a range, neithg(r) nor M(r) pro-

anﬂ :’IVVZ Sggiﬁ?é(ggaln); L s)lgfny;t.ion near a point zero in th E\E/ides a useable definition ofin terms of a physical quantity.
pp P (2) Specifyp;=pi(R;). In this case

full curved spacetime expression, we find

R
M M-R=K/2fR?-RdR. A8
W—@=f 6 qwr— S (e 1M a0 (R)=(x12) | REpi(R) (A8)
M, kp(M') xB . .
(A7) Now wherep;>0, M(R) will be different for eachR value,
and therefore can be used to identify corresponding points on
the two profiles. We can then u$® or R; (or something
which is indeed well determined. We thus conclude that nalse as the coordinate radius Let us say we choose
modification of the paper | method is needed in principle,=R,. But for regions wherg;=0, M(R) will be degener-
though some extra coding might be needed if the integratioate. In this case, we take advantage of the fact that in vacuum
had to be done numericallgwith all the profiles tried so far, there are no matter particles, and so we have extra freedom
MAPLE did symbolic integrations to gét>.) in choosing the geodesics that constitute our constpaths.
Using a linear interpolation between tRevalues at the two
edges of the vacuum region at eacht paindt, provides the

We have already seen that zeros in the density have to fPVious choice of corresponding points, i.e. at titpe
permanent and comoving, and this obviously applies to ex-

c. p=0 over an extended region

. ) . r=R,, (A9)
tended vacuum regions. In any case, spherically symmetric
vacuum is Schwarzschild and must remain so. and at timet,,
|
R ‘ (Rl,vac_ Rl,vac,mir)(RZ,vac,maf R2,va<:,mir) in vacuum
r= 2 vac,min (Rl,vac,max_ R1,vac,mir) ’ (A10)
M, *(M4(R;)) in non-vacuum.

The original procedure for extracting the functioBsandtg, which actually used?; andR,, goes through with the only
change that functions af=M are now functions of =R,. In particular, in vacuum regions, each world line has different pairs
of R; andR, values, but the samé value.

APPENDIX B: THE EVOLUTION OF R(t,M)

RI(M)—R3(M)—[R3(t,) — R(t
VS THE EVOLUTION OF p(t,M) 2(M)~Ri(M)~[Ro(tz) ~Ro(ty)]

M

Let us take the relation betwedr and p in the most :EJ (L—L) du>0. (B1)
general case, without any assumptions, @q10. Ko\ p2(U)  pa(u)

This means that the value & at anyM depends on the
values ofp in the whole rangg My,M]. Also the inverse
relation, Eq.(2.9), is nonlocal—to findp(t,M) we need to 6 M/ 1 1
know R in an open neighborhood of the value Mf Rg(tz)—Rg(tlH _f ( _

Assume nowp,<p; over the whole of My,M]. Then K Imo\ p2(U)  py(u)

Hence,R3(M)>R3(M) if

)du>0.
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This will hold if we assume, as was done in papeR{(t;)
=0,i=1,2 in addition top,<p,. The assumptioM =0,
i.e. the absence of a mass poinfRat 0, also made in paper
[, is not needed for this purpose.

The converse implication is simply not tru®(t,,M)
>R(ty,M) for all M e[My,M,] does not imply anything
for the relation betweep(t,,M) andp(t;,M). This some-

what surprising fact is easy to understand on physical

grounds.R(t,,M)>R(t;,M) for all M e[My,M,] means
that every shell of constadl =M has a larger radius ap

than it had at,. However, the neighboring shells may have & ,(x)=—\/x

moved closer toM at t, than they were at;. If they did,
then a local condensation arouii was created that may
result inp(t,,M) being larger tham(t,,M). This does not

PHYSICAL REVIEW D 69, 023502 (2004

2. Derivation of (4.40

The relevant properties @b(x) are

d(0)=27>0,
abf2—1
d(2/ay)=m+ % - arcco{ 2;—
apbi/2+1 apbi/2+1
—(2/ax) ¥t~ ty), (C3
2" L2 +3(t t,)|<0
V2—ax  (b2+x)2 2 2 1 '
(CH

Since ®(0)>0 and ®. <0 for all x>0, the function

happen in the Friedmann limit, where local condensationgp .(x) may have(only one zero anywhere in its range if and

are excluded by the symmetry assumptions.
A sufficient condition forp,(M)<p;(M),M e[My,M,]
iS

1
_—
RH v (R

forall Me[Mg,M{].

If R,y>0 for all M e[My,M;] at botht, andt, (i.e. there
are no shell crossings ifMy,M]), then this is equivalent
to (R3),m>(R3),y for all M e[Mg,M,]. Incidentally, this
implies R,>R; for all M e[M,M] if Ry(Mg)>R;(My).

APPENDIX C: CALCULATIONS FOR SEC. IV
1. Derivation of Egs. (4.33 and (4.34)
In Egs.(4.31) we have

®,(0)=0,

b,v2a,
—— —_-—arcco
apbi/2+1

- (2/32)3/2(t2_ t1),

ayb?/2—1

Dy(2/a) =+ e Sl
x(2iaz) a,b2/2+1

(CD

a23/2 2b1

Dy =X - -
xm J2—ax  (b2+x)2

3
E(tz_tl)l = XA x(X).
(C2

We see thatby ,(0)=0 and that Iirr)1H2/a2<Dx,X= +o. Now

Axx(X) = 38,%% (2—ayx) 2+ 4b, /(b{+x)3>0 for all x
€[0,2/A,]. Hence\x can have at most one zero and it will
have one only ifAx(0)<0, i.e. if Eqg.(4.33 holds.

With Eq. (4.33 fulfilled, @y <0 in a neighborhood of
x=0, ®y,=0 at somex=Xpj,, and ®y,—+x at x
—2la,; the latter means that the tangent dg(x) at x
=2/a, is vertical. Consequentlyb «(x) itself is a decreasing
function forx e [ 0 X,in), @and is negative in this range; then it
is increasing forx e (Xmin,2/@,]. It can thus have a zero at
any x>0 if and only if ®y(2/a,)=0, i.e., if Eq.(4.39 is
fulfilled.

only if ®c(2/a,)=<0, which translates into the opposite of
Eq. (4.34), i.e. Eq.(4.40.

APPENDIX D: THE VELOCITY AT t, MUST BE
SMALLER THAN AT t; IN THE
HYPERBOLIC EVOLUTION

We now show thab?>b3 must hold, as stated in Sec.
VA1l in consequence of,>t; and R’t|t=tl>0, i.e. by
>0. [The assumptiorR ((t;)>0 is hidden already in Egs.
(2.4—(2.6); for R <0, (t—tg) would have to be replaced by
(tg—1t) in all three places.

Suppose thab3>b?, so thatx<b? applies. Then

lim xu(x)=—o, (D1)

x—b7

and in additiony(0)=0 (this second property does not
depend on the sign df5—b?). It follows that a second zero
of xu(x) will exist if there exists a subset & on which
Xu IS an increasing function. From E@5.6) we see that
xux(0)=0, Iimxﬁb§XH1X= —oo, Hence, in order thay,(x)
may have a zero at>0, the uy(x), defined in Eq.5.6),
must be positive somewhere in the range0. The deriva-
tive of uy(x) is

(%) 4b, 4b, 02)
X)= - L]
H 0307 (b2-x)°
and so there must exist valuesyosuch that
b,(b%—x)3—b;(b5—x)*>0. (D3)
This is equivalent to
[(b1/by) 3= 1]x>Db,3(by%3—b,%3). (D4)

However, this is a contradiction since, withh <b, and x
>0, the left-hand side is negative and the right-hand side is
positive.

Sinceb3>b? has thus led to a contradiction, the opposite
must hold. This result is intuitively obviou$or dust, expan-
sion must slow down with time so the above is in fact just
a consistency check.
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MORE EXAMPLES OF STRUCTURE FORMATION IN TH . . .

APPENDIX E: THE VELOCITY AT t, MUST BE
SMALLER THAN AT t; IN THE ELLIPTIC
EVOLUTION (FINAL STATE STILL EXPANDING )

We will prove here that thé, in Eq. (5.13 must be
smaller thanb, if, as was assumed earlidn; >0 andt,
>t,. The proof comes out quite simply if we look at the
function yx(x) defined by(5.13 as a function of the argu-
mentb,. At b,=b,; we have

Xx(0)=x1(¥)= = x4t~ ty), (ED)

which is obviously negative for all values af>0. At b,
—o we have

0= ra(x) . b2—x\* b3 —x
X)=xo(x)=\/1— —arcco
oA b2+ x b7+ x

—x¥(t,—ty). (E2)

PHYSICAL REVIEW D 69, 023502 (2004

We find thaty,(0)=0, Iimxﬂm)@(x): —o and the deriva-

tive is  xh(X)=—2byX/(b2+x?)2—(3/2)\x(t,—t;)—
obviously negative for alk>0. Thereforey,(x) itself is
negative for allx>0.

Now we calculate

4X3/2

Ixx(X) _
(b3+x)?’

b,

(E3)

which is negative for all values df, at every value ofx
>0. Thus,yx(x) is negative for alk>0 atb,=b,, negative
for all x>0 atb,— and is a decreasing function b} at
everyb, e (bq,») for everyx>0. This means thaty(x) is
negative at every value of>0 for anyb,>b,, and so the
equationyx(x) =0 has no solutions in (&) whenb,>b;.
|
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