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More examples of structure formation in the Lemaı̂tre-Tolman model
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In continuing our earlier research, we find the formulas needed to determine the arbitrary functions in the
Lemaı̂tre-Tolman~LT! model when the evolution proceeds from a given initial velocity distribution to a final
state that is determined either by a density distribution or by a velocity distribution. In each case the initial and
final distributions uniquely determine the LT model that evolves between them, and the sign of the energy
function is determined by a simple inequality. We also show how the final density profile can be more
accurately fitted to observational data than was done in our previous paper. We work out new numerical
examples of the evolution: the creation of a galaxy cluster out of different velocity distributions, reflecting the
current data on temperature anisotropies of cosmic microwave background, the creation of the same out of
different density distributions, and the creation of a void. The void in its present state is surrounded by a
nonsingular wall of high density.
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I. SCOPE

In a previous paper@1#, which we shall call paper I, we
showed that one can uniquely define the Lemaıˆtre-Tolman
~LT! cosmological model@2,3# by specifying an initial den-
sity profile ~i.e. the mass density as a function of the rad
coordinate at an initial instantt5t1) and a final density pro-
file. The formulas defining the LT functionsE(M ) and
tB(M ) ~whereM is the active gravitational mass, used he
as a radial coordinate! are implicit but unique, and can b
solved forE andtB numerically.@For definitions ofE andtB

see Eqs.~2.1! and ~2.2!.# We also worked out a numerica
example in which a galaxy-cluster-like final profile was cr
ated out of an initial profile whose density amplitude a
linear size were small.

In the present paper, we develop that study for new e
ments: we show that instead of a density distribution, o
can specify a velocity distribution~strictly speaking, this is
R,t /M1/3—a measure of the velocity! at either the initial in-
stant or the final instant or both. We prove a theorem, an
gous to the one proven in paper I: given the initial and
final profile, the LT model that evolves between them
uniquely determined. We also show how to adapt the ini
and final density profiles to the astrophysical data more p
cisely than it was done in paper I. We provide numeri
examples of LT evolution between an initial profile~of den-
sity or velocity! consistent with the implications of the co
mic microwave background~CMB! measurements, and a fi
nal profile that corresponds either to a galaxy cluster or t
void.

*Electronic address: akr@camk.edu.pl
†Electronic address: cwh@maths.uct.ac.za
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The paper is arranged as follows. We recall the ba
properties of the LT model in Sec. II. In Sec. III we descri
how the final profile can be adapted to observational d
more exactly than in paper I. In Sec. IV we find the implic
formulas to define the LT functionsE(M ) and tB(M ) when
the initial state is specified by a velocity distribution and t
final state by a density distribution. In Sec. V we do the sa
for both states being specified by velocity distributions.
Sec. VI we deduce the amplitude of the velocity perturbat
at t1 allowed by observations of the CMB radiation. In Se
VII we specify our choices of density and velocity profile
for numerical investigations. Sections VIII and IX conta
the presentation of numerical results in several figures.
results are summarized and interpreted in Sec. X, and b
conclusions follow in Sec. XI.

The approach presented in this and in paper I is m
suited to astrophysical practice than the traditional approa
in which we first try to deduce the initial state of the Un
verse from various kinds of data, and then proceed to ca
late the evolution of the cosmological model, in order
compare its final state with the observations of the curr
state of the actual Universe. Our approach allows one
make simultaneous use of the data on the initial and on
final state of the Universe—the real astronomical data
indeed such a mixture.

Naturally the LT model can describe the actual astrophy
cal process of structure formation only approximately. T
obvious limitation is spherical symmetry, in consequence
which we cannot take into account the rotation of the obje
formed. Thus, no matter how well we reproduce the pro
of a galaxy or cluster, the LT model will continue to evolv
and the profile will look quite different after 106 years or
less, whereas real galaxies and clusters are fairly stable
109 years. However, we hope that the method presented
will be a starting point for generalizations that will be don
©2004 The American Physical Society02-1
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A. KRASIŃSKI AND C. HELLABY PHYSICAL REVIEW D 69, 023502 ~2004!
once ~and if! more general exact cosmological models a
discovered.

II. BASIC PROPERTIES OF THE LEMAI ˆTRE-TOLMAN
MODEL

The LT model@2,3# is a spherically symmetric nonstat
solution of the Einstein equations with a dust source.
metric is

ds25dt22
R,r

2

112E~r !
dr 22R2~ t,r !~dq21sin2 qdw2!,

~2.1!

whereE(r ) is an arbitrary function~arising as an integration
constant from the Einstein equations!, R,r5]R/]r , and R
obeys

R,t
252E12M /R1 1

3 LR2, ~2.2!

where L is the cosmological constant. Equation~2.2! is a
first integral of the Einstein equations, andM (r ) is another
arbitrary function that arises as an integration constant.
mass density is

kr5
2M ,r

R2R,r

where k5
8pG

c4
. ~2.3!

See@4# for an extensive list of properties and other work
this model. In the following, we will assumeL50. Then Eq.
~2.2! can be solved explicitly. The solutions are the follow
ing.

Elliptic case@5#, E,0:

R~ t,r !52
M

2E
~12cosh!, ~2.4a!

h2sinh5
~22E!3/2

M
@ t2tB~r !#, ~2.4b!

whereh is a parameter.
Parabolic case,E50:

R~ t,r !5@ 9
2 M „t2tB~r !…2#1/3. ~2.5!

Hyperbolic case,E.0:

R~ t,r !5
M

2E
~coshh21!, ~2.6a!

sinhh2h5
~2E!(3/2)

M
@ t2tB~r !#, ~2.6b!

wheretB(r ) is one more arbitrary function~the bang time!.
Note that all the formulas given so far are covariant un
arbitrary coordinate transformationsr 5g(r 8), and sor can
be chosen at will. This means one of the three functio
E(r ), M (r ) andtB(r ) can be fixed at our convenience by th
appropriate choice ofg.
02350
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The Friedmann models are contained in the Lemaıˆtre-
Tolman class as the limit

tB5const, uEu3/2/M5const, ~2.7!

and one of the standard radial coordinates for the Friedm
model results if, in addition, the coordinates in Eqs.~2.4!–
~2.6! are chosen so that

M5M0r 3, ~2.8!

where M0 is an arbitrary constant. This impliesE/r 2

5constª2k/2, k being the Robertson-Walker curvature i
dex.

It will be convenient in most of what follows to useM (r )
as the radial coordinate@i.e. r 85M (r )] because, in the struc
ture formation context, one does not expect any ‘‘necks’’
‘‘bellies’’ where M ,r50, and soM (r ) should be a strictly
increasing function in the whole region under considerati
Then

kr52/~R2R,M ![6/~R3! ,M , ~2.9!

from which we find

R3~M !2R0
35

3

4pEM0

M du

r~u!
, ~2.10!

whereR0 andM0 will commonly be zero.
In the present paper we will apply the LT model to pro

lems of a similar kind to that considered in paper I: Conne
ing an initial state of the Universe~defined by either a mass
density distribution or a velocity distribution! to a final state
~also defined by one of these distributions! by an LT evolu-
tion, and in particular to the formation of galaxy-cluster-lik
and void-like objects out of initial perturbations of density
velocity that are small in amplitude and in some cases sm
in mass compared to the final object.

III. MODELLING THE FINAL DENSITY PROFILE

We will now incorporate in our models the observation
data on mass distribution in galaxy clusters in a more
tailed way than in paper I.

The quantities of interest in the profile are the followin
the maximal density~with the shapes we assume below a
later, this will be at the center of the object!, the radius of the
object~assumed spherically symmetric!, the mass of the ob-
ject, the average density of the cosmic background, and
compensation radius~defined below!.

We define the following parameters.
Mm—the mass of a galaxy cluster, out to some radius

be taken from astronomical tables.
Rm—the radius within which the massMm is contained;

also to be taken from astronomical tables. In fact there m
be two or moreMm–Rm pairs available for some cluster
~see Sec. VII C 1!.

r(Mm)5rbd—this is the geometrical definition of th
massMm (M5Mm at that value ofR5Rm at whichr equals
a certain specified multiple of the background density! @6#.
2-2
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MORE EXAMPLES OF STRUCTURE FORMATION IN THE . . . PHYSICAL REVIEW D 69, 023502 ~2004!
We do not assume any value ofd at this point yet, except tha
1<d,rmax/rb .

The compensation radiusR5Rc , at which the total mass
within R5Rc is the same as the background mass would
if no inhomogeneity were created. This is needed to let
know roughly where our inhomogeneity is matched to
Friedmann background. See Sec. III A.

A. Compensation radius and mass

The matching of contained mass atRc is not sufficient for
a Swiss-cheese-type matching, as we have not required
time since the bang to match up at this location, and the
fore is technically the wrong definition@7#. However, it has
the advantage that it can be calculated knowing only
density profile at a given time, and under the circumstan
used here is a fairly good estimate. All our models are th
calculated out toMc , i.e. 0<M<Mc .

We can put upper and lower limits on the compensat
radius and mass. For a condensation of measured massMm ,
the Mc value obviously cannot be less than this. In fact t
region around the visible condensation, though of low d
sity, is of large volume, and will add noticeably to the ma
to be ‘‘compensated for.’’ Therefore,

Mc,min.Mm , Rc,min.S 3Mm

4prb,today
D 1/3

, ~3.1!

where Eq.~7.2! givesrb,today54.075310230 g/cc in the cho-
sen parabolic background, or more conveniently

Rc,min.1.5831024~Mm /M (!1/3 in Mpc. ~3.2!

On the other hand, the observed average separatio
condensations puts an upper limit onRc . Since the contents
of the Universe are a mixed bag of galaxy clusters, r
clusters, superclusters, field galaxies, voids, walls, etc.,
average separation of rich clusters, say, is not meaningfu
this purpose. So we instead argue that there are aro
33106 large galaxies and 33107 dwarf galaxies within 109

light years. At say 1011M ( and 1010M ( , respectively, this
gives a mean density of around 4.973109M ( per Mpc3

53.36310228 kg/m350.0826rb,today. Therefore an objec
of massMm in M ( should on average occupy a volume
radius of about

Rc,max53.6431024~Mm /M (!1/3 in Mpc. ~3.3!

For a galaxy of 1011M ( , these two limits are 0.735,Rc
,1.69 Mpc; whereas for an Abell Cluster of 1015M ( , these
two limits are 15.8,Rc,36.4 Mpc.

For a void, the interior density will not be zero, but is n
well known, and the radius is of the order of 60 Mpc. On
by including some of the galaxies in the surrounding wa
can one bring the average density up to the backgro
value. SoRc.60 Mpc, which at background density give
Mc.5.531016M ( .
02350
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B. An example of fitting a profile

Since little is known about mass distribution within ga
axy clusters, we cannot attempt to model any actual clu
to any significant accuracy. However, we wish to show t
such modelling is in principle possible. Therefore, for t
beginning, we will use the profile from paper I and will sho
below that its free parameters can be made equal to s
observed/observable quantities.

Let rb be the background density. We choose the profile
t2 to be

r~M !5B2rbe2(M /m2)2
, ~3.4!

whereB2 and m2 are free parameters to be adapted to
observational constraints.

Given two pairs of (Mm ,Rm) data, (Ma ,Ra) and
(Mb ,Rb), we have

R35
3m2

8ApB2rb

erfi~M /m2! ~3.5!

for each of them, and each can be solved forB2, so that

3m2 erfi~Ma /m2!

8ApRa
3rb

5B25
3m2 erfi~Mb /m2!

8ApRb
3rb

. ~3.6!

This is solved numerically form2, andB2 follows.
The compensation radiusRc is determined by the condi

tion that the mean density out toM equals the background
density:

rb5
Mc

4pR~Mc!
3/3

5
2B2rbMc

Apm2erfi~Mc /m2!
. ~3.7!

This is solved forMc numerically, andRc follows from
~3.5!.

C. Profiles inspired by astronomy

We looked for density profiles that are considered realis
by astronomers. As it turned out, there is no general ag
ment as to which profile best describes observations, an
generally accepted definition of the radius of a galaxy clus
exists. However~see the Acknowledgments! the following
‘‘universal profile’’ is one of the more commonly used fo
mulas for density vs distance profiles@8–10#:

r~z!5rbd
1

~z/zs!~11z/zs!
2

, ~3.8!

whererb is the average density in the Universe,d is a di-
mensionless factor andzs is a scale distance.~This is a New-
tonian formula, in whichz is the Euclidean distance.! Ac-
cording to the authors of Refs.@8–10#, this profile applies for
z changing by two orders of magnitude.

For our procedure, we need the density given as a fu
tion of mass, which cannot be found analytically for th
above profile @11#. The calculationr(z)→M (z)→z(M )
2-3
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A. KRASIŃSKI AND C. HELLABY PHYSICAL REVIEW D 69, 023502 ~2004!
→r(M) can always be done numerically, but it is more i
structive to have exact explicit formulas.

We therefore approximateM (z) separately in the range
z!zs andz@zs .

For z!zs a Taylor series aroundz50 up toz2 gives

M ~z!'2prbdzsz
2
ªb2z2 → z'AM /b, ~3.9!

which converts profile~3.8! to

r1~M !5rbbdzs

1

AM S 11
AM

bzs
D 2 . ~3.10!

Like the original profile, this one has the unpleasant prope
that the density becomes infinite atM→0, so we modify it
to

r2~M !5
rbbdzs

~e1AM !S 11
AM

bzs
D 2 , ~3.11!

wheree is small compared tobdzs , and this can be inte
grated to giveR(M ).

Whenz@zs , the approximation

M ~z!'4prbdzs ln~11z/zs!ªg ln~11z/zs!,

→z5zs~eM /g21!, ~3.12!

substituted into Eq.~3.8! gives

r4~M !5rb

d

eM /g211n
e22M /g ~3.13!

wheren has again been added into the denominator to pe
a non-divergent central density. The correspondingR3(M ) is
still elementary@12#.

Profiles~3.11! and ~3.13! were the starting point for ou
considerations. The profiles actually used in numerical
amples were various modifications of these~see Sec. VII!,
done in order to better fit our profiles to observational da

D. The initial density profile

We assume that the condensed object~model of a galaxy
cluster! was created out of a small localized initial density
velocity perturbation, superimposed on the homogene
spatially flat Friedmann background. During the evolutio
the perturbation was increasing in density amplitude and
mass, and thus was effectively drawing more mass into
condensation region out of the surrounding homogeneou
gion @13,14#.

At t5t1, the profile need not be compensated. For
uncompensated profile, it is good if it is localized~i.e. the
perturbation is zero forM.M1, whereM1 is the assumed
mass of the initial perturbation!. Then the definitions of the
radius and mass of the perturbation are straightforward.
02350
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We choose for this profile the cosine shape

r~M !5H B1„11cos~pM /M1!…1rb for MP@0,M1#

rb5const for M>M1
~3.14!

with B1.0. Thenr(0)5rb(11A) is the maximal value of
density, withDr/rb5A52B1 /rb being the density ampli-
tude from astronomical data, whileM1 is the total mass of
the initial perturbation.

The radiusR(M ) is given from Eq.~2.10! by

R3~M !5
3M1

2p2Arb~rb12B1!

3arctanFA rb

rb12B1
tanS pM

2M1
D G for M<M1 ,

~3.15!

R3~M !5
3M1

4pArb~rb12B1!
1

3

4prb
~M2M1!

for M>M1 , ~3.16!

where the first term on the right-hand side in Eq.~3.16! is the
common value ofR3 at M5M1.

We did one run with this kind of initial profile (r i4 in
Table VI! in order to demonstrate more clearly the point w
made in paper I: that the mass of the ‘‘seed’’ structure ex
ing at time t1 can be much smaller than the mass of t
galaxy cluster into which it will evolve. The other initia
profiles are either flat~see Table VII and Sec. X for reason!
or go into the background only asymptotically.

IV. THE EVOLUTION FROM A GIVEN VELOCITY
DISTRIBUTION TO A GIVEN

DENSITY DISTRIBUTION

The quantity that is a measure of the velocity distributi
of the dust in an LT model is

b5R,t /M1/3. ~4.1!

This is constant in any Robertson-Walker model, so its n
constancy is a measure of the velocity inhomogeneity.

Suppose we wish to adapt a LT model to a given init
velocity distributionb5b1(r ) at t5t1, and to a given den-
sity distributionr5r2(r ) at t5t2. This is a different set of
data from the one considered in paper I, and so the existe
of such an evolution has to be proven. The functions app
ing along the way are different, but the overall mathemati
scheme is essentially the same. As before, we will mostly
using the massM as the radial coordinate, and in each ca
we will assume that at the initial instantt1 the configuration
is expanding, so

R,t~ t1 ,M !.0⇒b1~M !.0. ~4.2!

Analogous reasoning can be carried out for matter tha
initially collapsing, but this situation is just covered by th
2-4
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time reverse of the method given here and is not relevan
the problem of structure formation.

A. Hyperbolic evolution

We have, forE.0;

R,t5
M

A2ER
A~112ER/M !221. ~4.3!

If

R,t /M1/3u t5t1
5b1~r ! ~4.4!

is the data, then denotingRu t5t1
5R1 and solving the above

for R1 we find

R15
2M1/3

b1
222E/M2/3

, ~4.5!

and so from the evolution equations

h15arcosh~112ER1 /M !5arcoshS b1
212E/M2/3

b1
222E/M2/3D ,

~4.6!

AS b1
212E/M2/3

b1
222E/M2/3D 2

212arcoshS b1
212E/M2/3

b1
222E/M2/3D

5
~2E!3/2

M
~ t12tB!. ~4.7!

This is the equation that will be used as initial data at
5t1.

The equation att5t2 will be the same as Eq.~3.3! in
paper I fori 52, viz.

A~112ER2 /M !2212arcosh~112ER2 /M !

5
~2E!3/2

M
~ t22tB!. ~4.8!

Here, the quantityR25R(t2 ,r ) is calculated from the given
r2(r )5r(t2 ,r ) using Eq.~2.10!.

Just as in paper I, we introduce the symbols

x52E/M2/3, a25R~ t2 ,M !/M1/3. ~4.9!

The set of equations to determineE(M ) and tB(M ) is then
@from Eqs.~4.7! and ~4.8!#

AS b1
21x

b1
22x

D 2

212arcoshS b1
21x

b1
22x

D 5x3/2~ t12tB!,

~4.10!

A~11a2x!2212arcosh~11a2x!5x3/2~ t22tB!.
~4.11!
02350
or From Eq.~4.11! we now findtB :

tB5t22
1

x3/2
@A~11a2x!2212arcosh~11a2x!#, ~4.12!

and substituting this in Eq.~4.10! we obtain the following
equation to determinex:

FH~x!50, ~4.13!

where

FH~x!ªA~11a2x!2212AS b1
21x

b1
22x

D 2

21

2arcosh~11a2x!1arcoshS b1
21x

b1
22x

D
2x3/2~ t22t1!. ~4.14!

We will use the functionsb1(M ) anda2(M ) implied by the
assumedR,t1(M ) andr2(M ) to find E(M ) and tB(M ), and
then to findr(t1 ,M ). This will tell us about the relative
importance of the velocity and density distributions for stru
ture formation. In particular, withb15const, ther(t1 ,M )
will show how big the initial density inhomogeneity has
be when the initial velocity distribution is exactly homog
neous, while the final structure is given.

Conditions for solutions to exist

Now we have to verify whether or not the equatio
FH(x)50 determines a value ofx. We see thatFH(x) is
defined in the range

0<x,b1
2 . ~4.15!

It is easily seen thatFH(0)50. Forx→b1
2, the second and

fourth terms in Eq.~4.14! tend to (2`) and to (1`), re-
spectively, while all the other terms are finite. Since

lim
x→b1

2

arcosh@~b1
21x!/~b1

22x!#

A@~b1
21x!/~b1

22x!#221
50, ~4.16!

the second term is dominant. Hence,

lim
x→b1

2

FH~x!52`. ~4.17!

We also have

FH,x~x!5AxF a2
3/2

A21a2x
2

2b1

~b1
22x!2

2
3

2
~ t22t1!G

ªAxlH~x!. ~4.18!

Since lH,x52 1
2 a2

5/2/(21a2x)3/224b1 /(b1
22x)3,0, the

function lH(x) is strictly decreasing and may have at mo
one zero. Hence,FH,x can be positive anywhere only i
lH(0).0, i.e. if
2-5
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t22t1,
A2

3
a2

3/22
4

3b1
3

. ~4.19!

Since we consider the evolution fromt1 to t2, it is natural to
assumet2.t1. Then, Eq.~4.19! can be fulfilled only if

2/a2,b1
2 . ~4.20!

This inequality is easy to understand if we use Eq.~4.5! for
b1

2 ~with R5R1), and recall the definition ofa2, Eq. ~4.9!.
Then Eq.~4.20! is equivalent to

2

R2
,

2

R1
1

2E

M
. ~4.21!

This in turn implies thatR2.R1; otherwise there will be no
E.0 evolution fromR1 to R2. Thus, in passing, we hav
proven the intuitively obvious.

Conclusion.If matter is expanding att5t1, then anE
.0 LT evolution fromR(t1 ,M ) to R(t2 ,M ) will exist only
if R(t2 ,M ).R(t1 ,M ). j

Note thatR(t2 ,M ).R(t1 ,M ) does not implyr(t2 ,M )
,r(t1 ,M ), contrary to the intuitive expectation, and in co
trast to the Friedmann models. This point is discussed
Appendix B.

Equation~4.19! may be rewritten as

a2.F9

2 S t22t11
4

3b1
3D 2G 1/3

,

which means that betweent1 and t2 the model must have
expanded by more than theE50 model would have done
„Applying definitions~4.4! and~4.9! to ~2.5! and~4.5! for the

E50 case showst124/(3b1
3)5tB anda25@ 9

2 (t22tB)2#1/3. …
If Eq. ~4.19! is fulfilled, thenFH(x) starts as an increas

ing function in some neighborhood ofx50, beyond which
there is exactly one maximum, and finally it decreases
2` at x5b1

2, thus passing~only once! through a zero value
somewhere between the maximum andx5b1

2. Hence, Eqs.
~4.19! and~4.20! are a necessary and sufficient condition
the existence of anE.0 LT evolution connecting the initia
state@defined by the velocity distribution~4.4!# to the final
state defined by the density distributionr2(M ). As before,
the resulting model will have to be checked for the possi
existence of shell crossings and regular maxima or minim

B. Elliptic evolution: The final state in the expansion phase

Assuming that the initial state att5t1 is in the expansion
phase of the Universe, we find, similarly to Eq.~4.3!, that
with E,0

R,t5
M

A22ER
A12~112ER/M !2, ~4.22!

and then using Eq.~4.4! we obtain Eq.~4.5! once again.
Since this timeE,0, the inequality 2M1/3/R12E/M2/3>0
has to be fulfilled, but this is identical to 2M /R12E>0 that
02350
in
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.

has to hold for anE,0 evolution anyway. In place of Eqs
~4.6! and ~4.7! we obtain att5t1

h5arccosS b1
212E/M2/3

b1
222E/M2/3D , ~4.23!

arccosS b1
212E/M2/3

b1
222E/M2/3D 2A12S b1

212E/M2/3

b1
222E/M2/3D 2

5
~22E!3/2

M
~ t12tB!. ~4.24!

Since we assumed the final state att5t2 to be in the
expansion phase, too, the equation att5t2 is the same as Eq
~3.15! in paper I fori 52:

arccos~112ER2 /M !2A12~112ER2 /M !2

5
~22E!3/2

M
~ t22tB!. ~4.25!

We introducea2 by Eq. ~4.9! and

x522E/M2/3, ~4.26!

then Eqs.~4.24! and ~4.25! become

arccosS b1
22x

b1
21x

D 2A12S b1
22x

b1
21x

D 2

5x3/2~ t12tB!,

~4.27!

arccos~12a2x!2A12~12a2x!25x3/2~ t22tB!.
~4.28!

From Eq.~4.28! we have

tB5t22
1

x3/2
@arccos~12a2x!2A12~12a2x!2#,

~4.29!

and substituting this in Eq.~4.27! we obtain

FX~x!50, ~4.30!

where

FX~x!ªA12S b1
22x

b1
21x

D 2

2A12~12a2x!2

1arccos~12a2x!

2arccosS b1
22x

b1
21x

D 2x3/2~ t22t1!. ~4.31!

The terms containingb1 do not impose any extra restrictio
on x apart fromx.0 that follows from definition~4.26!.
2-6
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Sincea2.0 andx.0, the restriction onx imposed by the
other terms is the same as in paper I:

x<2/a2 , ~4.32!

which follows from 2M /R12E>0 (x52/a2 corresponds to
the givenM shell being exactly at the maximum of expa
sion att5t2).

Conditions for solutions to exist

The calculations are similar to those in the previous s
tion; they are described in Appendix C1. Equation~4.30! has
a solution if and only if the following two inequalities ar
obeyed:

t22t1.
A2

3
a2

3/22
4

3b1
3

, ~4.33!

which is the opposite of Eq.~4.19!, and

t22t1<~a2/2!3/2Fp1
b1A2a2

a2b1
2/211

2arccosS a2b1
2/221

a2b1
2/211

D G .

~4.34!

The solution is then unique. The second inequality is equ
lent to Eq.~3.22! in paper I, as can be verified by writing Eq
~4.5! asb15A2/a12x and usingx52/a2.

It follows that the right-hand side of Eq.~4.34! is always
greater than the right-hand side of Eq.~4.33!, as proven in
Appendix A to paper I, so the two inequalities~4.34! and
~4.33! are consistent. It follows further, as shown in pape
that the equality in Eq.~4.34! means that the final state att2
is exactly at the maximum expansion. Note that, in con
quence ofb1.0,a2.0 and arccos(anything)<p, the right-
hand side of Eq.~4.34! is always positive, and so, givent1,
values oft2 obeying Eq.~4.34! always exist.

The set of inequalities~4.33! and ~4.34! constitutes the
necessary and sufficient condition for the existence of aE
,0 LT evolution between the initial state att1 specified by
the velocity distribution~4.4! and the final state att2 speci-
fied by the density distributionr(t2 ,M )5r2(M ), such that
the final state is still in the expansion phase.

C. Elliptic evolution: The final state in the recollapse phase

We assume now that the initial state att5t1 is again in
the expansion phase, so Eqs.~4.22!–~4.24! still apply. How-
ever, the final state att5t2 is now assumed to be in th
recollapse phase. Instead of Eq.~4.25! we then get

p1arccos~2122ER2 /M !1A12~112ER2 /M !2

5
~22E!3/2

M
~ t22tB!. ~4.35!

Introducing againa2 by Eq.~4.9! andx by Eq.~4.26!, we
obtain the set of equations consisting of Eq.~4.27! and
02350
-

-

,

-

p1arccos~212a2x!1A12~12a2x!25x3/2~ t22tB!.

~4.36!

The solution fortB is now

tB5t22
1

x3/2
@p1arccos~211a2x!1A12~12a2x!2#,

~4.37!

and substituting this in Eq.~4.27! we get

FC~x!50, ~4.38!

where

FC~x!ªA12S b1
22x

b1
21x

D 2

1A12~12a2x!21p

2arccosS b1
22x

b1
21x

D 1arccos~211a2x!

2x3/2~ t22t1!. ~4.39!

As before, we havex.0 by definition andx<2/a2.

Condition for solutions to exist

The details of the calculation are shown in Appendix C
Equation~4.38! has a solution if and only if

t22t1>~a2/2!3/2Fp1
b1A2a2

a2b1
2/211

2arccosS a2b1
2/221

a2b1
2/211

D G ,

~4.40!

and then the solution is unique. This is the necessary
sufficient condition for the existence of anE,0 LT evolu-
tion between the initial state att1 specified by the velocity
distribution ~4.4! and the final state att2 specified by the
density distributionr(t2 ,M )5r2(M ), such that the final
state is in the recollapse phase.

D. The meaning of parameters

It should be noted that the values of the time coordinatet1
and t2, at which the initial and final states are specified,
not play individual roles in the calculations. The meaning
parameter is (t22t1); it is this value that determinesE(M ),
and then the correspondingtB is calculated. The ‘‘age of the
Universe’’ at the two instants then follows, being (t12tB)
and (t22tB), respectively. This conclusion applies as well
paper I; and the same is still true in the Friedmann lim
wherex, a1 , a2 andb1 are no longer functions ofM, but just
constants. Hence, the physical input data for the proced
both here and in paper I, are the initial and final distributio
of density or velocity and the time interval between the
(t22t1). The individual values oft1 and t2 do not have a
physical meaning.
2-7
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V. THE EVOLUTION FROM A GIVEN VELOCITY
DISTRIBUTION TO ANOTHER VELOCITY

DISTRIBUTION

For completeness, we shall also consider the case w
both the initial and the final state are defined by veloc
distributions, even though this does not seem to be dire
useful for astrophysics.

A. Hyperbolic evolution

Equation~4.7! still applies. Definingx52E/M2/3 as in the
previous cases, we again obtain Eq.~4.10!, while instead of
Eq. ~4.11! we now have

AS b2
21x

b2
22x

D 2

212arcoshS b2
21x

b2
22x

D 5x3/2~ t22tB!,

~5.1!

where

b25R,t /M2/3u t5t2
. ~5.2!

Since the hyperbolic expansion cannot be reversed to
come collapse, and since we assumedb1.0 ~expansion
rather than collapse att1), it follows that b2.0 is a neces-
sary condition here.

From Eqs.~4.10! and ~5.1! we obtain two equations

tB5t i2
1

x3/2FAS bi
21x

bi
22x

D 2

212arcoshS bi
21x

bi
22x

D G ,

~5.3!

i 51,2,

so x is the solution of

xH50, ~5.4!

where

xH~x!ªAS b2
21x

b2
22x

D 2

212AS b1
21x

b1
22x

D 2

21

2arcoshS b2
21x

b2
22x

D 1arcoshS b1
21x

b1
22x

D 2x3/2~ t22t1!.

~5.5!

Note that Eq.~4.5! and its analogue att2 imply bi
22x

[2/ai.0, i 51,2, i.e.x,bi
2 at both i 51 and i 52. This,

together withx.0, guarantees that the argument of arco
will be always>1, as it should be. Simultaneously, it gua
antees that both square roots will be real.

Conditions for solutions to exist

Details of the calculations are shown in Appendix C 2.
For further analysis, we will need to investigate the d

rivative of xH(x), it is
02350
en
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dx
xH~x!5AxF 2b2

~b2
22x!2

2
2b1

~b1
22x!2

2
3

2
~ t22t1!G

ªAxmH~x!. ~5.6!

We also have to know which is greater:b1
2 or b2

2. As ex-
pected, it turns out that in consequence of the assumpt
made (t2.t1 and R,tu t5t1

.0, i.e. b1.0), b1
2 must be

greater, or else theE.0 evolution between the two state
will not exist—see Appendix D.

Therefore we take it for granted that

b1.b2 , ~5.7!

i.e. that at every point the velocity of expansion att2 must be
smaller than att1 at the same comoving coordinateM. With
b1.b2, we have

x,b2
2 , lim

x→b2
2

mH~x!51`, ~5.8!

and, in a similar way as in Appendix D, it can be proven th
now mH8 (x).0 for all x.0. Consequently,mH(x) may have
at most one zero, and it will have one only ifmH(0),0, i.e.
if

t22t1.
4

3 S 1

b2
3

2
1

b1
3D . ~5.9!

Unlike in those cases where the profile was specified by d
sity, the time difference between the initial and the final st
must be sufficientlylarge. The inequality becomes more in
telligible when it is rewritten as

b2
3.

b1
3

11 3
4 b1

3~ t22t1!
, ~5.10!

which means that anE.0 evolution between the two state
will exist provided the velocity of expansion att2 is greater
than the velocity of expansion of theE50 model, for which
b354/@3(t2tB)#, giving an equality in Eq.~5.10!.

Since the range ofx is limited to (0,b2
2), findingx numeri-

cally will pose no problems.

B. Elliptic evolution: The final state in the expansion phase

Expansion att2 is equivalent tob2.0. The set of equa-
tions to definex522E/M2/3 now consists of Eq.~4.27! and
its analogue att2, obtained by the substitution (b1 ,t1)
→(b2 ,t2). Hence,

tB5t i2
1

x3/2
F arccosS bi

22x

bi
21x

D 2A12S bi
22x

bi
21x

D 2G ,

~5.11!

i 51,2,

andx satisfies

xX~x!50, ~5.12!
2-8
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where

xX~x!ª2A12S b2
22x

b2
21x

D 2

1A12S b1
22x

b1
21x

D 2

1arccosS b2
22x

b2
21x

D 2arccosS b1
22x

b1
21x

D 2x3/2~ t22t1!.

~5.13!

This time there is no additional limitation imposed onx by
Eqs. ~5.11!–~5.13!—the square roots and the arccos will
well defined for every value ofx.0. The relation betweenx
andbi is x52M1/3/@Ri(bi

211)#, and so indeed any value o
x.0 is allowed, sincebi can have values between 0 at ma
mum expansion and̀ at the Big Bang, whileRi can be
arbitrarily large or small, depending on the initial data. Ho
ever, as always in the elliptic case,E>21/2 has to hold,E
521/2 indicating a maximum in the spatial section, and t
will have to be checked while solving Eq.~5.13! for x.

Findingx numerically will be no problem also here, sinc
the natural variables to work with areyi5(bi

22x)/(bi
2

1x), both of which have the limited range (21,1) for x
.0.

Conditions for solutions to exist

We have

xX~0!50, lim
x→`

xX~x!52`, ~5.14!

xX8 ~x!5AxF 2b2

~b2
21x!2

2
2b1

~b1
21x!2

2
3

2
~ t22t1!GªAxmX~x!.

~5.15!

⇒xX8 ~0!50, lim
x→`

xX8 ~x!52`. ~5.16!

It is known from the evolution equations~2.4! that if b1
.0 andt2.t1, then the velocity of expansion att2 must be
smaller thanb1. However, just as in the previous cases, t
can be proven also from the properties of the functionxX(x),
and the proof is given in Appendix E. Therefore we will ta
it for granted that

b2,b1 ~5.17!

in the following. We find

mX8 ~x!52
4b2

~b2
21x!3

1
4b1

~b1
21x!3

, ~5.18!

and somX8 (0),0, i.e.mX(x) is decreasing in a neighborhoo
of x50. It keeps decreasing as long asmX8 is negative, i.e. as
long asx,xm , wherexm is the ~unique! solution ofmX8 (x)
50:
02350
-

s

s

xm5~b1b2!1/3
b1

5/32b2
5/3

b1
1/32b2

1/3

[~b1b2!1/3~b1
4/31b1b2

1/31b1
2/3b2

2/31b1
1/3b21b2

4/3!.

~5.19!

From here we find

bi
21xm5bi

1/3
b1

22b2
2

b1
1/32b2

1/3
, ~5.20!

and so the value ofmX(xm) is

mX~xm!52
~b1

1/32b2
1/3!2

~b1
22b2

2!2
~b2

4/32b1
4/3!2

3

2
~ t22t1!

,2
3

2
~ t22t1!,0 ~5.21!

~in consequence ofb2,b1). For x.xm , mX8 (x) is positive,
and somX(x) is increasing, but lim

x→`
mX(x)52 3

2 (t22t1)

is still negative. Hence, in summary,mX(x) is decreasing
from the value 2/b2

322/b1
32 3

2 (t22t1) at x50 ~which may
be positive or negative! to a minimum atx5xm which is
negative, and then keeps increasing, but remains negativ
all x.xm . Thus, from Eq.~5.15! it follows that the function
xX is necessarily decreasing forx.xp>0, wherexp is the
zero of xX8 (x). Consequently, the equationxX(x)50 will
have a positive solution only ifxp.0, i.e. if there is a neigh-
borhood of x50 in which xX(x) is increasing @recall:
xX(0)50]. Thus, the necessary and sufficient condition
the existence of a positive solution ofxX(x)50 is mX(0)
.0, i.e. the opposite of Eq.~5.9!:

t22t1,
4

3 S 1

b2
3

2
1

b1
3D , ~5.22!

which now implies that the expansion betweent1 and t2
must have been slower than it would be in anE50 model.

C. Elliptic evolution: The final state in the collapse phase

Finally, we shall consider theE,0 evolution between
two velocity profiles for the case when the final state is in
collapse phase,b2,0.

For the initial state, we can still use Eqs.~4.3!–~4.7!. The
only difference is that this timeb2 comes out negative:

b252A2M1/3

R2
1

2E

M2/3
, ~5.23!

but the analogue of Eq.~4.5! has the same form as before

R25
2M1/3

b2
222E/M2/3

. ~5.24!

Hence,
2-9
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tB5t22
1

x3/2
Fp1arccosS x2b2

2

x1b2
2D 1A12S x2b2

2

x1b2
2D 2G ,

~5.25!

with Eq. ~5.11! still applicable att1, and, from Eq.~5.25!, the
equation to determinex522E/M2/3 is

xC~x!50, ~5.26!

where

xC~x!ªA12S b1
22x

b1
21x

D 2

2A12S x2b2
2

x1b2
2D 2

1p

1arccosS x2b2
2

x1b2
2D 2arccosS b1

22x

b1
21x

D 2x3/2~ t22t1!.

~5.27!

Conditions for solutions to exist

We have

xC~0!52p, lim
x→`

xC~x!52`, ~5.28!

and soxC(x)50 is guaranteed to have a solution forx.0.
The surprising result is thus:

If the final state is in the collapse phase so that b2,0,
then an E,0 evolution exists between any pair of stat
(t1 ,b1) and (t2 ,b2).

Consistently with Eq.~5.28!, we obtain

xC8 ~x!52
2b1Ax

~b1
21x!2

1
2b2

3

~b2
21x!2Ax

2
3

2
Ax~ t22t1!,

~5.29!

which, in consequence ofb2,0, is negative for allx.0,
and so the solution ofxC(x)50 is unique.

The initial point for solvingxC(x)50 numerically can be
conveniently found as follows: each square root and e
arccos term in Eq.~5.27! is not larger than 1 at all values o
x.0, and where two of them equal 1, the two others
strictly smaller than 1. Hence, their sum is strictly smal
than 4, and

xC~x!,41p2x3/2~ t22t1!ªx̃C~x!. ~5.30!

Consequently,xZ,xA , where x5xZ is the solution of
xC(x)50, andx5xA is the solution ofx̃C(x)50:

xA5F 41p

~ t22t1!G
2/3

. ~5.31!
02350
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VI. AN INITIAL VELOCITY AMPLITUDE CONSISTENT
WITH THE CMB OBSERVATIONS

Recent observations of the power spectrum of the CM
radiation@15–17# show that the maximal value of the tem
perature anisotropy,DT, is approximately 80mK, and is at-
tained for perturbations with the wave numberl'200, which
corresponds to the angular size of nearly 1°@17–20#. ~The
numbers in the graphs in Refs.@18–20# imply that the ‘‘an-
gular size’’ meant here is the radius rather than the diam
of the perturbation.! Consequently, one might take 80mK as
the upper limit of temperature variation and 1° as the up
limit on the angle subtended by the radius of the pertur
tion. However, both these parameters far exceed the s
needed to model the formation of a galaxy cluster, and e
more so for a single galaxy.

For simplicity we take thek50 Friedmann model as th
background. The relation between the physical size at rec
bination and the angle on the CMB sky was given in pape

As shown in the table in paper I, the 1° angle on the CM
sky is more than 10 times the angle occupied by the m
that will later become an Abell cluster of galaxies, and ab
250 times the angle occupied by the mass of a single gal
In order to get the right estimate for a galaxy cluster, one
to go down to the angular scales below 0.1°. In this region
the power spectrum observational data are sparse and
big error bars~see Refs.@17,19#!, but the amplitude is
'25 mK. At the angular scales corresponding to single g
axies, 0.004°, there are no good data.

One way to get an upper bound on the fluctuations
velocity is by assuming that the observed temperature va
tion is entirely due to local matter motion at recombinati
causing a Doppler shift. Now, the cosmological redshift

Tr

T0
5

S0

Sr
511z ~6.1!

is due to the expansion of the space intervening between
emission point at recombination and the observation po
today. A velocity fluctuation at recombination—i.e., a flu
tuation of the velocity of the emitting fluid relative to th
average background flow—superimposes an additional D
pler redshift

DT

T U
r

5
Dn

n
5

Dv
c

, ~6.2!

which is unchanged by the subsequent cosmological red
of both T and T1DT. Therefore DT/T'1025 implies
Dv/c'1025.

To properly estimate the magnitude of velocity fluctu
tions right after recombination, we use a paper by Duns
@21#. His Eq. ~84! relates the observed temperature fluctu
tions to a mode expansion of the velocity perturbations@22#.
From this and the various definitions elsewhere in the pa
we find, for a single dominant mode of wavelengthl and
relative velocityDv,

Dv/c5
DT

T

16p3Sr
2

3~S,t!r
3l3

~6.3!
2-10
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and, assuming a wavelength scale containing an Abell clu
mass at recombination,;5.87 kpc,

DT

T
5

25 mK

2.72 K
→Dv/c50.001895. ~6.4!

This is distinctly more than was estimated by assumingDT
was entirely due to a Doppler shift, and the reason is that
effects~on the observedDT/T) of density, velocity and in-
trinsic temperature perturbations partially cancel one anot

This must now be recalculated as a fluctuation in the
pansion velocity, since our measure of velocity isb
5R,t /M1/3, which is constant in space in the Friedma
limit.

We use thek50 Friedmann~dust! model to estimateR,t
at recombination. For this model,E50 andR(t,r )5rS(t),

S5F9M0~ t2tB!2

2 G1/3

, ~6.5!

and the past null cone is

r pnc5S 6

M0
D 1/3

@~ t02tB!1/32~ t2tB!1/3#. ~6.6!

Thus

R,tupnc52F S t02tB

t2tB
D 1/3

21G52FAS0

S
21G52@A11z21#.

~6.7!

We can now write, for recombination,

Db/b5DR,t /R,t5~Dv/c!/R,t

5
DT

T

16p3Sr
2

3~S,t!r
3l3

1

2@A11zr21#

50.001895/~2@A11100021# !59.89631025'1024.

~6.8!

Returning to inhomogeneous models, what should the
dius of the velocity perturbation be? The initial density pr
file considered in paper I had an initial fluctuation of sm
mass which later accreted more mass to form the conde
tion. But with a velocity perturbation, accretion would b
caused by a small initial inward perturbation over the wh
final mass.

Nothing is known from observations about the possi
profiles of the initial velocity perturbation. As such, we a
free to choose the profile that will be easy to calculate w

VII. PROFILES AND FITTING

A. Geometrical units

For convenience of computation, geometrical units w
employed in order to avoid extremely large numerical v
ues. If a massMG is chosen as the geometrical unit of ma
then the geometrical length and time units areLG
5GMG /c2 andTG5GMG /c3. It was convenient to define
02350
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different units for different sized structures. The units us
for Abell clusters, and for voids are summarized in Table

B. Background model

We use thek50 Friedmann model as our background
reference model, and all our compensation radii are ca
lated with respect to this model. It is chosen primarily f
simplicity, but any other Friedmann model would do.

For this model, withM as the radial coordinate, the are
radius is

Rb5S 9Mt2

2 D 1/3

, ~7.1!

where subscriptb indicates the background rather than L
functions or values, and the density is

8prb5
4

3t2
. ~7.2!

The velocity~rate of change ofR) is

~R,t!b5S 4M

3t D 1/3

, ~7.3!

so that scaled velocity becomes

bb5
~R,t!b

M1/3
5S 4

3t D
1/3

. ~7.4!

We could replacet with t2tB in all of the above, but we took
tB50 for our background model.

C. Choice of density profile att2Ä1.4Ã1010 yr

1. An Abell cluster

The widely used ‘‘universal profile’’~UP! for the variation
of density with radius in condensed structures~e.g., Ref.
@10#!, discussed in Sec. III C was found not suitable beca
of its divergent central density, and also it does not conver
r(M ) in any nice analytic form@23#. We therefore sought a

TABLE II. Abell Cluster Data. Data from@24#, giving the ob-
served masses within 0.2 Mpc and 1 Mpc deduced from x-ray
servations, which is used to fit the profiles in Table III to observ
tions.

Abell cluster M ~0.2 Mpc! M ~1 Mpc!

A 2199 (0.6560.11)31014M ( (2.960.3)31014M (

A 496 (0.4760.10)31014M ( (3.160.3)31014M (

TABLE I. Geometrical units. The sets of geometrical units us
for models of Abell clusters and for voids.

Object MG LG TG

Abell clusters 1015M ( 47.84 parsecs 156.0 yr
Voids 5531015M ( 2631 parsecs 8582 yr
2-11
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FIG. 1. Comparison of density profiles use
for Abell clusters. The curves are identified by th
numbers given in Table III. Although each curv
is matched to the same pair of (R,M ) points~see
Table II!, this only ensures theaveragedensity
within each of those two radii is the same for a
profiles, not the actual density.
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profile that is similar in the region for which data are know
but had a finite—if large—central density, expressed
r(M ) and had an analyticR(M ).

To determine the parameters of a profile, we fitted it to
mass-radius data from@24# for A2199 and A496, mostly
A2199. They give the mass at 0.2 Mpc and at 1 Mpc for e
cluster, estimated from fitting a model to the ROSAT x-r
luminosity data~see Table II!, so this allows the determina
tion of two parameters. We also attempted to control
maximum density and the compensation radius by try
profiles with a total of 4 parameters, but these adjustme
did not have a large effect overall.

We considered quite a variety of functional forms for o
profiles. For a number of them we fixed the parameters
02350
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fitting to the mass-radius data. A comparison of four of the
fits with the UP~also fitted to the same data! is shown in Fig.
1, and in Table III. Several runs were done with each
these.

2. A void

The main feature of a void is a low density region su
rounded by walls of higher than background density. O
initial attempt to model a void was to choose a profile w
r(M ) increasing, but this was problematic because we
not have good control over how high the density beca
before we reached the compensation radius. Thus we
signed a profile with a density maximum at the wall, decre
ing to background at largeM. In this way no unreasonabl
were
t fit the
TABLE III. Abell cluster profiles. The equations and properties of the profiles shown in Fig. 1, that
used to model the present density distribution in Abell clusters. The parameters given are those tha
A2199 data@24#. All nondimensionless values are in geometric units—see Table I.

Profile r/rb Parameters Rc Mc

rfUP
r

rb
5

d

R

Rs
S11

R

Rs
D2 d577440,

Rs53457LG
324600LG 0.9442MG

rf13

r

rb

5
B2e

2AM /s2

S n21
AM

m2
D S 11

AM

m2
D

B257774000,
m250.05304AMG,
s252m2,
n255

374500LG 1.449MG

rf15

r

rb

5
B2e

2M/s2

Sn21
M

m2
DS11

M

m2
D

B25507500
m250.04474MG ,
s252m2,
n255

312400LG 0.8416MG

rf16
r

rb
5

B2

11eM/m2

B25103400,
m250.04577AMG

286600LG 0.6500MG

rf17
r

rb
5

B2

11eAM /m2

B25498500,
m250.07144MG

349800LG 1.182MG
2-12
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TABLE IV. Void profiles. The equations and properties of the profiles shown in Fig. 2, which were
to model the present density distribution in voids. The parameters were chosen to give a low density
well below the background value~see@r/rb#0) within 60 Mpc radius. All non-dimensionless values are
geometric units—see Table I.

Profile r/rb Parameters @r/rb#0 Rc Mc

rf18
r

rb
5A21B2e

M/m2

A250.01,
B250.01,
m250.01429MG ,

0.01 22804LG 0.9902MG

rf20
r

rb
5

B2
2m2

21M2

C2m2
21~M2m2!

2

B250.3873,
C251,
m250.2475MG ,

0.075 35850LG 3.846MG
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density values are encountered even if the compensatio
dius is well beyond the density maximum. The profiles tri
are summarized in Table IV and Fig. 2.

D. Choice of velocity and density profiles att1Ä105 yr

For velocity fluctuations at recombination, we mere
choose a harmonic wave of very low amplitude, with eithe
or 1.5 wavelengths across the diameter of interest.
boundary of the region of interest is the radius that will b
come the compensation radius at time 2. See Table V
Fig. 3 for the details.

A few runs were done from initial density profiles, whic
are given in Table VI.

VIII. PROGRAMS

The foregoing procedure to solve for the LT functio
E(M ) and tB(M ) from given profilesR,t1(M ) and r2(M )
was coded in a set ofMAPLE @25# programs that also re
derived and verified the formulas, and fitted the profiles
the data. The programs to evolve the resulting LT model
02350
ra-

1
e
-
nd

o
d

plot the results were written inMATLAB @26#. Unlike the
MAPLE programs, the latter did not need large changes fr
the paper I versions, but were in any case refined and m
more flexible, and in particular were adjusted to handle tim
where the big crunch has already happened in parts of
model @27#. Also the density to density solving program
~MAPLE! was modified to handle bothr1.r2 andr2>r1.

As before, slightly different variables from those used
the foregoing algebra were more convenient for the num
ics. In particular, for the velocity to density case, in place
x, a2 , b1 and t i , we use y5xa2 , b5b1

2a2 and zi

5t i /a2
3/2. For the velocity to velocity case we usey

5x/b2
2, g5b1

2/b2
2 andzi5t ib2

3. Expressions for the follow-
ing limits at the origin are also needed:

ai~0!5 lim
M→0

R~ t i ,M !

M1/3
5S 6

kr~ t i ,0! D
1/3

5
2

bi
2~0!7x~0!

,

~8.1!

bi~0!5 lim
M→0

R,t~ t i ,M !

M1/3
5eA 2

ai~0!
6x~0!, ~8.2!
s
s

FIG. 2. Comparison of density
profiles used for voids. The curve
are identified by the number
given in Table IV.
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where the upper sign is for the hyperbolic case and the lo
one for the elliptic case;e511 is for expansion, ande5
21 for collapse. Sincex(0) comes from the solution proce
dure, we have an expression forai(0), whether velocity or
density profiles are given, but forbi(0) when the velocity
profile is given, the limit must be calculated using the e
plicit velocity profile function. Alternatively, the velocity
may be given in the formbi(M ).

For reconstructing the model evolution from the soluti
functionsx and tB , the formulas in paper I still suffice.

IX. RUNS

The runs that we did are listed in Table VII, which als
lists the relevant figure numbers, where appropriate, and
significance of each run.

TABLE V. Initial velocity profiles. The equations and propertie
of the profiles shown in Fig. 3, which were used to model the ini
velocity fluctuations at recombination. The values ofMc were de-
termined by the final density profile being used in each run.
values are dimensionless.

Profile R,t /(R,t)b Parameters

Vi0
R,t

~R,t!b
51

Vi3
R,t

~R,t!b
511A1S11cosFpM

Mc
GD A15531025,

Mc from t2 data,

Vi4
R,t

~R,t!b
512A1S11cosFpM

Mc
GD A15531025,

Mc from t2 data,

Vi5
R,t

~R,t!b
511A1cosS3pM

2Mc
D A15131024,

Mc from t2 data,

Vi6 R,t

~R,t!b
512A1cosS3pM

2Mc
D A15131024,

Mc from t2 data,
02350
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X. RESULTS

A run is defined by specifying one of the initial profile
r1 and R,t1, and one of the final profiles,r2 and R,t2. The
results of a particular run are the two LT functionsE(M ) and
tB(M )—the local energy/geometry function and the loc
bang time function—that determine the LT model. T
model so defined may then be evolved over any time ra
or its whole lifetime and in particular, it can be verified th
the given profiles are reproduced. In addition, of the 4 p
files r1 , R,t1 , r2 and R,t2, the two that were not used t
define the run are also determined by$E(M ),tB(M )%, and
are of interest, especially the initial one.

The primary Abell cluster forming run,Vi4rf16 ~Fig. 5!,
used an improved present day density profile based on
servational results, and also started from an initial veloc
profile that was expanding less fast than the backgroun
the center, which is what one would expect to evolve into
condensation, see Figs. 3 and 5. Though an Abell clu
model was generated in paper I, the final profile was not
carefully chosen, and it was evolved from an initial dens
profile. However, the evolution ofr, R and R,t is visually
very similar to that given in paper I. The main differences a
at t1. Several runs with different initial velocity profiles gav
quite similar results—with onlyr1 and tB changing signifi-
cantly.

The primary void forming run,Vi3rf20 ~Figs. 6–9!, used
an initial state that was expanding faster than the backgro
at the center, which is what one would expect to evolve i
a low density region. Usingrf20 for the final density profile
was particularly successful, as the required density pro
develops smoothly and the density is still decreasing at ev
point even at the present time, so there is no sign of im
nent shell crossings. It is evident from the plots ofE and tB
and the conditions for no shell crossings@28#, that there must
be shell crossing at some time, but these are long be
recombination and well after the present time. A significa
feature is the relatively low central density at the initial tim
The evolution of voids in an LT model has been extensiv
discussed by Sato and co-workers, see a summary in

l

l

.
e

–0.0001

5x10

0.0001

Delta-Rt / Rt     

0.2 0.4 0.6 0.8 1
M

V 3

V 4 V 5

V 6

5x10

-5

-5

FIG. 3. Comparison of initial
velocity profiles at recombination
The curves are identified by th
numbers given in Table V.
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TABLE VI. Initial and final density profiles. The equations and properties of the profiles that were used to model the initial d
fluctuations at recombination and the final structure.

Profile r/rb Parameters Description

rf0 r/rb51 Uniform background density at time 2.

r i0 r/rb51 Uniform background density at time 1.

r i3
r/rb5

1

12A1~122M/m1!

A150.1,
m151.

Central overdensity plus surrounding underdensity of ord
1021 in region of mass 1015M ( . Used for the initial profile
in run r i3rf21.

r i4

r/rb5511A1S11cosF100pM

Mc
GD, M,

Mc

100

1, M>
Mc

100

A151.531025, Overdensity of order 331025 in region of mass 1013M ( ,
with exactly background density outside it.

rf21
r/rb5

1

11A2~122M/m2!

rb1

rb2

A250.1,
m251.

Central underdensity plus surrounding overdensity of ord
1021 in region of mass 1015M ( , with a ‘‘background’’
density equal to that at timet1. Used for the final profile in
run r i3rf21.
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@29#. They, too, found that it necessarily leads to a sh
crossing at some time. Our original attempt, usingr18, cre-
ated a shell crossing~where the density diverges and the
goes negative! so soon aftert2 that the model evolution pro
gram could only generate smooth density profiles up
0.98t2.

The case of a pure density perturbation,Vi0rf13, was
investigated by choosing a flat initialb1 evolving to a cluster.
This shows what initial density perturbation is needed at
combination to form the cluster by today—a central overd
sity surrounded by an underdensity, of order 1023. Similarly,
the case of a pure velocity perturbation,r i0rf13, created by
choosing a flat initialr1 evolving to a cluster, shows wha
initial velocity perturbation is needed—a general under
pansion of order 1024, decreasing outwards. The latter
contrasted with the pure velocity perturbation needed to
ate a void inr i0rf20—a general overexpansion of ord
1022, decreasing outwards.~See Fig. 10 for all 3 runs.! The
rather large size of these perturbations tends to confirm
perturbations in both density and velocity are needed.

Our entire approach—specifying profiles for an LT mod
at 2 different times—demonstrates that two LT models w
identicalr(M ) @and consequentlyR(M )] at a given time, or
identical R,t(M ) at a given time, can have quite differe
evolutions. This is shown by comparing runsr i0rf13 and
r i0rf20 ~both in Fig. 10!; also by runsVi4rf16 andVi4rf0;
and in a small way by the set of 4 runs that all end withrf0.
Thus, knowledge of only the density~or velocity! profile at
one time does not determine a model’s evolution at all.

To make clearer the effect of varying the initial veloci
profiles, a set of runs was done with all 4 initialV profiles
and the homogeneous finalr profile. We foundtB has almost
the same shape as the velocity perturbationb1 ; E is strongly
influenced byb1, except that it starts from zero atM50,
and returns close to zero atM5Mc ; and ther1 perturbation
02350
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is also strongly dictated byb1, but turns away from zero
towardsM5Mc .

Run r i3rf21 ~Fig. 11! demonstrates the density profi
inversion, which Ref.@30# proved was not only possible bu
likely, and our method makes it easy to obtain such evo
tions. This same run also shows a model can evolve fr
lower to higher density in one region and higher to low
in another; and that our method can handle such occurren

For the two times we have been considering—t1 at re-
combination andt2 at the present day—the shape of the
sultant E(M ) in any given run is dominated by the fina
density profile, while both initial and final profiles have
noticeable effect on the resultanttB(M ).

We have found that, when choosing the initial veloc
fluctuation with an appropriate magnitude, it is quite difficu
to keep the initial density fluctuation~which is not chosen!
small enough, and vice versa. The main run of paper I, wh
imposed a final density profile of a scale similar torf13, but
less centrally concentrated, and a 331025 density fluctua-
tion at t1, was quite successful in this regard, having a
sulting velocity variation that was within 331025 over
much of its range, only reaching 831024 in the outer re-
gions that evolved into vacuum. This sensitivity to profi
shape and better way of choosing initial profiles could
investigated further.

The compensation radius was close to a parabolic poin
every run. This must in fact be the case to high approxim
tion under the conditions we imposed. Since we are usin
k50 Friedmann model as our reference or backgrou
model, any LT model which has the sameM within the same
R at the samet2tB must be locally the same@same
R(t,Mc)] as the background, and therefore parabolic.
definition, the compensation radius is whereM andR are the
same as in the background, but in general our method d
not ensuret2tB matches there. At the beginning of the ca
2-15
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TABLE VII. Modelling runs.

Initial Final Function
profile profile Description ~Fig no.! list What it shows

r i4 rf17 Small localized density E(M ) ~4!, Classic evolution of a
perturbation→ Abell tB(M ) ~4!, small initial fluctuation
cluster R,t1(M ) ~4!, with 100th final mass

r(t,M ) ~4!, into a condensation with
realistic density profile att2.

Vi4 rf16 Low central initial expansion E(M ) ~5!, Evolution of low expansion
rate→ Abell tB(M ) ~5!, region, to a realistic
cluster r1(M ) ~5! density profile att2.

Graphs fairly similar to
paper I model.

Vi0 rf13 Uniform initial expansion E(M ) ~10a, top!, Case of a pure density
rate→ Abell perturbation—how big a
cluster tB(M ) ~10a, top!, perturbation is needed

r1(M ) ~10b, top!, for a present
r(t,M ) ~10b, top!, day structure?

r i0 rf13 Uniform initial density E(M ) ~10a, center!, Case of a pure velocity
→ Abell cluster tB(M ) ~10a, center!, perturbation—how

R,t1(M ) ~10b, center!, big a perturbation is needed
r(t,M ) ~10b, center!, for a present day structure?

r i0 rf20 Uniform initial density E(M ) ~10a, bottom!, Together withr i0rf13,
→ Void tB(M ) ~10a, bottom!, shows two models with the same

R,t1(M ) ~10b, bottom!, density profile at one time can
r(t,M ) ~10b, bottom!, have totally different evolutions.

Vi3 rf18 High central initial expansion ~None! Not so good example of evolution to a void—it
rate→ Void is so close to a shell crossing att2 that

the evolution program fails at the last time step.

Vi3 rf20 High central initial expansion E(M ) ~6!, Example of evolution to a void with good
rate→ Void tB(M ) ~7!, behavior att2 and well past it,

r1(M ) ~8!, but initial density perturbation
r(t,M ) ~9!, much too large.

Vi3 rf0 High central initial expansion ~None!
These 4 show very clearly the effect
on E(M ) & tB(M ) of varying initial
density or initial velocity.
Since the final density is
uniform, the deviation ofE(M ) and
tB(M ) from their FLRW forms is
entirely due to non-uniform initial profiles.
They also show a given density profile at one
moment can have many different evolutions.

rate→ Uniform density

Vi4 rf0 Low central initial expansion
rate→ Uniform density

Vi5 rf0 High central and low outer
initial expansion rates→ Uniform density

Vi6 rf0 Low central and high outer initial
expansion rate→ Uniform density

r i3 rf21 Expanding underdensity E(M ) ~11!, An example ofr2,r1 and within the
→ collapsing overdensity tB(M ) ~11!, same modelr1,r2. It

r1(M ) ~11!, also provides an example of
r2(M ) ~11!, density profile inversion.
023502-16
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FIG. 4. E(M ), tB(M ), the R,t1(M ) fluctuation, and ther(t,M ) evolution for runr i4rf17. Notice the effect of the central bump in
r1(M ) shows up in thetB andR,t1 curves. AlthoughdtB /dM.0 indicates there will be a shell crossing, the small magnitude oftB ensures
it will occur long beforet1, when the model first becomes valid.
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culation, we do not know (t2tB) yet, it is one of the results
of the procedure. As explained is Sec. IV D, the individu
values of the time coordinate have no meaning@31#. Only the
differences (t22t1), (t22tB), (t2tB), etc., appear in the
calculations and are physical parameters. Nevertheless
assume that ourt2 equals (t22tB) in the background. In
consequence,tB50 in the background, while in genera
tB(Mc)Þ0 in the perturbation. However, in practice, our u
of tiny deviations from the background value at recombin
tion t1 ensures that the jump intB can only be very slight.
This is what ensures a close-to-parabolic model atMc .

As a result of the above, in each of the numerical e
amplesE(M ) has the same sign in the whole range. Ho
ever, the method discussed here and in paper I can be fr
applied to models in whichE(M ) changes sign at som
M—see paper I for an example.
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XI. CONCLUSIONS

It is traditional to think of spacetimes as being specifi
by functions such as components of the metric and its
rivative, or density and velocity, given on some initial su
face. We have taken the new approach of specifying
function on an initial surface and another on a final surfa
and demonstrated that, in the case of the LT model, an e
lution from one to the other can be found. This approach
better suited to feeding the observational data into the mo
functions.

In particular, the spherically symmetric evolution from
given initial velocity ~or density! profile to another given
density~or velocity! profile, in any of the four possible com
binations, can always be found. The solution is a determ
tion of the arbitrary functions that characterize the mod
While there is no guarantee that the resulting model will
2-17
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FIG. 5. E(M ), tB(M ) and the r1(M ) fluctuation for run
Vi4rf16, in which a region of initially low expansion rate evolve
into an Abell cluster. In this and other figures, ‘‘H,’’ ‘‘EX,’’ ‘‘EC,’’
‘‘Pe,’’ and ‘‘Ph’’ indicate regions that are hyperbolic, elliptic an
still expanding at timet2, elliptic and recollapsing at timet2, ellip-
tic but within the range for a series expansion about the parab
model, and hyperbolic but within the range for a series expans
about the parabolic model.
02350
free of shell crossings, it is a simple matter to check
arbitrary functions once calculated, and our experience
shown that reasonable choices of the profiles keep any s

crossing well before the initial time or well after the fin
time.

The solution method has been programmed, and a var
of runs have demonstrated the practicality of the meth
Models of a void and of an Abell cluster have been genera
and shown to have well behaved evolutions between the
tial and final times. It is worth noting that the void mod
was able to concentrate matter into a wall without the form
tion of any shell crossings up to the present time and for w
after it.

The effect on the solution of varying the initial and fin
profiles was effectively illustrated. Some other previous
known features of the LT model, such as the possibility t
clumps could evolve into voids, were highlighted in the r
sults section by producing examples.

lic
n

FIG. 6. E(M ) for run Vi3rf20, which successfully creates
present day void. Though shell crossings are inevitable, they do
occur for a long time after the present.
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FIG. 7. tB(M ) for the void runVi3r f20.
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quite different. The reason is that there is very little mass in the vo
interior, so a large increase in distance corresponds to a small
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APPENDIX A: EXTENSIONS OF PAPER I—THE
EVOLUTION BETWEEN TWO DENSITY PROFILES

1. Models with both larger and smaller densities at later times

It is clear from the method of paper I that, for anyr value,
whatever solution is found forr2,r1, its time reverse (t
→t11t22t, tB→t11t22tB) will solve the case when the
density values are interchanged. But could bothr(t1 ,r a)
.r(t2 ,r a) and r(t1 ,r b),r(t2 ,r b) occur at differentr val-
uesr a andr b in the same model? It is obvious that a mod
with adjacent expanding and collapsing hyperbolic regio
must have severe shell crossings, unless they were sepa
by a neck@32#. But the latter puts the two hyperbolic region
on either side of a wormhole, so they do not really comm
nicate. On the other hand, it seems entirely possible that
world lines in an elliptic region could display such a beha
ior or even a hyperbolic region outside an elliptic region.

In paper I, the conditionr2(M )<r1(M ) was imposed
merely to ensureR2>R1, which allowed us to know there
was always a bang in the past, and hence a well definedtB .
However, we note that this condition did not exclude oth
equally unreasonable possibilities, such as an elliptic reg
outside a hyperbolic region~see@28#!.

Thus, if we relax this requirement, and allow allr1.0
and allr2.0 profiles, we merely have to note which ofR1
andR2 is larger before generating the ‘‘forwards’’ or ‘‘back
wards’’ solution.

We, in any case, have to check whether the conditions
no shell crossings@28# are satisfied, or whether a regula
maximum or minimum has been reached, and this me
adds one more thing to check—whether the bang and cru
functions are sufficiently continuous.

2. Including regions of zero density in the profiles

a. Transient zeros in the density

Given the expression for the density, Eq.~2.3!, it is clear
that if M ,r50 for a particularr, but E,r and (tB) ,r are not
zero, the density there will be zero for all time. Is it possib
that r50 at isolated events or on non-comoving worl
sheets?

AssumingM ,rÞ0 and 0,R,`, the only way for this to
happen would be forR,r to diverge without changing sign
while M ,r remains finite. We immediately see that diverge
R,r makesgrr divergent, which suggests bad coordinates
the very least. However, for allE values we may write
@33,34#

R,r

R
5S M ,r

M
2

E,r

E DR2F ~ tB! ,r1S M ,r

M
2

3E,r

2E D ~ t2tB!GR,t ,

~A1!

and it is clear thattB,rR,t is only divergent on the bang o
crunch, while (t2tB)R,t is zero there, becauseR,t;(t
2tB)21/3 at early times. So one possibility is thatt1 inter-

d
in-
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A. KRASIŃSKI AND C. HELLABY PHYSICAL REVIEW D 69, 023502 ~2004!
FIG. 10. ~a! E(M ) ~left! and tB(M ) ~right! for runsVi0rf13, r i0rf13 andr i0rf20 ~top to bottom!. The upper and middle rows show
the pure density and pure velocity fluctuations needed at recombination to create an Abell cluster today. The middle and bottom r
the difference in the pure velocity fluctuations needed at recombination to create an Abell cluster and a void today.~b! Ther1(M ) or R,t1(M )
fluctuation~left! and ther(t,M ) evolution ~right! for the corresponding graphs in~a!.
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FIG. 10. ~Continued!.
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A. KRASIŃSKI AND C. HELLABY PHYSICAL REVIEW D 69, 023502 ~2004!
FIG. 11. E(M ), tB(M ) and ther1(M ) and r2(M ) fluctuations for runr i3rf21. The densitiesr1 and r2 at timest1 and t2 are of
comparable magnitude~which makesr2 around 231010 times the parabolic background att1). In particular,r1.r2 at the center,M50,
andr2.r1 at the edge,M51.
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sects a non-simultaneous bang whilet2 does not intersect the
crunch at the samer value, or vice versa. This of cours
means that the constant time surface cannot be extende
yond this point, which is not really satisfactory. The on
other possibility is forE,r or tB,r to diverge@35#. But this
would give a comoving zero of density, and a coordin
transformation would makeE,r and/or tB,r finite and M ,r
zero.

Thus we conclude that, apart from the case of the initia
the final surface intersecting the bang or crunch, the den
along a particle world line cannot be zero at one time a
non-zero at another. Thus zeros of density have to be pe
nent and comoving.

b. r„M …Ä0 at a singleM value

To look at the question of whether zero density at a sin
M value can be accommodated in the methods of paper I
02350
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first determine what kind of zero we might expect inr(M ).
Working in flat 3D space, let

r~R!'AuR2Rzun, A,n const and.0 ~A2!

near a zero inr. Then

uM2Mzu54pE
Rz

R

r~R8!R82dR8

54pAS uR2Rzun13

n13
1

2RzuR2Rzun12

n12

1
Rz

2uR2Rzun11

n11 D , ~A3!

so, to lowest order
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uM2Mzu'4pA
Rz

2uR2Rzun11

n11
, ~A4!

uR2Rzu'S ~n11!uM2Mzu

4pARz
2 D 1/(n11)

,

~A5!

which means

r~M !'AS ~n11!uM2Mzu

4pARz
2 D n/(n11)

, ~A6!

and we noticen/(n11),1 always.
If we use this as an approximation near a point zero in

full curved spacetime expression, we find

R32Rz
35E

Mz

M 6

kr~M 8!
dM85

6

kB
~n11!uM2Mzu1/(n11),

~A7!

which is indeed well determined. We thus conclude that
modification of the paper I method is needed in princip
though some extra coding might be needed if the integra
had to be done numerically.~With all the profiles tried so far,
MAPLE did symbolic integrations to getRi

3 .!

c. rÄ0 over an extended region

We have already seen that zeros in the density have t
permanent and comoving, and this obviously applies to
tended vacuum regions. In any case, spherically symme
vacuum is Schwarzschild and must remain so.
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In order to allow the possibility thatr(t i ,r ) is zero over a
finite range, the choicer i5r i(M ) must be abandoned as a
points in the zero density region will have the same mass
M will be a degenerate coordinate there.

Whatever alternative possibilities we choose must all
us to identify the corresponding comoving coordinate poi
on each of the density profiles att1 and t2. ThusR is not a
suitable coordinate, as the twoR(t i ,r ) are different.

Thus we instead consider the following alternatives:
~1! Specifyr i5r i(r ) and M5M (r ). This parametric ver-

sion of choosingr(M ) allows r i(r )50 and M (r )5const
over some range ofr, but actually is not sufficient, as we sti
have no idea how muchRi(r ) increases over this range—
how much space is there between thenon-vacuumregions.
In other words, in such a range, neitherr i(r ) nor M (r ) pro-
vides a useable definition ofr in terms of a physical quantity

~2! Specifyr i5r i(Ri). In this case

Mi~R!5~k/2!E
0

R

Ri
2r i~R!dR. ~A8!

Now wherer i.0, M (R) will be different for eachR value,
and therefore can be used to identify corresponding points
the two profiles. We can then useR2 or R1 ~or something
else! as the coordinate radiusr. Let us say we chooser
5R2. But for regions wherer i50, M (R) will be degener-
ate. In this case, we take advantage of the fact that in vac
there are no matter particles, and so we have extra free
in choosing the geodesics that constitute our constantr paths.
Using a linear interpolation between theR values at the two
edges of the vacuum region at each oft1 andt2 provides the
obvious choice of corresponding points, i.e. at timet2,

r 5R2 , ~A9!

and at timet1,
irs
r 5H R2,vac,min1
~R1,vac2R1,vac,min!~R2,vac,max2R2,vac,min!

~R1,vac,max2R1,vac,min!
in vacuum,

M2
21

„M1~R1!… in non-vacuum.

~A10!

The original procedure for extracting the functionsE and tB , which actually usedR1 and R2, goes through with the only
change that functions ofr 5M are now functions ofr 5R2. In particular, in vacuum regions, each world line has different pa
of R1 andR2 values, but the sameM value.
APPENDIX B: THE EVOLUTION OF R„t,M …

VS THE EVOLUTION OF r„t,M …

Let us take the relation betweenR and r in the most
general case, without any assumptions, Eq.~2.10!.

This means that the value ofR at anyM depends on the
values ofr in the whole range@M0 ,M #. Also the inverse
relation, Eq.~2.9!, is nonlocal—to findr(t,M ) we need to
know R in an open neighborhood of the value ofM.

Assume nowr2,r1 over the whole of@M0 ,M #. Then
R2
3~M !2R1

3~M !2@R0
3~ t2!2R0

3~ t1!#

5
6

kEM0

M S 1

r2~u!
2

1

r1~u! Ddu.0. ~B1!

Hence,R2
3(M ).R1

3(M ) if

R0
3~ t2!2R0

3~ t1!1
6

kEM0

M S 1

r2~u!
2

1

r1~u! Ddu.0.
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A. KRASIŃSKI AND C. HELLABY PHYSICAL REVIEW D 69, 023502 ~2004!
This will hold if we assume, as was done in paper I,R0(t i)
50,i 51,2 in addition tor2,r1. The assumptionM050,
i.e. the absence of a mass point atR50, also made in pape
I, is not needed for this purpose.

The converse implication is simply not true:R(t2 ,M )
.R(t1 ,M ) for all MP@M0 ,M1# does not imply anything
for the relation betweenr(t2 ,M ) andr(t1 ,M ). This some-
what surprising fact is easy to understand on phys
grounds.R(t2 ,M ).R(t1 ,M ) for all MP@M0 ,M1# means
that every shell of constantM5M̃ has a larger radius att2
than it had att1. However, the neighboring shells may ha
moved closer toM̃ at t2 than they were att1. If they did,
then a local condensation aroundM̃ was created that ma
result inr(t2 ,M̃ ) being larger thanr(t1 ,M̃ ). This does not
happen in the Friedmann limit, where local condensati
are excluded by the symmetry assumptions.

A sufficient condition forr2(M ),r1(M ),MP@M0 ,M1#
is

1

~R1
3! ,M

.
1

~R2
3! ,M

for all MP@M0 ,M1#.

If R,M.0 for all MP@M0 ,M1# at botht1 and t2 ~i.e. there
are no shell crossings in@M0 ,M1#), then this is equivalen
to (R2

3),M.(R1
3),M for all MP@M0 ,M1#. Incidentally, this

implies R2.R1 for all MP@M0 ,M1# if R2(M0).R1(M0).

APPENDIX C: CALCULATIONS FOR SEC. IV

1. Derivation of Eqs. „4.33… and „4.34…

In Eqs.~4.31! we have

FX~0!50,

FX~2/a2!5p1
b1A2a2

a2b1
2/211

2arccosS a2b1
2/221

a2b1
2/211

D
2~2/a2!3/2~ t22t1!, ~C1!

FX,x5AxF a2
3/2

A22a2x
2

2b1

~b1
21x!2

2
3

2
~ t22t1!GªAxlX~x!.

~C2!

We see thatFX,x(0)50 and that lim
x→2/a2

FX,x51`. Now

lX,x(x)5 1
2 a2

5/2/(22a2x)3/214b1 /(b1
21x)3.0 for all x

P@0,2/a2#. Hence,lX can have at most one zero and it w
have one only iflX(0),0, i.e. if Eq. ~4.33! holds.

With Eq. ~4.33! fulfilled, FX,x,0 in a neighborhood of
x50, FX,x50 at some x5xmin , and FX,x→1` at x
→2/a2; the latter means that the tangent toFX(x) at x
52/a2 is vertical. Consequently,FX(x) itself is a decreasing
function forxP@0,xmin), and is negative in this range; then
is increasing forxP(xmin ,2/a2#. It can thus have a zero a
any x.0 if and only if FX(2/a2)>0, i.e., if Eq. ~4.34! is
fulfilled.
02350
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2. Derivation of „4.40…

The relevant properties ofFC(x) are

FC~0!52p.0,

FC~2/a2!5p1
b1A2a2

a2b1
2/211

2arccosS a2b1
2/221

a2b1
2/211

D
2~2/a2!3/2~ t22t1!, ~C3!

FC,x~x!52AxF a2
3/2

A22a2x
1

2b1

~b1
21x!2

1
3

2
~ t22t1!G,0.

~C4!

Since FC(0).0 and FC,x,0 for all x.0, the function
FC(x) may have~only one! zero anywhere in its range if an
only if FC(2/a2)<0, which translates into the opposite o
Eq. ~4.34!, i.e. Eq.~4.40!.

APPENDIX D: THE VELOCITY AT t2 MUST BE
SMALLER THAN AT t1 IN THE

HYPERBOLIC EVOLUTION

We now show thatb1
2.b2

2 must hold, as stated in Sec
V A 1, in consequence oft2.t1 and R,tu t5t1

.0, i.e. b1

.0. @The assumptionR,t(t1).0 is hidden already in Eqs
~2.4!–~2.6!; for R,t,0, (t2tB) would have to be replaced b
(tB2t) in all three places.#

Suppose thatb2
2.b1

2, so thatx,b1
2 applies. Then

lim
x→b1

2

xH~x!52`, ~D1!

and in additionxH(0)50 ~this second property does no
depend on the sign ofb2

22b1
2). It follows that a second zero

of xH(x) will exist if there exists a subset ofR1
1 on which

xH is an increasing function. From Eq.~5.6! we see that
xH,x(0)50, limx→b

1
2xH,x52`. Hence, in order thatxH(x)

may have a zero atx.0, themH(x), defined in Eq.~5.6!,
must be positive somewhere in the rangex.0. The deriva-
tive of mH(x) is

mH8 ~x!5
4b2

~b2
22x!3

2
4b1

~b1
22x!3

, ~D2!

and so there must exist values ofx such that

b2~b1
22x!32b1~b2

22x!3.0. ~D3!

This is equivalent to

@~b1 /b2!1/321#x.b1
1/3~b2

5/32b1
5/3!. ~D4!

However, this is a contradiction since, withb1,b2 and x
.0, the left-hand side is negative and the right-hand sid
positive.

Sinceb2
2.b1

2 has thus led to a contradiction, the oppos
must hold. This result is intuitively obvious~for dust, expan-
sion must slow down with time!, so the above is in fact jus
a consistency check.
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APPENDIX E: THE VELOCITY AT t2 MUST BE
SMALLER THAN AT t1 IN THE ELLIPTIC

EVOLUTION „FINAL STATE STILL EXPANDING …

We will prove here that theb2 in Eq. ~5.13! must be
smaller thanb1 if, as was assumed earlier,b1.0 and t2
.t1. The proof comes out quite simply if we look at th
function xX(x) defined by~5.13! as a function of the argu
mentb2. At b25b1 we have

xX~x!5x1~x!52x3/2~ t22t1!, ~E1!

which is obviously negative for all values ofx.0. At b2
→` we have

xX~x!5x2~x!5A12S b1
22x

b1
21x

D 2

2arccosS b1
22x

b1
21x

D
2x3/2~ t22t1!. ~E2!
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We find thatx2(0)50, lim
x→`

x2(x)52` and the deriva-

tive is x28(x)522b1Ax/(b1
21x2)22(3/2)Ax(t22t1)—

obviously negative for allx.0. Thereforex2(x) itself is
negative for allx.0.

Now we calculate

]xX~x!

]b2
52

4x3/2

~b2
21x!2

, ~E3!

which is negative for all values ofb2 at every value ofx
.0. Thus,xX(x) is negative for allx.0 atb25b1, negative
for all x.0 at b2→` and is a decreasing function ofb2 at
everyb2P(b1 ,`) for everyx.0. This means thatxX(x) is
negative at every value ofx.0 for anyb2.b1, and so the
equationxX(x)50 has no solutions in (0,̀) whenb2.b1 .
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