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Structure formation in the Lemaı̂ tre-Tolman model
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Structure formation within the Lemaıˆtre-Tolman model is investigated in a general manner. We seek models
such that the initial density perturbation within a homogeneous background has a smaller mass than the
structure into which it will develop, and the perturbation then accretes more mass during evolution. This is a
generalization of the approach taken by Bonnor in 1956. It is proved that any two spherically symmetric
density profiles specified on any two constant time slices can be joined by a Lemaıˆtre-Tolman evolution, and
exact implicit formulas for the arbitrary functions that determine the resulting LT model are obtained. Ex-
amples of the process are investigated numerically.
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I. INTRODUCTION

Though the Lemaıˆtre-Tolman~LT! model has been stud
ied extensively~see @1#!, the question of whether galaxie
and other modern cosmic structures can grow from sm
initial perturbations, using this exact inhomogenous cosm
logical model, has not been clearly answered.

Long ago Bonnor@2# considered a version of the gener
problem, in which the perturbation consisted of an inter
region matched to a Friedmann-Lemaıˆtre-Robertson-Walker
~Friedmann! exterior, so the initial fluctuation of density in
cluded all the dust particles that would enter the future g
axy, and so the outer edge of the perturbation had to
comoving with the ~spatially homogeneous! background
flow ever after. Because of this, and given the present ag
the Universe, the initial fluctuation had to have an amplitu
many times larger than a statistical fluctuation could ha
However, current matter models, that allow perturbations
grow before recombination, have successfully predicted t
perature perturbations in the cosmic microwave backgro
~CMB! of order 1025.

The very existence of inhomogeneous cosmological m
els ~i.e., spatially inhomogeneous solutions of Einstei
equations with expanding matter!, such as the LT@3,4# or
Szekeres@5,6# models, shows that non-Friedmannian dist
butions of density and velocity would have been coded in
big bang and need not be ‘‘explained’’ as statistical fluctu
tions that appeared within a homogeneous background
ing evolution. Moreover, since the LT collection of models
labeled by two arbitrary functions of mass, that reduce
specific forms in the Friedmann limit, it follows that the du
Friedmann models are a subset of measure zero within
LT set. Consequently, the Friedmann models are very
probable statistically and, assuming that our physical U
verse is homogeneous indeed, one needs to explain how
mogeneity might have come about out of inhomogene
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initial data, not the other way around. This is what inflati
is believed to have done. However, in this paper we sh
accept a high degree of homogeneity at decoupling, and
will determine how fast condensations can grow, once th
appear in a homogeneous background.

In this paper we shall relax Bonnor’s assumptions, a
consider the general case. In particular, we envisage a
nario in which the mass of the initial fluctuation is muc
smaller than the mass of the condensation into which it w
develop, and that it captures more mass during its evolutio1

The outer edge of the growing condensation will thus not
comoving with the background flow. The calculations,
though based on exact formulas, will have to be carried
numerically.

In the following we setL50, as its effect is felt primarily
at late times over the long range, and so will not stron
affect structure formation. Also, current interpretations of t
CMB and supernova data that estimate a non-zeroVL ,
should be regarded as provisional, since several reason
alternatives have been put forward.

II. BASIC PROPERTIES OF THE LEMAı ˆTRE-TOLMAN
MODEL

The Lemaıˆtre-Tolman ~LT! model @3,4# is a spherically
symmetric nonstatic solution of the Einstein equations wit
dust source. Its metric is

ds25dt22
R,r

2

112E~r !
dr 22R2~ t,r !~dq21sin2qdw2!,

~2.1!

whereE(r ) is an arbitrary function~arising as an integration
constant from the Einstein equations!, R,r is the derivative of
the functionR(t,r ) by r, andR obeys the equation

1Such a modification of Bonnor’s method was suggested by
Bażański during one of the seminars by A. K. in Warsaw.
©2001 The American Physical Society01-1
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R,t
252E12M /R1

1

3
LR2, ~2.2!

where L is the cosmological constant. Equation~2.2! is a
first integral of one of the Einstein equations, andM (r ) is
another arbitrary function that arises as integration const
The matter density is

kr5
2M ,r

R2R,r

, where k5
8pG

c4
. ~2.3!

In the following, we will assumeL50. Then Eq.~2.2!
can be solved explicitly. The solutions are:

WhenE,0:

R~ t,r !52
M

2E
~12cosh!,

h2sinh5
~22E!3/2

M
„t2tB~r !…, ~2.4!

whereh is a parameter. WhenE50:

R~ t,r !5F9

2
M „t2tB~r !…2G1/3

, ~2.5!

and whenE.0:

R~ t,r !5
M

2E
~coshh21!,

sinhh2h5
~2E!(3/2)

M
„t2tB~r !…, ~2.6!

wheretB(r ) is one more arbitrary function~the bang time!.
Note that all the formulas given so far are covariant un
arbitrary coordinate transformationsr 5g(r 8), and sor can
be chosen at will. This means one of the three functio
E(r ), M (r ) andtB(r ) can be fixed at our convenience by th
appropriate choice ofg.

In a general LT model,E may change sign, having bot
recollapsing and ever-expanding regions. Also the spat
5const withE(r ),0 everywhere is not necessarily clos
@and the one withE(r ).0 is not necessarily infinite#, see
Refs.@7,8#.

The Friedmann models are contained in the Lemaıˆtre-
Tolman class as the limit

tB5const, uEu3/2/M5const, ~2.7!

and one of the standard radial coordinates for the Friedm
model results if the coordinates in Eqs.~2.4!–~2.6! are cho-
sen so that

M5M0r 3, ~2.8!

where M0 is an arbitrary constant; so thatE5E0r 2,E0
5const.
02350
t.
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It will be convenient in most of what follows to useM (r )
as the radial coordinate@i.e., r 85M (r )# because in the struc
ture formation context one does not expect any ‘‘necks’’
‘‘bellies’’ where M ,r50, and soM (r ) should be a strictly
growing function in the whole region under consideratio
~See the papers by Barnes and, especially, by Hellaby@9,10#
for descriptions of necks. Some properties of a neck
peared also in the paper by Novikov@11#.! Then

kr52/~R2R,M ![6/~R3!,M . ~2.9!

We also, in searching for realistic models, prefer LT mo
els that are free of shell crossings@7#. This is not because
shells of matter cannot collide, but because the LT
moving description breaks down there.

We shall now apply this model to the problem of structu
formation within the exact relativity theory~i.e., without ap-
proximations!. We believe this question has not been sa
factorily answered so far, and so it deserves to be inve
gated more thoroughly, both as an important consequenc
LT models, and with a view to possible cosmological app
cations. We seek accreting models in which a small ini
fluctuation at decoupling captures more mass during its e
lution, thus growing in extent as well as in density contra

III. THE EVOLUTION AS A MAPPING FROM AN INITIAL
DENSITY TO A FINAL DENSITY

The evolution of the LT model is usually specified b
defining the initial conditions—the distributions of the b
bang timetB(M ) and of energyE(M ), or by specifying e.g.
the densityr(t1 ,R) and velocityR,t(t1 ,R) at an initial in-
stantt5t1. It is, however, possible, to approach the proble
in a different way: to specify the density distributions at tw
different instants,t5t1 and t5t2, calculate the correspond
ing E(M ) and tB(M ), and in this way obtain a definite
model. It is not immediately obvious whether all pairs
density distributions may be connected by an LT evolution
a chosen type; nor whether one can ensure shell crossing
not occur betweent1 andt2. However, such a mapping from
an initial density to a given final density should exist in ma
cases, especially with a sensible choice of density profile

In fact, it will be proven below that any initial value o
density at a specific position (r ,M const! can be connected
to any final value of density at the same position by one
the Lemaıˆtre-Tolman evolutions~eitherE.0, orE,0, or, in
an exceptional case,E50). In the Friedmann limit, any two
constant densities can be connected by one of thek.0, k
,0 or k50 Friedmann evolutions.

For definiteness, it will be assumed in the following th
the final instantt2 is later than the initial instantt1, i.e. t2
.t1, and that the final densityr(t2 ,M ) is smaller than the
initial densityr(t1 ,M ) at the sameM. We thus assume tha
matter has expanded along every world line, but the pr
can be easily adapted to the collapse situation.

A. Hyperbolic regions

Let us consider the LT model withE.0. Let the initial
and final density distributions att5t1 and t5t2 be given by
1-2
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r~ t1 ,M !5r1~M !, r~ t2 ,M !5r2~M !. ~3.1!

From Eq.~2.3! we then have, for each oft1 and t2,

R3~ t i ,M !2Rmini
3 5E

Mmin

M 6

kr i~M 8!
dM 8ªRi

3~M !, i 51,2

~3.2!

andR2(M ).R1(M ) in consequence ofr(t2 ,M ),r(t1 ,M ).
In the following we will assume there is an origin whe
M50 and R(t i ,0)50, so that Rmini505Mmin is valid.2

Solving the two parts of Eq.~2.6! for t(R,r ) and writing it
out for each of (t1 ,R1) and (t2 ,R2) leads to

tB5t i2
M

~2E!3/2
@A~112ERi /M !221

2arcosh~112ERi /M !#, i 51,2 ~3.3!

and then eliminatingtB between the two versions of Eq.~3.3!
we find

A~112ER2 /M !2212arcosh~112ER2 /M !

2A~112ER1 /M !2211arcosh~112ER1 /M !

5@~2E!3/2/M #~ t22t1!. ~3.4!

We shall prove that this equation has one and only one s
tion E(M ).0 ~in addition to the trivial solutionE50) pro-
vided thatt2 andt1 obey a certain inequality~see below!. In
fact, the inequality will exclude theE<0 models.

For ease of calculations, let us denote

x:52E/M2/3, ai5Ri /M1/3, i 51,2;

cH~x!:5A~11a2x!2212arcosh~11a2x!

2A~11a1x!2211arcosh~11a1x!

2~ t22t1!x3/2:5xH~x!2~ t22t1!x3/2. ~3.5!

Our problem is then equivalent to the following question:
what values of the parametersa2.a1 and t2.t1 does the
equationcH(x)50 have a solutionxÞ0? Note thatcH has a
zero at x50 that the more correct but less convenie
x23/2xH2(t22t1) does not have.

Sincex>0 andai.0 by definition,cH(x) andxH(x) are
well-defined for anyxP@0,̀ ). Note that

lim
x→`

arcosh~11aix!

A~11aix!221
5 lim

x→`

arcosh~11aix!

~ t22t1!x3/2
50, ~3.6!

and so in determining the sign ofcH(x) asx→`, the arcosh
terms can be neglected. Note also

2For examples where this is not the case, see the papers by
stein and Straus@12,13# with MminÞ0 andRmin50, and by Bonnor
and Chamorro@14# whereM50 from R50 to Rmin . Also ‘‘necks’’
are the locus of a minimum inM andR.
02350
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lim
x→`

xH~x!

~ t22t1!x3/2
50. ~3.7!

Hence, the last term incH becomes dominant whenx→
1`, and so

lim
x→1`

cH~x!52`. ~3.8!

It is easy to see thatcH(0)50, but we wish to know whethe
cH→01 or cH→02 asx→0. For this purpose, note that

d

dx
cH~x!5cH,x5AxF a2

3/2

A21a2x
2

a1
3/2

A21a1x
2

3

2
~ t22t1!G ,

~3.9!

from which it follows that

cH,x~0!50, lim
x→`

cH,x52`. ~3.10!

It is also easy to see that the term in square brackets in
~3.9! is a strictly decreasing function for allxP@0,̀ ), and so
it may be equal to zero in at most one point. Since it goes
the negative value2(3/2)(t22t1) whenx→`, it will have a
zero when it is positive atx50, i.e. when

t22t1,
A2

3
~a2

3/22a1
3/2!. ~3.11!

By comparison with Eq.~2.5!, sinceai5Ri /M1/3, the above
is seen to be equivalent to the statement that betweent1 and
t2 , R(t,M ) has increased by more than it would have
creased in theE50 LT model. This is a necessary conditio
for the existence of anE.0 evolution connectingR(t1 ,M )
to R(t2 ,M ).

It is also a sufficient condition, as we now explain. Wi
Eq. ~3.11! satisfied, limx→0cH,x501, i.e. cH,x.0 in a
neighborhood ofx50, then it goes through zero exact
once, at somex5xm , and becomes negative. This mea
thatcH(x) itself is increasing from the value 0 atx50, to a
maximum atx5xm , and is then decreasing all the way
x→` where it becomes2`. Hence, at one and only onex
5x0.xm , cH(x0)50. This implies that Eq.~3.4! defines a
function E(M ) in the whole range ofM in which Eq.~3.11!
is satisfied. Examples of the functionscH(x) from Eq. ~3.8!
that obey or do not obey Eq.~3.11! are shown in Fig. 1.

There remains a practical problem for the numerical c
culation ofE(M ). Since the range ofx is infinite in Eq.~3.5!,
an initial valuexA,` such thatcH(xA),0 has to be deter-
mined first. For this purpose, note that for largex we have
A(11aix)221'11aix. Together with Eq.~3.6!, this im-
plies thatcH(x) is well approximated for largex by

cA~x!ª~a22a1!x2~ t22t1!x3/2. ~3.12!

Indeed, it is easy to verify that for allx.0

cH~x!,cA~x!. ~3.13!

in-
1-3
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@Writing cH(x)2cA(x)[xH(x)2(a22a1)x, and (cH,x

2cA,x)5W(a2)2W(a1), where W(a)5a3/2Ax/A21ax
2a, we note thatW(a) is a decreasing function ofa for
every x.0, while cH(0)5cA(0)50. Hence, cH(x)
,cA(x) for x.0.# Therefore, ifcA(xA)50, thencH(xA)
,0.

The solution ofcA(x)50 is

xA5
~a22a1!2

~ t22t1!2
, ~3.14!

and soxA is a good initial value for the numerical progra
that will find a solution ofcH(x)50 by bisecting the seg
ment @0, xA# and checking the sign ofcH(xA/2).

Also, for numerical purposes, the limits of some of t
functions at M50 must be calculated separately, as e
plained in Appendix B.

B. Still-expanding elliptic regions

For E,0, a similar result holds, but with one more r
finement: depending on the value of (t22t1), the final den-
sity will be either in the expansion phase or in the recolla
phase~and only in one of these phases!. The dividing value
of (t22t1) will come out in the proof below.

Let us assume that theh of Eq. ~2.4! is in @0,p# for both
values oft i , so that the final density is still in the expansio
phase of its evolution.~For hP@p,2p#, the solutions for
(t i2tB) are different, and they will be considered separat
below.! The analogues of Eqs.~3.3! and ~3.4! are then

tB5t i2
M

~22E!3/2
@arccos~112ERi /M !

2A12~112ERi /M !2# ~3.15!

and

cX~x!50, ~3.16!

FIG. 1. The functioncH(x) for the caseE.0 with Eq. ~3.11!
satisfied~middle curve! and with Eq. ~3.11! not satisfied~lower
curve!. The upper curve is the approximating functioncA(x) from
Eq. ~3.12!. The parameters (a1 ,a2 ,t22t1) are (1,2.5,0.5) for the
two upper curves and (1,2.5,1.4) for the lower one.
02350
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where this time

x:522E/M2/3,

cX~x!:5arccos~12a2x!2A12~12a2x!2

2arccos~12a1x!1A12~12a1x!2

2~ t22t1!x3/2:5xX~x!2~ t22t1!x3/2, ~3.17!

the definitions ofai being still Eq.~3.5!.
The reasoning is entirely analogous to the one for E

~3.5!, but this time the arguments of arccos must have ab
lute values not greater than 1. This impliesx<2/ai for both
i, and so, sincea2.a1

0<x<2/a2 , ~3.18!

which means: if there is any solution of Eq.~3.16!, then it
will have the property~3.18!. The two square roots in Eq
~3.17! will then also exist. Equation~3.18! is equivalent to
the requirement that (R,t)

2 @in Eq. ~2.2! with L50# is non-
negative at botht1 and t2.

Note that

cX~0!50,

cX~2/a2!5p2arccos~122a1 /a2!

12Aa1 /a22~a1 /a2!2

2~2/a2!3/2~ t22t1!, ~3.19!

d

dx
cX~x!5cX,x5AxF a2

3/2

A22a2x

2
a1

3/2

A22a1x
2

3

2
~ t22t1!G . ~3.20!

In consequence ofa2.a1, the term in square brackets is no
an increasingfunction of x, and it becomes1` at x52/a2
@which only means thatcX(x) has a vertical tangent there#.
Hence, the term can go through zero at most once, and it
do so when it is negative atx50, i.e. when the opposite to
Eq. ~3.11! holds

t22t1.
A2

3
~a2

3/22a1
3/2!. ~3.21!

This means that the model must have expanded betweet1
andt2 by less than theE50 model would have done. If Eq
~3.21! does not hold, thencX,x is positive for allx.0, which
means thatcX(x) is increasing and will not be zero for an
x.0. Hence, Eq.~3.21! is a necessary condition for the ex
istence of a solution of Eq.~3.16!.

With Eq. ~3.21! satisfied,cX,x(x) becomes negative fo
somex.0, then goes through zero exactly once and the
positive all the way up tox52/a2. This implies thatcX(x)
initially decreases below 0, then has exactly one minim
1-4
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and is increasing up to the value~3.19! at x52/a2. Hence,
cX(x) will have a zero forx.0 only if cX(2/a2)>0, i.e. if

t22t1<~a2/2!3/2@p2arccos~122a1 /a2!

12Aa1 /a22~a1 /a2!2#. ~3.22!

The inequality~3.22! is consistent with Eq.~3.21!; see Ap-
pendix A. Equations~3.21! and ~3.22! together are a neces
sary and sufficient condition for Eqs.~3.16!, ~3.17! to define
a functionE(M ),0 for whichR(t2 ,M ) is still in the expan-
sion phase of the model.

C. Recollapsing elliptic regions

The reasoning above applied only in the increasing bra
of R in Eq. ~2.4!. For the decreasing branch, whereh
P@p,2p#, instead of Eqs.~3.16!, ~3.17! we obtain

tB5t12
M

~22E!3/2
@arccos~112ER1 /M !

2A12~112ER1 /M !2#

5t22
M

~22E!3/2
@p1arccos~2122ER2 /M !

1A12~112ER2 /M !2# ~3.23!

and

cC50, where

cC~x!:5p1arccos~211a2x!1A12~12a2x!2

2arccos~12a1x!1A12~12a1x!2

2~ t22t1!x3/2. ~3.24!

The derivative of this is

d

dx
cC~x!5cC,x52AxF a2

3/2

A22a2x
1

a1
3/2

A22a1x

1
3

2
~ t22t1!G , ~3.25!

and is negative for allx.0. Since

cC~0!52p.0, ~3.26!

the solution ofcC(x)50 for x.0 will exist if and only if
cC(2/a2)<0, which translates into the opposite of E
~3.22!:

t22t1>~a2/2!3/2@p2arccos~122a1 /a2!

12Aa1 /a22~a1 /a2!2#. ~3.27!
02350
h

Thus the two densities can be connected by anE,0 LT
evolution that is recollapsing at timet2 if Eq. ~3.27! is
obeyed.

Examples of functionscX(x) obeying or not obeying Eqs
~3.21! and ~3.22!, and of functionscC(x) obeying or not
obeying Eq.~3.27! are shown in Figs. 2 and 3.

D. Summary

The above analysis considered only single world lin
that is, singleM values. We extend this to the whole o
r i(M ) by noting thatE(M ) and tB(M ) are arbitrary func-
tions in the LT model, and so continuousr i will generate
continuousE and tB .

The meaning of the limiting cases is now easy
understand. In Eq.~3.11!, at M values where t22t1

5(A2/3)(a2
3/22a1

3/2), the final state results from the initia

FIG. 2. The functioncX(x) for the caseE,0 with Eqs.~3.21!
and~3.22! satisfied~middle curve!, with Eq.~3.21! satisfied and Eq.
~3.22! not satisfied~lower curve!, and with Eq.~3.21! not satisfied
~upper curve!. The parameters (a1 ,a2 ,t22t1) are (1,2,2) for the
middle curve, (1,2,3) for the lower curve, and (1,2,0.05) for t
upper curve.

FIG. 3. The functioncC(x) from Eq. ~3.24! obeying Eq.~3.27!
~solid curve! and not obeying it~dashed curve!. The parameters
(a1 ,a2 ,t22t1) are (1,2,9) for the first curve and (1,2,0.2) for th
other one.
1-5
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one by a parabolic (E50) evolution, so thisM value is on
the boundary between an elliptic region and a hyperblic o
Equation~2.5! follows as theE→0 limit of Eq. ~2.4! and of
Eq. ~2.6!. In Eqs.~3.22! and ~3.27!, for M values where the
equality holds, the final state is exactly at the local mom
of maximal expansion, separating a region ofr2 that is al-
ready recollapsing from one that is still expanding.

However, whenE,0 it must be remembered that the si
nature of the metric requires that

E~M !>21/2, ~3.28!

and so, onceE(M ) has been calculated, Eq.~3.28! will have
to be checked. Note that the Friedmann model in stand
coordinates has exactly this problem—with 2E52kr2 and
M5M0r 3, blindly continuing throughr 51 will make E,
21/2 andM.MUniverse. Indeed, given two uniform densi
ties r2,r1 that are appropriate for a closed Friedma
model, the integral~3.2! can be extended to arbitrarily larg
M andR. Thus the occurrence ofE521/2 is not a problem,
but rather an indication that the maximum of the spatial s
tion has been reached. One should record the values ofRmax
andMmax, and then use

Rmaxi
3 2R3~ t i ,M !5E

M

Mmax 6

kr i~M 8!
dM 8 ~3.29!

and distinguish theM values beyond the maximum from
those in front of it.

Another serious possibility is that shell crossings, wh
the density diverges and changes sign, may occur. If t
occur betweent1 and t2 the model evolution is unsatisfac
tory, but if they occur beforet1 or aftert2, this may not be of
much concern. The conditions onE(M ) and tB(M ) for
avoiding them@7# must also be checked.

All these considerations apply to the Friedmann limit, b
it must be remembered that in comparing models in a c
tinuous Friedmann family, one must not scale the curvat
indexk to 11 or 21 when it is nonzero. The parameterk is
adapted to the initial and final densities together withM0.
With k scaled to61, taking the limitk→0 within the family
becomes impossible, and the inequalities~3.11! and~3.21! do
not come up.

In summary, for densitiesr2(M ),r1(M ) at timest2.t1
we havea2.a1 whereai5Ri /M1/3, and writing

a5a1 /a2

the nature of the LT model that evolves between these st
at a givenM is:

Hyperbolic E.0:
If

t22t1,~A2a2
3/2/3!~12a3/2!

then

E5xM2/3/2

wherex solves
02350
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05cH~x!5A~11a2x!2212arcosh~11a2x!

2A~11a1x!2211arcosh~11a1x!2~ t22t1!x3/2

and

tB5t i2
1

x3/2
@A~11aix!2212arcosh~11aix!#.

Parabolic E50:
If ( t22t1) is close to

t22t15~A2a2
3/2/3!~12a3/2!

then a series expansion gives

E5xM2/3/2

wherex solves

05cP~x!'
A2x3/2

3 H a2
3/2S 12

3

20
a2x1

9

224
a2

2x2D
2a1

3/2S 12
3

20
a1x1

9

224
a1

2x2D2~ t22t1!J
and

tB't i2
A2

3
ai

3/2S 12
3

20
aix1

9

224
ai

2x2D .

Elliptic E,0 and still expanding at t2:
If

~a2/2!3/2@p2arccos~122a!12Aa2a2#.t22t1

.~A2a2
3/2/3!~12a3/2!

then

E52xM2/3/2

wherex solves

05cX~x!5arccos~12a2x!2A12~12a2x!2

2arccos~12a1x!1A12~12a1x!22~ t22t1!x3/2

and

tB5t i2
1

x3/2
@arccos~12aix!2A12~12aix!2#.

Elliptic E,0 and at maximum expansion at t2:
If ( t22t2) is close to

t22t15~a2/2!3/2@p2arccos~122a!12Aa2a2#

then a series expansion gives

E52xM2/3/2
1-6
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wherex solves

05cM~x!'223/2~22a2x!1/21
23/2

12
~22a2x!3/21p

2arccos~12a1x!1Aa1x~22a1x!2x3/2~ t22t1!

and

tB5t12
1

x3/2
@arccos~12a1x!2A12~12a1x!2#

't22x23/2S p223/2~22a2x!1/2

1
23/2

12
~22a2x!3/2D .

Elliptic E,0 and recollapsing at t2:
If

t22t1.~a2/2!3/2@p2arccos~122a!12Aa2a2#

then

E52xM2/3/2

wherex solves

05cC~x!5p2arccos~211a2x!1A12~12a2x!2

2arccos~12a1x!1A12~12a1x!22~ t22t1!x3/2

and

tB5t12
1

x3/2
@arccos~12a1x!2A12~12a1x!2#

5t22
1

x3/2
@p1arccos~211a2x!

1A12~12a2x!2#.
02350
It is easy to adapt the above for the caser2.r1. Clearly any
parabolic or hyperbolic regions would be collapsing.3

We conclude this section by stating the result as a th
rem:

Theorem.Given any two timest1 andt2.t1, and any two
spherically symmetric density profiles 0,r2(M ),r1(M )
defined over the same range ofM, a LT model can be found
that evolves fromr1 to r2 in time t22t1. The inequalities
~3.11!, ~3.21! and ~3.22!, ~3.27! will tell which class of LT
evolution applies at eachM value. The possibilities of shel
crossings or excessively negative energies are not exclu
and must be separately checked for.

IV. CONDITIONS FOR COMOVING EXTREMA OF
DENSITY

Since we expect the central condensation to propag
outward into the Friedmann background, we have to set
the initial conditions so that the edge of the condensatio
not comoving. For this purpose, it is useful to know t
general conditions for comoving extrema of density. We sh
now consider maxima and minima ofr in those domains
wherer is differentiable, and useM as the radial coordinate

From Eq. ~2.9! we see that extrema ofr will occur at
those values ofM where

~R3!,MM50. ~4.1!

@This is a necessary condition only. Some of the solutions
Eq. ~4.1! will be inflection points ofr(t1 ,M ) rather than
extrema, but the whole reasoning below will apply to the
too.# For the caseE,0 we find from the second of Eq.~2.4!

~12cosh!h,M5F ~22E!3/2

M G ,M~ t2tB!2
~22E!3/2

M
tB,M .

~4.2!

Using this in the first of Eq.~2.4! we find
tic region
~R3!,MM52S M3

8E3D ,MM~12cosh!326S M3

8E3D ,M~12cosh!sinhH F ~22E!3/2

M G ,M~ t2tB!2
~22E!3/2

M
tB,MJ

23
M3

8E3 S sin2h

12cosh
1cosh D H F ~22E!3/2

M G ,M~ t2tB!2
~22E!3/2

M
tB,MJ 2

23
M3

8E3
~12cosh!sinhH F ~22E!3/2

M G ,MM~ t2tB!22F ~22E!3/2

M G ,MtB,M2
~22E!3/2

M
tB,MMJ 50. ~4.3!

3For an expanding and a collapsing hyperbolic region to be contained in the same smooth model, there would have to be an ellip
between them. This is because ther2,r1 region and ther2.r1 region must have a point between wherer25r1. The only way this can be
arranged without causing shell crossings is for the elliptic region to be a Kruskal-like neck—see@10#.
1-7
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ANDRZEJ KRASIŃSKI AND CHARLES HELLABY PHYSICAL REVIEW D 65 023501
This equation defines certain values ofM, let us call them
M5Mex, at which r may have extrema. We will verify
when they are comoving, i.e. whenMex are independent o
time.

The Jacobian](M ,h)/](t,M ) is nonzero everywhere ex
cept those locations where

h,t50 ⇒ E50. ~4.4!

Hence, everywhere elseM and h can be considered to b
independent variables. Using the second of Eq.~2.4!, we can
eliminate (t2tB) from Eq.~4.3!, and, since theMex obeying
Eq. ~4.3! are assumed independent oft, what results is an
equation inh with coefficients depending onM. The coeffi-
cients of independent functions ofh all have to vanish. This
implies

@~22E!3/2/M #,M5@~22E!3/2/M #,MM5tB,M5tB,MM50,

~4.5!

~M3/E3!,MM50, ~4.6!

all quantities being calculated atM5Mex. Equations~4.5!
would have the same form in any coordinate system in wh
M5M (r ), but for Eq.~4.6!, the coordinateM is privileged;
in other coordinates this equation would look less reada
Note that Eqs.~4.5!, ~4.6! imply that atM5Mex the func-
tions tB , @(22E)3/2/M # and (M3/E3) agree with their
Friedmann values~as determined byE3/2/M and tB at Mex)
up to the second derivatives. This means that the local d
sity is at all times the same as that of the Friedmann mo
that matches on there.

In brief, we have shown that ifM5Mex is an extremum
of density, the density is differentiable atMex, and the ex-
tremum is comoving, then Eqs.~4.5!, ~4.6! are satisfied. Con-
versely, ifr is differentiable atMex, has an extremum there
and Eqs.~4.5!, ~4.6! are satisfied, then the extremum will b
comoving.

By the same method it may be verified that in theE(M )
.0 region, where Eq.~2.6! apply, the conditions for a co
moving extremum are again of the form~4.5!, ~4.6!, except
that now the (22E) in Eq. ~4.5! is replaced by (2E).

For the parabolic case, Eq.~2.5!, the condition (R3),MM
50 reads

29@~2tB,M1MtB,MM !~ t2tB!2MtB,M
2 #50, ~4.7!

and so the extremum will be comoving whentB,M5tB,MM
50 at M5Mex.

Note that for an arbitrary LT perturbation inside an e
actly Friedmannian exterior, the density at the boundary m
be discontinuous, as in the Einstein-Straus@12,13# configu-
ration. Furthermore, even if it isC1 at an initial moment, it
may develop a discontinuity. However, if the above con
tions hold at the boundary, they ensure the density isC1

through the boundary at all times.
02350
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V. NUMERICAL EXAMPLE

A. Scales in the background

The age of the universe is currently believed to be ab
14 Gyr. If recombination temperature is;2700 K, thenz
52700/2.73'1000 then recombination happened at ab
t r533105 yr when the density was about 1010 times the
present density.

However, in a k50 dust ~Friedmann! model, H0
565 km/s/Mpc impliest052/3H0510 Gyr, which would
put t r at 105 yr.

In an LT model that is close to parabolic even today, E
~2.4! and ~2.6! require sinhh2h'h3/6'h2sinh, so we
needh2!20, sayh,0.4. For a Friedmann model

MF5M0r 3, 2EF562E0r 2, tBF50. ~5.1!

From Eqs.~2.4! and ~2.6! again the limit onE0 is

~2uE0u!3/2t0

M0
'

h3

6
,

0.43

6
'0.01. ~5.2!

In a closed model, the maximum in the spatial sectio
—the ‘‘equator’’ of the 3-sphere —is atr 5r m where 2E5
21, so

2uE0ur m
2 51 ⇒ r m5

1

A2uE0u
~5.3!

at which point the areal radius today is

Rm05S 9M0

2~2uE0u!3/2D 1/3

t0
2/3. ~5.4!

For hyperbolic models, there is no maximum radius, butRm0
gives the curvature scale. Another way to restrictE0 is to
specify that the horizon scalect0 be much less thanRm0, say
t0,Rm0/8, which gives a restriction similar to Eq.~5.2!.

A third way to limit E0 is to specifyV0.0.03. In a hy-
perbolic model

V5
8prR2

3Ṙ2
5

2

11cosh~h!
. ~5.5!

Solving this forh and using Eq.~2.6! again gives

~2uE0u!3/2t0

M0
,0.016. ~5.6!

However, within a condensation, the evolution may
nowhere near parabolic.

B. Past null cones, horizons and scales on the CMB sky

The physical radius of the past null cone in ak50 Fried-
mann dust model with scale factorS}t2/3 is

L~ t !5SE
t

t01

S
dt53c~ t0

1/3t2/32t ! ~5.7!
1-8
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STRUCTURE FORMATION IN THE LEMAıˆTRE-TOLMAN MODEL PHYSICAL REVIEW D 65 023501
so an observed angular scale ofu on the CMB sky has a
physical size at recombination of

Lr5L~ t !u53c~ t0
1/3t r

2/32t r !u. ~5.8!

The present day size of the observed structure—assumi
does not collapse—is merely scaled up by the ratio of sc
factors

L05Lr

S0

Sr
. ~5.9!

The scales would be fairly similar in reasonablekÞ0 mod-
els.

To determine the condensed structures that correspon
a given present day scale in the background, the massMc of
the condensation is divided by the present day densityrb,0 of
the Friedmann background (k50 dust! and cube-rooted:

Lc05S 3Mc

4prb,0
D 1/3

. ~5.10!

Conversely, the mass associated with a given scale at a g
time is

Mc5
4pLc~ t !3rb~ t !

3
. ~5.11!

The particle~causal! horizon at any given timet is

C5SE
0

t1

S
dt53ct ~5.12!

and the visual horizon is

V5SE
tr

t 1

S
dt53c~ t2t r

1/3t2/3!. ~5.13!

The particle horizon takes no account of inflation, and reta
a dust equation of state before recombination, so is o
included as a rough scale of interest.

C. Scales in the perturbation

We imagine that present day structures accreted t
mass from a background that was close to Friedmannian,
therefore the scale of the matter that is destined to end u
a present day condensation is fixed by its present day m

The Cosmic Background Explorer~COBE! data shows
dT/T;1025 on scales of 10°, and the density perturbatio
are dr/r53dT/T<331025 @15#. The power spectrum
P(k)5udku25 where dr/r5Skdke

ik•x is commonly ap-
proximated byP(k)5Ake2ks, where the cutoff scales is
small compared to the Hubble scale. This is justP5Ak at
longer wavelengths~smallerk) @16#. COBE’s measurement
had a resolution of;10°, while BOOMERANG’s and
MAXIMA’s were ;0.2°. These angular scales correspond
length scales of 2 Mpc and 50 kpc at the time of decoupli
and thus to 2 Gpc and 50 Mpc today. Thus we are only
beginning to detect void scale perturbations in the CM
02350
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o
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Although the magnitude of galaxy scale or even superclu
scale perturbations, are not yet directly constrained by ob
vations, we will retain the figure of;1025.

The scales associated with present day structures are
marized in Table I.

D. Choice of units and scales

For the background Friedmann model, we choose the s
plest case, as its only purpose it to get the cosmic time sc
and densities approximately right:

L50, k50, p50. ~5.14!

We will use geometric units such thatc515G, and the
remaining scale freedom of GR is fixed by choosing units
which the present day mass of the condensation being
sidered is 1. The corresponding geometric length and t
units are then

MG51 ⇒ LG5MGG/c2, TG5MGG/c3.
~5.15!

E. The model

The principal limitation of the LT model in the post
recombination era is the absence of rotation. However, o
rotation has become a significant factor in the collapse p
cess, there is already a well defined structure. Later on p
sure and viscosity will become important. Our interest is

TABLE I. Approximate scales associated with present d
structures. Note that the horizons are those ink50 Friedmann
models without inflation, as given in Sec V B. The masses ass
ated with the resolution scales of COBE, MAXIMA and BOOMER
ANG are obtained by assuming a density equal to the pa
bolic background valuerb , as indicated by ‘‘~1!’’ in the dens-
ity column. Useful collections of data can be found
the following web addresses: http://www.obspm.fr/messie
http://adc.gsfc.nasa.gov/adc/sciencedata.html,
http://www.geocities.com/atlasoftheuniverse/supercls.html

Radius Density Angle
today Mass of sphere on CM
~kpc! (M () (rb) sky (°)

Star 2310211 1 231029 831027

Globular cluster 0.1 105 23105 431025

Galaxy 15 1011 63104 431023

Virgo cluster 2000 231013 5 0.02
Virgo supercluster 15 000 531014 0.3 0.06
Abell cluster~example! 800 1015 4000 0.08

Void 6.104 ? 0.4

Recomb horizon 280 1.8
Present horizon 9.23106 59
Visual horizon 8.93106 57

COBE resolution 1.63106 1.931021 ~1! 10
BOOM/MAX resolution 3.13104 1.531016 ~1! 0.2
1-9
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FIG. 4. The chosen density profil
r2(M )/rb,2 as a multiple of the ‘‘background’’
density, for an Abell cluster at timet2510 Gyr.
The axes are in geometric units such th
MAbell cluster51, as given in Eqs.~5.15! and
~5.18!.
u
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generating highly condensed structures in a short eno
time scale, and these factors only come into play once
lapse is well underway. Because of the lack of rotation, e
all of which tend to delay or halt collapse, we expect o
model to be rapidly collapsing rather than stationary at
present day.

We choose to model an Abell cluster:

MAbell cluster51015 M ( . ~5.16!

RAbell cluster5800 kpc. ~5.17!

From Eq. ~5.15! and Table I the associated geomet
units are

1 MG5MAbell cluster

1 LG548 pc

1 TG5156 yr

→MAbell cluster51 MG

RAbell cluster516800LG

t256.43107TG . ~5.18!

1. Final profile

At t2510 Gyr56.43107TG , we specify the density pro
file to be

r2~M !5rb,2~7000e2~4M !2
! ~5.19!

which is shown in Fig. 4. Now the Friedmann density att2 is

rb,251.3310217MG /LG
3 58310227 kg/m3 ~5.20!
02350
gh
l-
.,
r
e

so the radius in the Friedmann ‘‘background’’ that conta
this mass is4

RF,25S 3MAbell cluster

4prb,2
D 1/3

5260 000LG . ~5.21!

Thus we find

„R2~M !…35E
0

M 3

4pr2~M 8!
dM85

3

224 000Aprb,2

erfi~4M !

~5.22!

as shown in Fig. 5, and the resultingr2(R) is shown in Fig.
6.

2. Initial profile

At t15100 k yr51025t25641TG we specify the density
perturbation to have mass

M151022MAbell cluster ~5.23!

and density enhancement

331025rb,1 ~5.24!

for which the chosen profile is

r1~M !5rb,1S 1.00003~11100M !

11100.003M D ~5.25!

as plotted in Fig. 7. The Friedmann density att1 is

rb,151.331027 MG /LG
3 58310217 kg/m3 ~5.26!

4For backgrounds withkÞ0, the radius that contains this mas
would be adjusted slightly.
1-10
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FIG. 5. The areal radiusR2(M ) at time t2,
that results from the chosenr2(M ). The inset
shows an enlargement of the curve near smallM.
The axes are in geometric units.

FIG. 6. The density profiler2 /rb,2 against ar-
eal radiusR2. The axes are in geometric units.

FIG. 7. The density profiler1(M )/rb,1 cho-
sen for the initial perturbation at timet1. The
axes are in the geometric units of Eqs.~5.15! and
~5.18!.
023501-11
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FIG. 8. Areal radiusR1(M ) at timet1, that is
obtained fromr1(M ). The axes are in geometri
units.
ta

las

11.
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t

and the radius in the ‘‘background’’ that contains the to
mass is

RF,15S 3MAbell cluster

400prb,1
D 1/3

526 LG . ~5.27!

The resultingR1(M ),

„R1~M !…35E
0

M 3

4pr1~M 8!
dM8

5
3

4prb,1
S M2

0.00003

100.003
ln~11100M ! D

~5.28!

is shown in Fig. 8, andr1(R) in Fig. 9.
02350
l F. Model results

A Maple program was written to generate the formu
and then solve forE(M ) and tB(M ) numerically, as ex-
plained in Sec. III. The results are shown in Figs. 10 and

We see thatE is of order 1025 which gives a recollapse
time scale of 107 TG51.73109 yr, so that the curvature in
the condensation is of orderMt2 /(2E)3/2;0.17. The bang
time perturbation is of order 2TG5300 yr, and is quite
negligible.

Strictly speaking, an increasingtB , tB,M.0, creates a
shell crossing, but for such a slight variation intB , the shell
crossing occurs very early on, long beforet1 when the model
becomes valid.

The ‘‘velocity’’ R,t—rate of change of the areal radiusR
—would, in a homogeneous model, increase asM1/3, so plot-
ting R,t /M1/3, as in Fig. 12, indicates the velocity perturb
tion, as a deviation from a constant value.

In this case, the perturbation is within 331025 for 0
,M,0.6, wherer2 is large, but increases to 831024 in the
near vacuum region 0.6,M,1. This slight excess is mos
FIG. 9. Density profiler1 /rb,1 against areal
radiusR1. The axes are in geometric units.
1-12
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likely due to choosing ar2(M ) that falls off too fast outside
the condensation, requiring a too strongly hyperbolic evo
tion that expands too rapidly. It is likely that this same effe
requires the slightly increasingtB to keepr1(M ) almost flat
in these outer regions.

As a cross-check, these derived functions were used
separate MATLAB program that plots the evolution of a L
model, given its arbitrary functions.~The appropriate form of
the evolution equations is given in Appendix B.! The initial
and final density profiles were recovered to high accura
The resulting density evolution is shown in Fig. 13.

FIG. 10. The LT energy functionE(M ) obtained from solving
for the LT model that evolves betweenr1(M ) andr2(M ). The axes
are in geometric units. The symbols ‘‘EC,’’ ‘‘EX,’’ and ‘‘H’’ indicate
regions that are respectively elliptic and recollapsing att2 ~EC!,
elliptic and still expanding att2 ~EX!, and hyperbolic~H!.

FIG. 11. The LT bang time functiontB(M ) obtained from solv-
ing for the LT model that evolves betweenr1(M ) andr2(M ). The
axes are in geometric units.
02350
-
t

a
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VI. CONCLUSIONS

We proved that an LT model can be found to evolve a
initial density profile on a constant time slice, to any fin
density profile a given time later. Although it cannot be gu
anteed the resulting model is free of physical singularit
such as shell crossings, and the occurrence of a large n
tive energy (E521/2) must be handled correctly by chan
ing to M andR decreasing, our numerical experiments ind
cate that realistic choices of the two density profiles and
time difference are likely to generate reasonable models

Our numerical example created an Abell cluster in a re

FIG. 12. The velocity perturbationṘ/M1/3 at timet1. A constant
value would indicate no perturbation. The axes are in geome
units.

FIG. 13. The evolution ofr(t,M ) for the derived LT model. The
axes are in the geometric units of Eqs.~5.15! and ~5.18!. In the
range 0,M,0.795 the evolution is elliptic and already recollap
ing at timet2, in 0.795,M,0.865 it is elliptic but still expanding
at t2, and for M.0.865 it is hyperbolic. In practice, recollaps
would be halted at some point by the effects of pressure, rotat
etc. The initial and final density profiles calculated at timest1 andt2

coincide with those originally chosen and shown in Figs. 7 and
respectively.
1-13
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istic time scale. It started from recombination, with a dens
perturbation involving a small amount of mass, havi
dr/r;331025. It then ‘‘accreted’’ most of its final mass. In
fact this ‘‘accretion’’ consists of lower expansion rates ne
the center, and more rapid expansion rates further out. O
at late stages does actual collapse begin at the center.
initial velocity perturbation cannot be chosen if the initi
and final densities are chosen. It turned out to bedv/v;3
31025 within the future condensation and;831024 in the
future vacuum region. The relativiely large value in the ou
regions is probably due to choosing the final density profi
r2 to fall off more rapidly than ideal.

The preceding two points—the theorem plus the num
cal example—demonstrate that the LT model provides a v
reasonable description of post-recombination structure
mation.

These two points also indicate that post recombinat
structure formation in a dust universe has an important k
matical component—the initial distribution of velocities h
as much bearing on whether or not a condensation forms
gravity magnifies density fluctuations, as the initial dens
distribution. These initial distributions of density and velo
ity are generated by the functionsE(M ) and tB(M ), i.e.,
coded in the initial conditions.

Further numerical examples for structure formation on
variety of scales within the LT model are under investigatio

We also obtained the conditions for a density maximum
minimum or shoulder to be comoving. Since these are
itrictions on the LT arbitrary functions, it is evident that e
trema are in general moving through the fluid, as argued
@17#, and are not comoving. In other words present day d
sity maxima are not likely to be on the same world lines
initial density maxima.
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APPENDIX A: CONSISTENCY OF THE INEQUALITIES
„3.21… AND „3.22…

The inequalities~3.21! and~3.22! will be consistent if the
right-hand side of Eq.~3.21! is smaller than the right-han
side of Eq.~3.22! in the whole range ofa1 anda2, i.e. when

A2

3
~a2

3/22a1
3/2!,~a2/2!3/2@p2arccos~122a1 /a2!

12Aa1 /a22~a1 /a2!2#. ~A1!

Definingy5a1 /a2, and recalling thata2.a1.0 by assump-
tion, the above is equivalent to
02350
y

r
ly
he

r
,

i-
ry
r-

n
-

nd
y

a
.
r
s-

in
-

s

s
s
2
l

f ~y!.0 for all 0,y,1, where

f ~y!ªp2arccos~122y!12Ay2y22
4

3
~12y2!.

~A2!

Now observe that

f ~0!5p2
4

3
.0, f ~1!50,

df

dy
52

Ay

A12y2
~A12y21!,0.

~A3!

Hence,f (y) is monotonically decreasing fromf (0).0 to 0
and so is positive for all 0,y,1, which proves Eq.~A1!.

APPENDIX B: NUMERICAL CONSIDERATIONS

1. Limiting values at MÄ0

Several of the quantities considered in this paper have
value 0 at the center of symmetry, whereM50. The vari-
ables used in the proof of the theorem,ai andx, have finite
limits asM→0. For numerical programs, these limiting va
ues have to be provided explicitly.

The values ofai at M50 follow very easily. Sinceai

5R(t i ,M )/M1/3 and R35*0
M@6/kr(t,x)#dx, we have, ap-

plying l’Hôpital’s rule in the third step

ai~0!5 lim
M→0

R~ t i ,M !

M1/3
5F lim

M→0
S R3

M D G1/3

5S lim
M→0

d

dM
R3D 1/3

5S lim
M→0

6

kr D 1/3

5S 6

kr~ t i ,0! D
1/3

. ~B1!

The variablex comes out nonzero automatically whe
nonzero values ofai(0) are used in the program; this follow
from the proof of the theorem in Sec. III.

2. Practical variables

In practice, it was convenient to definea5a1 /a2 , zi
5t i /a2, andy5a2x, and then solve the variousc50 equa-
tions in terms of the variabley, sincea2 was in general quite
large, whereas 0,ax,2 in elliptic regions, andax was at
most 200 in a quite strongly hyperbolic region.

3. Reconstructing the model evolution

For reconstructing the evolution of the model, it is conv
nient to re-write the LT solutions in terms ofx anda.
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Elliptic:

R5M1/3
~12cosh!

x
, t2tB5

~h2sinh!

x3/2
, Ṙ5M1/3AxS 2

12cosh
21D .

Parabolic or close to it:

R5M1/3S 9

2D 1/3

~ t2tB!2/3S 11
x

20
@6~ t2tB!#2/32

3x2

2800
@6~ t2tB!#4/31

23x3

504000
@6~ t2tB!#2D

Ṙ5M1/3A4@6~ t2tB!#22/3S 11
x

5
@6~ t2tB!#2/31

x2

280
@6~ t2tB!#4/32

x3

3600
@6~ t2tB!#2D . ~B2!

Hyperbolic:

R5M1/3
~coshh21!

x
, t2tB5

~sinhh2h!

x3/2
, Ṙ5M1/3AxS 2

coshh21
11D .

In all cases the density is

r5
1

4pa2~a/31Ma,M !
.

0

b-
d,
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@1# A. Krasiński, Inhomogeneous Cosmological Models~Cam-
bridge University Press, Cambridge, England, 1997!.

@2# W.B. Bonnor, Z. Astrophys.39, 143 ~1956!; reprinted in Gen.
Relativ. Gravit.30, 1113~1998!.

@3# G. Lemaıˆtre, Ann. Soc. Sci. BruxellesA53, 51 ~1933!; re-
printed in Gen. Relativ. Gravit.29, 641 ~1997!.

@4# R.C. Tolman, Proc. Natl. Acad. Sci. U.S.A.20, 169 ~1934!;
reprinted in Gen. Relativ. Gravit.29, 935 ~1997!.

@5# P. Szekeres, Commun. Math. Phys.41, 55 ~1975!.
@6# S.W. Goode and J. Wainwright, Phys. Rev. D26, 3315~1982!.
@7# C. Hellaby and K. Lake, Astrophys. J.290, 381 ~1985!; 300,

461~E! ~1985!.
@8# W.B. Bonnor, Phys. Lett.112A, 26 ~1985!.
@9# A. Barnes, J. Phys. A3, 653 ~1970!.
02350
@10# C. Hellaby, Class. Quantum Grav.4, 635 ~1987!.
@11# I.D. Novikov, Vestn. Mosk. Univ., Fiz., Astron. no. 5, 9

~1962!.
@12# A. Einstein and E.G. Straus, Rev. Mod. Phys.17, 120 ~1945!.
@13# A. Einstein and E.G. Straus, Rev. Mod. Phys.18, 148 ~1946!.
@14# W.B. Bonnor and A. Chamorro, Astrophys. J.361, 21 ~1990!.
@15# T. Padmanabhan,Cosmology and Astrophysics Through Pro

lems ~Cambridge University Press, Cambridge, Englan
1996!.

@16# P.J.E. Peebles,Principles of Physical Cosmology~Princeton
University Press, Princeton, NJ, 1993!.

@17# G.F.R. Ellis, C. Hellaby, and D.R. Matravers, Astrophys.
364, 400 ~1990!.
1-15


