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INHOMOGENEOUS COSMOLOGY - WORKSHOP REPORT

EDITED BY ANDRZEJ KRASINSKI

N. Copernicus Astronomical Center, Polish Academy of Sciences
ul. Bartycka 18, 00 716 Warszawa, Poland

This report is a compilation of contributions sent in by the speakers,

1 Does the Weyl curvature contribute to a classical gravitational
entropy? (by Kayll Lake)

The Weyl curvature hypothesis [1] is fundamental to the concept of an inhomoge-
neous cosmology. The original formulation requires a zero Weyl tensor at the big
bang [2]. Recent evidence suggests that this requirement is too strong. For example,
in polytropic perfect fluid spacetimes [3] if the Weyl tensor is zero at the big bang,
the spacetime must be ezactly FRW in a neighbourhood of the big-bang in accord
with the FRW conjecture [4]. Nonetheless, the motivation [1] for some form of the
Weyl curvature hypothesis remains. We are interested in the hypothesis that there
exists a scalar field ¥, dominated in some sense by the Weyl tensor, such that ¥ is
monotone along timelike trajectories. In general, only a restricted class of trajecto-
ries can be allowed since, for example, no development of ¥ can be expected along
Killing trajectories. (The generalization to homothetic trajectories is known [5].)

The archetype for ¥ is Caﬁ'}'ﬁC,Y 5 *# = ® which fails to be monotone even for
static perfect fluids. It is interesting to note, however, that this failure occurs above
the horizon of a Reissner-Nordstrém black hole only close to degeneracy. It can be
shown that up to order 7 (7 derivatives of the metric tensor) the only invariant
(except for @) that is monotone in Schwarzschild is VaV5Chs5ec VEVPCT, Inter-
estingly, this is the order we must start at in Petrov type III [6]. This invariant
also fails to be monotone very near a Reissner-Nordstrém black hole only when it
is almost degenerate. Indeed it could be used as a precursor to degeneracy.

In terms of the “electric” (E) and “magnetic” (H) components of the Weyl
tensor, the failure of @ (= S(EgEE ~HPH 4)) away from spherical symmetry can
be traced to the — sign in the sense that the Bel-Robinson tensor (= 8(EEEZ +

g gHg)) is monotone in Kerr. This, of course, requires the inclusion of velocity
fields in the definition of ¥. A study in the Kerr-Newman geometry [7] suggests,
in the terminology of Senovilla 8], the following conjecture: Except in the local
neighbourhood of a naked singularity, one can always find a timelike frajectory
> ¥ > 0 where

U = (super)® — energy Weyl tensor. (1)

2 Singularities of inhomogeneous cosmological models (by Peter
Szekeres)

The standard model of cosmology, based on the FRW line element has the physically
comfortable feature of exhibiting an infinite redshift the closer the emitter is to the
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initial “big bang” singularity. This means that although the initial singularity ig
“naked” in the sense that past directed null geodesics from an observer emanate
from the singularity in the finite past, the singularity is in no way harmful to the
observer. The most significant consequence of course is that the cosmic black bbdy
radiation cools off from its initial infinite temperature and creates no instabilitieg
in space-time at later times. ‘
It has been noted by several authors that this fortunate circumstance does not
hold in other typical cosmologies, both homogeneous and inhomogeneous [9, 10, 11],
The singularities of most other cosmologies exhibit infinite blueshifts in at least
one direction, a feature which is of some concern both for the possible effect on the
subsequent evolution of the spacetime and the black body radiation. _
This talk proposes a rigorous definition of what it means for a cosmological
singularity to be “redshifted” or “blueshifted” by defining the concept of the Hubble
indez of a singularity. Firstly, given a unit timelike vector field u#, define its Hubble :
parameter with respect to the null direction field k* to be -

H= (0 Y

Then the red-shift along any null geodesic tangent to k* is given by Hubble's law,
z=Hdl

where 6£ = —u, k"5 is the distance along the null geodesic from any timelike curve
tangent to the time-like field. ]

H defines a real valued function on the sphere bundle of the space-time, whose
restriction to the sphere at any point p is called the Hubble indez at p. Settirig
k#(0) = A(u¥ + e#) its even part, called the “Doppler” part is given by 8, ete”
where 6, = 30h,, + 0y, while the odd part (Hp(e) — Hp(—e)) = a,e” is the
“gravitational” part of the redshift. These concepts fit well with standard interpre-
tations in familiar exact solutions. -

Using the definition of a singularity given by Scott and Szekeres [12], a cosmo-
logical singularity p is said to be a past point of u# if there exists a timelike curve Y -
tangent to u* which approaches p with finite proper time parameter ¢ in the past.
We say p is an infinite redshift point or benign singularity of u* if ”

Hyy(e) = vyele” — o0

along every curve -y tangent to u* approaching p and every unit spacelike direction
field e orthogonal to w#. Every infinite redshift point is an expansion point of u#
in the sense that § = v# — oo for all ¥(t) — p where () is a tangent curve
to u*. However the converse is not true in general. p is said to have an infinite
blueshift (i.e. a “harmful singularity”) if there exists a direction field e such that
H.Y(t)(e) — —00, o
The singularities of Schwarzschild-Kruskal-Szekeres, Kasner, Heckmann-
Schiicking, Bondi-Tolman-Szekeres, Belinskii-Khalatnikov-Lifschitz, Fardley-
Liang-Sachs, and Diagonal Dust [10] can all be analyzed using this concept.
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3 Observations in inhomogeneous universes (by Charles Hellaby)

Can we prove the universe is homogeneous? Homogeneity is normally
assumed under the guise of the ‘Cosmological Principle’. While we surely don’t
" occupy a special place in the universe, is our region exactly like all other regions?
Actually, each deeper survey sooner or later reveals new structures on larger scales.
What’s on the next scale? One should not assume something that can be proved,
and it should soon be possible to demonstrate homogeneity (or lack of it) from
observations, There is strong inhomogeneity on all scales up to at least void size, but
we have yet to determine the scale on which true homogeneity is found. The next
step is to map the inhomogeneity, but source evolution is a serious complication,

Standard Observations: Observations are made on the past null cone — a
3-d slice through 4-d spacetime, so that spatial and temporal variations are merged
into a single variation with redshift. The basic observations are: (a) apparent
luminosity #(z) or angular diameter 8(2) of sources against redshift z; (b) number
counts of sources (galaxies) at each redshif n(z) (number density in redshift space).
From these, we get the diameter distance dp, luminosity distance dr,, and the
density p, IF we know the true diameters, luminosities and masses of the galaxies.
For FLRW models the functions dp (2), p(2) are well known,

Observations in Inhomogeneous Models: MBHE [13] studied these ob-
servational relations in the Lemaitre-Tolman model. They first specified the in-
homogeneity, then located the past null cone, and then calculated expected dp(z)
and p(z). Calculations showed that mild inhomogeneities can seriously distort the
FLRW functions, and even put loops in dp (2) & p(2) near the maximum in dp (2).

Source Evolution and Fitting Theorems: Like many comparisons of
observations with model predictions, the above assumed the true diameters, lumi-
nosities and masses are known and unevolving, But the evolution of the masses,
luminosities, and diameters of sources is not well known, even for relatively low z
values. In MHE [14] two theorems were proved: (A) Given any observations and
any source evolution, an LT model can be found to fit; (B) Given any observations
and any LT model, source evolution functions can be found to make them fit. Thus
there’s no way to separate inhomogeneity and source evolution. Time variation and
spatial variation have very similar appearances on the past null cone. A particular
example of this for the supernova observations is provided in C [15].

Multi-Colour Observations: Can multi-colour observations help? The
problem is that colours can also evolve, l.e. for every new observable there is g
source evolution function, and spatial inhomogeneity in intrinsic colours can always
Create the same effect on the null cone. However, there is one rather simple point
that makes a rea) difference, as presented in H [16]. Gravity affects all colours the
same way, The luminosity distance of a source in red must be the same as the blue
luminosity distance of the same source. If there is colour evolution of sources, then
the ratio of the blue and red absolute luminosities, Lg/Lg, is z dependent, and
equal to the ratio of the apparent luminosities, £5/¢r, because both are divided
by the same (unknown) luminosity distance dy. In practice there are plenty of
complications. It is much more realistic to use spectral line intensities for “colours”,
rather than colour filter magnitudes, as the filter pass bands select different sources
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at different redshifts. Different galaxy types may evolve differently, and one must
be able to identify the same galaxy type at different stages of evolution. Selection
effects may play a role, but because it is the ratio of luminosities that mafters here,
this is not so serious. The use of galaxy number counts in different colours does
not help to separate source evolution from inhomogeneity. See H [16] for a fuller
discussion. _

CONCLUSIONS  Measurements of the ratios of apparent luminosities
against redshift put strong constraints on the evolution of absolute luminosities,
fixing the ratios, but not the values. This method can provide clear evidence for
source colour evolution, even if unknown inhomogeneity is present, and is a usefu]
complement to other methods of studying galaxy evolution. The required observa-
tions are suitable for large scale sky surveys — along the lines of Sloan, or for the
new generation of large telecopes. Unfortunately we still can’t get the inhomogene-
ity for sure until the source evolution is well known.

4 Lemaitre-Tolman Universes and CMB anisotropies (by Diego Saez)

This contribution is a critical review of a series of papers. In these papers, the
Lemaitre-Tolman (LT) solution of Einstein’s equations was used to estimate the
Cosmic Microwave Background anisotropies produced by an isolated spherical pres-
sureless nonlinear cosmological inhomogeneity. In particular, the LT solution was
applied to compute the gravitational anisotropy produced by Great Attractor-Like
(GAL) structures. The most interesting result {17, 19] was that, in sufficiently open
universes, some GAL structures located at Z ~ 5 produce anisotropies of the order
of 10~5 with angular scales of a few degtees. These angular scales are those sub-
tended by the gravitational potential (not by the density profile) of the structure.
Such scales are of a few degrees when the compensation radius is of a few hundreds
of Megaparsec. Although these radii are greater than the compesation radii of the
observed Great Attractor, they are not forbidden either by theoretical arguments
or by observational data. _
Recent observations of the CMB (BOOMERANG and MAXIMA) support a
flat universe and, furthermore, the m = m(Z) curves obtained from I, supernovae
strongly suggest a dominant cosmological constant with 4 ~ 0.7; therefore, the
main conclusion described above (valid in a sufficiently open universe, with {} ~
0.2 — 0.3), reduces to a theoretical result without practical application. In spite of
this fact, many valuable conclusions have been obtained in the mentioned series of
papers; for example, the so-called Potential Approximation (PA) was used [18] to
compute the anisotropies produced by GAL structures having compensation radius
of a few hundred Megaparsecs and evolving in very open universes; afterwards, the
results were compared with those given by the exact LT solution; this comparison
showed that the PA — although marginally applicable to the chosen case — led
to significant deviations with respect to LT results. These deviations appeared
because, in the open case, the PA only applies in the case of sufficiently small
compensated structures. ‘
In the future, the PA seems to be preferable over the use of the LT solution.
It is due to the fact that the Universe seems to be a flat one with a significant
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cosmological constant and, for 2 # 0, the LT solution involves complicated Weier-
strass functions, while the PA works very well because this approximation was
designed to apply in any flat universe.

4.1 Discussion

M. N. Célérier: 1. The published Boomerang and Maxima results are currently
analysed assuming that our universe is a pure FLRW solution, and we know from a
number of works on large scale inhomogeneities and averaging that this assumption
can lead to wrong conclusions, 2. Even with this oversimplifying FLRW assump-
tion, the error bars of the published data are such that the value of  has been
claimed to be unity with only a 12% precision (see e.g. P. de Bernardis et al.,
Nature 2000, 404, 955), which does not definitely rule out Saez’ assumption of an
open background.

D. Saez: Even if an accelerated expansion is not confirmed because the weak
luminosity of the observed supernovae admits some alternative interpretation, the
position of the Doppler peak — rather well established — corresponds to an almost
flat universe and my opinion is that this fact strongly reduces the interest of the
LT solution.* '

5 A Delayed Big-Bang LTB model solving the horizon problein '
without inflation (by Marie-Noélle Célérier)

Lemalitre-Tolman-Bondi (LTB) models are solutions of Einstein’s equations for a
spatially spherically symmetric space-time with dust (pressureless perfect gas) as
the source of gravitational energy. A flat LTB subclass with a non simultaneous
Bang time of “delayed” type is shown to be an interesting candidate to account for
the matter dominated area of our universe, as it solves the horizon problem without
need for any inflationary phase [20, 21, 22],

The shell-crossing surface,which can be considered as the physical singularity of
the model, exhibits a null character which forces in effect all matter to have been
causally connected at the singularity, and any finite region to have been correlated
at some positive “cosmic” time after the singularity.

Contrary to inflation, which solves the horizon problem only temporarily on
the observer’s world line, the Delayed Big-Bang (DBB) model yields a solution for
any location of the observer in the whole space-time region situated “above” the
last-scattering surface.

'The parameters of the model can be chosen to be the comoving shell where the
observer is located and the shape of the monotonically increasing Big-Bang func-
tion. The large scale anisotropies measured in the microwave background radiation
temperature can be reproduced in this model and used to select allowed regions
in its parameter space. The farther the observer is from the symmetry center, the
closer our neighbouring universe is from a homogeneous pattern (corresponding to

@M. N. Celerier stands by her opinion. Lack of time in Rome and lack of space in this volume
have not allowed for an exhausting discussion of this point.
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a flat Big-Bang function). It is interesting to note that these properties hold for
any DBB universe arbitrarily locally close fo a standard FLRW universe.

Even if some of the assumptions retained for simplification sake can be discussed
(the dust approximation, the spatial spherical symmetry, ...), these preliminary
results emphasize that a “non simultaneous Bang time” is a fruitful idea worth to
be further explored. '

6 Cosmological singularities (by Jose Maria Martin Senovilla)

Do we really know what is a cosmological singularity? Which are the properties
defining it? The simplest definition would be to call “cosmological” any singu-
larity appearing in a cosmological model, but then again there is no generally ac-
cepted definition of cosmological model. Some attempts to give such a definition
can be found in [23]. Furthermore, perhaps this is not the concept one wishes to
capture.

Thus, we usually rely on “intuition”, using for inspiration the Friedman-
Lemaitre-Robertson-Walker (FLRW) models and some of their spatially homoge-
neous generalizations. In this sense, apart from the traditional schemes (pancakes,
cigars, point, mixmaster...) for singularities, which are valid for any type of singu-
larity not necessarily cosmological, some important tries involved the Weyl tensor
hypothesis (see Lake's contribution) such as the so-called isotropic singularities,
Unfortunately, it has usually been required that these singularities be spacelike,
which misses several important simple cases, including some FLRW models them-
selves. Many FLRW models have null big-bang singularities [23] (by the way, this
shows that to avoid the horizon problem one does not need to resort to the null
singularities of inhomogeneous models, see Celerier’s contribution). Some examples
are given by the spatially flat FLRW models with p =vp and -1 <y < —1/3, see
[23]. Notice that all of them satisfy the Dominant Energy Condition, and that the
extreme case y = —1/3 satisfies the Strong Energy Condition too.

Several tries to capture the notion of cosmological singularity have been recently
put forward. One is due to Szekeres, see his contribution to this workshop. Another
one was explained in [23] and will be analyzed now. The intuitive idea one wishes
to keep for a cosmological singularity is that it gives birth to everything, so that it
must be a kind of singular Cauchy hypersurface for the spacetime. Therefore:

Definition [23]. A singularity set S relative to a singular estension is called a
cosmological, (also initial, or big-bang) singularity if every past-endless causal curve
approaches § at o finite generalized affine parameter. A similar definition can be
used for a big-crunch.

All past singularities of the FLRW models are cosmological according to this
definition. Nevertheless: 1) many singularities may look like cosmological but they
are not [23]. 2) The cosmological singularities need not be in the past of the whole
universe and, in fact, they can be partly to the future of the universe, see e.g.
[24]. 3) They can be certainly null, and they do not even need to be achronal
[23,24]. 4) Some physical particles may have its future end in the past region of
the cosmological singularities [24]. 5) Big-crunches may be partly naked [24].
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In my opinion, all these as well as many other surprising facts are inherent to
cosmological singularities and they cannot be avoided by a better definition unless
many truly cosmological ones are missed.

7 Locally discretely symmetric space-times (by Filipe C. Mena)

Schmid_t showed that if Rapeq and its first three covariant derivatives are invariant
under the discrete groups arising in class A Bianchi metrics, then there is a local
group of isometries G5 acting on 3-surfaces orthogonal to the (perfect) fluid vector
flow. The discrete symmetries can be observable, since they leave invariant the null-
geodesics equation, and therefore can be used to constrain cosmological models,

In a joint work with Maleolm A. H. MacCallum [25], we have generalised
Schmidt’s result by considering other discrete isotropy groups. We do not as-
sume the dynamics of general relativity or any particular source-field, therefore our
arguments are purely geometric. The discrete symmetries considered act at each
point of a space-time neighbourhood and form groups of reflections with respect to
an orthonormal tetrad. We call spacetimes with such symmetries locally discretely
isotropic or LDI.

In this talk, we have considered only the case where the discrete symmetries
act along each pair of the three spatial directions and form a group called H.
The first derivative of the Riemann tensor was assumed to be invariant under H.
We showed that continuous groups of isometries will be induced by the discrete
symmetry groups. The proposition below is a generalisation of the old result of
Robertson and Walker:

Proposition: Consider a space-time with a metric of class G4, If Ry p.q and Ropedse
are invariant under the LDJ group H then there is a local group Gj of isometries
acting transitively on the space-like hypersurfaces orthogonal to the time-like vector
preserved by H.

8 General properties of Bel currents (by Ruth Lazkoz, Jose M., M.
Senovilla and Raul Vera, speaker: R. Vera)

A consequence of the Principle of Equivalence is that there is no proper definition
of local gravitational energy-momentum tensor constructed from the metric and its
first derivatives. Nevertheless, there exist local tensors describing the strength of
gravity. The outstanding example is the Bel-Robinson (B-R) tensor, a four-index
tensor constructed for vacuum spacetimes whose properties are similar to that of
energy-momentum (e-m) tensors, including the zero divergence. This has led to
some work on B-R-like—also called super-energy (s-e)—tensors with the idea of
finding, for the rest of the physical fields, objects analogous to, and related with,
the B-R tensor. A purely algebraic construction of these s-e tensors for arbitrary
fields was presented in [8], and includes the usual Bel tensor, which generalizes
the B-R tensor for non-vacuum spacetimes, Contracting with Killing vectors one
constructs some ‘Bel currents’ which are not divergence-free in general (the matter
acts as source), so that they may lead to the interchange of “s-¢” between the
gravitational and other physical fields. This possibility is analyzed in [8] using as
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inspiration the mixed divergence-free currents (which are not conserved separately)
traditionally found by adding the e-m tensors describing fields in interaction. The
outcome is that there are indeed interchange and conservation of s-e quantities
in the cases of minimal coupling with scalar or electromagnetic fields. This s-e
interchange has been explicitly found in spacetimes admitting a non-orthogonally
transitive G group of motions [26]. In simpler cases, the Bel currents are shown to
be conserved automatically depending on some geometrical properties of the Killing
vectors used in their construction, independently of the matter content [26]. These
properties are analogous to some very well-known statements concerning the e-m
or Ricci tensors. _

g Conformal factors of generalized cosmologies (by Alicia Herrero
and J. A. Morales, speaker: A. Herrero)

We analyzed the kinematic properties of timelike radial conformal Killing fields
(RCKF)in a conformally flat space-time and used them to obtain the form of some
conformal factors [27,28].

Firstly, Robertson-Walker metrics are characterized as those conformally flat
space-times that admit a geodesic timelike RCKF. Their conformal factor, already
obtained in 1945 by Infeld and Schild, is recovered using a different method. Nexft,
the condition of homogeneous expansion was also analyzed, showing that it is equiv-
alent to consider that the acceleration of the RCKF is Fermi-Walker propagated
along the field. And finally, we discussed the case of a RCKF with orthogonal sur-
faces of constant sectional curvature and the conformally flat space-times obtained
from this condition, which belong to the Stephani universes for non-vanishing but
homogeneous expansion.

~ So, we presented a method to obtain conformal factors and interpref them from
a kinematic point of view. These results could be useful when considering physical
and geometrical interpretations of generalized conformally flat cosmologies. '

10 On the inhomogeneous cosmolégies in presence of a massless
scalar field (by Giovanni Montani)

We analyse some dynamical aspects concerning the asymptotic evolution toward
the cosmological singularity characterizing inhomogeneous universes containing-a
massless scalar field. More precisely, we show how for the case of a “quasi-isotropic
solution” containing a massless scalar field, the ultrarelativistic matter and the
electromagnetic field [29, 30] play an equivalent dynamical role, characterized by an
arbitrary spatial distribution of their energy densities. Indeed, when the presence
of a massless scalar field is implemented in the framework of a pre-inflationary sce-
nario, the possibility to have a quasi-isotropic space containing an inhomogeneous
distribution of energy can lead to interesting cosmological implications on the very
large scale structure of the universe. We also develop a detailed analysis, up to the
first order in a perturbative approach, concerning the asymptotic behaviour of the
generic cosmological solution in presence of a massless scalar field and ultrarela-
tivistic matter [31].




635

We show that, during a Kasner-like regime the energy density retains the same
form as in the absence of a scalar field, so outlining the weak coupling existing, in
the generic inhomogeneous cosmologies, between these two physical fields. Even
this result finds its natural implementation in a generic pre-inflationary scenario.

11 Inhomogeneity and nonlinear preheating (by Matthew Parry)

This is a summary of work carried out with Richard Easther (Brown University).

Figuratively speaking, the inflation supermarket generally only sells frozen uni-
verses! If is therefore crucial to understand how the universe is heated up after
inflation. In some models this can occur in a period called preheating.

We investigated the possibility that nonlinear gravitational effects influence the
preheating era. Our work is based on numerical solutions of the inhomogeneous
Einstein equations, and is free of perturbative approximations, The restriction we
imposed is to limit the inhomogeneity to a single spatial direction. We compared our
results to perturbative calculations and to solutions of the nonlinear field equations
in a rigid (unperturbed) spacetime, in order to isolate gravitational phenomena.

We confirmed the broad picture of preheating obtained from the nonlinear field
equations in a rigid background, but found gravitational effects have a measurable
impact on the dynamics. The longest modes in the simulation grow much more
rapidly in the relativistic calculation than with a rigid background. Indeed this
inverse cascade of power to long wavelengths may rule out some models of preheat-
ing, and highlights the limitations of the perturbative approximation for describing
the long-term behaviour in these models. We used the Weyl tensor to quantify the
departure from homogeneity in the universe. -

Finally, we saw no evidence for the sort of gravitational collapse associated with
the formation of primordial black holes.

12 Embedding a black hole in an isotropic universe (by Brien Nolan)

We address the problem of finding a solution of Einstein’s field equations which
represents the embedding of the Schwarzschild field into the isotropic Robertson-
Walker space-times, and of studying the global structure of the resulting solution.
This problem is motivated by the question of whether the cosmic expansion has an
effect on local systems. McVittie [32] found a solution of the field equations with
shear-free perfect fluid source which for (R-W curvature index) k¥ = 0 is the desired
solution. However a study of the asymptotic behaviour of the k& # 0 solutions
shows that they do not represent the embedding of the Schwarzschild field [33].
We approach this problem by giving a priori a set of conditions which, if satisfied
by a space-time, we claim represents the embedding of the Schwarzschild field in
an isotropic background. We provide an existence and uniqueness theorem for
solutions of the field equations subject to these conditions (spherical symmetry,
shear-free perfect fluid source, a covariant condition on the fall-off of the metric at
spatial infinity and a condition on the Misner-Sharp mass of the space-time) [33)].
The Penrose-Carter conformal diagram for the k£ = 0 solution is derived in [34]. One
of the most interesting aspects of this space-time is that the event horizon r = 2m
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of the Schwarzschild geometry develops a curvature singularity when embedded in
the R-W geometry; this singularity is shown to be non-destructive [35].
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