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The Newest Release of the Ortocartan Set of
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The program Ortocartan for algebraic calculations in relativity has just been
implemented in the Codemist Standard Lisp and can now be used under the
Windows 98 and Linux operating systems. The paper describes the new facilities
and subprograms that have been implemented since the previous release in 1992.
These are: the possibility to write the output as Latex input code and as Ortocartan’s
input code, the calculation of the Ellis evolution equations for the kinematic
tensors of flow, the calculation of the curvature tensors from given (torsion-free)
connection coefficients in a manifold of arbitrary dimension, the calculation of the
lagrangian from a given metric by the Landau-Lifshitz method, the calculation of
the Euler–Lagrange equations from a given lagrangian (only for sets of ordinary
differential equations) and the calculation of first integrals of sets of ordinary
differential equations of second order (the first integrals are assumed to be
polynomials of second degree in the first derivatives of the functions).
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1. THE MOTIVATION

Several programs for algebraic calculations are available on the market today,
and some of them include packages for relativity. Still, it seems that not all
possibilities in applying such programs are known to the users and to the authors
of those systems. The newest developments in Ortocartan include a few facilities
that are not yet in general use. It is hoped that the present paper will demonstrate
what is still possible beyond the standard applications.
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2. CALCULATING THE CURVATURE TENSORS FROM A GIVEN
METRIC

This has been the main application of the program Ortocartan ever since its
first release in 1978. It was described in several publications, most recently in
Ref. 1, so it will be recalled only very briefly. All details can be found in Ref.
1, in the papers cited there, and in the latest release of the user’s manual [2].

The main program Ortocartan takes an orthonormal tetrad of Cartan forms
as its input data, and calculates all quantities that appear in the usual calculations
in relativity: the determinant of this tetrad, the components of the inverse tetrad,
the metric tensor and its inverse, the Ricci rotation coefficients, the Christoffel
symbols, the Riemann, Ricci, Einstein and Weyl tensors, the scalar curvature. For
the tensors calculated along the way it finds the (orthonormal) tetrad components
and the coordinate components with each index raised or lowered as the user
wishes. The user can make all kinds of substitutions, including those by pattern-
matching (for an example of the latter see sec. 8). As an example, the input data
for a very simple application of Ortocartan (calculating the curvature tensors for
the spherically symmetric metric in the curvature coordinates) is shown in Fig.
1. The command (rmargin 60) seen there will fit the linelength of the output
shown in the next section to the present text.

This example, and all the other examples shown in this paper, were chosen
trivial for illustrative purposes, so that the readers can easily see what happens
and how. In actual research, all the programs were successfully applied also to
very complicated examples.

As before, the Ortocartan package includes the program Calculate that can
carry out simple algebraic operations defined by the user. This has been described
in the earlier publications, too, so again it is just recalled by an example, in
which it calculates the derivative by x of a complicated expression that includes

Fig. 1. The input data for one of the standard applications of Ortocartan-
calculating the curvature tensors from a given tetrad representation of
the metric (the general spherically symmetric metric in curvature coordi-
nates).
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Fig. 2. A simple application of the algebraic “abacus” program Calculate: the
input data for the example from Fig. 3.

constants and functions. The input data is shown in Fig. 2, and the corresponding
output in Fig. 3.

Figs. 2 and 3 show a fictitious example, not taken from any actual applica-
tion. It was intended to demonstrate the power of our differentiating and pritning
procedures.

Fig. 3. The complete output produced in response to the input from Fig. 2.
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3. OUTPUT IN THE FORM OF LATEX INPUT AND IN THE FORM
OF ORTOCARTAN’S INPUT

The simple call to Ortocartan shown in Fig. 1 would result in printing all
the formulae in the standard mathematical format. One item of the output is
shown in Fig. 4 (the tetrad R00 component of the Ricci tensor).

The output shown in Fig. 4 can be either just viewed on the screen or stored
on a disk and then printed. However, if a formula like the one in Fig. 4 is to
be inserted in a text for publication, then one may avoid retyping it. The same
formula can be obtained in the form of Latex input code if one inserts the fol-
lowing item anywhere between the arguments of the function Ortocartan (but
after the title (SPHERICAL METRIC. . .)):

(output for latex)

The same component of the Ricci tensor will then appear on output as shown in
Fig. 5. Note that Ortocartan has recognized the Greek letters and replaced them
with the appropriate Latex constructs. Then the user can add his/ her favourite
Latex preamble to this and run Latex on the result obtaining the output shown
in Fig. 6.

The exp( f ) can be very easily replaced by e f using the substitutions. The
exponential function is represented as in Figs. 4, 5 and 6 in order to give the
user a greater freedom: the symbol “e” can be used for anything the user wishes
and is not reserved to mean only the base of natural logarithms.

Fig. 4. Part of the output produced for the input from Fig. 1. Compare this
with figures 5, 6 and 7.
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Fig. 5. The output corresponding to the input as in Fig. 1, but with the additional command “(output
for latex)”.

If the output or some part of it is to be used as input for one of the programs
of the Ortocartan set, then the user can avoid rewriting again. It is then enough
to insert the following instead of the “(output for latex)” line:

(output for input)

The whole output will then be written in the Ortocartan input notation and any
part of it can be inserted in the actual input just by cutting and pasting. The same
component of the Ricci tensor that was shown in Fig. 6 would then appear as
in Fig. 7.

The automatically generated output in the input format has the tendency
to use more parentheses than are necessary. The algebraically equivalent input
writen by the user would not contain any of the unnecessary parentheses because
Ortocartan’s input notation recognizes the usual hierarchy of priorities among the
algebraic operations—see manual [2]. The additional parentheses do not change
this hierarchy.

The “(output for latex)” and “(output for input)” options are available for
all the other programs described below.

Fig. 6. The output from Fig. 5 run through Latex.
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Fig. 7. The output corresponding to the input as in Fig. 1, but with the additional command “(output
for input)”.

4. THE PROGRAM ELLISEVOL

This program calculates all the quantities appearing in the evolution equa-
tions of the kinematical tensors of fluid flow, as defined by Ellis [3]. Since all
these equations are consequences of the Ricci identity ua; bg − ua; gb c umR

m

abg,
they will be fulfilled identically in most cases. However, they may fail to be
identically fulfilled when one makes assumptions about separate parts of the
flow, e.g. if one assumes that the shear is zero. As is well known, such assump-
tions have consequences for the other characteristics of the flow, and the Ellis
equations will show what the consequences are. Along the way, the program cal-
culates all those quantities that are calculated by the program Ortocartan, and in
addition the expansion, the acceleration, the shear tensor and scalar, the rotation
tensor and scalar, and the electric and magnetic parts of the Weyl tensor with
respect to the velocity vector.

Since the signature assumed in the calculation is (+ − − − ), the formulae
may differ from those given in textbooks, and so some of them are quoted below
for reference. The equations that the program verifies are the following.

The rotation constraint equations:

q [ab; g ] + u̇[a; g ub] + u̇[aqbg ] c 0

(square brackets on indices denote antisymmetrization, round brackets on indices
denote symmetrization).

The shear constraint equations:

ha
b(qbg

; g − j
bg

; g + 2
3 v ; b) − (qa

b + ja
b)u̇b c 0,

where ha
b c da

b − uaub is the projection tensor.
The rotation evolution equations:

h
g

a h
d

b q̇g d − h
g

a h
d

b u̇[g ; d] + 2jd[aqd
b] + 2

3 v qab c 0.



The Newest Release of the Ortocartan set of Programs 151

The Raychaudhuri equation:

v̇ + 1
3 v2 − u̇a

; a + jabjab − qabqab + Rabuaub c 0.

The (coordinate) electric components of the Weyl tensor:

Eab c Carbjuruj ≡ Eba.

The shear evolution equations:

h
g

a h
d

b j̇g d − h
g

a h
d

b u̇(g ; d) + u̇au̇b + qag q
g

b + jag j
g

b + 2
3 v jab

+ 1
3 hab[2(q2 − j2) + u̇

g
; g ] + Eab c 0.

The magnetic components of the Weyl tensor:

Hab c 1
2

f−geagmnCmn
bdug ud ≡ Hba,

where eag mn is the Levi-Civita symbol.
The “magnetic constraint” equations:

2u̇(awb) −
f
−gh

g
a h

d

b (q m; n
(g + j

m; n
(g )ed)rmnur c Hab,

where wb is the rotation vector field defined by:

wa c 1
2
f−g

eabg bubqg d .

As an example, let us consider the application of this program to the metric
of Lanczos [4].

ds2 c (dt + CrdJ)2 − wdJ2 − 1
4 e−rdr2/ w − e−rdz2,

where C c const and

w c C 2r + L − Le−t .
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Fig. 8. Input data for the program Ellisevol, the metric is that of Lanczos (Ref. 4).

This is a stationary cylindrically symmetric solution of Einstein’s equations
with a rotating dust source and with a nonvanishing cosmological constant L.
The coordinates used in the metric shown above are comoving and the veloc-
ity vector field of the dust is one of the orthonormal tetrad vectors, hence the
tetrad components of the velocity field are (1 0 0 0). Since this is a solution
of Einstein’s equations, this vector field is uniquely determined by the metric,
and so, as expected, all the constraint and evolution equations will be identities.
However, the acceleration (c 0), rotation, expansion (c 0), and shear (c 0) are
all calculated, along with the electric and magnetic parts of the Weyl tensor.

The input data for this example is shown in Fig. 8.
The first line of the input tells the system to treat the lower-case letters

and their corresponding capitals as different symbols, the last line reverses this
command. The command “(dont print message)” tells the system not to print
the messages about unsuccessful attempts to carry out the substitution specified
in the previous line. Without this command, the program would write a mes-
sage every time when there was no opportunity for this substitution in a given
formula.

The most important parts of the output are given in Figs. 9, 10, and 11.
Each tensor is printed with its unique name to facilitate substitutions. Thus the
covariant rotation tensor qab has the name “rotdd”, while the mixed rotation
tensor q

b
a has the name “rotdu”, and similarly for shear.
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Fig. 9. Part 1 of the output corresponding to the input
from Fig. 8. All the items that are not specific to the
Ellis evolution equations (like the velocity field, the
Ricci rotation coefficients, the Christoffel symbols, etc.)
have been deleted by the text-editor. The only items
shown are the flow characteristics and the Ellis equa-
tions (fulfilled identically in this case).
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Fig. 10. Part 2 of the output corresponding to the input from Fig. 8.

5. THE PROGRAM CURVATURE

This program calculates the curvature tensor from given connection coef-
ficients in any number of dimensions. The connection coefficients are assumed
symmetric (i.e. torsion-free), but need not be metrical. The program was written
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Fig. 11. Part 3 of the output corresponding to the input from Fig. 8.

for one special application, and hence the assumption of zero torsion; it can be
removed without any difficulty.

6. THE PROGRAM LANDLAGR

This program calculates the reduced lagrangian for the Einstein equations
by the Landau-Lifshitz method [5]. This is the Hilbert lagrangian with the diver-
gences containing second derivatives of the metric already removed. In short,
this (noncovariant) lagrangian is obtained by deleting from the scalar curvature
those terms in which the Christoffel symbols are differentiated, and taking the
remaining part with the reverse sign.

As is well-known, the Euler–Lagrange equations derived from a variational
principle in which the generality of the metric was limited by various assump-
tions (e.g. about symmetry) are not always equivalent to the Einstein equations.
It may happen that they will have nothing to do with the Einstein equations; this
is known, for example, to occur for certain Bianchi-type models [6]. Therefore,
the user must make sure, when using the program “landlagr”, that the situation
is appropriate for applying the lagrangian methods.

7. THE PROGRAM EULAGR

This program calculates the Euler–Lagrange equations starting from a
Lagrangian specified by the user. It is assumed that the resulting E-L equations
will be ordinary differential equations (i.e. that there is only one independent
variable in the lagrangian action integral).

As an example, the program will derive the Newtonian equations of motion
for a point particle of mass m in the cartesian coordinates {x, y, z} from the
lagrangian
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Fig. 12. The input data for the program Eulagr, corresponding to the Newto-
nian equations of motion with an arbitrary potential.

L c 1
2 m(ẋ2 + ẏ2 + ż2) − V(x, y, z),

where V is a potential and x(t), y(t), z(t) are the equations of a trajectory of
the particle. The input data is shown in Fig. 12, and the corresponding output is
shown in Fig. 13.

All the other programs described in this paper are, from the programmer’s
point of view, rather similar to each other. The various programs are simply dif-
ferent sets of the same basic algebraic operations. The program Eulagr is some-
what exceptional, since, when calculating variational derivatives, the functional
expressions ẋi, i c 1, 2, . . . , n have to be treated as independent variables at a
certain stage. The program generates names for these variables, adds them to the
list of independent variables for differentiation, replaces the ẋi by the new vari-
ables, then calculates the derivatives ∂L/ ∂ẋi and ∂L/ ∂xi, then replaces the new
variables back by ẋi in the resulting expressions, and finally uses these results
to calculate d/ dt (∂L/ ∂ẋi). All this happens automatically, and the user need
not worry about any details of it. Ortocartan’s differentiating and substituting
subprograms are flexible enough to handle this.

8. THE PROGRAM SQUINT

This program verifies whether a given expression is a first integral of a given
set of ordinary differential equations. The program was written for a specific
application, therefore it is rather limited in its abilities. It is assumed that the
(hypothetical or actual) first integral is a polynomial of first or second degree
in the first derivatives of the functions that should obey the set of equations. It
is also assumed that the equations in the set are all of second or first order and
that they have the form:



The Newest Release of the Ortocartan set of Programs 157

Fig. 13. The output corresponding to the input from Fig. 12.

f i
, t t c Wi( f 1, · · · , f n, f 1

, t , . . . , f n
, t)

i.e. that they are algebraically solved with respect to the highest derivatives.
“Squint” is an abbreviation for “square integral”.

In order to make the result easy to verify, the program “squint” will be used
to find a first integral of the equations found in the previous example. We shall at
first pretend that we do not know what the integral I should be and will assume
that it is a general polynomial of second degree in the first derivatives by t of
the functions x(t), y(t) and z(t), thus I c Qij(dxi/ dt) (dxj/ dt) + Li (dxi/ dt) + E,
where Qij, Li and E are unknown functions of the xi. The argument “(markers
M)” defines M as a symbolic variable that can be used to represent any expres-
sion. Thanks to this facility the single equation (der t t M) c (− (der M V)/ m)
represents the 3 equations d 2xi/ dt2 c −∂V/ ∂xi for i c 1, 2, 3 simultaneously. The
“maineq” directs these substitutions to the main equation, which is the explicit
formula for the total derivative dI/ dt.

The input data is shown in Fig. 14, and a representative part of the output
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Fig. 14. The input data for the program Squint in the example where we pretend not to know the
exact form of the energy integral of the Newtonian equations of motion. The integral is assumed to
be a general polynomial of degree 2 in the derivatives dx/ dt, dy/ dt and dz/ dt with the coefficients
being unknown functions of x, y and z. The equations are specified in the “substitutions”; see text
for more explanation.

is shown in Fig. 15 (most of the equations in Fig. 15 have been cut out by the
text editor to save space).

The output includes the integral I printed in the mathematical format, the
“main equation” dI/ dt (the printing of dI/ dt was suppressed by the command
“(dont print maineq)”), the coefficients of all the expressions [(dxi/ dt) (dxj/ dt)
(dxk / dt)], [(dxi/ dt) (dxj/ dt)], (dxi/ dt), and the remaining part of dI/ dt that does
not contain any dxi/ dt. This will be done correctly only if the second derivatives
(d2xi/ dt2) appearing in dI/ dt had been replaced using the (substitutions . . .), in
this way use is made of the set of equations for which I is expected to be the
first integral. If the set consists of n equations, then the number of coefficients
printed will be 1

6 (n + 1) (n + 2) (n + 3), i.e. 20 for n c 3. When the explicit form
of I is unknown, as in this example, the coefficients will be partial differential
equations that should determine the Qij, Li and E (each of the “equations” printed
is a left-hand side of an equation that has zero on the right-hand side).

Now let us substitute the well-known solution of these equations into the
data and see what happens. Fig. 16 shows the input data for the program Squint,
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Fig. 15. The output corresponding to the input from Fig. 14. Most of the equations have been deleted
by the text editor. When all these equations are solved, the well-known energy integral emerges as
a solution, and it is then tested in Figs. 16 and 17.
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Fig. 16. The input data for the program Squint for the same example as in Fig. 14, but with the
first integral explicitly specified now.

with the energy integral explicitly defined. Fig. 17 shows the corresponding
output.

Similar programs for verifying first integrals can be written for any kind of
dependence of the first integral on the first derivatives of the functions.

Fig. 17. The output corresponding to the input from Fig. 16.
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A. HOW TO OBTAIN ORTOCARTAN

The base language of this newest release of Ortocartan is Codemist Standard
Lisp. The latter is implemented in Windows 98 and in Linux, and so should be
usable for most computer users.

In order to use Ortocartan one must first buy the Codemist Standard Lisp.
It can be bought from:

Professor John Fitch, Director
CODEMIST Limited
“Alta”, Horsecombe Vale
Combe Down
BATH, Avon, BA2 5QR
England
phone and fax (44-1225) 837 430
email jpffitch@maths.bath.ac.uk

Ortocartan is free of charge. If you wish to have it, just contact A. Krasiński,
I will either email the programs to you or send you a diskette. How to install Orto-
cartan when Lisp is already working is described in sec. 7 of the manual [2].
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