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ROTATING DUST MODELS IN RELATIVITY

Andrzej Krasinski

N. Copernicus Astronomical Center and College of Science of PAN, Warsaw

For rotating dust with a 3-dimensional symmetry group all possible metric forms
can be classified and, within each class, explicitly written out. With respect to the
structures of the groups, this is just the Bianchi classification, but with all orientations
of the orbits taken into account. This result follows from the formalism introduced
by Plebanski. This paper is a brief overview of results that are published elsewhere.

1. Introduction and summary

There exist unsolved problems even in classical relativity. One of them is finding
an exact solution of Einstein’s equations that could describe an expanding and
rotating Universe. What is it needed for? A physicist’s approach to Nature is to
first calculate the magnitude of an effect from theory, and then to measure it — in
order, among other things, to test the theory. The same principle should apply to
cosmology (although not all astronomers share this view; some of them tend %o just
know some things without verification). However, in astronomy, unlike in physics,
we cannot carry out active experiments; we can only do passive observations. In
order to calculate what observable effects rotation of the Universe might have, it
is necessary to have at least one acceptable model of the Universe that allows for
rotation. Such a model is still lacking. Existing solutions of Einstein’s equations
with rotating sources are either stationary from the beginning or become static in
the limit of zero rotation. The approach presented here aims at obtaining a solution
that would be free of these problems. So far, the approach has not resulted in a
success, but it seems promising.

The theorem of Darboux (see Section 2) allows one to introduce invariantly
defined coordinates in which the velocity field of a fluid acquires a preferred form.
It is assumed in addition that the fluid moves with zero acceleration and nonzero
rotation. These assumptions result in a simplification of the metric tensor and in
limitations imposed on the Killing vectors, if any exist. A Killing field k® may
be spanned on velocity u* and rotation w* or may be linearly independent of u®
and w®. This gives rise to a classification of possible symmetries in the presence of
rotating matter.

When there exist three linearly independent Killing fields, the classification
described above gives rise to a complete classification of all such metric forms. With
respect to the algebras of the symmetry groups, this is just the Bianchi classification,
but with all possible orientations of the orbits in the manifold taken into account
(i.e. they may be time-like, space-like or null).

[199]




200 A. Krasinski

For later reference, let us note the relation [27] between the Bianchi classification
and the non-rotating cosmological models of Friedmann that are commonly used by
astronomers as the standard models of our real Universe. The & < 0 Friedmann
model is contained in Bianchi types V and VI, the & = 0 Friedmann model is
contained in Bianchi types I and VIIy, the £ > 0 model is contained in the Bianchi
type IX. .

In every case that emerges, the commutation relations of the symmetry algebra
have been solved, resulting in explicit formulae for the Killing fields, and then the
Killing equations have been solved, resulting in the formulae for the metric tensors
compatible with the symmetry group considered. The degree of success in solving
the Einstein equations varied from case to case. In most cases, no progress was made.
In a few cases the Einstein equations have been partly integrated and reduced to
a simpler set. Several solutions known earlier were identified in the present scheme
(those by Lanczos [1], Gédel [2], Maitra [3], Ellis [4], King [5], Vishveshwara and
Winicour [6] and a few solutions with rotating charged dust, see below). In this
note only the most important results will be described, the full results are published
elsewhere [24-26].

In Section 2 the Darboux theorem and the associated classification of first-
order differential forms are introduced. In Section 3, the classification is applied to
geodesic vector fields with rotation. When the vector field is the velocity field of
a fluid, a class of preferred coordinates results (which shall be termed ”Plebanski
coordinates” [7]). In Section 4 it is shown that each Killing vector field that might
possibly exist in a space-time with a geodesic and rotating fluid source is determined
by two functions of two variables. If the Killing field is not spanned on velocity and
rotation, then the Plebanski coordinates may be adapted to it so that it acquires
the form k% = 67.

In Section 5, the consideration of Section 4 is applied to the case of three Killing
vector fields existing on a manifold. When all three of them are spanned on u® and
w?, the group becomes two-dimensional and this case is not considered here. When
two of them are spanned on u®* and w® while the third one is not, two cases arise.
In one of them (Bianchi type II), the Einstein equations reduce to a single ordinary
differential equation of third order (of second order when A = 0). In the other case
(Bianchi type I), the Einstein equations are reduced to a set of first-order equations.
The solutions of Lanczos [1] and of Gddel [2] emerge as special cases of both these
classes.

The remaining cases are sketched only briefly. Section 6 contains the description
of the case when two of the Killing fields are linearly independent of u® and w®,
Section 7 — of the case when all three Killing fields are linearly independent of u®
and w®. With the increasing number of Killing vectors that are linearly independent
of u® and w®, the number of subcases requiring separate treatment increases, and
the Einstein equations become progressively more complicated. In Section 8 the
most promising case is briefly described.
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2. The classification of differential forms of first order
and the Darboux theorem

Definition. Let g be a differential form of first order.

If Qo :=dg N ... Ndg (multiplied [ times) # 0, but ¢ A Qg = 0, then q is said to be
of class 2l.

If Qo1 == q AN Qo # 0, but dQgr1 = dg AN Qo = 0, then g is said to be of class
(20 +1).

Then the following holds.

Theorem. (Darboux) The form q is of class 2l if and only if there exists a set
of 21 independent functions (&1,...,&, M, ..., m) such that

q = md&y + n2déa + - - - + mudg. (2.1)

The form q is of class (21+1) if and only if there ezists a set of (21+1) independent
functions (1,&1,...,&,M,-..,m) such that

q = d7 + md&§; + mdé + - - - + mdé;. (2.2)

(See [9] for a proof.)
The Darboux theorem implies that in a four-dimensional space-time V; the most
general differential form of first order can be represented as

q = odt + nd¢, (2.3)

where o, 7,7 and £ are scalar functions on V;.
Any vector field u® on Vj defines the following form of first order

qQy = 'U'adza- (24)

According to (2.3), in the most general case there exist scalar functions o, 7,n and
& such that ‘
Uy = JT:OA +77§7a . (25)

In general, the four functions are independent, i.e.

d(o,7,1,§)
(20, z, 22, x3) 7 0.

(2.6)

In that case, they can be chosen as coordinates in the space-time.
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3. Geodesically moving fluids

To any time-like vector field u, normalized to unity (so that u,u® = 1) the decom-
position described in [10, 11] may be applied

Ugg = UaUg + Taf + Wapg + %Hhaﬁ, (3.1)
where 1%, 0, 0as and wag are, respectively, the acceleration, expansion, shear and
rotation. In the signature (+ — ——) used here, the projection tensor hag is

hap = Gap — Ualip. (3.2)
The following identities hold
Uou® = 0, Oapt? = wapt? = 0. (3.3)

We shall assume from now on that u, is the velocity field of a fluid and that 7, =0,
i.e. that the particles of the fluid move on geodesics. Then, from (2.5) we have

1
Wap = §(Uaﬁ Tya — 0,0 T8 +777ﬂ 57(1 T 57,8)7 , (34)
and from (3.3) we have
(uﬂo-’ﬁ )T’a —(uﬁT’B )U’a +('u'ﬁ77aﬁ )g:a _(uﬂgﬁﬁ )naa = 0. (3'5)

Tt is easy to see that, in virtue of (3.5), the form (2.4) cannot be of class 4. Hence,

for a geodesically moving fluid the form (2.4) is of class at most 3, i.e. at most 3

independent functions 7,7, £ exist such that

ua = T)a +n€’a * (3'6)

The functions {7,&,n} in (3.6) must then obey u®&,a = u®n,e =0 (from (3.3)) and
are determined up to the following transformations

E=F(E ), n=GE ), Tt=1-5En) (3.7)
where the functions F' and G must obey the equation
Foo Gy —Foy G = 1, (3.8)
and then S is determined by
S,er=GF,g —1, Sy =GF,y . (3.9)
Let us now assume that the number of particles of the fluid is conserved, i.e.

(vV=gnu®),a =0, (3.10)
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where g is the determinant of the metric tensor and n is the particle number density.
This equation is a necessary and sufficient condition for the existence of a function
¢ such that:

V _gnua = Eaﬁfy&g,ﬂ My Caé . (311)
Note that Egs. (3.3) and (3.6) imply that
T, =1, (3.12)
and then Eq. (3.11) implies that
0(,m,€,¢)
afyd — 1S .
e 70 Ep My (s = 90, 7,22, 7%) V—=gn #0, (3.13)
u*Ce = 0. (3.14)
The function ( is determined by (3.11) up to the transformations
(= +TE ), (3.15)

where T is an arbitrary function. Eq. (3.13) certifies that {7,&,n,¢} = {2°, 2, 22,
23} .= {t,z,y, 2} can be used as coordinates in the space-time. With such a choice,
Eq. (3.6) implies

ug = 1, Uy = v, Uy = ug = 0. (3.16)
We will use these coordinates throughout the remaining part of the paper and call
them “Plebariski coordinates”. Eq. (3.13) implies now

g=-n""%, - (3.17)
and Eq. (3.11) implies
u® = 4y, (3.18)
i.e. the Plebanski coordinates are co-moving. The rotation vector defined by
1
a __ afyd
w = e Uy s 3.19
2\/_—9 BYy ( )
assumes the form 1
w® = §n5§“ (3.20)
Egs. (3.16) and (3.18) imply that
Goo = 1, gor = Y, Go2 = goz = 0, (3.21)

and also that the only nonvanishing components of the rotation tensor are

W19 = —W9y1 = 1/2 (322)
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If we now assume that the fluid is perfect, then we conclude from the equations
of motion 7% 5 = 0 that either w = 0 or p = const (see also [12]). This means that
a geodesic perfect fluid can be rotating only if it is in fact dust; the constant p can
be reinterpreted as the cosmological constant. For dust, the energy-density obeys
the conservation equation (v/—geu®), = 0 and Eq. (3.10) need not be assumed
separately. A more detailed exposition of the same material can be found in [8].

Note that rotating dust is not the only example to which this approach may be
applied. In several papers, rotating charged dust was considered under the additional
assumptions that all charges are attached to the dust particles, that the only current
is the one created by the flow of dust and that the Lorentz force acting on the dust
particles, F*,u”, is zero (i.e. that the electric and magnetic fields are such that they
cancel each other’s influence on the charged dust particles). Under these assumptions
the dust particles move on geodesics and the formalism of this section applies. Such

solutions of the Einstein-Maxwell equations were considered in [13-20]; they will be
mentioned in Section 5.

4. The Killing vector fields compatible with rotation

We shall assume that the symmetries of the space-time (if any exist) are inherited
by the source, i.e. that if the Lie derivative of the metric tensor g,p along the vector
field £k is zero, £rgas = 0, then the velocity field and the particle number density
are also invariant: £yu® =0 = £yn. (For a pure perfect fluid source the inheritance
is guaranteed.) It follows that the rotation tensor must also be invariant, £xwas = 0.
All these equations imply that

kO = C + ¢ - y¢>y7 kl = ¢7y7 kz - '—d)::l:: k3 = )‘: (41)

where ¢(z,y) and A(z,y) are arbitrary functions and C is an arbitrary constant. If
there are no symmetries, then ¢ = A\ = C = 0. However, if any symmetries are
present, then the Killing vector fields must have the form (4.1).

Suppose that ¢ is not a constant, i.e. that a Killing vector field £ exists that
has a nonzero component in the z- or y-direction (in invariant terms this means
that the vector field k® is not spanned on the vector fields of velocity, u®, and
rotation, w*). We can then, within the Plebariski class defined in Section 3, adapt
the coordinates to & in such a way that k* = 6, i.e. so that the metric becomes

independent of z'. From Egs. (3.7)—(3.9) and (3.15) the transformation functions
are

t'=1t—8(z,v), ' = F(z,y), Y = G(z,y), 2 =z+4+T(z,y), (4.2
where T' is arbitrary, while F, G and S obey

Fa:r G:y "'Fay G;:c - 17 Sm: = GF,&: -Y, Say = GFay - (43)
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The condition k¥ = §% then implies
G=¢+C, (4.4)

T7:1: ¢7y '_T7y ¢75L‘ =—A. (45)

Eqgs. (4.3) and (4.5) simply define the accompanying F, S and T which are seen to
exist always. Since ¢ was assumed nonconstant, the transformation is nonsingular,
and results in ¢ = y in the new coordinates; the metric becomes independent of z
after the transformation. This property is preserved by the transformations (4.2),
but with F, G, S and T restricted now by

F=z+ H(y), G =y, T ="T(y), S=/yH,ydy+A, (4.6)

where A is an arbitrary constant and H and T are arbitrary functions.
If three Killing vector fields are spanned on u® and w®, so that ¢ = const in
(4.1) for each of them, i.e.

G =Cids + Xi(z,9)05,  1=1,2,3, (4.7)

then constants o, az and az exist such that aikpy + axk) + azke) = 0, ie. the
symmetry group is in fact two-dimensional. Hence, for a three-dimensional group
at least one of the generators must be linearly independent of u® and w?® at every
point of the space-time region under consideration.

5. The case of two generators spanned on »® and w®

In this section we shall assume that exactly one generator, k?l), is linearly indepen-
dent of u® and w®, while the other two, k%, and k&), are of the form (4.7). In

agreement with the result of Section 4, the Plebanski coordinates can be adapted
to k() so that

1) = 07, (5.1)
while
k&) = 0258 + )\Q(SB, y)5§“, (oé) = 0356! + )\3(33, y)ég‘, (52)

and the coordinate transformations preserving (5.1) and (5.2) are (4.6). With no
loss of generality we can assume that

Cy # 0= Cs, (5.3)

because the Killing vector fields are determined up to linear combinations among
them. This implies A3 # 0. The commutators of the Killing vectors are then

by, k@) = (Maa/Xa)kGy, [y k@]® =0, [k, ke)l® = Mae/ra)kE).  (5.4)
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The Killing vector fields will thus form a Lie algebra when
)\2’3; = b)\g, /\3,93 = C/\3, (55)

where b and ¢ are arbitrary constants. The cases ¢ # 0 and ¢ = 0 have to be
considered separately. However, when ¢ # 0, it follows that

As = By)e=, A= (b/c)B(y)e™ + aly), (5.6)

and so, with no loss of generality we can assume b = 0. The Einstein equations then
imply that either ¢ = 0 or there is no rotation. Since we are interested in rotating
solutions only, this case need not be followed. We thus consider

Case I. c=0,0#0. Then

Aa=B®), =08z +aly) (5.7)

The algebra of the Killing vector fields is of Bianchi type II when b # 0, and of
Bianchi type I when b = 0.

In this case the Einstein equations and coordinate transformations can be used
to simplify the metric form as follows:

ds? = (dt + Ydz)? — (Fdz)? — dy? — G*(—btdz + dz)?, (5.8)
where the functions Y (y) and F(y) are defined as

P2 (c_ly+z— / G*dy)a/Cy (5.9)

Y,,G/F = B = const, (5.10)

C is an arbitrary constant (we can assume G,y # 0 because G,y = 0 implies b = 0,
and this will be considered separately), and G(Y) is determined by the equation

—-bzaa,y+ B/ (C—3¥+25; / G2V )Gy [G—Goyy [Goy) =0, (5.11)

see [24] for details. When A = 0 this becomes a second-order differential equation.
The formula for energy-density may be simplified to

(871G /e = (B/G)? — (bG)* — 2A. (5.12)

Note that the solutions considered here have a meaningful limit 6 = 0.

When G = const, Egs. (5.9) and (5.11) no longer apply and one has to go back
to the Einstein equations; the resulting metric is the Godel solution.

When G,y # 0 = b, Eq. (5.11) implies G = eP¥*E, and this leads to the
Lanczos solution (see [8]).
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Case II. b = ¢ = 0 in Egs. (5.4)—(5.5).
The metric form has here more components (see again [24] for details).
ds® = (dt + Ydz)? — (Fdz)® — dy* — G*[Adt — (—bt — ki3)dz + dz)?, (5.13)

where the functions Y (y), F'(y), G(y), A(y) and ky3(y) are determined by the follow-
ing set of equations:

ki3, = BF/G°—-YA,,, ) (5.14)
Y,, = (C— BA)F/G, (5.15)
A, = (BY - D)/(FG?), (5.16)

1 1 1
1 1

where B,C, D and H, are arbitrary constants. Eqs (5.14)—(5.18) are first integrals
of the Emstem equations.

The functions A(y) and k3(y) have invariant meaning: they are proportional
to the scalar products of the Killing vectors:

A= —gaghyykly /G, iz = —Jasklly iy /G? (5.19)

(note that G* = —gaﬂk&)kg), i.e. it is a scalar, too). Hence, A = 0 and ki3 = 0
are invariant properties. Note that A = 0 implies, through (5.16), that either ¥ =
const (in which case there is no rotation) or B = D = 0. In the latter case, ki3
= const and the coordinate transformation z = 2z’ — ki3x leads to ki3 = 0 in the
new coordinates. With A = k3 = 0, the Lanczos and Godel models result from the
Einstein equations as the only solutions.

In [13-20], charged dust solutions with zero Lorentz force were considered.
Apart from the one in [13], they are cylindrically symmetric and stationary, and

so they would emerge in this section, had we allowed charged dust as a source and
considered the Einstein—-Maxwell equations.

6. The case of one generator spanned on u* and w®*

The number of cases that require separate treatment is larger here, and the equations
are more complicated, so the results will be described only briefly.

One of the two generators that are not spanned on u® and w® may be given the
form (5.1) by a coordinate transformation, the other will have the form (4.1). The
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one that is spanned on u* and w® will have the form (5.2). Hence, the generators
are

= o (6.1)
& = (Cot ¢ —ydy)dg + by 07 — b2 03 + Ma(x, y) 05, (6.2)
Ky = sl + Aa(, )35, (6.3)

and the remaining freedom of coordinate transformations is given by Egs. (4.2) and
(4.6). The Killing fields (6.1)-(6.3) will form a Lie algebra when

[k, k@)l = akq) + k) + ck), (6.4)

[k, k@) = dkqy + ek + fke), (6.5)

k), k)] = gk + hke) + Tk, (6-6)
where a, ..., j are constants to be determined from (6.1)—(6.6).

Systematic investigation of solutions of the set (6.4)—(6.6) leads to 13 inequiv-
alent cases (see [25] for details) containing all Bianchi types from I to VI;. Among
them are special cases of the solutions found by Ellis [4] (which are of Bianchi types I,
IT and III), the solutions of Bianchi type I by Maitra [3], King [5], Vishveshwara and
Winicour [6] and Ozsvath [21], and three simple new explicit solutions of unknown
interpretation (of Bianchi types II and III).

The solutions of Bianchi type I from this class will not contain any generaliza-
tions of the flat Friedmann model because the velocity field of the rotating dust is
tangent to the symmetry orbits here, i.e. these space-times are stationary. However,
there are two Bianchi type V classes here, one of which is known to contain the & < 0
Friedmann model as a subcase of the limit w = 0. This one will be briefly described
in Section 8 below. The Bianchi types VI, and IV of this class have so far not been
explored at all in the literature and their physical interpretation is unknown.

7. The case of all three generators bemg linearly independent of u®
and w®

The Killing fields k() and k) are the same as in (6.1)—(6.2), while k) is
&y = (Cs+ ¢ — Yty )05 + 1y 07 — ¥, 05 + Aa(3,)05; (7.1)

¢ and v are functions of  and y. The commutator equations (6.4)—(6.6) can be
partly integrated without going into separate cases, resulting in the set

b, = ay+ bo + cyp + bCy + cCs; (72)
Ve = dy+ed+ fp+eCs+ fCs; (7.3)
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Doy Voo =By = gy+hd+jib+C, (7.4)
Aoz = DAy + s, A3z = elg + fAs, (7.5)

Gry (Voo —YVsay ) + Yoz Yoy =iy (Prz —Yray ) — Ythsz oy
= h(Ca+ ¢ —ydy) +3(Cs+v —yiby), (7.6)

where C' is an arbitrary constant.

The equations to solve are (7.2), (7.3) and (7.5); the remaining ones are con-
sistency conditions to be imposed on the solutions. The set (7.2)—(7.3) and the set
(7.5) are both (ordinary differential) linear vector equations of the same form

U,= AU +W, (7.7)
where, for (7.2)—(7.3), the constant matrix A and the vectors U and W are

() () (@)

while for (7.5) the matrix A is the same, W =0 and U = (iz )
3

Solving Eq. (7.8) is a textbook exercise, but, since the constants a, ..., are
all arbitrary, a multitude of separate cases arises: the matrix A may be nonsingular
with two complex eigenvalues, two real eigenvalues, one double eigenvalue or a single
eigenvalue, it may be singular with two different eigenvalues, nilpotent, etc. Some
of the subcases turn out to be equivalent in the end (in the sense that they generate
the same algebra), some others turn out to be reducible (by changes of the basis of
Killing vectors) to those considered in Section 6. In the end, the number of cases to
be considered separately is 10, among them all Bianchi types except I, IIT and V [26].
The Bianchi type I case will not contain any generalization of the flat Friedmann
model for the same reason as before (the velocity field is tangent to the symmetry
orbits), but, nevertheless, there is room for all three types of Friedmann models here
because the Bianchi types VI, VII, and IX are all represented. However, they are
all hopelessly complicated and so far nothing is known about them.

This whole family of cases has not been explored in literature up to now except
for a special Bianchi type VII; model whose asymptotic properties were considered
by Demianski and Grishchuk [28]. This special case has flat hypersurfaces ¢ = const.

8. A promising Bianchi type V case

One of the two Bianchi type V metrics obtained in the class of Section 6 is the
following

ds® = (dt + ydz)? — (yku)*da® — (kaa/y)*(dy + y*hdz)?

— ka3?[y fdz + (g/y)dy + ydz]?, (8.1)
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where ki1 (t), kaa(t), h(t), ksa(t), f(t) and g(t) are functions of ¢ to be found from
the Einstein equations. (This is the Bianchi type V subcase of the case 1.2.2.2 of
[25] simplified by a coordinate transformation.) It is most promising because some
progress toward integrating the Einstein equations was made here (to be published),
while the & < 0 Friedmann model can be seen to be a subcase of the limit of zero
rotation. This will be shown below.

As is obvious from Egs. (3.20) and (3.22), the Plebaniski coordinates are ill-
suited for considering the limit w = 0. Hence, for calculating this limit, a coordinate
transformation has to be carried out first. The limit subsequently calculated will
be nonunique (i.e. another nonrotating limit might be obtained starting from a
different coordinate transformation). However, we will be satisfied to show that a
limit exists, in which the £ < 0 Friedmann model is contained.

Let wy be a constant and let

y = woy'. (8.2)

Then, in the new coordinates _
w’12 = WolW12 (83)

and wyg — 0 will result in w,p = 0. However, this limit would make the metric
tensor singular, and so it has to be accompanied by a few reparametrizations (this

is where nonuniqueness enters again). The following reparametrizations will remove
the problem

ki = I~€11/w0, ksg = 1:333/010; g = gwo, n = nwo2 (8-4)

(the last reparametrization assures that also the rotation vector w* — 0 in the limit
Wy — O)
After the reparametrization the metric becomes

ds? = (dt + woy'dz)? — (y'ky1dx)? — (ka/y")(dy' + woy*hdz)?

— ksl fde + (3/y)dy' +y'd2)? —

wp—0
dt® — (y’lélld:v)2 — (kag/y)?dy"™ — 1553 [V fdz + (3/y")dy' + y'dz]*, (8.5)

and it is no longer singular and even more general than necessary. The £ < 0
Friedmann model results from here as the following subcase

f=§=0, ki = ks = ka3 := R(2), (8.6)

where R(t) is the Friedmann scale factor. The standard forms of the Friedmann

metric can be obtained from the above by elementary coordinate transformations.
It was shown above that the £ < 0 Friedmann model emerges when the limit

wo — 0 is taken in the Einstein equations. This does not yet guarantee that solutions
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of Einstein’s equations will have the same property. It happens that solutions of
nonlinear differential equations do not form continuous families, but rather branched
trees: alternatives appear while solving the equations, and after one branch of the
alternative is chosen, the other branch is not accessible through limiting transitions.
In fact, an example is seen in Section 5 of this text: the Bianchi type I solutions have
symmetry generators that result from those for Bianchi type II in the limit b6 — 0.
However, the collection of solutions for Bianchi type I is larger than the b6 — 0 limit
of the type II solutions. The same situation may happen with the metric (8.1).
Hence, an explicit solution of the Einstein equations has to be found for this metric

and then its limit wy — 0 has to be compared with the Friedmann model. Work on
this is in progress.

9. Conclusion

This investigation should be useful as an intermediate step in looking for more
general solutions: perfect fluid solutions with the same symmetries and any solu-
tions with lower symmetries. The progress with respect to earlier knowledge on
hypersurface-homogeneous geometries with a rotating dust source consists in the
fact that such solutions have been looked for by trial and error, beginning from

certain metric ansatzes. The collection of possible ansatzes was hereby reduced to
a well-defined, not-too-large set.(!)
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