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The Ultimate Extension of the

Bianchi Classification for Rotating
Dust Models

Andrzej Krasinski

ABSTRACT For a rotating dust with a 3-dimensional symmetry group all possible
metric forms can be classified and, within each class, explicitly written out. With
respect to the structures of the groups, this is just the Bianchi classification, but with
all possible orientations of the orbits taken into account. This result follows from the
formalism introduced by Plebanski. This paper is a brief overview of results that will
be published elsewhere.

20.1 Introduction and Summary

The theorem of Darboux (see Section 20.2) allows one to introduce invariantly
defined coordinates in which the velocity field of a fluid acquires a preferred form.
It is assumed in addition that the fluid moves with zero acceleration and nonzero
rotation. These assumptions result in a simplification of the metric tensor and in
limitations imposed on the Killing vectors, if any exist. A Killing field k* may be
spanned on velocity u* and rotation w® or may be linearly independent of u® and
w®. This gives rise to a classification of possible symmetries in the presence of
rotating matter.

When there exist three linearly independent Killing fields, the classification de-
scribed above gives rise to a complete classification of all possible metric forms.
With respect to the algebras of the symmetry groups, this is just the Bianchi clas-
sification, but with all possible orientations of the orbits taken into account (i.e.,
they may be timelike, spacelike or null).

In every case that emerges, the commutation relations of the algebra have been
solved, resulting in explicit formulae for the Killing fields, and then the Killing
equations have been solved, resulting in the formulae for the metric tensors com-
patible with the symmetry group considered. The degree of success in solving
the Einstein equations varied very strongly from case to case. In most cases, no
progress was made. In some cases the Einstein equations have been integrated
either to an autonomous set of first-order equations or to a single nonlinear dif-
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ferential equation of second or third order. Several solutions known earlier were
identified in the present scheme (those by Lanczos [1], Godel [2], Maitra [3], Ellis
[4], Vishveshwara and Winocour [6], and a few solutions with rotating charged
dust; see below).

The Darboux theorem was first applied as a tool for investigating the equations
of motion and the Einstein equations by Plebanski [7]. The approach of Plebanski
was used by this author [8—12] to find a collection of stationary, cylindrically
symmetric solutions of Einstein’s equations with berotropic perfect fluid sources.

In Section 20.2 the Darboux theorem and the associated classification of first-
order differential forms are introduced. In Section 20.3 the classification is applied
to geodesic vector fields with rotation. When the vector field is the velocity field of
a fluid, a class of preferred coordinates results (which shall be termed “Plebanski
coordinates”). In Section 20.4 it is shown that each Killing vector field that might
possibly exist is a spacetime with a geodesic and rotating fluid source is determined
by two functions of two variables. If the Killing field is not spanned on velocity
and rotation, then the Plebanski coordinates may be adapted to it so that it acquires
the unique form k% = 4¢.

In Section 20.5, the consideration of Section 20.4 is applied to the case of three
Killing vector fields existing on a manifold. When all three of them are spanned on
u® and w?, the group becomes 2-dimensional, and this case is not considered here.
When two of them are spanned on #* and w* while the third one is not, two cases
arise. In one of them (Bianchi type II), the Einstein equations reduce to a single
ordinary differential equation of third order (of second order when A = 0). In the
other case (Bianchi type I), the Einstein equations are reduced to an autonomous
set of first-order equations. The solutions of Lanczos [1] and of Gddel [2] emerge
as special cases of both these classes.

The remaining cases are sketched only briefly. Section 20.6 contains the descrip-
tion of the case when two of the Killing fields are linearly independent of #* and
w?; Section 20.7 of the case when all three Killing fields are linearly independent
of u® and w*. With the increasing number of Killing vectors that are linearly inde-
pendent of u#® and w?, the equations become progressively more complicated, the
number of subcases requiring a separate treatment increases, while the progress in
integrating the Einstein equations decreases. The full results of the investigation
will be published elsewhere.

20.2 The Classification of Differential Forms of First
Order and the Darboux Theorem

Definition. Let g be a differential form of first order.

If Qu :=dq A ... Ndq [multiplied | times] # 0, but g A Qy = 0, then q is
said to be of class 21.

If OQys1 :=q AN Qo #0, but dQy 1 =dg A Qy =0, then q is said to be of
class (21 + 1). O
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Then the following holds:
The Theorem of Darboux. The form q is of class 21 if and only if there exists a
set of 2l independent functions (&1, ..., &, N1, ..., n) such that

q = mdé& +mdé + - -- + nid§;. (D

The form q is of class (21 4 1) if and only if there exists a set of (21 + 1) independent
functions (t, &1, ..., &, n1, ..., n) such that

q =dt +mdé& + mdé + - - - + nd§;. )

O
(See [13] for a proof).
The Darboux theorem implies that in a 4-dimensional spacetime V, the most
general differential form of first order can be represented as

=odt + ndé§, (3)

where o, 7, 1, and & are scalar functions on V.
Any vector field u* on V, defines the following form of first order:

qu = ug dx”. “4)

According to (3), in the most general case there exist scalar functions o, 7, n, and
& such that

Uy =0T,y +n§’d . (5)
In general, the four functions are independent, i.e.,
(o, 7,1, §)
# 0. (6)

a(x%, x1, x2, x3)

In that case, they can be chosen as coordinates in the spacetime.

20.3  Geodesically Moving Fluids

To any timelike vector field u, normalized to unity (so that u,u®* = 1), the
decomposition described in [14] and [15] may be applied:

1

where 1%, 6, o,s and w,g are, respectively, acceleration, expansion, shear, and
rotation. In the signature (+ - - -) used here, the projection tensor /4 is

hoz,B = 8ap — UUB. ®
The following equations hold:

ugu® =0, Ja,guﬂ = a)a,guﬁ =0. C)
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We shall assume from now on that u,, is the velocity field of a fluid and that iz, = 0,
i.e., that the particles of the fluid move on geodesics. Then, from (5) we have

1
Cl)a,B = 5(09,3 Tya — O 7:,,3_'_77’}3 é’a_n’as’ﬁ )’ ’ (10)
and from (9) we have

@P0,p)Ta = WPT,5)050 +UP1,5)E,0 — (WP, )1,0 = 0. (11)

It is easy to see that, in virtue of (11), the form (4) cannot be of class 4. Hence,
for a geodesically moving fluid the form (4) is of class at most 3, i.e., at most 3
independent functions 7, n, £ exist such that

Uy = T,a TN ,a - (12)
The functions {z, &, n} in (12) are determined up to the following transformations:
E=F@E. 1), n=GE\n), (13)
=1 —-S¢E, ) (14)

where the functions F and G must obey the equation
FeoG,y—F,y G =1, (15)

and then S is determined by

S,ee=GF,p—1, S,y =GF,y. (16)

Letus now make the additional assumption that the number of particles of the fluid
is conserved, i.e.,

(v —gnu®) o =0, (17)

where g is the determinant of the metric tensor and # is the particle number density.
This equation is a necessary and sufficient condition for the existence of a function
¢ such that

V=gt = e 5, L (18)
Note that (12) implies that
Uty =1, (19)
and then Eq. (18) implies that
N I a(igrx? i’z’g;) = J/—gn #0. (20)
Equation (18) also implies that
u®t,,=0. (21

The function ¢ is determined by (18) up to the transformations
¢ =¢ +TE\ ), (22)
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where T is an arbitrary function. Equation (20) certifies that {t, &, , ¢} can be
used as coordinates in the spacetinde. If they are chosen as the {x°, x!, x2, x3} =
{t, x, y, z} coordinates, respectively, then Eq. (12) implies

Uy = 1, up =y, Uy = Uz = 0. (23)

We will use these coordinates throughout the remaining part of the paper and call
them “Plebanski coordinates.” Equation (20) implies now

§=-n", 24
and Eq. (18) implies
u® =68, (25)
i.e., the Plebanski coordinates are comoving. The rotation vector defined by

¢ = —(1/=8)"  upu, s (26)

assumes the form
w* = ndg. 27)

Equations (23) and (25) imply that

goo =1, go1 =Y, g0z = go3 = 0, (28)

and also that the only nonvanishing components of the rotation tensor are
wp = —wy = 1/2. (29)

If we now assume that the fluid is perfect then we conclude from the equations of
motion T% .g = 0 that either @ = 0 or p = const. (see also [16]). This means that a
geodesic perfect fluid can be rotating only if it is in fact dust; the constant p can be
reinterpreted as the cosmological constant. In this case, the energy-density obeys
the conservation equation (/—geu®), = 0 and Eq. (17) need not be assumed
separately. A more detailed exposition of the same material can be found in [8].

Note that the rotating dust is not the only example to which this approach may
be applied. In several papers, rotating charged dust was considered under the
additional assumptions that all charges are attached to the dust particles, that the
only current is the one created by the flow of dust, and that the Lorentz force acting
on the dust particles F*,u" is zero, (i.e., that the electric and magnetic fields are
such that they cancel each other’s influence on the charged dust particles). Under
these assumptions the dust particles move on geodesics and the formalism of this
section applies. Such solutions of the Einstein-Maxwell equations were considered
in references [18-25]; they will be mentioned in Section 20.5.
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20.4 The Killing Vector Fields Compatible with
Rotation

We shall assume that the symmetries of the spacetime (if any exist) are inherited
by the source, i.e., that if the Lie derivative of the metric tensor g, along the
vector field k% is zero, £,84p = 0, then the velocity field and the particle number
density are also invariant: £,u* = 0 = £;n. (For a pure perfect fluid source the
inheritance is guaranteed.) It follows that the rotation tensor must also be invariant,
£rwqg = 0. All these equations imply that

k0:C+¢_y¢’ya k1:¢3ya k2:—¢’X7 k3:A’a (30)

where ¢(x, y) and A(x, y) are arbitrary functions and C is an arbitrary constant. If
there are no symmetries, then ¢ = A = C = 0. However, if any symmetries are
present, then the Killing vector fields must have the form (30).

Suppose that ¢ is not a constant, i.e., that a Killing vector field k* exists that has
a nonzero component in the x- or y-direction (in invariant terms this means that
the vector field k% is not spanned on the vector fields of velocity, u*, and rotation,
w%). We can then, within the Plebanski class defined in Section 20.3, adapt the
coordinates to k¢ in such a way that kY = 8‘1’", i.e., so that the metric becomes
independent of x’. From (13)—(16) and (22) the transformation functions are

' =t—S(x,y), x' = F(x,y), y = G(x,y), 7 =z+T(x,y),

€2y
where T is arbitrary, while F, G, and S obey ~
F..G,y,—F,,G, =1, S,x=GF,;—y, S,y=GF,,. (32)
The condition k* = §¢ then implies
G=¢+C, (33)
Tax¢ay _T,yﬁb’x: —A. (34)

Equations (32) and (34) simply define the accompanying F, S, and T, which
are seen to exist always. Since ¢ was assumed nonconstant, the transformation
is nonsingular, and results in ¢ = y in the new coordinates; the metric be-
comes independent of x after the transformation. This property is preserved by
the transformations (31), but with F, G, S, and T restricted now by

G=y, F=x+ H(y), T =T(©), S:fyH,ydy+A, (35)

where A is an arbitrary constant and H and T are arbitrary functions.
Suppose that three Killing vector fields exist and all three are spanned on u®
and w®, so that ¢ = const. in (30) for each of them, i.e.,

kG = Cidg +MiCx, y)85,  i=1,2,3. (36)
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From the Killing equations it follows then that constants o, o; and a3 exist
such that ayk(y + a2k) + azkz) = 0, ie., the symmetry group is in fact 2-
dimensional. Hence, for a 3-dimensional group at least one of the generators must
be linearly independent of u* and w® at every point of the spacetime region under
consideration.

20.5 The Case of Two Generators Spanned on u® and
o
w
In this section we shall assume that exactly one generator, k1), 1s linearly inde-
pendent of #* and w®, while the other two, k% () and k3, are of the form (36). In

agreement with the result of Section 20.4, the Plebanskl coordmates can be adapted
to k¢}y so that

k) = 8%, (37
while '
ki = Cod§ + M, 185, k) = C388 + As(x, )&%, (38)

and the coordinate transformations preserving (37) and (38) are (35). Note that
C; and Cs5 cannot vanish simultaneously because otherwise the Killing equations
immediately imply that either k(3) const. k5, (in which case the symmetry group
is 2-dimensional) or the metric is singular. However, with no loss of generality we
can assume that

G #0=0Cs (39)

because the Killing vector fields are determined up to linear combinations among
them. This implies A3 7 0. The commutators of the Killing vectors are then

(k) k)]* = (A5 /23)kG3), (k). k3)]* =0, (40)
ks k]* = (s /23)kG). (41)

The Killing vector fields will thus form a Lie algebra when
Ay x = bAs, A3 x = CA3, - (42)

where b and c are arbitrary constants. The cases ¢ # 0 and ¢ = 0 have to be
considered separately. However, when ¢ £ 0, it follows that

A3 = B(e”,  da=(b/)B()e” +a(y), (43)

and so with no loss of generality we can assume b = 0. The Einstein equations
then imply that either ¢ = 0 or there is no rotation. Since we are interested in
rotating solutions only, this case need not be followed. We thus consider

Casel: c =0,b # 0. Then

=01, A =bB(y)x +a(y). (44)
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The algebra of the Killing vector fields is of Bianchi type Il when b # 0 and of
Bianchi type I when b = 0.

In order to simplify the Killing vectors, we now transform the coordinates as
follows:

¢, 2, y)=@xy), 7 =—(/C)t+z/B. (45)

The transformation is not of the form (35), so the new coordinates do not belong
to the Plebanski class, and the forms of velocity, rotation, and the metric will no
longer agree with (23) - (29). The Killing vector fields in the new coordinates
become

while the velocity and rotation fields become
u® = 8§ —(@/C2)85,  w® =(n/B)53. (47)

The transformed metric is independent of x and z.

The orbits of the symmetry group are the {y = const} hypersurfaces. In order
to follow the standard technique of the Bianchi-type spaces, we should now carry
out a coordinate transformation that preserves (46) and makes the y-coordinate
curves orthogonal to the group orbits, so that g), = g}, = g3 = 0 after the
transformation. This step is not in fact necessary for solving the Einstein equations
(in general it only reshuffles the unknown functions without eliminating any of
them), but in the case under consideration it leads to a simplification.

After the transformation, and with the Killing equations solved, the metric
becomes (primes dropped; details of the derivation will be given in another paper):

ds® = (dt + Y dx)? — (F dx)? — dy* — G}[Adrt — (bt — ki3)dx +dz)*, (48)

where G(y), A(¥), k13(y), and F(y) are new names for the unknown functions.
The velocity field in the coordinates of (48) is

u® = 8§ — A8, | (49)

The components of the Einstein tensor will be referred to the orthonormal tetrad
of forms ¢! = el dx®,i = 0, 1,2, 3, uniquely implied by (48). Note that el =
Uy dx©.

The equation G, = 0 implies that bA,, = 0. The case b = 0 will be considered
separately below, so we take here

A = const. (50)

Then other field equations, together with simplifying coordinate transforma-
tions, lead to

A=k3=0, (51)

Y,, G/F = B = const. (52)

and we can assume B # 0 because rotation would be zero with B = 0 =Y.
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Itis convenient to introduce Y (y) as the new variable. The equation G;+Gyy =
2A can then be written, with the help of (52), as

2AG? 1
F?G,y /G),y = S —
( vy /G),y 7 3 (53)
and so
: 1 A
FP=(C--Y+2= | G*dY ) G/G,y,
( s | ) e (54)

where C is a new arbitrary constant (we can assume G, y # 0 because G,y = 0
immediately implies b = 0 from G11 — Gy = 0, and b = 0 will be considered
separately). Using (54) in G» = A, we obtain the following integro-differential

equation that determines G: .

1

1 1 A 2
_Zb2GG,Y—|-§(B/G)2 (C— 5)’Jrzﬁfczdy) (G,y /G —G,yy /G,y)

= 0. (55)

In the special case A = 0, this becomes an ordinary second-order differential
equation. It is easy to get rid of the integral by transforming (55) appropriately
and differentiating the result by Y (in this way a third-order differential equation
for G(Y) is obtained) or by introducing the new variable u(Y) by dY /du =1/G?
(this results in a second-order equatlon for G(u)) However, no progress toward
solving (55) results in either case.

The formula for energy-density may be simplified to

(81 G/cYe = (B/G)? — (bG)* — 2A. (56)

Note that the solutions considered here have a meaningful limit b = 0.

When G = const., equations (54) and (55) nio longer apply and one has to g0
back to the Einstein equations; the resulting metric is the Godel solution.

When G,y # 0 = b, Eq. (55) implies G = ePY+£ and this leads to the Lanczos
solution (see Ref. [8]).

CaseIl: b = ¢ = 0 in (40)—(42).

The reasoning up to Eq. (49) applies also here, but (50) no longer follows.
Instead, the equation G13 = 0 can be integrated with the result

kisy =BF/G*—YA,,, (57)
where B is an arbitrary constant; the equation G¢; = can be integrated to
Y,,=(C - BA)F/G, (58)
where C is an arbitrary constant; and the equation Gg; = 0 can be integrated to
A,y= (BY — D)/(FG?), (59)

where D is one more arbitrary constant.
At this point, only the diagonal components of the Einstein tensor survive, and
= (87 G/c*)e — A just defines the energy-density. The equations G;; = A =
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G,y = G33 can be integrated to the first-order set!

1 1 1
FG,y= 3 Bkis+ 5 BAY ~ -2-CY—|—2A/FGdy—|—H0, (60)
1 1
GF.y=—3 Bk - 5DA—E+2A[FGdy+Ho. (61)

where Hj is an arbitrary constant. The integral can be calculated if the new variable
u(y) is introduced by

dy/du = 1/(FG). (62)

In terms of the variable u from (61), equations (57)~(61) form an autonomous set
of first-order equations that can be investigated further by qualitative methods (see
for example [17]). This is left as a subject for a separate study.

The functions A(y) and k13(y) have invariant meaning: they are proportional to
the scalar products of the Killing vectors (see equations (46) and (48) with b = 0):

A = —gask®kly/G?, ki3 = —gupkli Kby | G (63)

(note that G* = — ga,gkfg)kg), i.e., itis a scalar, too). Hence, A = O and k13 = O are
invariant properties. Note that A = 0 implies, through (59), that either ¥ = const.
(in which case there is no rotation) or B = D = 0. In the latter case, k;3 = const.
and the coordinate transformation z = 7z’ — kj3x leads to k;3 = 0 in the new
coordinates. With A = ky3 = 0, the Lanczos and Godel models result from the
Eimstein equations as the only solutions.

In references [18-25], charged dust solutions with zero Lorentz force were con-
sidered. Apart from the one in [18], they are cylindrically symmetric and stationary,
and so they would emerge in this section, had we allowed charged dust as a source
and considered the Einstein-Maxwell equations. However, not all of these solutions
allow nonempty limits of vanishing electromagnetic fields. The ones from [19] and
[21] become a vacuum solution and the Minkowski spacetime, respectively, in that
limit, the one from [20] does not allow the limit at all. The solution by Som and
Raychaudhuri [22] is a generalization to charged dust of the A = 0 subcase of
the Lanczos solution [1]; the first of the six solutions by Banerjee and Banerji
[23] is a generalization of the Godel solution. (The other solutions from Ref. [23]
have the following properties: the second and the sixth become vacuum solutions
in the limit F,,, = 0, the third does not allow this limit at all, the fourth has a
2-dimensional symmetry group, and the fifth reduces to the Minkowski metric in
the limit.) The two solutions by Mitskiévi¢ and Tsalakou [24] are, respectively,
generalizations of the full Lanczos solution and of the Gddel solution to a charged
dust source, and those by Upornikov [25] are coordinate transforms of those from
[24].

This short overview of literature deliberately omits plain rediscoveries of
solutions known earlier; they will be listed in the main paper.

The derivation will be published separately.

i
i
i
i
i
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20.6 The Case of One Generator Spanned on u® and w®

The number of cases that require separate treatment is larger here, and the equations
are more complicated, so the results will be described only briefly.

One of the two generators that are not spanned on u® and w® may be given the
simple form (37) by a coordinate transformation, the other will have the general
form (30). The one that is spanned on u® and w® will have the form (38). Hence,
the generators are

k?]) = BCY’
koy =(Coat+ ¢ —y9,5)85 + ., 87 — ¢, 85 + Aa(x, y)8,

kg) =C3 50‘1 + As(x, y)8‘3", (64)
and the remaining freedom of coordinate transformations is given by equations (31)
and (35). The Killing fields (64) will form a Lie algebra when

[k, k)] = akqy + bk + ck,,
[k1), k3)] = dkqy + eke) + fke),

lk2), k)] = gkqry + bk + jke), (65)

where a, ..., j are constants to be determined from (64) and (65). The set (65)
written out explicitly is

®.x _yd)sxy = b(CZ + ¢ - y¢’y ) + cCy,

¢axy:a+b¢,ya Poxx=bo,,,

Aox = bly + ¢,

e(C2+¢—y¢,y)+ fC3=0,

d+ep,, =0, ep,, =0,

A3x =ely+ fAs,

MCo+¢ —y¢,y)+ jC3 =0,

g+he,,=0, hg,r =0,

Gy Az x — Pox A3y = hdy + jAs. (66)
Two equations in this set form an alternative: either ¢,, = 0 or e = s = 0. Such
alternatives also occur at later stages of integration, and they give rise to the large
number of separate cases. In three of them simple explicit solutions, most probably
new, were derived; they will be published in the main papers. The case that contains

tlhe solutions considered by Maitra [3], King [5], and Vishveshwara and Winicour
[6] will be presented here.

Px=Ax=A3,=C3=0# A3, all constants a, ..., j = 0. (67)
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Now ¢,, # 0 follows from the definition of the case; otherwise k) would be
spanned on u# and w. The resulting Killing fields are given by the appropriate
subcase of (64)(65) and all commute to zero.> Hence, the Bianchi type of the
algebra is I, but the solution is different from (57)—+61) because of the orientation
of the orbit of the symmetry group in the spacetime.

Through coordinate transformations the Killing vector fields can now be
transformed to the simplest form:

and the velocity, rotation, and the metric then acquire, the forms

u® = F1(6% — P& — 2,89), w® = (1)A3)89,
ds* = [(Cy + ¢)dt + Ydx]* — k3, (Pdt + dx)* — dy?

— k5[(A + hi3 P)dt + hysdx + dz)%, (69)
where all symbols are functions of y only, and
P:¢aYE{¢ay}/Ysy9 F:C2+¢—YP (70)

King [5] considered rotating dust metrics with the same symmetry, but in addi-
tion assumed reflection symmetries that in the coordinates of (69) correspond to
z - —zand(¢, x) — (—t, —x). With these additional assumptions, A, = A3 = 0.
Even in this case, King found that the problem is underdetermined: one of the func-
tions (in our notation it is k33) may be chosen arbitrarily. King’s paper contains a few
examples of explicit solutions resulting from different choices of it (among them
are the solutions of Lanczos [1] that goes by the name of Ehlers - van Stockum,
and of Maitra [3]). Another specific example was found by Vishveshwara and
Winicour [6].

King’s metric ansatz can be derived from the following assumptions:

1. The algebra of the symmetry group is of Bianchi type I.

2. One Killing field (k) is collinear with rotation, the two others are linearly
independent of u and w.

3. The velocity vector field is spanned on &1y and k) only (i.e., A = 0).

4. The Killing fields k(1) and k() are both orthogonal to k3) (i.e., h13 = 0).

Also in this class is the Maitra solution [3] which has the following invariant
property in addition:

5. The timelike Killing field k) has unit length so that (C, + ¢)* —k?, P = 1.

These conditions are still insufficient to reduce (68)—(69) to the Maitra solution;
the following coordinate-dependent relations must hold in addition:

(Cy+ )Y — kP =m,

Y2 +[1 —(C + ¢)*1/P* =m* — 1, (71)

2Some of the equations in (6.7) follow as necessary consequences of some others through
(6.6), so the total number of different cases is not as large as (6.7) might suggest.
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where r(y) is a new coordinate defined by

dy 1 - 1 1.1 1
m(2)=-—lau 214 - a1+ ud) 2 4 =
n(a’r) 42 {( +u’) tg gl 2]

u:=2r/a, a = const, (72)

and m(r) is the function

m = —%a {(1 +uH)?—-1—-In B(l +u?)? 4+ %“ . (73)

This author was not able to interpret (71) in invariant terms.

The collection of models described in this section has a nonempty (in fact,
quite large) common subset with those by Ellis [4]. However, the interrelations
are somewhat complicated and require a more elaborate explanation. In short, the
following classes of Ellis with nonzero rotation are not contained in this collection:

1. The generic case Ib; because it has a 4-dimensional symmetry group acting
multiply transitively on 3-dimensional orbits, and the group has in general no 3-
dimensional simply transitive subgroups. However, in special cases such sub groups
do exist and the corresponding solutions of the Einstein equations are found in the
present scheme.

2. The generic case Cii of the shearfree solutions; because it has only a 2-
dimensional symmetry group.

All other rotating solutions of Ellis do belong to the present collection.

The first three of the six solutions by Ozsvath [26] also belong here, and they
are subcases of the class considered by King. All of Ozsvath’s solutions have
4-dimensional symmetry groups whose orbits are the whole 4-dimensional mani-
folds. In order to place specific Ozsvath’s solutions in the classification considered
here, one has to identify 3-dimensional-subgroups of Ozsvéth’s groups. Exam-
ples can be spotted by inspection in Ref. 26 in which different non-isomorphic
3-dimensional subgroups are contained in the same 4-dimensional group. Hence,
the same Ozsvath’s solutions should come up as limits in different classes of the
present investigation. For unique and complete identification, the formulae for
group generators are necessary, and these are not given for most of Ozsvath’s
solutions. Among the cases that could not be identified are the other solutions of
Ozsvath [27] and the “finite rotating Universe” of Ozsvath and Schiicking [28-30];
this is where the present investigation makes contact with the legacy of the patron
of this volume. _

Other results in this class will be presented in a separate paper. Most of them do
not lead to any explicit solution of the Einstein equations.
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20.7 The Case of All Three Generators Being Linearly
Independent of u* and w®

The commutator equations are still more complicated here, and the number of
cases is still larger than in Section 20.6. The Killing fields k(1) and k) are the same
as in (64), while k(3) is

k& = (Cz3+ ¥ — y¥,y)86 + ¥,y 87 — ¥.x 85 + As(x, ¥)85; (74)

¢ and ¢ are functions of x and y. The commutator equations (65) can be partly
integrated without going into separate cases. The components (z, x, y) of the first
equation in (65) are integrated to

¢,x=ay +bp+cy +bCy + cCs; (75)
the components (¢, x, ) of the second equation in (65) are integrated to
Yx=dy+ep+ f+eCot fCs; (76)
and the components (x, y) of the third equation in (65) are integrated to
Gy Vox — oy ¥ox =8y +hé + jib +C, (77
where C is an arbitrary constant. The remaining equations are
Aoy = bhy + cAs, A3 x = eha + fAs, (78)

¢’y (Vox _yw,xy)‘i' VP ix w’yy - w,y(¢,x '")’Qbaxy) — Y¥.x ¢’yy
=hCr+ ¢ —y0,y) +i(Cs+ v —y¥.y),

¢sy)"3,x — ¢axk3,y - 1,”,y)‘vZ,x + st)‘a,y = h)\2 + j}"3- (79)

The equations to solve are (75), (76), and (78); the remaining ones are consis-
tency conditions to be imposed on the solutions. The set (75)(76) and the set (7 8)
are both (ordinary differential) linear vector equations of the same form:

U,x = AU + W7 (80)
where, for (75)~(76), the constant matrix 4 and the vectors U and W are

_ b ¢ _ (,b . a C2
() es(2) o) (2) e

A
while for (78) the matrix A is the same, W = 0,and U = ( ; )
3

Solving Eq. (80) is a textbook exercise, but, since the constants a, ... , j are all
arbitrary, a multitude of separate cases arises: the matrix 4 may be nonsingular
with two complex eigenvalues, with two real eigenvalues, one double eigenvalue
or a single eigenvalue, it may be singular with two different eigenvalues, nilpotent,
etc. Some of the subcases turn out to be equivalent in the end (in the sense that they
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generate the same algebra), some others turn out to be reducible (by changes of
the basis of Killing vectors) to those considered in Section 20.6. Still, the number
of cases to be considered is large. No explicit solutions of the Einstein equations
were identified in this case, and so it will not be described here in any more detail.

20.8 Conclusion

The investigation should be useful as an intermediate step in looking for more
general solutions: perfect fluid solutions with the same symmetries and any solu-
tions with lower symmetries. The progress with respect to earlier knowledge on
hypersurface-homogeneous geometries with a rotating dust source consists in the
fact that such solutions have been looked for by trial and error, beginning from
certain metric ansatzes. The collection of possible ansatzes was hereby reduced to
a well-defined, not-too-large set.

qokckkck

The algebraic calculation for this paper were done with use of the program
Ortocartan [31, 32].
Note added in proof: The full results of the research reported here have already
been published in J. Math. Phys. 39 (1998), 380-400, 401-422, 2148-2179.
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