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Rotating dust solutions of Einstein’s equations
with three-dimensional symmetry groups.
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This is the third and last part of a series of three papers. Using the same method and
the same coordinates as in papers | and Il, rotating dust solutions of Einstein’s
equations are investigated that possess three-dimensional symmetry groups, under
the assumption that each of the Killing vectors is linearly independent of velocity
u® and rotationv® at every point of the spacetime region under consideration. The
Killing fields are found and the Killing equations are solved for the components of
the metric tensor in every case that arises. No progress was made with the Einstein
equations in any of the cases, and no previously known solutions were identified. A
brief overview of literature on solutions with rotating sources is given. 1998
American Institute of Physic§S0022-24888)01004-4

I. SUMMARY OF THE METHOD

This paper is the third and last part of a series of three papers; for papers | and Il see Refs. 1
and 2. For convenience to the readers, this section is repeated after Paper II.

This is a concise summary of results that will be used in this paper. For proofs, motivations
and references see Papér |.

Every timelike vector fieldu* of unit length that has zero acceleration and nonzero rotation
defines the functions(x), »(x) and £(x) such that:

U, =Tyt 1€ o- (1.7
These functions are defined up to the transformations:
r=1-38(¢"n"), §=F(&.n"), n=G({".7n"), (1.2
where the functiong andG obey:
F.eG,py—F,Ge=1 (1.3
(this guarantees that the Jacobian of the transformatiol isntlS is determined by:

S,SIZGF,‘?—??I, S :GF,,”!. (14)

177’
If u® is the velocity field of a fluid whose number of particles is conserved:
(V—gnu) ,=0 (1.9

(whereg is the determinant of the metric tensor amds the particle number densjtythen one
more function{(x) exists such that:

V_gnuazgalg)/&gvﬂni'ygiﬁa (16)
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and it is determined up to the transformations:

{=0+T(E 7). 1.7

Note thatn is not defined uniquely by1.5). For example, iu“= §%, andn obeys(1.5), then
n’=nf(x,y,z) (wheref is an arbitrary functionpwill also obey(1.5). This nonuniqueness allows
for a greater freedom in the choice dtthan(1.7), and the freedom will be used in some cases.

The following relations hold:

ur,,=1, UPE s=uPp, ;=uf{, =0,

_HTm&0) )=\/—_gn¢0. (1.9

a(x%,x,x?,x3

The last of (1.8) guarantees thafir,£,7,{} can be chosen as coordinates, they will be called
Plebaski coordinates. Then, withr, &, 7, ={x%x,x%, x3 ={t,x,y,z}:

u= 6a01 Ug,= 50a+y51a1

Joo=1, 901=Y, Uor=Uos=0, g=del(g,z)=—-n"?,

WO=NSS, wap=—wp,=(5)8".8%, (1.9

wherew“ is the rotation vector field, and, is the rotation tensor corresponding to the velocity
field u,:

waBZ %(ua‘ﬁ_ulgya_uau‘g'i'uﬁua), Wa: _(1/\/_9)8aﬁy6quy5. (11@

If w,z#0 andu®=0 (what is assumed throughouthen necessarily the pressyre-const and
kp may be interpreted as the cosmological constant=8=G/c?).

If any Killing vector field exists on a manifol¢on which all the assumptions specified so far
are fulfilled), then, in the coordinates @1.9), it must be of the form:

ka:(c+¢_y¢vy)5a0+¢vy5al_¢1X5a2+)\5a3! (11])

whereC is an arbitrary constant andi(x,y) andA(x,y) are arbitrary functions of two coordi-
nates. Whenevep ,# 0, a transformation of the clag$.2)—(1.4) can be found that leads to:

ko= 62, (1.12

The metric then becomes independenkpénd the coordinates preservifigl2 are determined
up to the transformations:

t’=t—JyH,ydy+A, x'=x+H(y), y'=y, Z/=z+T(y), (1.13

whereA is an arbitrary constant and, T are arbitrary functions.

The condition¢ ,#0 that allows one to fulfill(1.12 means that the Killing vectok® is
linearly independent of the vectors®* and w® at every point of the spacetime region under
consideration. In Paper |, solutions of the Killing equations and of the Einstein equations were
considered under the assumption that there exist three Killing vector fields on the manifold, two of
which have¢= const in(1.11), while the third one hag ,#0 and can be transformed to the
form (1.12. In Paper Il, it was assumed that only one Killing field lilas const, while two have
¢ ,#0. In the present paper, all three Killing fields will be assumed to lfaye- 0. One of them
(K(1)) can be transformed to the simple fotn12, while the remaining two will have the general
form (1.112).

In this Paper lll, no progress was made with the Einstein equations in any of the cases. Also,
no related results were found in the literature except in case 1.@e2the end of Sec.)V
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Il. THE LIE ALGEBRA OF THE SYMMETRY GROUP

According to the assumptions made in the preceding section, there exist the following three
Killing vector fields:

k)= (Cot d—Yyeb,y) 85+ b,y 61— .5 83+ Na(X,Y) 65,

ki3)=(Cat+ h—yih,y) 35+ .,y 67— h,x 55+ N3(X,Y) 53, 2.9

whereC, andC5 are arbitrary constants, arfd «, A, and\ 3 are unknown functions ofxy), to
be determined from the commutation relations. The coordinatd?.df are determined up to
uIl‘?He fieldsk(i,k(2y andk sy will form a Lie algebra if constants, . .. ,j exist such that:

[k ki l=aka)+bkz)+cka),

(K k@ ]=dka) +eka) + ke,

[K2) k3 ]=gka)+hko)+ k). (2.2

Equations(2.2) are equivalent to the following set:

bx=YPxy=b(Cot b=y, ) +C(Cat+i—yi,), (2.33
b.xy=atbeo,y+cy,y, (2.3b
bxx=Dh ot iy, (2.39
Nax=bN,+CAg, (2.30

b= Y xy=e(Cot b=y, ) +H(Ca+ =y, (2.39
Yxy=d+ed, +fy,, (2.3f)

Yxx=edit iy, (2.39
Ngx=€Np+fhg, (2.3h

¢ay( (ﬂ:x_y‘p,xy) +y¢ax¢,yy_ ’ﬁ-y((ﬁvx_yd’,xy) _y‘pax(ﬁ,yy

=h(Cot ¢—ye,)) +i(Caty—yihy), (2.3)
by xy= Goxthyy= by b xyt bixdyy =9+t +idhy, (2.3)
— Gyt Gothxyt iy b bixd xy= — Nk, (2.3K

boyhax— Dihay— Yoy haxt Yok oy=hNo+ A5, (2.3)

The Eqgs.(2.39—(2.39 are integrated with the result:
¢,=ay+bo+cy+bCy+cCs; (2.49
the Egs.(2.3e—(2.39g are integrated with the result:
Y=dy+ep+fy+eC,+fCs; (2.4b

and the Eqs(2.3i)—(2.3K are integrated with the result:
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¢ay¢ix_¢ix¢ay:gy+h¢+j¢+hC2+jC3- (2.49

The equations are now sorted as follows. Equati@r3d and(2.3h form a set that determines,
and \;, Egs. (2.49—(2.4b form a set that determine$ and ¢, the remaining two equations
[(2.49 and (2.3])] are consistency conditions to be imposed on the solutions of the two former
sets.

Note that the sef2.49—(2.4b and the se{(2.3d), (2.3h} are of the same general form: each
of them is an(ordinary differential linear vector equation of first order:

U, =AU+W, (2.9

where, for(2.49—(2.4b), the constant matriA and the vectors) andW are:

b ¢ 1) a C,
= = == + .
A=l 4] U ¢,Wyd Acs, (2.6
while the set{(2.3d, (2.3h} is homogeneous, s&/=0 in (2.5), the matrixA is the same as in

(2.6) and

U=

A2
A3/’

With the constant$, c, e andf being all arbitrary, several cases will have to be considered
separately. Just as in Paper Il, the cases that arise will be organized into a binary tree and
numbered in a positional system that will enable one to quickly identify the complementary part of
each alternativésee Fig. L

The first alternative appears in solving the characteristic equation for the mathg eigen-
values are:

ay =3 (b+f+esn/A), (2.7
where:
A:=(b—f)?+4ce, &;=1, e,=-1. (2.9

We first consider:
Case 1:A+#0 (i.e., A has two distinct eigenvaluedhe second alternative appears immedi-
ately in finding the eigenvectors éf. the cases+#0 andc=0 have to be considered separately.
Case 1.1: 0. The solution of the sd{2.3d), (2.3h} is then:

No=2cL,(y)e**+ 2¢cLy(y)e*?”,

Na=(f—b+VA)L,(y)e®™*+(f—b— A)Ls(y)e?, (2.9

whereL,(y) andL3(y) are arbitrary functions. The casds>0 andA <0 could be considered
together for a large part of the reasoning. Wier 0, @, anda, are complex and,= ;. Then,
L, andL; have to be complex, too, with;=L,. However, the two cases lead to different sets of
Bianchi types, and so it will be convenient to split them here.

Case 1.1.1A>0 (i.e., both eigenvalues are realfhen, in solving the se.43—(2.4b), the
cases defA#0 and detA=0 have to be considered separately. In the end, however, the case
detA=0 turns out to be empty, i.e., in all subcases that arise in it there exists a linear combination
of the Killing vectorsk,) andk sy with constant coefficients that is spannedwmandw. This
means that all these subcases are in the domain of Paper Il and need not be considered here.
Therefore we will do away with the case de&t0 by only indicating the method of verification
of the statement above.

When detA=0, the following is true(from (2.7)—(2.9)):

e=bflc, A=(b+f)?, a;=b+f:=a, a,=0. (2.10
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|COMMUTATION RELATIONS]|

i/ \2‘

1.1 12 2.1
c# 0 lc=0] det A#0
I'— 2.12
c=0
1.1.1 112y 211 J, 221
A> 0 [A<0 c#0 c#0
BIV
Egs. (7.17)
-(7.19)
RRRRNS 121 2211 J2222
0 F -0y b+f#0 " Jab+ed#0 a=0
BVI, BVIL}, BVIII BI
Eqgs. (2.28) Egs. (4.22) Egs. (9.9) - Eqgs. (11.24)
-(2.29) -(4.23) (9.15) - (11.27)
1112 1122 2212 ¥22211 22212
0=~y b+f=0 ab+cd=0 a+j#0 a+j=0
BVIII and BIX, BVIII BVIy, BVI;, BVI, BIV
BVI, and BVII BVI, BVII, Eqgs. (11.11) Egs. (11.17)
Egs. 3.7) Egs. (5.23) and BIV -(11.12)
-(3.11) -(5.28) Eqgs. (10.9) -
(10.21)

FIG. 1. The classes of metrics considered in the paper. Arrows point from more general classes to subclasses. The numbers
at arrows are the case-numbers used in the text. The first entry in each rectangle is the property defining the case; all the
symbols are introduced in Eq®.1)—(2.8). The subsequent entries give the following information: 1. The Bianchi type of

the corresponding algeb(a.2); 2. The equation-numbers corresponding to the final result in the given case. No progress
was made with the Einstein equations in any of the cases. Apart from case 1.1.2.2 for which a subcase was discussed in
Ref. 3, none of the cases seem to have appeared in earlier litefsder&ec. XllJ. The diagram does not show the links

to the entries in the corresponding diagram in Paper II; they are numerous and would obscure the drawing.

Since we are still in case 1 in which,+# a4 by assumption, we can take it for granted that
#0 here. The solutions a2.3d), (2.3h and(2.4a3—(2.4b are:

No=2¢[Lo(y) +La(y)e™], Ng=2fL,(y)—2bLs(y)e™,
d=F(y)e™+(af—cd)xy/a+P(y)—(ab+cd)y/a’—C,,
Y= (flc)F(y)e®—(blc)(af—cd)xy/a—(b/c)P(y)—(f/c)(ab+cd)y/a’—Cs, (2.11)

whereF(y) andP(y) are other arbitrary functions. The further procedure goes exactly as for the
case defA+ 0 presented below, and leads to the results specified above.
From now on, in case 1.1.1 we assume that:

detA=bf—-ce+#0. (2.12
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Then the solution of2.4)—(2.4b) is:

_ 2cF(y)en+ 2cP(y)er— 9y ¢
$=2cF(y)e CP(y)e™ — =¥~ Ca,
—ae+bd
y=(f=b+ VAR (y)e+(f-b—VA)P(y)e?— ————y—Cs. (213

The solutiong2.9) and(2.13 must now obey the consistency conditid@s49 and(2.3l). Equa-
tion (2.49 is a polynomial ine*™* ande*?* whose coefficients are functions pf the polynomial
containse(®1t @2)X 11X e@2X and terms independent of The casesy,# —a; and ap,=—a;
require separate consideration. We first consider:

Case 1.1.1.1a,# — a;. Comparison of coefficients @*1" %2 on both sides 0f2.40) leads
to:

— a,F, P+ a;FP,,=0. (2.14
If F=0, then(2.14) is fulfilled identically, and this case has to be considered separately. The result
is similar to the case d&&=0. The consideration, parallel to the one that follows below, reveals
that with F=0 either one of the Killing fields becomes collinear with rotat{and this situation
is in the domain of Paper)llor the symmetry group becomes two dimensigmdlich case is not
considered here at allConsequently, we proceed assumifig 0. The solution 0f2.14) is then:
P=pgF@2/e, (2.15

where 8 is an arbitrary constanty; # 0 because deA+0.
The coefficients oFe“* on both sides 0f2.49 imply:

h=[a,/(bf—ce)] —2—1C(af—cd)(f—b+\/K)—ae+bd —2'—C(f—b+JK). (2.16

In considering the coefficients @&*2* in (2.49 we have to set aside the caBe=0 for separate
consideration because the terms witt?* all vanish identically wherP=0. However, the case
P=0 is in fact empty in the same sense as the ¢asd: either the Killing fieldk ;) becomes
collinear with rotation, and this situation is in the domain of Paper Il, or the symmetry group
becomes two-dimensional. Hence, we shall follow the dag& only. Then the coefficients of
Pe*2* on both sides of2.4g imply:
j=(bf—ce) Y[ —(af—cd)f+(—ae+bd)c], (2.1
and the terms independent fimply:
g=(bf—ce) " —(af—cd)d+(—ae+bd)a]. (2.18
Equation(2.3)) is a polynomial in exponential functions ®fthat involvese?®1X, @?@2X el@1ta2)x
e**, ande®?*. In consequence dR.9—(2.18 most of the resulting equations are fulfilled iden-
tically, the only one that brings in new information is:
—2ayF, La+2a FLgy+2(BayF2/*1)(L,F, /F—L,,)=0. (2.19
This is integrated with the result;
L= (Uay)F2' i y+ BayL, IF), (2.20
wherey is a new arbitrary constant.

Finally, the following Killing fields resulted:
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a Y
k(l)_ 1

kiz)= %

o
2¢(F—yF,,)e™*+ ZC,BF“Z’“1< 1- a—zyF,y/F)e“ZX
1

L e ar-od) o
Y a; bf—ce/ “*

— (2ca Fe™*+ 2ca, BF %2/ 1e%2¥) 5%

52,

Cc
+|2cL e+ 2a—F“z’“1(y+ Ba,L,IF)e*
1

ké):[(f_wJK)(F‘VF’y)e“1X+(f—b—JK)BF"Z’al<1—Z_in,y/F)e“zX 5
—ae+bd
+ (f—b+\/K) yea1X+(f—b \/_),8 Fag/al 1F eazx — 5

—[(f=b+VA)a;Fe+ (f—b—yA)BayF 2/ "1e2] 55

3. (2.20)

1
+| (f—b+ VA)L,e**+(f—b— \/Z)a—F‘lzlal(va,Basz/F)e”‘Zx
1

These formulae are simplified by changing the basis in the algebra of the Killing vectors. Taking
'212) (2)+ [(af—cd)/(bf- ce)]k(l) and (3) (3)+ [(—aetbd)/(bf— ce)]k(l) instead of
k{2) andks, we obtain the same result as if:
a=d=0. (2.22
With (222, we take k'f5)= (2VA) [k, — (1) (f—b—A)kE,] instead of ki, and
(2) =(2cB)" 1(k(2) 2ck(3)) instead oik(z) Further simplification results from the transforma-
tion (1.13 with:
H=a;'InF, T,,=Ly/(a;F). (2.23
The Killing field k(l) does not change, while the other two becaf@ké primes dropped
k(5 =e2{85— @85 +[ ¥/(Ba1)]d3}, K3 =€ (5 —a163). (2.29
Using (2.22) in (2.16—(2.18 we obtain:
g=h=j=0. (2.25

Looking at the commutation relations one can see that in effect we have also achieeed,

a;=hb, a,=f, even though the initial bas{®.21) was calculated under the assumptgr0. This
allows us to predict that in the case= 0, set aside for separate consideration, we will obt2ig4)
again; see case 1.2 in Sec. VI. In view of the assumptions made earlier, we have:

b+f#0#b—f, b#0+#f, (2.26
and consequently the Bianchi type is,Viwith the free parameter beirag=(b+f)/(b—f).

The Killing fields are simplified even further after the following transformation that leads out
of the Plebaski class:
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t'=(b—f)"te ™(bt+y), x'=x, y'=(b—f) 'be PX(ft+y),
z'=—9y[B(b—)] " (t+y/b)+z, (2.27
that results in(primes dropped
(1= —ftog+ 67 —bysy, k=65, Ki=963,
u®=(b—f) Y be ™55+bfe P*65—(y/B)55], w*=ns5. (2.28
In the new coordinates, the Killing equations imply for the metric:
Goo=€""{ 1~ (f/b)?+ y°gas/(bB)?— 2f yhys!(bB) + 2y,
do1=€"{y913/(bB) —fhizl, go=e"" [ yhas/(bB) —(b—f)/b?—fhy],

Joa= ™[ Y033/ (0B) — fhaal, g12= €Ny, G2o=€" Ny, Ooa=e"*hys, (2.29

wheregq1, hq2, 913, has, hyz andgss are arbitrary functions of.

. CASE 1.1.1.2: ap,=—a;

All equations up to(2.13 still apply, but(2.4¢9 has to be reconsidered. With,= — a4 the
following equations hold:

f=—b, A=4(b%+ce), a;=JA2=—a,. (3.1

In considering Eqs(2.49 and(2.3l) it may be assumed th&+# 0+ P because the opposite cases
lead, just as before, out of the domain of this paper. WFithO+ P, the coefficients o&*?*, of
e~ X and the terms independent fwhich now include the coefficients ef*1* *2%) in (2.49
imply, respectively:

h=A"Y4 —(ab/c+d)(—2b+JA)—2(—ae+bd)]—j(—2b+ JA)/(2¢c),
j=a, cAFP=(1/2{g+A [—h(ab+cd)+a(—ae+bd)]}y>+B, (3.2

whereB is an arbitrary constant.

In Eq. (2.3) only the terms independent a&fprovide a piece of new information, the other
parts of the equation are fulfilled identically in consequencéd—(3.2). The new information
is:

(the integration constany was chosen so as to correspond(2020). Like in Sec. Il, we first
construct the Killing fields by substituting@.1)—(3.3), (2.9) and(2.13) into (2.1), then simplify the

result by changing the basis in the Lie algebra and carrying out the coordinate transformations
(1.13 (the difference is that here the coefficient in the formulakf’cfg) is A instead of (28) " 1).

The result is:

a=d=0, k(“l)=5i", k(‘g)=e“1X(5g—alag),
kiy =€~ *[(—gy*+2B) 55 +29y 7 + ay(gy*+2B) 85+ 2(CyAl ay) 85 ]. (3.9
The commutation relations are:

[k(l)ak(z)]:_a’lk(Z)a [k(Z)ak(3)]:29a’1k(l)v [k(s),k(l)]:_alk(a), (3.5

and they correspond to the Bianchi type VIII whgs 0 and type V§ wheng=0 (note thata,
#0 by the assumption defining case 1)1.1
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The Killing fields are further simplified by the coordinate transformation:
t'=t+yla;—[2Bay/(cyA)]z, X'=X, y'=y, Z'=[a;/(2cyA)]z (3.6
that resultswith primes droppeyin:
(1)=01, Kp=e “[2gys7+ a;(gy*+2B) 85+ 851, k(3= — @18"1%57,
u®=6y, w=[nay/(2cyA)](—4Bs&5+ &),
900=1, o=y, Go2= — ey, go3=4B, 3.7

the other components @; being just unknown functions. The Killing equations kffl) now
imply that the metric is independent gf while those forkf’g) are solved by:

011= (1Y)~ 2a1yHip+Hyy,

010= —a1Y0OtHip,  g13= —a1y0ostHis, (3.8

whereH 4, Hq,, Hiz, 922, 023 andgs; are arbitrary functions of andz.
In solving the Killing equations fokf’ ), three cases have to be considered separately:
Case I: gB#0. In fact, the casegB>0 andgB<0 lead to different results, but the formulae
for gB<0 can be easily reconstructed from those d@&>0 by taking real combinations of the
complex solutions. Hence, we shall only present the formulagyf»0. The solution of the
Killing equations is:

w:=(2g9B)Ya;, U:=hy, cod4uz)—ky, sin(4uz),
V:=hj3 coq2uz) —kq3 Sin(2uz),
Hi=—(2Baf/u)U+hy, Hip=hy, sin(4uz)+ky, cog4uz)—His/(4Bay),
Hiz=hi3 Sin(2uz) +kyz coq2u2z), gzo=(9/u)U—[9/(2Baip)]V+hy,,
023=[w/(2Ba?)]V—hg3/(4Bay), Gzs=has, 3.9
where theh;;(t) andk;;(t) are arbitrary functions.
WhengB<0, u is imaginary. Then the trigonometric functions go over into the appropriate
hyperbolic functions, anti;, andh,; have to be taken imaginary, too.
Case II: B=0. The solution of the Killing equations fd(, is then:
H11=hay(@12)?+2ahygz+hyy,
H 1= — aghasz®—3a1gh 2%+ (ahp3— 2ghi)z+hyp, Hyg=ajhggz+hyg,
020= (@10)*h33z* + 4a19%h132° — 29( a1hps— 2ghy ) 22— 4ghyz+ hyy,

U23= — 103522 — 2ghyz+ 13, g33=has, (3.10

where theh;;(t) are arbitrary functions.
Case lll: g=0. The Killing equations foké"z) imply here:

H11: [(4Ba1)2h22+ 8Balh23+ h33](a12)2+ (88a1h12+ 2hl3) Ct’lZ+ hlll
Hio=(4Baihypthyg)aiz+hyy, Hig=(4Bajhysthgg)az+hys,

920=N22, O23=N23, Qg33=hgs, (3.11)

where theh;;(t) are arbitrary functions.
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With this, case 1.1.1 is exhausted and we go badR 19 to consider the other branch of the
alternative.

IV. CASE 1.1.2: A<O (i.e., THE EIGENVALUES «; AND a, ARE COMPLEX AND
CONJUGATE TO EACH OTHER)

As stated before, it is more convenient to reparamet{&@) so that it contains only real
quantities, and then repeat the procedure of case 1.1.1 in this new parametrization. We denote:

JV=A=D, F=G+iJ, P=G—-iJ, L,=M+iN, Ly=M—iN, 4.7

whereG, J, M andN are new unknown functions of, and then:
ay,=3(b+f)+3ie D, e1=1, e,=—1. 4.2

In this notation, Eqs(2.9) and(2.13 adapted to the cask<O0 are:

Ap=4ceP™ XM cogDx/2)—N sin(Dx/2)],

1
)\3:z(f —b)\,—2De®* M sin(Dx/2)+N cogDx/2)],

— A albtHx/2 1 _af—cd
¢=4ce [G cogDx/2)—J sin(Dx/2)] bf—cey C,,

y=2(f—b)eP* ™G cogDx/2)—J sin(Dx/2)]

—ae+bd

Tbf-ce VT
4.3

—2DelP*[ G sin(Dx/2)+J cogDx/2)]—

Just as in case 1.1.1, these expressions must now satisfy the consistency cof@ldigresnd

(2.3l). However, in considering them, the cagesf#0 andb+ f=0 have to be taken separately.
Case 1.1.2.1: b f+#0. Both sides 0f2.49 are then polynomials ie(®*1*2 and some of

their coefficients involve coBx/2) and sinDx/2). The coefficient o&(®* )X |eads to the equation:

4cD[—D(GG,,+3J,y)+(b+1)(GJ,,—G,,d)]=0. (4.4)

We are working in the case# 0# D, so only the expression in square brackets can vanish. Its
form suggests the substitution:

G=K cosL, J=K sinL, (4.5

whereK andL are new functions of. Equation(4.4) becomes ther- DKK,,+ (b+ f)K2L,y=0,
and its solution is:

K=Be(b+f)L/D7 (46)

whereB is an arbitrary constanB+#0 or else we are back in the domain of Paper Il. Equations
(4.5 and(4.6) provide a parametric representation®fandJ in terms of the functiorl., which
is arbitrary at this stage.

The coefficients oB(°*D*2 in (2.49 involve sin and cos that always go in fixed pairs. The
coefficients of{e®®* "X G cosPx/2)—J sin(Dx/2)]} imply:

h=[4c(bf—ce)] Y (af—cd)(b?—f2+D?2)+2c(b+f)(—ae+bd)]—j(f—b)/(2c),
4.7

and the coefficients dfe®* "2 G sin(Dx/2)+J cosOx/2)]} imply:
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j=—(bf—ce) f(af—cd)—c(—ae+bd)]. (4.8
Finally, the terms independent &fimply:

g=—(bf—ce) [h(af—cd)+j(—ae+bd)]. (4.9
With (4.7)—(4.8), Eq. (2.3) is reduced to:

4cDeP* M —D(GM,y+G, M +IN,,+J,,N)+(b+f)(GN,,—G,,N-IM,,+J,,M)]=0.
(4.10

Only the expression in square brackets can vanish in the case now considered4 Aftand
(4.6) are substituted int¢4.10), the resulting equation integrates to:

e (PTOLDI_M[D cod +(b+f)sin L]+ N[(b+f)cosL—D sinL]}=yB(b+f)=const.
(4.11
Sinceb+f#0+#D by assumption, this can be solved fér

N=[(b+f)cosL—D L] Y yB(b+f)e P*DL/P4+ M[D cosL+(b+f)sinL]}. (4.12
The resulting Killing fields are:
k(1= o,
ko =4ce®* X (G-yG, )cogDx/2) — (I-yJ,,)sin(Dx/2)] 55

a
+1 4ce®* MG, cogDx/2) - J,,sinN(Dx/2)]—

bf-ce o1

—2ce®*M¥2l(h+f)[G cogDx/2)—J sin(Dx/2)]—D[G sin(Dx/2)+J cog Dx/2)]} 85
+4ce®* DM cogDx/2)—N sin(Dx/2)]55,

kg =2ePt ¥ (f—b)[(G~yG,y)cogDx/2) —(I—yJ,)sin(Dx/2)]
—D[(G—yG,y)sir‘(Dx/Z)+(J—yJ,y)cos(Dx/2)]}58‘
+2e(b+f)x’2[(f—b)[G,y cogDx/2)—J,, si(Dx/2)] —D[G,, sin(Dx/2) +J,, cogDx/2)]

—ae+bd
bf—ce

+J cogDx/2)]} 65+ eP X2 (f —h)[M cogDx/2) —N sin(Dx/2)]—2D[M sin(Dx/2)

87— ePt2r(§2_p2_D2)[G cogDx/2)—JI(Dx/2)]—2fD[G sin(Dx/2)

+N cogDx/2)]}65. (4.13

Again, the formulae simplify when the basis in the Lie algebra is changed. First, we take
k’f“z)zkf2)+[(af—cd)_/(bf—ce)]kfl) a_nd k’f“_g)zkﬁ3)+[(—ae+bd)/(bf—ce)]k(“l) instead of
k{2) andks,, respectively. The result is equivalent to:

a=d=0, (4.19
and then(4.7)—(4.9 simplify to:
g=h=j=0. (4.19
With (4.14 taken into account, we change the basis again by takin’gfs)
=(—2BD) Nk~ [(f—b)/2cTk(,)} andk’ (= (4cB) 'k, instead ofk(s, andk(y, , and carry
out the transformatiol.13 with:

H=2L/D, T, =2[B(b+f)] e ®*IO(M cosL+N sinL). (4.1
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The result is equivalent th=0=M, i.e.:
G=B, J=0, N=vB. (4.17
The resulting Killing fields are:
k{1)=971,
(o, =eP* 7 cog Dx/2) 55— 3W5 — v sin(Dx/2) 53],
ks =P X sin(Dx/2) 55— 3V 85+ y cog Dx/2) 53], (4.18
where:
W:=(b+f)cogDx/2)—D sin(Dx/2),
V:=D cogDx/2)+ (b+f)sin(Dx/2). (4.19
The commutation relations are:
[ki,ko]=3(b+f)ko—3Dks, [Kz,ks]=0, [k ki]=—3Dk,—3(b+f)ks,  (4.20

and they correspond to Bianchi type Ylwith the free parameteag=—(b+f)/D. Since
[k,,k3]1=0, coordinates can be adaptedktoandk; simultaneously. The following transformation
does it:

t'=—D te  PTDNI Wi+ 2cogDx/2)y], X' =X,
y'=e OO p-lyt—2W 11— D! cogDx/2)V]y},
7' =(y/D)(b+f)t+2(y/D)y+z, (4.21)

but the new coordinates are no longer in the Plskiadass. After the transformation, with primes
dropped:

(=3 —(b+f)t+Dy]ss+ 67— A Dt+(b+f)y]63, k(=065 k(3=55,
u=D"te” ¥ —Ws5+V85)+(y/D)(b+)85, wr=ns;. (4.22

The formulae forgy, («¢=0,1,2,3) in terms ofy;; (i,j=1,2,3) in the new coordinates are given
in Appendix A.

In the new coordinates, the metric is independerit afidy, while the Killing equations for
k{1, have the following solution:

g11= N1, 91— P Why,—2(y/D?)(b+f)cogDx/2)hy3], g13=his,
920=€P [ y?(b+1)?/D?+ 3D |cos(Dx/2) — 2( /D) (b +f)cog Dx/2) Whpg+W?hy,},
U2s= P ¥IWhy3— (y/D)(b+ f)cog Dx/2)hs3], gaz=haa, (4.23

where theh;;(z) are arbitrary functions. The compones, in terms of those given above are
given in Appendix A.

V. CASE 1.1.2.2: f=—0b
We go back to Eqsi4.3) which simplify as follows:

No=4c[M cogDx/2)—N sin(Dx/2)],

A3=—(b/c)A,—2D[M sin(Dx/2)+ N cogDx/2)], (5.2
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] ab+cd
¢=4c[G cogDx/2)—J sin(Dx/2)]— 5 y—=C,,
bc+ce
=—4b[G cogDx/2)—J sin(Dx/2)]
) —ae+bd
—2D[G sin(Dx/2)+J cogDx/2) |+ ——y—Cg3, (5.2
b%+ce

With these new forms o, #,\, and\ ; we reconsidef2.4¢ and(2.3l). Equation(2.40 is now
linear inhomogeneous in sibg/2) and codpx/2). The coefficients of coBi/2), of sinOx/2) and
the terms independent afimply, respectively:

ab+cd ) .
5 D2G—2aDJ=4chG—4bjG—2jDJ, (5.3
b°+ce
ab+cd . .
- D2J—2aDG=—4chJ+4bjJ—2jDG, (5.4
b%+ce
—4cD?(GG,,+JJ,)) =gy+(b?+ce) [ —h(ab+cd)+j(—ae+bd)]y. (5.5

From (5.3 and (5.4) it follows that 2(—a)D(G?+J%)=0. SinceD+#0 by assumption, and
G=J=0 leads to the domain of Paper I, this implies:

j=a. (5.6
With (5.6), Egs.(5.3) and(5.4) reduce to:
h=[4c(b?+ce)] (ab+cd)D?+ablc. (5.7
The integral of(5.5) is:
—2¢cD?(G?+J%)={g+ (b?+ce) [ —h(ab+cd)+a(—ae+bd)}y?/2+B, (5.9

whereB=const.
Equation(2.3l) leads now to two additional equations, one of which has the solution:

GM+JN= y/D=const, (5.9
and what remains of2.3l) is then:
4aD[M sin(Dx/2)+N cogDx/2)]=0. (5.10

This has two solutionsa=0 andM=N=0, that must be considered separately. However, the
caseM =N=0 turns out to be included as the subcase0 of the formulae below. Hence:

a=j=0, h=%b?+ce) dD> (5.11)
The resulting Killing fields are:
k(al): 1
kf‘z)=4c[(G—yG,y)cos(Dx/2)—(J—yJ,y)sin(DXIZ)]b‘g

cd
+1 4¢[G,, cogDx/2)—J,, sin(Dx/2)]— ——— 6%

+2cD[G sin(Dx/2)+J cogDx/2)]65+4c[M cogDx/2)—N sin(Dx/2)]535,
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ki, ={—4b[(G—YyG,,)cog Dx/2)— (J—yJ,,)sin(Dx/2)]
—2D[(G—YG,,)sin(Dx/2)+(J—yJ,y)cod Dx/2)1} &5

+{-4b[G,, cogDx/2)—-J, sin(Dx/2)]-2D[G,,sin(Dx/2) +J,, cog Dx/2)]+ 8

b2+ce

+{2bD[ - G sin(Dx/2)—J cog Dx/2)]+ DG cog Dx/2)—J sin(Dx/2)]} 6
+{—4b[M cogDx/2)—N sin(Dx/2)]—2D[M sin(Dx/2)+N cogDx/2)]}8%.  (5.12

By changing the basis to'(,)=k{y+ (b*+ce) "'cdky;, andk’ (5= ks~ (b*+ce) ~tbdk, the
result equivalent to:

d=h=0 (5.13
is achieved, and then, fro®.8):
G2+J2=—(gy?+2B)/(4cD?). (5.149
Equation(5.14) suggests the parametrization:
G=K cosL, J=K sinL, (5.15
then, from(5.14):
K?2=G2+J%=—(gy’+2B)/(4cD?), (5.16

"o

andL remains arbitrary. Witta=d=0 we change the basis again k@.‘f)=(4c)*lk(’§') andks)
= (—2D)*1[k(’3”‘)ﬂL (b/c)k(»)] and we carry out the transformatiéh.13 with:

H=2L/D, T,,=—2(M sinL—N cosL)/(DK). (5.17
The result is equivalent th=0=N which implies:
J=0, G=K, M=y/(DK), (5.18
and the Killing fields become:
k{1)=901,
k(”‘z)=(K—yK,y)cos(Dx/2)5§+ K,y cogDx/2) 67
+ 3DKsin(Dx/2) 85+ [ y/(DK)]cog Dx/2) 55,
k{3 = (K—yK,y)sin(Dx/2) 65+ K, sin(Dx/2) 67
—3DK cogDx/2) 85+[ y/(DK)]sin(Dx/2) 55 . (5.19
The commutation relations are:
[ki,ko]=3Dks, [kp,ksl=—[g/(8cD)Iky, [Ks,ki]=— 3Dk;. (5.20
The Bianchi type depends on the constgnfor g/c>0 it is type IX, forg/c<0 it is type VI
and forg=0 it is type Vlly. The last case is contained (4.20—(4.23 as the subcade+ f=0.

The Killing equations fok?l) imply that the metric tensor is independentxofkKnowing this,
one can simplify the Killing equations fd5) andk(, . Sincek(,, andk(s, are linear in sinpx/2)
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and cosDx/2), while g,z are independent of, each Killing equation implies two equations: the
coefficients of coddx/2) and of sinDx/2) have to vanish separately. The pair of equations implied
by k(3 is identical to the pair implied by, , and it is:

(K=YK,)Gapi+[V/(DK)1gup o+ $D?K5502p
+ 82~ YK,yy8ost Koyy15~ [ 7K,y [(DK?)1gag + iD?K 550.2
+ 8%~ YK.yyao+ KiyyGar — [ ¥K.y [(DK?)]g,5} =0, (5.21)
KGapyt 0l = (K=YK,))Gos— K,y 81,5~ [ ¥/ (DK)1gss} + K,y 52025
+ 83 = (K=YK,))Guo— K,yGa1 = [¥/(DK) 10,3} + K,y 859,2=0. (5.22

The solution 0f(5.22) is:
911=y2+2H33(7K/D)2f K™3R(y)dy+2(y/D)K?HgR(y) +K*Hyy,

912=(¥/D)H23R(Y) +H1z, 913=(y/D)H3KR(y)+KHy3,

U2= H2o/K?, 923=Hs/K, 033=Has, (5.23

where theH;;(t,z) are arbitrary functions, anB(y) is:

R(y)::f K~ 3dy. (5.24

With K given by(5.16, R(y) and [K 3R(y)dy can be easily calculated, but the result has to be
given separately fogB+# 0, forg=0 and forB=0, so Eq(5.24) is the most compact notatighut
see below.

Note thaty andB cannot vanish simultaneously; y=0=B, thenK-yK,,=0=K,,,, and
then Eq.(5.21) implies g;,=0,,=0,5=0. Together withgy,=0 (we are still in the Plebaski
clasg this means that dei(,z) =0. Also, g and B cannot vanish simultaneously because with
g=0=B we are back in the domain of Paper Il. Wi§a+ B2+ 0, the following new variables can
be introduced for solving5.21):

u=2cDyt+Bz, v=—Bt+2cDyz (5.25

With y andB running through all possible values, the hypersurfaces const are timelike, null
or spacelike. However, the solution of the Killing equations has the same dependemeandn
in every case.
For solving(5.21), the casegB+#0 andgB=0 have to be separated.
Case |: gB#0. (This means we are considering the Bianchi types IX and VIII here, but not
Vlly.) In this case:

R= —2cD?y/(BK), (5.26
and the solution 0f5.21) (with (5.23—(5.24) already taken into accounis:
A2:=gB/(85%°D?), 6% =(BID)?+(2cy)? U:=hy,sinh(2\v)+k;, cosiH2\v),
Hi=—cD?U/(28°\)+hyy, Hip=hy, cosii2hv)+Ky, Sinh(2)\0),
H3=—[cD?/(268%\)][hyz sinh(Av) + kpscoshiAv) ],
H,,=—268°\U/(cD?) —[gB/(2¢?D®) 1hy;— [8cy?/(BD?)has,

H23: h23 COSK)\U)+k23 Sinl’()\v),H33= h33, (527)
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where theh;;(u) andk;;(u) are arbitrary functions.

Equations(5.27 are adapted to the caglB>0. WhengB<0, A\2<0, i.e.,\ is imaginary.
Thenk;, andk,; have to be taken imaginafgndU becomes imaginary in consequence of this
the hyperbolic functions go over into the corresponding trigonometric functions in the well-known
way, and the functionsi;; remain real.

Case II: gB=0. ThenK,,,=0. The form ofR(y) still depends on whethey#0 org=0 and
B+ 0 orB=0. The formulae below apply in each case. The solutio(bdfl) (again with(5.23 -

(5.24) already taken into accounis here:

c’D*4 cygy D?
02_ ?hlzv +h11,

_ (cygy)®  , c*yDgy
hoot his
45* 45°DK

SRRLEA L E A S et L N Y
6458D2K2 gss ¥

11

12—

his

c 2 3c cD?
(yay) s, 3000y, ( Y9y biho

i — PR +—
166°D%K2 X 86D 282 2 282D3K

13_854DK hag - ﬁKhzsv +hys, H22_—454D6K2 haz“— _62D3 hogv +hys,
Yay
Has= - 252D3K ha +Khas, Hag=has. (5.28

The subcase df5.28 in whichg=0 and the hypersurfaces=const are spacelike should have a
common subset with the class considered by Déskieand GrishchuR.These authors considered
Bianchi type VI models with nonzero rotation, with spacelike orbits of the symmetry group
which are flat and with the source being a perfect fltigt pressure is not constant in their class
A member of the present collection should result whenaconst. However, Ref. 3 does not
contain sufficient information to identify it.

With this, case 1.1 is exhausted. We go back2® with A#0 and consider:

VI. CASE 1.2: ¢=0

Just as it was announced in the paragraph &&&5), this case brings no new information.
Three situations occur here:

(1) The group becomes two-dimensioriabcause two Killing vectors become collingahese
cases are not considered here.

(2) A linear combination of the Killing fields with constant coefficients is spanned“%andw®;
these cases are in the domain of Paper II.

(3) In the case when the group is three-dimensional and none of the Killing fields is spanned on
u® andw, the formulae are equivalent {8.25—(2.29 and(3.2—(3.11) (both sets reappear

The proof consists simply in retracing the whole reasoning ft2r8 on with c=0. As seen
from (2.8), with c=0 necessarilyA =0, and so no analog of case 1.1.2 arises here. The essential
steps of the reasoning are described in Appendix B.

Case 1 is exhausted at this point.

VII. CASE 2: A=0 (i.e., A HAS ONE DOUBLE EIGENVALUE )

The reasoning froni2.8) on has to be repeated with this new assumption. Then the double
eigenvalue isx and:

b=fx2y—ce, a=fx\—ce=(b+f)/2. (7.1
The double sign denotes two different cases, but they will be considered at one go. In finding the

solutions of(2.5), the cases ded#0 and detA=0 have to be considered separately. We first
consider:
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Case 2.1:.det A#0. This means:
b+f#0#a. (7.2

In the next step, the cage=0 has to be set aside for separate consideration, so we first assume:
Case 2.1.1: e0. The solutions foi, 3,¢ and ¢ are here:

No={[1+(b—)x/2]L,(y)+cxLs(y)}eP* X2,
Na={—(b—)2XL,(y)/(4c)+[1+ (f—b)x/2]Ls(y)}eP X2 (7.3
d={[1+(b—f)x/2]F(y)+cxP(y)}eP* X2+ 4(cd—af)y/(b+f)2—C,,
={—(b—1f)2xF(y)/(4c)+[1+ (f—b)x/2]P(y)}eP+ X2
—[a(b—f)%c+4bd]y/(b+f)?—Cj. (7.4)
With such\, 3, ¢ and, Eq. (2.49 involves polynomials of second degreeeif?* X2 and also

of second degree iR. The equations implied by the coefficients>de®* D* and ofxe®*D* are
fulfilled identically, while the remaining ones are:

—(4c)"Y(b—f)?FF,,+fF, P—bFP,,—cPP,,=0, (7.5
[(b—f)F/2+cP][d—h+(a+]j)(b—f)/(2c)]=0, (7.6)
[(b—f)F/2+cP]{[a(b—3f)+4cd]/(b+f)—j}=0, (7.7)
g={—4h(cd—af)+j[a(b—f)%c+4bd]}/(b+f)2. (7.9

The vanishing of the first factor if¥.6) and(7.7) leads to the relation:

L,+Ls

b—f a(f—=b)—2cd b—f N
(1):( e(b+xzge

Ko™ Z¢ Ko™~ 2C

which means that the combination on the left is collinear with and so this case belongs to the
domain of Paper Il. Hencd7.6) and(7.7) imply:

h=d+(a+j)(b—f)/(2c), j=[a(b—3f)+4cd]/(b+f). (7.9
The solution of(7.5 may be represented parametrically by:
F=2(.7/R+cRIn R)/(b+f), P=—(b—f)F/(2c)+R, (7.10

where.Z is an arbitrary constant and(y) is an arbitrary function. It can be assumed tRat
#0 because otherwise we are back in the domain of Paper II.

Equation(2.3l), with the functions given by7.3)—(7.4) is a polynomial of the same form as
(2.49 and only the coefficients a(®*D* provide a new equation:

—(4c) (b~ f)*(F, Lo+ FLyy) +fF, Ls—bFLs,—c(L3yP+L3P,,)
—bL,P,,+FL,,P=0. (7.11
Using (7.10), the solution is found again in a parametric form:
L,=2S(.Z+cInR+c)/(b+f)+ yR, Lz=—(b—f)L,/(2¢c)+S, (7.12

where y is another arbitrary constant a®lis another arbitrary function. The resulting Killing
fields are now calculated frof2.1) using(7.10 and(7.12. Since this procedure has already been
performed a few times in this paper, we shall not quote the intermediate results. It turns out that
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k{2) andk,, contain terms which are constant multipleskgf , these are removed when a new

"o

basis, k'(;) and k'(;, is appropriately defined. Then we chandes) again, to k)
=k’f’3)+[(b— f)/(ZC)]k'EXZ) and carry out the transformatidf.13 with:

H=2InR/(b+f), T=2(b+f)*1f (S/R)dy. (7.13
The Killing fields that result aréwith primes dropped
ky,= o7,
ko =P X[ ex+2.71(b+1)]55—[c+. 7+ (b+f)cxi2] 85+ y 85},
kg, = et ¥ 55— 3(b+ ) 55]. (7.14

It can be assumed now thatZ=0 because this is equivalent to changing the basis to
"(2)= K2y~ 2.7K(3)/ (b+f). The commutation relations are:

[K1) K2 1= 3(b+ ko) +cka), [Ke).kz1=0, [ka).kal=—3b+fks), (7.19

and they correspond to Bianchi type IV.
Because ofk,),k(3)]=0, coordinates can be adaptedkig, andKk sy simultaneously. The
following transformation does it:

t'=e Ot 4 Lp+ftx+xy], x' =X,
y'=—c le" " b+ ft+y], z'=y(b+f)t/(2c)+yylc+z, (7.16
and it results in(primes dropped
k(y=—[2(b+f)t+cylss+ 87— 3(b+f)ys;, kip=05, kiz=45,
ut=e OO 52— (2¢)"H(b+f) 65+ y(2c) "L(b+1)85], w¥=néy. (7.17)

In the new coordinates the metric is independent ahdy. After the coordinate transformation
(7.16 and after solving the Killing equations ftklf’l) it assumes the form:

Joo=1(b+1)%e®" P*hy,, go1=3(b+1)e®"¥2n,,
9o2=e [ —2¢c/(b+f)+ 3(b+ f)Whpot 3(b+ ) yhy],
os=2(b+1)e"?hy5, gyy=hyy,
912=® AWhyp+ yhig), g1s=hys,

0o=eP X —8c(b+f) 2W+[2¢/(b+f)]2+ 2bWhyg+ y?ha+ W2h,o),

025= € P 2 Whyat yhse), g33=has, (7.18
where theh;;(z) are arbitrary functions, an@, not to be confused with the same symbol from
Sec. IV, is:

W:=%(b+f)cx+c. (7.19

VIIl. CASE 2.1.2: ¢=0

It follows from (7.1) that in this case:

b=f=a#0. (8.1)
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Similar to what happened in Sec. VI, it turns out that this case is included in the ed&eéNhen
the procedure of Sec. VIl is retraced wif8.1), the Killing fields that result at the stage corre-
sponding to(7.14) are equivalent t@7.14), with b+ f=2b, e playing the role oft and the roles
of k(2) andk s, interchanged.

IX. CASE 2.2: det A=0
With A=det A=0, the following follows from(2.8) and(2.6):

bf=ce, f=—b, a;=a,=0, (9.1)

and the matrixA is nilpotent, A>=0. Again the cas&=0 has to be set aside for separate
consideration, so we first follow:
Case 2.2.1: ¢0. The solutions 0f2.5—(2.6) are here:

No=Lo(y)+cxLs(y), Ag=—(b/c)N,+Ls(y), 9.2
d=F(y)+cxP(y)+ 3(ab+cd)x?y,
y=—(blc)p+P(y)+c Yab+cd)xy+c (—ay—bC,—cCy). 9.3

In considering Egs2.49 and(2.3l), the caseab+cd=0 has to be considered separately, so now
we follow:

Case 2.2.1.1: ab cd+#0. Equation(2.49 is now a polynomial of second degreexnand it
implies the following equations:

j=a, h=—d, (ab+cd)(yF,,+F+C,)—c?PP,=(cg—a?)y. (9.4
The integral of the last equation is:
F=3(ab+cd) Y (cP)¥y+(cg—a?)y]+.#ab+cd)/y—C,. (9.5
Equation(2.3I) reduces to the single equation:
—c%(LgyP+L3P,,)+(ab+cd)(yLyy+L,)=0. (9.6)

In solving (9.6) the caseP=0 has to be considered separately. However, although some of the
intermediate steps of the calculation depend on the assumiptidh in the final formulae for the
Killing fields P=0 is achieved by a transformation of tfle13 set. The result is identical to the
one obtained wittP=0 from (9.6) on.

With P#0, the solution 0f9.6) is:

Ls=(ab+cd)[yL,— y(ab+cd)]/(c?P). (9.7)

We change the basis of the resulting Killing fields by takiigs, = k{3, + (a/c)k{})+ (b/c)k(y),
then carry out the transformatida.13 with:

H=cP/[y(ab+cd)], T,,=cLs/[y(ab+cd)], (9.8

a a

and again change the basis 1= (ab+cd) '[k{,—3(ab+cd)"*(cg—a®)kf,]l, ks
=c(ab+ cd)*lk'fg). The final Killing fields are:

()=61, Kip=(2.21y) 85+ (= 2y*+X°12) 55— xy S5+ (yly) 55,
k{3)=X37—yd3. 9.9
The commutation relations are:

[k(1) ,k(z)] = k(3) ) [k(z) ,k(a)] = k(2) ) [k(a) ,k(l)] == k(1) ) (9.10
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and they correspond to Bianchi type VIII.
The Killing equations fork ) imply that the metric is independent &f Those fork s are
solved by:

011=H1y% 912=His, g13=Hyay,

U20=H2oly? 23=Haaly, ds3s=Has, (9.1

where theH;;(t,z) are arbitrary functiongthe componentsg,, are as in(1.9), we are still in the
Plebaski class in this cageln solving the Killing equations fok(,) it is useful to observe that”
and y cannot vanish simultaneously: wit=y=0, the Killing equations fokk,, imply that
012= U22=023=0, i.e., detf,z) =0. With 72+ y?#0, the following variables can be introduced:

U=yt—2.%2, v=27t+yz (9.12

The Killing equations forkfz) have to be solved separately for+0 and for.Z=0. When. 7
#0, we defines and\ by:

=472+ %, \N°=-2.76% (9.13
and then the solution is:
U:=hy, sinh(2\v) + k4, cosi2Av), V:=hys sinh(Av)+kyg cOSHAD),
Hy=(—2.2) "YU+ (yl 2)(—2.72) YV +hy,
Hi,=hq, coOsH2\v)+Kqo SINN2\v) + yH o3/ (2.7),
His=(—2.2) YA/ + yhss/(2.72), Hop=(—2.2)Y2U+2. 7hy;— y?hs3/(2.7),
H,3=hy3 cOSHAv) +Kypg SiINnN(AV), Hz3=hag, (9.149

where theh;;(u) are arbitrary functions. Equatiori8.14 are adapted to the casé>0 (.#<0),
but the solution foir?<0 can be easily constructed from this one.

When.Z=0, necessarilyy#0 and the Killing equations fok,, are solved in the original
variables {,z) as follows:

H11=h3sz*/(2y)2+ hpez® y?+ (hapl v+ Nzl y) 22+ 202 y+hyy,
H12=h33z’/ (27) +3h,32% (27) + (hpo/ y+ hig z+ hyp,
H13=h3sz%/(2y) + gzl y+hiz, Hap=hggz?+2h,5z+hyy,

Ho3=hgsz+hys, Hgz=has, (9.19

where theh;;(t) are arbitrary functions.

Equations(9.14) and(9.15 are very similar in form td5.27) and(5.28), respectively. This
suggests that case 2.2.1.1 considered here may be included in case 1.1.2.2 of Sec. V as a limit
(combined with a coordinate transformatjotdowever, this author was not able to prove or
disprove this hypothesis.

We go back now td9.3) and consider:

X. CASE 2.2.1.2: ab+cd=0

Equations(9.2) still apply and Eqs(9.3 simplify in the obvious way. The difference with
Sec. IX is that Eqs(2.409 and(2.3l) impose weaker conditions here. The c&e0 leads to the
domain of Paper 2, so it may be assumed &t0. Then, the consequences(@f4g are:

h=bj/c, (10.1
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cPP,y+(j—a)P+(g—aj/c)y=0. (10.2
Equation(10.2 definesP as a function ofy. The consequence of E.3) is:
c(LsP),y+(j—a)Lsz=0, (10.3
which defined_; onceP is given. The functiong andL, are still arbitrary at this point.
In the resulting Killing fields we také' 3= K3, + (a/c)k(,+ (b/c)k,, instead ofk(s,, and
carry out the transformatiofi.13 with:
H=(F+Cy)/(cP), T ,=(L,/c—HL3)/P. (10.9
The result of the change of basis and(90.4) is equivalent to:
F=-C,, L,=a=b=d=0, c=1, (10.5
and the Killing fields become:
k=061, k&)=x(P—yP,))85+xP, 87 —P&5+xL3653,
kfg):(P—yP,y) 9+ P,y 61+ L363. (10.6
Note that with(10.9 fulfilled, the subcasg=0 impliesP,,=const, and thek(3,— P, k{1, is
spanned ou® andw?, i.e., this case is in the domain of Paper Il. Hence, in what follows it will

be assumed tha+ 0. For the same reason it will also be assumed tRatyP,,) # 0.
The commutation relation@vith (10.5 already taken into accounare:

[k Ky 1=Ky, [K) K l=iKae)+aKa), [Ka)Ka)]=0. (10.7
The collection of Bianchi types contained (0.7 is as follows. When:

(@ g<j24, the Bianchi type is \{ with the free parameteaz=j/(j>—4g)*% and Vi, when
j=0.

(b) g>j?/4, the Bianchi type is V|| with the free parameteag=j/(4g—j%)"?% and VI, when
j=0.

(c) g=j?/4, the Bianchi type is IV ifi#0 and Il if j=0. This last case belongs to the domain
of Paper Il, as explained above, and will not be presented here.

The Killing equations have to be solved separately for these three cases.
The coordinates are adaptedkg, andk s, by the following transformation:

t'=t/(P-yP,)), X'=x—tP, /(P-yP,), y'=y,
Z'=—Lst/(P-yP,)+z (10.8
In the new coordinates, with primes dropped:
ki)=01, kizy=(x—jt)d5—gtd1—Pd3, k(3=4;,
U= (P=yPy) (35— P.yd{~Lad), we=35,
Joo= Pz_yzp,yz‘Fva2911+2|—3pvy913+|—32933y
9o1=Y(P—YyP,y) +P,y011+ L3013,

Jo2= P,y9121+ L3023, 903=P,y0131L3033. (10.9

The Killing equations foik(;y andk sy imply now that the metric is independenttoédndx, while
those fork ;) are:
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—Pg11y+2y(P-YyP,,)+2P,,01,+2L3915=0,
— P01y +L3023=0, —Pgizy+P,yg13+L3033=0,
—PO22y—2P,y025=0, —P03y—P,y023=0, —Pgs3,=0. (10.10
The last three have the same solutions in all three cases:

U20=N22/P? go5=ha3/P, gzz=hgs, (10.11
where theh;;(2) in the formulag(10.1)—(10.21 are arbitrary functions. The remaining equations
in (10.10 have to be solved separately for each case. In each case it is useful to introduce the new
variableY(y) by:

Y,,=1/P. (10.12
Then Eq.(10.3 (with (10.5 taken into accounthas the solution:
Ly=(y/P)e 1Y, (10.13

In order to findP one has to differentiatél0.2 (again with(10.5 taken into accountby Y and
usey,y=P. The equation becomes:

P,yytjP,y+gP=0, (10.19
andy is then found fromy= [PdY. The solutions 0f10.10 and of(10.14 are now as follows:
Case |: g<j?/4.
P=Me*1 +Ne*2", y=(M/uq)e*t +(N/u,)e*2  +yq, (10.15

whereM, N andy, are arbitrary constants and
p1o= =2+ e Aj?4— )% e1=1, e,=—1. (10.16

It can be assumed th&N+0 because in both the casks=0 andN=0 we are back in the
domain of Paper I{thenP,, = cons}. The solutions of the remaining Killing equations are here:

g11=Y?+h1P?—2yh;5e#2YP/[M (1 — w) 1+ ¥*h3ee®#2YI[ M (1 — 1) 1%,
g1o=h1o— YN2€#2YI[M(p1— 2)P], g13=hisP— yhae#2/[M(uy—p2)].  (10.17
Case Il: g>j?/4. Here we define:
D=(g—j%4)*2 U:=M cogDY)+N sin(DY),
V:=M sin(DY)—N cogDY), (10.18
whereM andN are arbitrary constants, and then the solutions are:
P=e 12U, y=(4D?+?) e V4DV -2jU)+y,,
g11=Y?+hy;P?+2yh e YUVI[D(M?+N?)]+ y?hge 1Y/[DA(M2+N?)],
g12= N1oF YhaVI[D(M24+N?)U], gy3=hysP+ yhssPVI[D(M2+N?)U].  (10.19

Case lll: g=j?/4+0. With M,N andy, being arbitrary constants, the solutions @randy
are here:

P=(MY+N)e Y2 y=—2P/j—4Me 1Y?j2+y,. (10.20
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We can assum#! #0 because wittM =0 againP,,=const. Then, the solutions of the Killing
equations are as follows:

g11=Y2+h,P2=2yhye 7 Y2PIM + y?hae 1Y IM?2,
912=h1o— Yhos/[M(My+N)], g13=h;sP— yhse YIM. (10.23)

With this, case 2.2.1 is exhausted. We go backdtd) and consider:

Xl. CASE 2.2.2:¢c=0

With A=detA=c=0 the only element of the matriA that may be nonzero is. The
solutions of(2.5—(2.6) are here:

No=Ly(y), Ng=exlL,+Ls(y), (111
p=axy+F(y), y=3aeXly+(dy+eC,+eF)x+P(y). (11.2

Equation(2.49 now implies that eithef=a or a=0 or e=0. However,j=a leads to a result
equivalent t0(9.9) anda=0 leads to a result equivalent (©0.6. Hence:

e=0, (11.3
which makes the whole matri&=0. The remaining implications qR.4¢ and(2.3l) are:
ah+dj=0, y(dF,,—aP,,—g)=h(F+C;,)+j(P+Cy),
y(dLyy—alsy)=hlL,+jLs. (11.49

In solving these conditions, again several cases have to be considered separately.
Case 2.2.2.1: &0. Then:

h=—dj/a, (11.5

but in solving the second dfL1.4) the casg = —a has to be set aside for separate consideration.
We first follow:
Case 2.2.2.1.1:4 —a. Then:

P=—gy/(j+a)+By 12— Cs+(d/a)(F+C,),
Ly=—.2y 13+ (d/a)L,, (11.9
where.7Z and B are arbitrary constants. In the resulting Killing fields we change the basis to
’?Z)za_‘lk(“z), '3y~ k{5~ (dla)kiy)+[9/(j +a) ]k{1y, and then carry out the transformation
(1.13 with:
H=(Cy+F)/(ay), T,y=Ls/(ay). (11.7)
The final Killing fields are:
k=01, Kiz=xo1-yd;,
k€3):y*i’a[B(j/a+ 1)85—Bj(ay) 16y —.45835]. (11.8
The commutation relations are:
(k) Ko l=Kay, [Ko)Kal=(1a)ka), [Kag).Ka)]=0, (119
and they correspond to Bianchi type Mkith the free parameteag=(j—a)/(j +a).

The coordinates will be adapted kg,y andk s, after the transformation:
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t'=atyl’¥/[B(j+a)], x'=jt/[(j+a)y]+x, y' =y, z/=.7at+B(j+a)z. (11.10
After the transformation:
(1= 901, kipy=—jtsg+axsi—aydy, Kz =35,
u*=(j+a) [aB lyl'255+(jly) 871+ 7ad;, we=B(j+a)ns;,
Joo= (BY "®2[1—(jla)?+(jla)?g11/y?+2.7j(jla+1)gsaly +.7%(j +a)2gaal,
9o1=By [ (j/a+1)y—(j/a)gu/y—.#(j+a)gul,

Uoo= — By 3[(jla)gip/y+. Z(j+Q)9zal, Goz=—By 3[(jla)gyaly+.#(j+a)gaal,

(11.12
and the Killing equations imply:
gu=h1y?, g1=hi2, g1z=hiyy,
U20=N2oly? G25=Nzsly, gzz=has, (11.12

where theh;;(z) are arbitrary functions.
Case 2.2.2.1.2:5 —a. The formulae foh andL 5 simply follow from (11.5 and(11.6) while
the second of11.4 now has a different integral:

P=(—g/a)y Iny+By—Cs+(d/a)(F+C,). (11.13

In the resulting Kiling fields we change the basis tok’?z):a‘lkf’z),
'(3y= K5~ (d/a)k(y+ (g/a—B)k{y,, and then carry out the transformatidin13 with the same
H andT as in(11.7). The final Killing fieldskf’l) and k(“z) are the same as if11.8, and:

kiz)=yd—Inydi—.2yd3. (11.19
The commutation relations are:

[k K=Ky, [Ke) Kal=ka—ka), [Kakpl=0, (11.15

and they correspond to Bianchi type IV.
In order to adapt the coordinateskfj, andk{,, we now carry out the transformation:

t'=tly, xX'=({t/ly)iIny+x, y'=y, z'=_7t+z, (11.196
and it leads to:
kf‘l)=5§*, (“2)=t53+(x—t)5f—y5“, ("‘3)= 5
ut=y Y s5+InysH) +. 485, w*=nés5,
Goo=Y>—2y? In y+(In y)?g11+ 2.2y In ygia+ (. 7y)*gas,
901=Y*~IN YG11—-#YT1s, Goo= ~INYQG1o—- 7y s,

Jos= — Ny Q13— 7Y Jas, (11.17

and the Killing equations lead to formulae for the other metric components that are identical to
(11.12.

Case 2.2.2.2: & 0. Then the first of11.4) implies that eithed=0 or j=0. However, ifd=0,
then either the algebra of the Killing vectors necessarily becomes two-dimenghinalase is not
considered hepeor
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i=0 (11.18

follows anyway. Hence only11.18 will be considered further. Then, with#0d+h, a result
equivalent to(11.8 follows, and when @& d=h, a result equivalent to case 2.2.2.1.2 follows.
Therefore, new results are contained only in the case:

d=0. (11.19
Then, from(11.4:
h(F+C,)+gy=0. (11.20

If h+#0, then(11.20 implies that the combination of the Killing field§“2)+(g/h)k(“1) is collinear
with w?, and this case is in the domain of Paper Il. Hence, f@h20:

h=g=0, (11.22)

which leaves us with an Abelian algekiBianchi type ) and the function§, P, L, andL 5 being
all arbitrary. To avoid landing in the domain of Paper I, we have to assume:

F,,#0%P,, C,+F—yF, #0#Cs+P—yP,,. (11.22

We will denote:

We:=Cyo+F—yF,,, Wp:=C3+P—yP,,, (11.23

and then the Killing fields are:
Ky =05, K =Wed§+F, 8i+L,85, ki=Wps§+P,,8f+L305.  (11.29

It may also be assumed that:
=L L,Wp/Wg#0 (11.25

because if#=0, then the Killing equations imply that either the symmetry group becomes
two-dimensional or the metric is singular. With'# 0, the following transformation is permis-
sible:

t’ :(Lgt_WpZ)/C% WF), X,:(sz,y_ L3F,y)t/(% WF)+X_(Pyy_ F,pr/WF)Z/f,///,
y'=y, Z/=—L,t/(¥X Wg)+2/ %, (11.26

after which the Killing fields become:

kiy=01, kiy=3, K(z=93. (11.29
The resulting metric depends only gnbut the Einstein equations are hopelessly complicated.
This is the end of the collection of solutions of the Killing equations.

Xll. PERSPECTIVES

The research for this series of papers was motivated by the desire to find a r¢sedioy
perturbation of the Friedmann—Lertrai cosmological models. Several papers have been pub-
lished whose authors found exact solutions of Einstein’s equations with a rotating $seeca
brief overview in Sec. XIl), but all except one of them are either stationary from the beginning or
become static in the limit of zero rotation. The one exception is the solution 2 by Stépiaini
has still nonzero expansion in the limit— 0, but it is a rotating perturbation of a degenerate limit
of the hyperbolically symmetric Kantowski—Sachs soluti¢see Ref. 6 for more on this pojnt
and cannot reproduce any Robertson—Walker geometry.
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There is no proof available that a rotating perturbation of the F—L models can be spatially
homogeneous. However, if it has any spatially homogeneous subcases and has a dust source, then
the subcases must be contained among the metrics listed in this series of papers—just because this
is a complete list of all hypersurface-homogeneous rotating dust mearas over all three
papers, all Bianchi types appeared on the list, some of them more than deoee, from now on,
instead of testing various metric ansatzes for rotating dust by trial and error, one can choose an
ansatz from a limited collection. It is well-knoWthat the Robertson—Walker geometries have the
following relation to the spatially homogeneous Bianchi-type geometries:

The spatially flat k=0) R—W geometry is a common subset of Bianchi types | and.VII

The R—W geometry with negative spatial curvatuke=(— 1) is a common subset of Bianchi
types V and VIj,.

The R—W geometry with positive spatial curvatuie=(+1) is a subset of Bianchi type 1X
geometries.

With this information, the following can be concluded:

(1) The metrics from Paper | do not contain any generalization of the F—L models; the Bianchi
type | class contained there has timelike symmetry orbits and the velocity field is tangent to
the orbits.

(2) The same is true for the Bianchi type | metrics from Papécdkes 2.1.2.2 and 2.2nd from
the present papéEqgs.(11.22—(11.27). This is in agreement with Theorem 3.1 of King and
Ellis® which says that no tilted Bianchi type | models exXiiited means that the velocity field
is not orthogonal to the symmetry orbits. Bianchi models with rotation obviously must be
tilted).

(3) The Bianchi type V metrics from Paper (tases 1.2.1 and 1.2.2.%ith suitably chosen
parameters do have spacelike symmetry orbits and so may harbour some generalization of the
k=—-1 F-L model.

(4) The Bianchi type VI} metrics of the present pap¢Egs. (4.23 and (10.19] may have
spacelike symmetry orbits at least on some open subsets of the manifold, i.e., they may
contain generalizations of tHe= —1 F—L model.

(5) The same is true for the Bianchi type IX and type (ihetrics of the present pap€Egs.

(5.23 with (5.27) or (5.28); generalizations of th&«=+1 andk=0 F-L models may be
contained there.

Hence, the cases listed in points 3, 4 and 5 are most promising from the point of view of
cosmology.

Xll. A BRIEF OVERVIEW OF LITERATURE

Partly in order to justify the claim made in the first paragraph of Sec. XIlI, a brief overview of
literature on solutions of Einstein’s equations with rotating sources will be presented here. For the
period up to 1973, the overview is based on a thorough survey of subject indeRg/ss
Abstractsstarting with the year 191%made in connection with Refs. 57-5%or the period
1973-1996 the survey was less thorough—I was looking for only four keywords: “Bianchi,”
“homogeneous,” “rotation” and “spatially homogeneous.” In both searches the following sec-
tions of Physics Abstractaere surveyed: Cosmology, General Relativity, Gravitation, and Space-
Time Configurations(of course, references in the papers included in the survey were also
checked. Ref. 9 is a more extended survey that covers the period up to 1973, and papers in which
perturbative methods were used were also listed in it, these are omitted here. Vacuum solutions are
omitted, too.

As a rule, each paper is mentioned in one sentence, so this overview does not pretend to
represent the contents of the papers; it is only meant to sort the papers by subjects and serve as an
introductory guide through the literature.

Lanczog found the historically earliest exact solution with rotating matsthough he may
have been unaware of its rotatjoit is a dust solution in which the velocity field and the rotation
field are collinear with Killing fields. Van Stockuth rediscovered the\=0 subcase of the
Lanczos solution; Ref. 11 contains in addition important contributions to the techniques of solving
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the Einstein equations for stationary axisymmetric mefiies, with a two-dimensional symmetry
group with a rigidly rotating source. Ref. 12 is another rediscovery of the Lanczos solution, and
Refs. 13 and 14 contain discussions of its properties.

Godel's solutiort® has a five-dimensional symmetry group whose orbit is the whole space—
time, and consequently the physical scalars in it are all constant. Its source is dust of zero
expansion and shear, and constant matter density and rotation scalars. Rediscoveries délthe Go
solution were published in Refs. 16 and (see Ref. 18 Reference 17 contains in addition a
stationary axisymmetric perfect fluid solution.

References 19-32 deal with properties of a metric form that is a modest generalization of the
Godel solution and is known in the literature as the ‘W&btype metric.” This notion was
introduced in Ref. 19, and in Ref. Z&hich in fact preceded Ref. 1% was shown that the only
Godel-type metric with a perfect fluid source is the d&b solution itself. However, various
Gaodel-type solutions with nonperfect fluid sources have been derived and investigated in Refs. 19
and 21-32.

In Refs. 33—40 solutions of Einstein—Maxwell equations with a charged fluid source were
discussed, some of them under the additional assumption that the Lorentz force is zero. The latter
are fully within the scope of the formalism used in the present series of papers because the charged
dust in them moves with zero acceleration. The relation of the results of these papers to those
obtained here was described in Paper I. Some of them are generalizations of the t%acdos
Gaodel'® solutions. Those from Refs. 33—39 are stationary cylindrically symmetric, i.e., are closely
related to those from Paper |, the one from Ref. 40 has a two-dimensional symmetry group. The
solutions in Ref. 39 are coordinate transforms of those from Ref. 38.

A generalization of thé\ =0 subcase of the Lanczos solution to a mixture of scalar field and
dust was found by Santos and Mondadhi.

Other generalizations of the ‘@el solution were found in Refs. 42—-50. Raval and Vafdya
found two solutions with anisotropic pressure, one of them nonstationary*Hwand a collec-
tion of solutions with the rotating fluid immersed in a magnetic field. Novello and Retsdfic
Kitamur®®~#’ and Ray® found generalizations with heat flofthe second of Kitamura’s solutions
presented in Ref. 45 is a coordinate transform of thelésolution. Rebouas”® found a gener-
alization with free electromagnetic field; see Ref. 51 and Paper | for an explanation of the relation
between the solutions in Refs. 49 and 37. Finally, Pahfound a generalization with two scalar
fields, anisotropic fluid, null radiation and heat conduction.

Other solutions with rotating charged matter source were obtained in Refs. 52—-55. The
Einstein—Maxwell equations for stationary axisymmetric charged dust were analyzed by
Bonnor>®

In addition, several solutions with a perfect fluid souice., with nonconstant pressyrand
with the same Bianchi type | symmetry as was considered in Paper | have been published. These
include a family of solutions by this auttdr®in which the velocity and the rotation fields are
collinear with the Killing fields. For the solutions considered in Refs. 57 and 59 the proportionality
factor betweenmw® and the Killing field is explicitly given. For the family of metrics from Ref. 60,
the factor is an arbitrary function and the family is defined by a differential equation. The solutions
by Davidsofi*?are explicit examples from the family of Ref. 60, possibly they are also coordi-
nate transforms of members of the family from Ref. 57 defined by certain fixed values of param-
eters, but Refs. 61 and 62 do not contain sufficient information for precise identification.

Nilsson and Uggl® did a qualitative analysigusing the theory of dynamical systeymsf
perfect fluid solutions with the same symmetry that obey the linear barotropic equation of state.

The list above includes papers that are related to Paper | of this series. Results related to those
of Paper Il are contained in Refs. 64—77.

Among the solutions found by Elfi§there are some that directly belong to the collection of
Paper I, they are identified and described in Paper Il. Also within the scope of Paper Il are the
results of King® who investigated properties of the subcgseh;3=0 of case 2.1.2.20f Paper
II) and provided a few examples of explicit solutions. Other explicit solutions in King's class were
found by Maitra®® Zimmermaf’ (this reference was not given in Paperahd Vishveshwara and
Winicour®®

In Refs. 69—73 rotating dust solutions with four-dimensional symmetry groups were found; at
least some of them have three-dimensional subgroups and are within the domain of Paper II.
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However, as mentioned in Paper Il, these papers do not contain sufficient information for a
complete identification of all such subcases. The first three of the six solutions given in Ref. 70 are
among the case 2.1.2.2 metrics of Paper Il

Davidsor* found an example of a solution with King’s subclass of symméstationary,
cylindrically symmetric, differentially rotatingand with a perfect fluid source obeying the linear
barotropic equation of state. Two other stationary cylindrically symmetric perfect fluid solutions
were found by Garcia and Kramétthe first is differentially rotating and has the symmetry of
King’s subclass, the other is rigidly rotating and so has the Bianchi type | symmetry of the class
considered in Paper I. Nilsson and Udg§lanalyzed by the method of dynamical systems the
Einstein equations for a metric with a Bianchi type Il symmetry and a perfect fluid source that
obeys the linear barotropic equation of state. Its set of Killing fields is in the subcas@ of
case 1.1.2.2 of Paper Il. Stewart and Ellisonsidered perfect fluid generalizations of the Ellis
(dus) solutions from Ref. 64, they also considered sources with anisotropic pressure, viscosity and
electric charge.

The only paper directly relevant to the present Paper Il is Ref. 3, see Sec. V. The remaining
part of the present section is a list of papers in which various problems connected with rotating
matter were discussed, but which are more remotely related to the present series of papers.

Stepharfi found a solution that is unique in one more respect in addition to that mentioned in
Sec. XIlI: it is so far the only rotating mattédus) solution with no symmetry(Note: solution 3
in Ref. 4 is not a perfect fluid solution, contrary to the paper’s statejent.

Stationary axisymmetri@.e., with two-dimensional symmetry groupserfect fluid solutions
were found in Refs. 78—83. Wahlquifound a rigidly rotating solution with the equation of state
e= —3p+const that, with specific values of two parameters, can describe the interior of a body
with compact outer surface. Hefltfound a source of the NUT vacuum solution and Kratfer
found another solution, both are rigidly rotatiti§ramer’s solution was rediscovered by Patra and
Roy?! see Ref. 82 Another class of rigidly rotating stationary axisymmetric solutions was found
by Herlt®

Several stationary axisymmetric metrics were devised as nonperfect fluid sources of the Kerr
solution. Results in this class that were published up to 1976 are reviewed in Ref. 84. Later, a few
more papers on this subject were published, but in those that are known to the present author the
source is either a surface distribution of matter or an energy-momentum tensor that does not
correspond to any identifiable kind of matter, hence they are not mentioned here.

A spatially homogeneous solution of Bianchi type,With a rotating perfect fluid source was
found by Rosquist it has the equation of staie=3p and nonzero expansion. Spatially homo-
geneous solutions with heat-conducting sources were found in Refs. 86—89. Two other
hypersurface-homogeneous perfect fluid solutions were found by Wainwfight has a three-
dimensional symmetry group of unidentified Bianchi type, the other has a four-dimensional mul-
tiply transitive symmetry group.

The remaining paperéRefs. 91-11pcontain results obtained without finding explicit solu-
tions of Einstein’s equations. This part of the survey is likely to be incomplete.

Narlikar’® proposed a metric form for a rotating dust model in which dust particles move on
3-cylinders(axial symmetry is not assumedhose orthogonal sections are two-dimensional sur-
faces of constant curvature. Winicdtireduced the Einstein equations with a stationary axisym-
metric dust source to a sequence of integrations. This alttmesented results of partial inte-
gration of the Einstein equations for a cylindrically symmetric nonstationary perfect fluid.

Bampi and CianéP? investigated spacetimes with an Abelian two-dimensional group of sym-
metries that has null orbits; the example of exact solution provided is a vacuum. Wils and van den
Bergh®* showed that a stationary axisymmetric differentially rotating charged dust has either a
nonvanishing Lorentz force of a nonconstant ratio of charge density to mass density.

In Refs. 105-110 general properties of rotating spatially homogeneous Bianchi type IX mod-
els were investigated without attempting to solve the Einstein equations. Of these, Ref. 109 gives
a kinetic theory description of sources in such models and Ref. 110 gives a qualitative analysis of
rotating mixmaster models.

References 111-113 contain general considerations about rotating matter models, and Refs. 8
and 114 contain more general results, applicable also to nonrotating models, but having conse-
quences for rotating models as well. Colfiisconsidered properties of shearfree rotating perfect

Downloaded 09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



2176 J. Math. Phys., Vol. 39, No. 4, April 1998 Andrzej Krasinski

fluids. Again Colliné? reviewed arguments for the hypothesis that shear being zero implies that
either rotation or expansion is zefapart from several specific examples, this is still unprgven
Mason and Podé® investigated properties of the Lie derivative of the rotation vector along the
velocity vector in rigidly rotating matter. King and Effinvestigated properties of tilted spatially
homogeneous models and Nilsson and Ut§lmvestigated hypersurface homogeneous and hy-
persurface self-similar perfect fluid models by the method of dynamical systems.

Hawking''® and Collins and Hawkind® investigated limits set on the rotation parameter in
Bianchi-type models by the observations of the CMB radiation.

Finally, there is a paper in the domain of the history of science.'Elligescribed the influence
of Godel's ideas presented in Refs. 15 and 105 on the development of several concepts and
research programs in relativity, such as, among other things, the Bianchi-type models, singularity
theorems and causal structure of space—time.
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APPENDIX A: THE RESULT OF TRANSFORMATION (4.21) ON THE METRIC

The coordinate transformatigd.21) changes the metric tensor from the Pledldrdorm (1.9)
to one in which the following relations holgrimes dropped, all the components displayed are
expressed in the new coordingtes

goo=eP T [ sir?(Dx/2) — (VIW)2cog(Dx/2) ]+ (VIW)?gy,
+2(VIW) ye®+ ¥ cog Dx/2) + (VIW)sin(Dx/2) 1953
+ 2T cog Dx/2) + (V/W)sin(Dx/2)1?gas,
Jo1= (VIW) g+ ye®* ¥ cog Dx/2) + (VIW)sin(Dx/2) 1913,
goo=e" " *cog Dx/2)[ sin(Dx/2) — (VIW)cog Dx/2) ]+ (VIW) gy,
+ yeP DX cog Dx/2) + (VIW)sin(Dx/2) 19,3,
Jos= (VIW)goat+ v ¥ cog Dx/2) + (V/W)sin(Dx/2)]gs.

APPENDIX B: THE EQUIVALENCE OF CASE 1.2 AND CASE 1.1.1

These are the main points of the reasoning f@#) on in the case=0. Whenc=0, Egs.
(2.7—-(2.8) imply:

a1=b, a,=f, (B1)

andb#f sinceA+#0. The calculation requires checking several cases separately.
Case 1.2.1detA#0. The formulae corresponding 8.9 and(2.13 are then:

No=La(y)e™ Nz=[el(b—f)ILo(y)e™+Ls(y)e™, ¢=F(y)e”™—ay/b—C,,
y=[el(b—f)]F(y)e®*+ P(y)e™*—[ —ael/(bf)+d/f]ly—C;. (B2)

In verifying (2.4¢9 and(2.3l) the case$ =0 andP=0 have to be considered separately. The
results are as follows:
WhenF=0+#P andL,=0 the group becomes two-dimensional.
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WhenF=0#P andL,#0, the Killing field[kf2)+(a/b)kf‘1)] is collinear withw*, and this
case is in the domain of Paper II.

When P=0, another linear combination of the Killing vectors with constant coefficients is
collinear withw®.

WhenF # 0+ P, formulae equivalent t42.24—(2.29 result.

Case 1.2.2.det A=0. Two different(but equivalent subcases have to be considered here:
b=0 andf=0 (b#f because of the assumptidn#0).

When =0, the functions\,,\3 and ¢ are given by the limif =0 of (B.2), while ¢ is:

= (elb)F(y)e®™+ P(y)—aeyb?+(d—ae/b)xy—Cs. (B3)

Equations(2.4¢9 and(2.3]) show then that there always exists a linear combination of the Killing
fields with constant coefficients which is spanneduSnand w®.

Whenb=0, the conclusion is the same, only the functiongBr®) are different at the starting
point. A, and\ 3 are the limitsb=0 of those from(B.2), and:

¢=F(y)+axy—C,,

y=—(elf)(p+Cy)+P(y)e™—(d/f +ae/f?)y—Cj. (B4)

LA. Krasifski, J. Math. Phys39, 380(1998 (Paper ).

2A. Krasirski, J. Math. Phys39, 401 (1998 (Paper ).

3M. Demiarski and L. P. Grishchuk, Commun. Math. Phgs, 233(1972.

4H. Stephani, Class. Quantum Gray.125 (1987).

5R. Kantowski and R. K. Sachs, J. Math. Phys443(1966.

6A. Krasinski, Inhomogeneous Cosmological ModéBambridge University Press, Cambidge, 1997
L. P. Grishchuk, Astron. Zh44, 1097(1967) [Sov. Astron.11, 881 (1968)].

8A. R. King and G. F. R. Ellis, Commun. Math. Phy&l, 209 (1973.

9A. Krasinski, Solutions of the Einstein field equations for a rotating perfect fluid; Part 3: A survey of models of rotating
perfect fluid or dustprepriny, Warszawa, 1975.

10K, Lanczos, Z. Phys21, 73 (1924; English translation in Gen. Relativ. Grav9, 363 (1997).

1w, J. van Stockum, Proc. R. Soc. Edinburgh 135(1937).

123, P. Wright, J. Math. Phys, 103 (1965.

13w, B. Bonnor, J. Phys. A3, 2121(1980.

14p. R. C. T. Pereira, N. O. Santos, and A. Z. Wang, Class. Quantum E3a¥641(1996.

15K. Godel, Rev. Mod. Phys21, 447 (1949.

16C. Hoenselaers and C. V. Vishveshwara, Gen. Relativ. Gra@jt43 (1979.

A, H. Khater and M. F. Mourad, Astrophys. Space 63 247 (1990.

183, K. Chakraborty, Gen. Relativ. Gravit2, 925 (1980.

%M. Novello and M. J. Rebows, Phys. Rev. [19, 2850(1979.

20F. Bampi and C. Zordan, Gen. Relativ. Gra®$.393 (1979.

2M. J. Reboyas and J. Tiomno, Phys. Rev.Z8, 1251(1983.

22M. J. Rebouyas and J. Tiomno, Nuovo Cimento 3, 204 (1985.

A, F. F. Teixeira, M. J. Rebgas and J. E. Aman, Phys. Rev.d2, 3309(1985.

24]. D. Oliveira, A. F. F. Teixeira, and J. Tiomno, Phys. Rev34) 3661 (1986.

25M. J. Reboyas, J. E. Aman, and A. F. F. Teixeira, J. Math. Pt8j&.1370(1986.

26M. J. Reboyas and A. F. F. Teixeira, Phys. Rev.33, 2985(1986.

27M. J. Reboyas and A. F. F. Teixeira, iRroceedings of the 4th Marcel Grossman Meeting on General Relatidtied
by R. Ruffini (North—Holland, Amsterdam, 1986Vol. 2, p. 1025.

28M. J. Reboyas and J. E. Aman, J. Math. Phy8, 888(1987.

2°M. 0. Calva, M. J. Rebouas, A. F. F. Teixeira, and W. M. Silva, J. Math. Phgs, 1127(1988.

30y, A. Korotkii and Yu. N. Obukhov, Vestn. Mosk. Univ. Fiz. AstroB2, No. 2,3(1991) [Moscow Univ. Phys. Bull. No.
2, 4(199))].

31y, F. Panov, Izv. VUZ Fiz34, No. 2, 54(1991) [Sov. Phys. J34, 130(1991)].

32R. X. Saibatalov, Gen. Relativ. GravR7, 697 (1997).

333, N. Islam, Proc. R. Soc. London, Ser.385 189 (1983.

34p. Wils and N. van den Bergh, Proc. R. Soc. London, SeB94, 437 (1984.

35A. Gerogiou, Nuovo Cimento B08 69 (1993.

%M. M. Som and A. K. Raychaudhuri, Proc. R. Soc. London, SeB04, 81 (1968.

S7A. Banerjee and S. Banerji, J. Phys.1A188(1968.

38N. V. Mitskevic and G. A. Tsalakou, Class. Quantum Gr8y209 (1991).

39A. M. Upornikov, Class. Quantum Gratl, 2085(1994.

403, N. Islam, Proc. R. Soc. London, Ser.383 523(1977.

41 N. O. Santos and R. P. Mondaini, Nuovo Ciment&B 13 (1982.

42H. M. Raval and P. C. Vaidya, Ann. Inst. Henri PoingaBect. A4, 21 (1966.

“3M. Bray, C. R. Hebd. Acad. Sc{Pari9 A 274, 809 (1972; 274 874(1972.

Downloaded 09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



2178 J. Math. Phys., Vol. 39, No. 4, April 1998 Andrzej Krasinski

4M. Novello and M. J. Rebowas, Astrophys. 225 719 (1978.
453, Kitamura, Tensor N. 882, 156 (1978.
463, Kitamura, Math. Japanic8, 655 (1979.
47s. Kitamura, Tensor N. 85, 183(1981).
48D, Ray, J. Math. Phy=21, 2797(1980.
49M. J. Rebouyas, Phys. Lett70A, 161(1979.
50y, F. Panov, Izv. VUZ Fiz33 (No. 1), 62 (1990 [Sov. Phys. J33, 54 (1990].
1A, K. Raychaudhuri and S. N. Guha Thakurta, Phys. Re22P802 (1980).
523 N. Islam, Proc. R. Soc. London, Ser.382, 329 (1978.
533, N. Islam, Proc. R. Soc. London, Ser.3&7, 271(1979.
543, N. Islam, Proc. R. Soc. London, Ser.3%2, 111 (1980.
%M. J. Reboyas and J. B. S. d’Olival, J. Math. Phy&7, 417 (1986.
56w, B. Bonnor, J. Phys. A3, 3465(1980.
S7A. Krasifski, Acta Phys. Pol. B, 411 (1974.
58A. Krasinski, Acta Phys. Pol. B, 223 (1975.
S9A. Krasifski, J. Math. Phys16, 125(1975.
80A, Krasinski, Rep. Math. Physl4, 225(1978.
61\, Davidson, Class. Quantum Gral3, 283(1996.
62\\. Davidson, Class. Quantum Gral4, 119 (1997).
63y, S. Nilsson and C. Uggla, Class. Quantum. Grb4.2931(1997.
84G. F. R. Ellis, J. Math. Phys8, 1171(1967).
85A. R. King, Commun. Math. PhysS8, 157 (1974.
66S. C. Maitra, J. Math. Phyg, 1025(1966.
673, C. Zimmerman, J. Math. Phy$6, 2458(1975.
88C. V. Vishveshwara and J. Winicour, J. Math. Phy8, 1280(1977.
69, Ozsvah and E. Schucking, Natur@ondon 193 1168(1962.
0, Ozsvah, J. Math. Phys6, 590 (1965.
1D, L. Farnsworth and R. P. Kerr, J. Math. Phys.1625(1966.
72|, Ozvah and E. Schucking, Ann. Phyg\.Y.) 55, 166 (1969.
3|, Ozsvah, J. Math. Phys11, 2871(1970.
74W. Davidson, Class. Quantum Grai, L129 (1994.
SA. Garcia and D. Kramer, Class. Quantum Graa, 499 (1997).
76U. S. Nilsson and C. Uggla, J. Math. Phy8, 2611(1997).
7. Stewart and G. F. R. Ellis, J. Math. Ph9s.1072(1968.
78H. D. Wahlquist, Phys. RevL72, 1291(1969.
OE. Herlt, Wiss. Z. Friedrich Schiller Univ. Jena, Math. Naturwiss. Rélhel9 (1972.
80D, Kramer, Class. Quantum Gray, L3 (1984).
81A. C. Patra and D. Roy, Class. Quantum Grdy195(1987.
824, Stephani, Class. Quantum Graly.1047(1987.
83E. Herlt, Gen. Relativ. Gravi20, 635(1988.
84A, Krasinski, Ann. Phys(N.Y.) 112, 22 (1978.
85K. Rosquist, Phys. Let97A, 145 (1983.
8M. J. Reboyas and J. A. S. de Lima, J. Math. Ph@®, 2699(1981).
87M. J. Reboyas, Nuovo Cimento 87, 120(1982.
883, M. Bradley and E. Sviestins, Gen. Relativ. Grag#, 1119(1984.
89V, F. Panov, Izv VUZ Fiz.32 (No. 5), 98 (1989 [Sov. Phys. J32, 403(1989].
903, Wainwright, Commun. Math. Phy&7, 42 (1970.
913. V. Narlikar, in Evidence for gravitational theorie Proceedings of the International School of Physics “Enrico
Fermi,” Course 20 edited by C. Mdler (Academic, New York, 1962 p. 222.
92\\. Kundt and M. Tfumper, Z. Phys192 419 (1966.
93M. Trimper, Z. Naturforsch. A22a 1347(1967).
94B. G. Schmidt, Z. Naturforsch. R2a 1351(1967).
9B, K. Harrison, Phys. Rev. 0, 2269(1970.
963, M. Bardeen, Astrophys. 162, 71 (1970.
973, Pachner and M. J. Miketinac, Phys. Rev6D1479(1972.
983, Winicour, J. Math. Physl6, 1806(1975.
9E. N. Glass, J. Math. Phy48, 708(1977.
100E N. Glass and D. A. Wilkinson, Gen. Relativ. Gradf.531 (1978.
1015 Krasinski, Acta Cosmologica, 133(1978.
102F Bampi and R. Cianci, Commun. Math. Phy$, 69 (1979.
103G, T, Carlson and J. L. Safko, Ann. Physl.Y.) 128 131(1980.
104p_wiils and N. van den Bergh, Class. Quantum Gfia\899 (1984.
105K . Gadel, in Proceedings of the International Congress of Mathematigiadited by L. M. Gravest al. (Cambridge
University Press, Massachusetts, 19520l. 1, p. 175.
106R. A. Matzner, L. C. Shepley, and J. B. Warren, Ann. PKXsY.) 57, 401 (1970.
107R. A. Matzner, J. Math. Phyd.1, 2432(1970.
108y A. Korotkii and Yu. N. Obukhov, Zh. Eksp. Teor. Fi29, 24 (1991).
109R, A. Matzner, Ann. Phys(N.Y.) 65, 438 (1971).
1OR, A. Matzner and D. M. Chitre, Commun. Math. Phg®, 173(1973.
B. Collins, J. Math. Phy25, 995(1984).
B. Collins, Can. J. Phy$4, 191 (1986.

111C
112C

Downloaded 09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 39, No. 4, April 1998 Andrzej Krasinski 2179

113D, Mason and C. A. Pooe, J. Math. Phg8, 2705(1987.

114y, S. Nilsson anmd C. Uggla, Class. Quantum Grk4.1965(1997.

1153, W. Hawking, Mon. Not. R. Astron. So&42 129 (1969.

18C. B. Collins and S. W. Hawking, Mon. Not. R. Astron. Sd&2, 307 (1973.

117G, F. R. Ellis,Contributions of K. Gbel to relativity and cosmologgprepriny, Cape Town, 1996.
8 Krasinski, Gen. Relativ. Gravit25, 165 (1993.

19, Krasinski and M. Perkowski, Gen. Relativ. Gravit3, 67 (1981).

120K . Dunn, Gen. Relativ. Gravi1, 137 (1989.

121a. Georgiou, Class. Quantum Grald, 167 (1994.

1227 Georgiou, Class. Quantum GralB, 791 (1996.

Downloaded 09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



