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Rotating dust solutions of Einstein’s equations
with 3-dimensional symmetry groups. I.
Two Killing fields spanned on u a and w a
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Bartycka 18, 00 716 Warszawa, Poland
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For a rotating dust with a 3-dimensional symmetry group all possible metric forms
can be classified and, within each class, explicitly written out. This is made possible
by the formalism of Pleban´ski based on the Darboux theorem. In the resulting
coordinates, the Killing vector fields~if any exist! assume a special form. Each
Killing vector field may be either spanned on the fields of velocity and rotation or
linearly independent of them. By considering all such cases one arrives at the
classification. With respect to the structures of the groups, this is just the Bianchi
classification, but with all possible orientations of the orbits taken into account. In
this paper, which is part 1 of a 3-part series, all solutions are considered for which
two Killing fields are spanned on velocity and rotation. The solutions of Lanczos
and Gödel are identified as special cases, and their new invariant definitions are
provided. In addition, a new invariant definition is given of the Ozsvath class III
solution. © 1998 American Institute of Physics.@S0022-2488~97!03112-5#

I. INTRODUCTION AND SUMMARY

The theorem of Darboux presented in Sec. II allows one to introduce invariantly de
coordinates in which the velocity field of a fluid~not assumed to be perfect! acquires a ‘‘canoni-
cal’’ form. In this paper it is further assumed that the fluid moves with zero acceleration
nonzero rotation. These assumptions result in a simplification of the metric tensor and in l
tions imposed on the Killing vectors, if any exist. Within this special class of coordinates
single Killing field may also be reduced to a ‘‘canonical’’ form, a different one in the case w
it is spanned on the vector fields of velocityua and rotationwa, and a different one when it is
linearly independent ofua and wa. This gives rise to a classification of possible symmetries
rotating matter.

When there exist three linearly independent Killing fields, the classification described a
gives rise to a complete classification of all possible metric forms. With respect to the algeb
the symmetry groups, this is just the Bianchi classification, but with all orientations of the o
in the spacetime taken into account.

In every case that emerges, the commutation relations of the algebra have been
resulting in explicit formulae for the Killing fields, and then the Killing equations have b
solved, resulting in the formulae for the metric tensors compatible with the symmetry g
considered. The degree of success in solving the Einstein equations varied very strongly fro
to case. In most cases, no headway was made. In some cases the Einstein equations h
integrated either to an autonomous set of first-order equations or to a single nonlinear diffe
equation of second or third order. In a few cases solutions known earlier were identified
present scheme and new invariant definitions for some of them were provided~those by Lanczos1

and Gödel2 will be mentioned in this paper!. In three cases new solutions were found.
Since the number of cases is rather large, the results will be presented in three pape

present paper deals with the simplest situation when two of the Killing fields are spann
0022-2488/98/39(1)/380/21/$15.00
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velocity and rotation~the case of all three Killing fields being spanned onu andw is trivial—see
Sec. VI!.

The Darboux theorem was first applied as a tool for investigating the equations of motio
the Einstein equations by Pleban´ski.3 He showed that if a perfect fluid is rotating and isentrop
while the particle number is conserved, then a similar consideration to the one presente
applies. The approach of Pleban´ski was used by this author4–8 to find a large collection of sta
tionary, cylindrically symmetric solutions of Einstein’s equations.

For a perfect fluid the assumptions of geodesic motion and nonzero rotation imply th
pressure is constant~see Ref. 9!. Hence, from the point of view of thermodynamics, geodesic
rotating perfect fluids are isentropic and fall within the class considered by Pleban´ski.3 However,
the approach based on the Darboux theorem applies to any timelike congruence that is of cC1

and has zero acceleration and nonzero rotation. In particular, the velocity field of a ro
charged dust with zero Lorentz force, that was considered in several papers, has this prope
papers in which such solutions were discussed will be mentioned at the end of Sec. VIII; th
all within the same class of the classification introduced here.

In Sec. II the Darboux theorem is introduced. In Sec. III, the classification of first-o
differential forms based on the Darboux theorem is applied to geodesic vector fields with ro
When the vector field is the velocity field of a fluid, a class of preferred coordinates results, w
shall be termed ‘‘Pleban´ski coordinates.’’ In Sec. IV, by way of an example, the consideration
Sec. III is applied to the rotating dust solution of Stephani.10 In Sec. V it is shown that each Killing
vector field that might possibly exist in a rotating dust spacetime is determined by two func
of two variables. If the Killing field is not spanned on velocity and rotation, then the Pleba´ski
coordinates may be adapted to it so that it acquires the unique formka5d1

a . The Gödel solution
is used to illustrate the various forms of the Killing fields that may arise.

In Sec. VI, the consideration of Secs. III and V is applied to the situation when there
three Killing vector fields. When all three of them are spanned onua andwa, the result is trivial:
the group becomes two-dimensional, and this case is not considered here. When two of th
spanned onua and wa while the third one is not, two cases arise that correspond to diffe
Bianchi types~II and I! of the groups. These are investigated in Secs. VII and VIII. The solut
of Lanczos1 and of Gödel2 emerge as special cases in both types. The Bianchi type II metric
defined by a single third-order differential equation, the Bianchi type I metrics are determin
a set of autonomous first-order differential equations.

Finally, in Sec. IX, other invariant definitions are given: for the class III solution by Ozsva11

and for the solution of Go¨del.2 The former results from the following assumptions.

~1! The source in the Einstein equations is a geodesic, rotating perfect fluid.
~2! The rotation vector field is covariantly constant.

The Gödel solution, which is a subcase of this, emerges when it is assumed in addition th
shear of the fluid flow is zero.

So far, Bianchi-type solutions of Einstein’s equations with a rotating source have
searched for and found by trial and error~often with nonperfect fluid sources, e.g., with heat-flow!.
The results of the present series of papers show that, in the case of a dust source at le
number of allowed possibilities is limited. It is hoped that the results will direct further rese
toward better-defined targets.

II. THE CLASSIFICATION OF DIFFERENTIAL FORMS OF FIRST ORDER AND THE
DARBOUX THEOREM

The Darboux theorem presented below exploits the simple fact that if a differential formq of
first order is defined on ann-dimensional manifoldMn , then its domain is not necessari
n-dimensional. Two cases are well-known.
J. Math. Phys., Vol. 39, No. 1, January 1998
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~1! If q is a perfect differential so thatq5d f , wheref is a scalar function onMn , then f can be
chosen as one of the coordinates, and the form becomes one-dimensional.

~2! If q has an integrating factor so thatq5gd f, wheref andg are independent scalar function
on Mn , then f andg can be chosen as two of the coordinates, and then the domain ofq is the
two-dimensional (f ,g)-surface.

The Darboux theorem summarizes all the cases that can occur. It is based on the fol
classification~see also Ref. 3!

Definition: Let q be a differential form of first order.
If Q2l :5dq∧•••∧dq ~multiplied l times! Þ0, butq∧Q2l50, thenq is said to be of class 2l .
If Q2l 11 :5q∧Q2lÞ0, butdQ2l 11[dq∧Q2l50, thenq is said to be of class (2l 11). h

Then the following holds.
The theorem of Darboux: The formq is of class 2l if and only if there exists a set of 2l

independent functions (j1 ,...,j l ,h1 ,...,h l) such that

q5h1dj11h2dj21•••1h ldj l . ~2.1!

The formq is of class (2l 11) if and only if there exists a set of (2l 11) independent functions
(t,j1 ,...,j l ,h1 ,...,h l) such that

q5dt1h1dj11h2dj21•••1h ldj l . ~2.2!

A proof of this theorem can be found in Ref. 12.
Evidently, the class ofq cannot be larger than the dimension of the manifold on whichq is

defined. Hence, the Darboux theorem implies that in a four-dimensional spacetimeV4 any differ-
ential form of first order can be represented as

q5sdt1hdj, ~2.3!

wheres, t, h andj are scalar functions onV4 .
Any vector fieldua on V4 defines the following differential form:

qu :5uadxa. ~2.4!

According to~2.3!, in the most general case there exist scalar functionss, t, h andj such that

ua5st ,a1hj ,a . ~2.5!

Note that the functions in~2.5! are not uniquely defined. Since we shall not use~2.5! in the most
general case, we shall determine the nonuniqueness only in the subcase that is of direct in
us ~see Sec. III!.

For the most general case of~2.5!, the four functions are independent in the sense that
Jacobian,

]~s,t,h,j!

]~x0,x1,x2,x3!
Þ0. ~2.6!

Hence, they can be chosen as coordinates in the spacetime. In Refs. 4 and 7 it was show
ua is the velocity field of an isentropic perfect fluid in which the particle number is conser
thens51/H, whereH is the enthalpy per one particle of the fluid, and further limitations onua

follow from the particle number conservation. No other applications of~2.5! in the general case
are known to this author.
J. Math. Phys., Vol. 39, No. 1, January 1998
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III. GEODESICALLY MOVING FLUIDS

To any timelike vector fieldua normalized to unity~so thatuaua51! the formula from Refs.
13 and 14 may be applied:

ua;b5u̇aub1sab1vab1 1
3 uhab , ~3.1!

which gives rise to the well-known definitions of accelerationu̇a, expansionu, shearsab and
rotationvab . In the signature~1222! used here, the projection tensorhab is

hab5gab2uaub . ~3.2!

The following properties ofu̇a, sab andvab will be useful in further considerations:

u̇aua50, sabub5vabub50. ~3.3!

We shall assume from now on thatua is the velocity field of a fluid and thatu̇a50, i.e., that the
particles of the fluid move on geodesics. Then, from~2.5! we have

vab5 l
2 ~ua,b2ub,a!5 1

2 ~s ,bt ,a2s ,at ,b1h ,bj ,a2h ,aj ,b!, ~3.4!

and from~3.3! we have

~ubs ,b!t ,a2~ubt ,b!s ,a1~ubh ,b!j ,a2~ubj ,b!h ,a50. ~3.5!

There are two possibilities now.
I. At least one of the four scalar products in~3.5! is nonzero. In this case~3.5! implies that at

most three of the functions~s,t,h,j! are independent, and so the form~2.4! will not be of class 4.
II. All the four scalar products are zero. However, this means that the gradients of~s,t,j,h!

are at every point confined to the 3-space element orthogonal toua , i.e., that there is a functiona
relation among these four functions. Again, the form~2.4! cannot be of class 4.

Hence, for a geodesically moving fluid the form~2.4! is of class at most 3, i.e., at most
independent functionst, h, j exist such that

ua5t ,a1hj ,a . ~3.6!

From here on, the reasoning used in Refs. 3 and 4 applies almost unchanged. With~3.6! we have
in ~3.4!,

vab5 1
2 ~h ,bj ,a2h ,aj ,b!, ~3.7!

and in ~3.5!,

~ubh ,b!j ,a2~ubj ,b!h ,a50. ~3.8!

There are again two possibilities.
I. Either (ubh ,b) and (ubj ,b) do not vanish simultaneously, and then~3.8! implies thath and

j are functionally related, in which case~3.6! implies thatua is a gradient of a function, and s
vab[0.

II. Or j andh are not functionally related, in which case
ubj,b5ubh,b50, ~3.9!

and vabÞ0. We shall be interested only in the second case. The functions$t,j,h% in ~3.6! are
determined up to the following transformations:
J. Math. Phys., Vol. 39, No. 1, January 1998
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j5F~j8,h8!, h5G~j8,h8!, t5t82S~j8,h8!, ~3.10!
where the functionsF andG must obey the equation

F,j8G,h82F,h8G,j851, ~3.11!
and thenS is determined by

S,j85GF,j82h8, S,h85GF,h8 . ~3.12!

Equation~3.11! is the integrability condition of Eqs.~3.12! and it ensures that the Jacobian of t
transformation~3.10! equals 1. It follows that one of the functions$F,G% can be chosen arbi
trarily, the other one is then determined by~3.11! and S is fixed up to an additive constant b
~3.12!. The inverse transformation to~3.10! is of exactly the same form, with the correspondingF,
G andS obeying~3.11! and ~3.12!.

Let us now make the additional assumption that the number of particles of the flu
conserved, i.e.,

~A2gnua! ,a50, ~3.13!

whereg is the determinant of the metric tensor andn is the particle number density. This equatio
is a necessary and sufficient condition for the existence of a functionz such that

A2gnua5eabgdj ,bh ,gz ,d . ~3.14!

Note that~3.6! and ~3.9! imply that

uat ,a51, ~3.15!

and then Eq.~3.14! implies that

eabgdt ,aj ,bh ,gz ,d[
]~t,h,j,z!

]~x0,x1,x2,x3!
5A2gnÞ0. ~3.16!

Equation~3.14! implies also that

uaz ,a50. ~3.17!

The functionz is determined by~3.14! up to the transformations

z5z81T~j8,h8!, ~3.18!

whereT is an arbitrary function. Equation~3.16! certifies that$t,j,h,z% can be used as coordinate
in the spacetime. If they are chosen as the$x0,x1,x2,x3%5$t,x,y,z% coordinates, respectively, the
Eq. ~3.6! implies

u051, u15y, u25u350. ~3.19!

We will use these coordinates throughout the remaining part of the paper and call them ‘‘P´-
ski coordinates.’’ Equation~3.16! implies now that

g52n22, ~3.20!

and Eq.~3.14! implies

ua5d0
a , ~3.21!

i.e., the Pleban´ski coordinates are comoving. The rotation vector defined by
J. Math. Phys., Vol. 39, No. 1, January 1998
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wa52~1/A2g!eabgdubug,d , ~3.22!

assumes the form

wa5nd3
a . ~3.23!

Equations~3.19! and ~3.21! imply that

g0051, g015y, g025g0350, ~3.24!

and also that the only nonvanishing components of the rotation tensor are

v1252v2151/2. ~3.25!

Note that, in contrast to Refs. 3 and 4 where barotropic perfect fluids were considered, we ha
assumed anything about the form of the energy–momentum tensor so far.

If we now assume that the fluid is perfect, then we conclude from the equations of m
Tab

;b50 that eitherv50 or p5const~see also Ref. 9!. This means that a geodesic perfect flu
can be rotating only if it is in fact dust; the constantp can be reinterpreted as the cosmologic
constant. In this case, the energy–density obeys the conservation equation (A2geua) ,a50 and
Eq. ~3.13! need not be assumed separately.@For dust, results closely analogous to~3.19!–~3.25!
were obtained by Ellis,15 by adapting an orthonormal vector basis and a coordinate systemua

andwa. Of the exact solutions with nonzero rotation found by Ellis most, but not all, do be
to the collection considered in this series of papers. They will be described in paper 2.#

IV. EXAMPLE: THE STEPHANI SOLUTION 10

The Stephani metric withp5constÞ0 @Eq. ~4.22! in Ref. 10# is not in fact a perfect fluid
solution, as was found out while trying to construct the Pleban´ski coordinates for it.~The error is
deeply hidden and so far could not be corrected. I am grateful to H. Stephani for cooperat
this point.! Therefore, we shall consider only the dust solution, Eq.~4.8! in Ref. 10. In the original
notation except for the signature, the solution is

ds25habdxadxb2N2~dx1!2, ~4.1!

wherea,b50,2,3,hab5diag(1,21,21) and

N:5 1
2 M ln T1gaxa1h,

T2:5hab~xa2 f a!~xb2 f b!, ~4.2!

the functionsM (x1), f a(x1), ga(x1), and h(x1) all being arbitrary. The velocity field and th
energy–density of the dust are, respectively,

ua5T,a , u150, ~4.3!

ke5M /~NT2!. ~4.4!

The formula for the velocity field can be written as

ua5T,a2T,1x
1

,a, ~4.5!

which immediately suggests the choice of the Pleban´ski coordinates of Sec. III:

t5T, j5x1, h52T,1 . ~4.6!
J. Math. Phys., Vol. 39, No. 1, January 1998

09 May 2008 to 193.0.83.155. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



n

rs

ther

hus,
xplicit

e
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Equation~3.14! definingz is here

MT22habT,b52ea1cdT,1cz ,d . ~4.7!

The following identity is useful in calculations:

T,0
22T,2

22T,3
251. ~4.8!

Using this, one can verify that only two of the three equations~4.7! are independent. The solutio
of ~4.7! is

z5M @U1l~T,1!#, ~4.9!

wherel(T,1) is an arbitrary function, andU is defined by

U5E @ f 3
,1~12X2!2 f 0

,1Y~X!1 f 2
,1XY~X!#21dX, ~4.10!

the functionY(X) being determined by

T,1~12X22Y2!1/252 f 0
,11 f 2

,1X1 f 3
,1Y. ~4.11!

In the integral~4.10!, the coordinatex1 and the quantityT,1 are to be treated as paramete
independent ofX. After the integral is calculated, one should substitute forT,1 from ~4.11!, while
X andY are to be replaced by

X5~x22 f 2!/~x02 f 0!, Y5~x32 f 3!/~x02 f 0!. ~4.12!

The integral in~4.10! is expressible in terms of elementary functions, but the result is ra
complicated.

As can be seen, the solution~4.1!–~4.4! becomes very complicated in the Pleban´ski coordi-
nates and it is unlikely that it could be found in such a form from the Einstein equations. T
although the coordinates are invariantly defined, they are not necessarily convenient for e
calculations.

A collection of other solutions represented in the Pleban´ski coordinates can be found in th
extended version of Ref. 6.

V. THE KILLING VECTOR FIELDS COMPATIBLE WITH ROTATION

We shall assume that the symmetries of the spacetime~if any exist! are inherited by the
source, i.e., that if the Lie derivative of the metric tensorgab along the vector fieldka is zero,
Lkgab50, then the velocity field and the particle number density are also invariant:Lku

a50
5Lkn. ~For a pure perfect fluid source the inheritance is guaranteed.! It follows that the rotation
tensor must also be invariant,Lkvab50.

In consequence of~3.21! the equationLku
a[kmua

,m2umka
,m50 implies that

ka
,t50. ~5.1!

In consequence of~3.23! and of the assumptionLkn[kan,a50, the equationLkw
a50 implies

ka,z50. ~5.2!

The equationLkvab50, in consequence of~3.25! implies

k1
,x1k2

,y50, ~5.3!
J. Math. Phys., Vol. 39, No. 1, January 1998
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and the equationLkua50, in consequence of~3.19! implies

k0
,x52k22yk1

,x , k0
,y52yk1

,y . ~5.4!

~The equationsLkua50 andLku
a50 provide independent pieces of information because

equationsLkgab50 have not been used so far.! Equation~5.3! is the integrability condition of
Eqs.~5.4!. The general solution of Eqs.~5.1!–~5.4! is

k05C1f2yf ,y , k15f ,y , k252f ,x , k35l, ~5.5!

wheref(x,y) andl(x,y) are arbitrary functions andC is an arbitrary constant. Symmetries ne
not be present, in fact the Stephani10 solution considered in Sec. IV is an example of a rotat
dust solution with no symmetries. In this casef5l5C50. However, if any symmetries ar
present, then the Killing vector fields must have the form~5.5!.

Suppose thatf is not a constant, i.e., that a Killing vector fieldka exists that has a nonzer
component in thex- or y-direction ~in invariant terms this means that the vector fieldka is not
spanned on the vector fields of velocity,ua, and rotation,wa!. We can then, within the Pleban´ski

class defined in Sec. III, adapt the coordinates toka in such a way thatka85d1
a8 , i.e., so that the

metric becomes independent ofx8. From~3.10!–~3.12! and~3.18! the transformation functions ar

t85t2S~x,y!, x85F~x,y!, y85G~x,y!, z85z1T~x,y!, ~5.6!

whereT is arbitrary, whileF, G, andS obey

F ,xG,y2F ,yG,x51, S,x5GF,x2y, S,y5GF,y . ~5.7!

In order to lead toka85d1
a8 the functionsF, G, andT must obey in addition

2~f1C!1GF,xf ,y2GF,yf ,x50,

F ,xf ,y2F ,yf ,x51, G,xf ,y2G,yf ,x50, ~5.8!

T,xf ,y2T,yf ,x52l. ~5.9!

The unique solution of Eqs.~5.8! is G5f1C, which obeys~5.7! as well@in virtue of the second
of ~5.8!#. Equation~5.9! simply defines the accompanyingT which is seen to exist always. Sinc
f was assumed nonconstant, the transformation is nonsingular~in fact its Jacobian equals just 1!,
and results inf5y in the new coordinates. As already noticed, the metric becomes indepe
of x after the transformation. This property is preserved by the transformations~5.6!, but with F,
G, S, andT restricted now by

G5y, F5x1H~y!, T5T~y!, S5E yH,ydy1A, ~5.10!

whereA is an arbitrary constant andH, T are arbitrary functions. The functions given by~5.10!

fulfill ~5.7! identically. Note that the transformation toka85d1
a8 exists irrespectively of any

possible functional relation amongl, f, andC in ~5.5!; the only case when it fails isf5const.
A solution of the Einstein equations may have more than one Killing vector field of the

~5.5!. In that case, the transformation~5.8!–~5.9! changes only one of them to the preferred for
the others will preserve their more complicated appearance. An example of this situation
Gödel solution2 transformed to the Pleban´ski coordinates; see Refs. 4 and 5:

ds25~dt1ydx!22 1
2 y2dx22~key2!21dy222ke21dz2, ~5.11!
J. Math. Phys., Vol. 39, No. 1, January 1998
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wherek58pG/c4 ande is the energy–density related to the cosmological constant by

L5 1
2 ke. ~5.12!

~Note that if the cosmological constant is reinterpreted as pressure, then the resulting perfe
has the equation of statee5p. Hence, the Go¨del solution may have been the first examp
considered in the literature of a ‘‘stiff perfect fluid,’’ now familiar from the studies of solutio
generating techniques; see, e.g., Verdaguer.16! The symmetry group of this solution is 5
dimensional, the independent 1-parametric subgroups were given in Ref. 4. Those connect
nonconstantf in ~5.5! are the following three:

x5x81s1 , ~5.13!

x5e2s2x8, y5es2y8, ~5.14!

t5t81~2&/K !arctan@&s3~Ky8!21~12s3x8!21#,

x5@K2x8y82~12s3x8!22s3#/@2s3
21K2y82~12s3x8!2#, ~5.15!

y5~12s3x8!2y812s3
2/~K2y8!,

wheres1 , s2, ands3 are the group parameters andK:5(ke)1/2. The Killing vectors are, respec
tively, k(1)

a 5d1
a @corresponding toC5l50, f5y, the one constructed in~5.8!–~5.9!#, k(2)

a

52xd1
a1yd2

a ~corresponding tof52xy! and k(3)
a 54(K2y)21d0

a1@x222/(Ky)2#d1
a22xyd2

a

@corresponding tof5x2y12/(K2y)#.

VI. THE ALGEBRA OF THREE KILLING FIELDS

Suppose that three Killing vector fields exist and all three are spanned onua andwa, so that
f5const in~5.5! for each of them, i.e.,

k~ i !
a 5Cid0

a1l i~x,y!d3
a , i 51,2,3. ~6.1!

From the Killing equations one can then easily conclude that constantsa1 , a2, anda3 exist such
that a1k(1)1a2k(2)1a3k(3)50, i.e., the symmetry group is in fact two-dimensional. Hence,
three-dimensional symmetry group with the generators~6.1! exists; for a three-dimensional grou
at least one of the generators must be linearly independent ofua and wa at every point of the
spacetime region under consideration.@The algebra~6.1! corresponds to a three-dimensional gro
that has two-dimensional orbits, and it turns out that in the case considered the group ha
two-dimensional as well. As will follow from the whole of the present work, three-dimensio
symmetry groups with two-dimensional orbits just do not exist for rotating dust.#

In Secs. VII and VIII we shall consider the situation when exactly one generator,k(1)
a , is

everywhere linearly independent ofua andwa, while the other two,k(2)
a andk(3)

a , are of the form
~6.1!. In agreement with the result of Sec. V, the Pleban´ski coordinates can be adapted tok(1)

a so
that

k~1!
a 5d1

a , ~6.2!

while

k~2!
a 5C2d0

a1l2~x,y!d3
a , k~3!

a 5C3d0
a1l3~x,y!d3

a , ~6.3!
J. Math. Phys., Vol. 39, No. 1, January 1998
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and the coordinate transformations preserving~6.2! and ~6.3! are ~5.10!. Note thatC2 and C3

cannot vanish simultaneously because otherwise the Killing equations immediately impl
either k(3)

a 5constk(2)
a ~in which case the symmetry group is two-dimensional! or the metric is

singular. However, with no loss of generality we can assume that

C2Þ05C3 , ~6.4!

because the Killing vector fields are determined up to linear combinations among them. He
initially C2Þ0ÞC3 , then we takek(3)8a 5k(3)

a 2(C3 /C2)k(2)
a instead ofk(3)

a as the basis generato
If initially C250ÞC3 , then we exchange the labels ‘‘2’’ and ‘‘3.’’

We shall keep the choice~6.4! throughout Secs. VII and VIII.

VII. THE GENERATORS, THE KILLING EQUATIONS AND THE EINSTEIN EQUATIONS
FOR A BIANCHI TYPE II ALGEBRA

All the cases that arise follow as limits at different stages of calculation from the generic
l2Þ0, and we shall consider it first. The commutators of the Killing vectors are

@k~1! ,k~2!#
a5~l2,x /l3!k~3!

a , @k~2! ,k~3!#
a50,

~7.1!

@k~1! ,k~3!#
a5~l3,x /l3!k~3!

a .

The Killing vector fields will thus form a Lie algebra when

l2,x5bl3 , l3,x5cl3 , ~7.2!

whereb andc are arbitrary constants. The casecÞ0 has to be considered separately. Then

l35b~y!ecx, l25~b/c!b~y!ecx1a~y!, ~7.3!

where a(y) and b(y) are arbitrary functions. However, in this case we can takek(2)8a 5k(2)
a

2(b/c)k(3)
a as the new basis generator instead ofk(2)

a , and the result is equivalent to assumin
b50. Hence, withcÞ0, we can takeb50 with no loss of generality.

The further procedure consists of the following steps.

~1! Adapt the coordinates to the Killing fields to make them as simple as possible.
~2! Solve the Killing equations for the components of the metric tensor.
~3! Simplify the metric as far as possible by coordinate transformations.
~4! Solve the Einstein equations.

The coordinate transformations in steps 1 and 3 in general lead out of the Pleban´ski class
defined in Sec. III.

This procedure will be presented in some detail below. In the present case the result fro
Einstein equations is that eitherc50 or there is no rotation. Since we are interested in rota
solutions only, the casecÞ05b need not be followed further. We thus assume

c50. ~7.4!

Then

l35b~y!, l25bb~y!x1a~y!. ~7.5!

The algebra of the Killing vector fields is of Bianchi type II whenbÞ0 and of Bianchi type I
whenb50.

In order to simplify the Killing vectors we now transform the coordinates as follows:
J. Math. Phys., Vol. 39, No. 1, January 1998
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~ t8,x8,y8!5~ t,x,y!, z852~a/C2!t1z/b. ~7.6!

The transformation is not of the form~5.10!, so the new coordinates do not belong to the Pleban´ski
class, and the forms of velocity, rotation, and the metric will no longer agree with~3.19!–~3.25!.
The Killing vector fields in the new coordinates become

k~1!
a 5d1

a , k~2!
a 5d0

a1bxd3
a , k~3!

a 5d3
a , ~7.7!

while the velocity and rotation fields become

ua5d0
a2~a/C2!d3

a , wa5~n/b!d3
a . ~7.8!

The transformed metric is independent ofx andz, while the Killing equations fork(2)
a imply

g00511~a/C2!2h33~y!, g015y1~a/C2!g13,

g0250, g035~a/C2!h33~y!,

g115h33~y!~bt!222h13~y!bt1h11~y!,

g1252h23~y!bt1h12~y!, g1352h33~y!bt1h13~y!,
~7.9!

g225h22~y!, g235h23~y!, g335h33~y!,

wherehi j (y), i , j 51,2,3, are arbitrary functions ofy, to be found from the Einstein equations.
The orbits of the symmetry group are now the hypersurfacesy5const. In order to follow the

standard technique of the Bianchi-type spaces we should now carry out a coordinate trans
tion that preserves~7.7! and makes they-coordinate curves orthogonal to the group orbits, so t
g028 5g128 5g238 50 after the transformation. This step is not in fact necessary for solving
Einstein equations~in general it only reshuffles the unknown functions without eliminating any
them!, but in the case under consideration it leads to a simplification. The transformation is

t5t81 f 0~y8!, x5x81 f 1~y8!, y5 f 2~y8!,
~7.10!

z5z81b f1~y8!t81 f 3~y8!,

where f a(y8) must obey

f 0,y852 f 2f 1,y81~a/C2!h23f 2,y8 ,

~2 f 2
21h112h13

2 /h33! f 1,y81~h122h13h23/h331a f 2h23/C2! f 2,y850,
~7.11!

f 3,y852~a/C2! f 0,y81~b f02h13/h33! f 1,y82~h23/h33! f 2,y8 .

The equations are well-defined because of the following.
I. h33Þ0; otherwise the rotation vector would be null, which is a physical impossibility.
II. 2 f 2

21h112h13
2 /h33Þ0; otherwise the determinant of the metric tensor becomes posi

i.e., the metric acquires an unphysical signature.

Equations~7.11! are to be understood as follows. The functionf 2(y8) can be chosen arbi
trarily, therefore we choose it so thatg228 521 after the transformation. Withf 2(y8) thus chosen,
f 1(y8) is found from the second of~7.11!, thenf 0(y8) is found from the first of~7.11!, and finally
f 3(y8) is found from the third of~7.11!.

After the transformation the metric becomes~primes dropped!
J. Math. Phys., Vol. 39, No. 1, January 1998
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g00511~a/C2 1b f1!2h33,

g015Y~y!1~a/C21b f1!~2h33bt1h132b f0h33!,

g025g125g2350,

g035~a/C21b f1!h33,

g115h33b
2~ t1 f 0!222h13b~ t1 f 0!1h11,

g1352h33b~ t1 f 0!1h13,
~7.12!

g22521, g335h33~y!,

wherehi j (y), i , j 51,2,3, f 0(y), f 1(y), Y(y)5 f 2(y) anda(y) are functions to be found from th
Einstein equations, andb andC2 are arbitrary constants,C2Þ0.

For convenience in calculations we introduce the new functionsG(y), A(y), k13(y), and
F(y) by

g3352G2~y!, a/C21b f15A~y!, h1352G2~k131b f0!,
~7.13!

h115Y22F22k13
2 G21b2G2f 0

222b f0k13G
2.

The velocity field in the coordinates of~7.12!–~7.13! is

ua5d0
a2Ad3

a . ~7.14!

Now the metric form is:

ds25~dt1Ydx!22~Fdx!22dy22G2@Adt2~bt2k13!dx1dz#2. ~7.15!

The components of the Einstein tensor will be referred to the orthonormal tetrad of formei

5ea
i dxa, i 50,1,2,3, uniquely implied by~7.15!. Note thate05uadxa. Hence, the Einstein equa

tions are

G005ke,
~7.16!

G115G225G335L, Gi j 50, when iÞ j ,

wheree is the energy–density andL is the cosmological constant.
The equationG1250 implies thatbA,y50. The caseb50 will be considered separatel

below, so we take here

A5const. ~7.17!

ThenG0250 implies

k135const. ~7.18!

We can then carry out the coordinate transformation:

z5z82At2k13x, ~ t,x,y!5~ t8,x8,y8!, ~7.19!

which has the same result as if
J. Math. Phys., Vol. 39, No. 1, January 1998
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A5k1350, ~7.20!

and we shall assume this from now on. The metric is still independent ofx and of z, while A
5k1350 implies g1350, i.e., the Killing vectorsk(1)

a 5d1
a and k(3)

a 5d3
a are orthogonal to each

other. The equationG0150 then has the integral

Y,yG/F5B5const, ~7.21!

and we can assumeBÞ0 because rotation would be zero withB505Y,y .
At this point, only the diagonal components of the Einstein tensor are still nonzero, of w

G00 just defines the energy–density, and the other three are functionally dependent~i.e., if G11

5L5G22 are fulfilled, then so isG335L!. They determineF(y) andG(y).
It is convenient to introduceY(y) as the new variable. The equationG111G2252L can then

be written, with the help of~7.21!, as

~F2G,Y /G! ,Y52LG2/B22 1
2 , ~7.22!

and so

F25S C2
1

2
Y12

L

B2 E G2dYDG/G,Y , ~7.23!

whereC is a new arbitrary constant~we can assumeG,YÞ0 becauseG,Y50 impliesb50 from
G112G2250, andb50 will be considered separately!. Using ~7.23! in G225L we obtain the
following integro-differential equation that determinesG:

2
1

4
b2GG,Y1

1

2
~B/G!2S C2

1

2
Y12

L

B2 E G2dYD 2

~G,Y /G2G,YY/G,Y!50. ~7.24!

In the special caseL50 this becomes an ordinary second-order differential equation.
easy to get rid of the integral by transforming~7.24! appropriately and differentiating the result b
Y @in this way a third-order differential equation forG(Y) is obtained# or by introducing the new
variableu(Y) by dY/du51/G2 @this results in a second-order equation forG(u)#. However, no
progress toward solving~7.24! results in either case.

With the help of the equationsG115L5G22 the formula for energy–density may be simp
fied to

ke5~B/G!22~bG!222L. ~7.25!

Note that the solutions considered here have a meaningful limitb50.
WhenG5const, Eqs.~7.23! and~7.24! no longer apply and one has to go back to the Einst

equations. They imply

G25B2/~4L! ~7.26!

~i.e., necessarilyL.0! and

F25 1
2 Y21DY1E, ~7.27!

whereD andE are constants. IfY is chosen as the new coordinate in place ofy, then from~7.21!
and ~7.26! the metric componentgYY is

gYY52~G/BF!2521/~4LF2!, ~7.28!
J. Math. Phys., Vol. 39, No. 1, January 1998
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393Andrzej Krasiński: Rotating dust with G3. I

Downloaded 
and the resulting metric is the Go¨del solution~see Ref. 4!. Note thatG5const is equivalent to
e5const; see Eq.~7.25!.

WhenG,YÞ05b, Eq. ~7.24! implies G5eDY1E, and this leads to the Lanczos solution~see
Ref. 4!.

These derivations of the Lanczos and Go¨del solutions lead to their invariant definitions th
are based on weaker assumptions than the definitions known so far. The definitions are:

~1! The source in the Einstein equations is a rotating dust.
~2! The spacetime has a 3-dimensional symmetry group.
~3! Two of the symmetry generators are spanned on the vector fields of velocityua and rotation

wa, while the third one is linearly independent ofua andwa at every point.
~4! The generators form a Bianchi type II algebra.
~5! In the solutions of the Einstein equations, the Bianchi type I limit is taken of the Bianchi

II symmetry.
~6! The Gödel solution results when the matter–density is constant; the Lanczos solution r

when the density is not constant.

The generalization with respect to the earlier definition is contained in point 3: in prev
derivations the two generators were assumed to be collinear withua andwa, respectively, from
the beginning.

VIII. THE GENERATORS, THE KILLING EQUATIONS AND THE EINSTEIN EQUATIONS
FOR A BIANCHI TYPE I ALGEBRA

We shall consider the caseb5c50 in ~7.1!–~7.2!. The reasoning up to Eq.~7.16! applies also
here, but~7.17! no longer follows. Instead, the equationG1350 can be integrated with the resu

k13,y5BF/G32YA,y , ~8.1!

whereB is an arbitrary constant; the equationG0150 can be integrated to

Y,y5~C2BA!F/G, ~8.2!

whereC is an arbitrary constant; and the equationG0350 can be integrated to

A,y5~BY2D !/~FG3!, ~8.3!

whereD is one more arbitrary constant.
At this point, only the diagonal components of the Einstein tensor survive, andG00

5ke2L just defines the energy–density. The equationsG115L5G225G33 can be written as

2
B

4FG
k13,y1

C2BA

4FG
Y,y1G,yy /G2

2BY2D

4FG
A,y5L, ~8.4!

2
B

4FG
k13,y1

C2BA

4FG
Y,y1

F ,yG,y

FG
2

D

4FG
A,y5L, ~8.5!

3B

4FG
k13,y2

C2BA

4FG
Y,y1F ,yy /F1

3D

4FG
A,y5L. ~8.6!

@In order to arrive at this form, one has to calculateB from ~8.1! and replace one factorB in B2

by the resulting expression; then replace oneY,y in Y,y
2 from ~8.2! and replace oneA,y in A,y

2 from
J. Math. Phys., Vol. 39, No. 1, January 1998
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~8.3!.# The set~8.4!–~8.6! can be integrated to a first-order set. Subtracting~8.6! from ~8.4! and
multiplying the result byFG we obtain an equation that is easily integrated to

FG,y2GF,y2Bk132
1
2 BAY1 1

2 CY2 1
2 DA5E5const. ~8.7!

Now adding ~8.3! and ~8.4!, and multiplying the result byFG we obtain another integrabl
equation whose integral can be written in the form

FG,y5
1

2
Bk131

1

2
BAY2

1

2
CY12LE FGdy1H0 , ~8.8!

where H0 is an arbitrary constant. The integral can be calculated if the new variableu(y) is
introduced by

dy/du51/~FG!. ~8.9!

From ~8.7! and ~8.8! it follows that

GF,y52
1

2
Bk132

1

2
DA2E12LE FGdy1H0 . ~8.10!

In the set~8.4!–~8.6! there remains one equation that has still not been used. However, a
point it merely introduces a relation between the arbitrary constants, i.e., implicitly definesH0 in
terms of the other constants. This is seen as follows: substitute fork13,y , Y,y , F ,y , G,y , andA,y

from ~8.1!–~8.3!, ~8.8!, and ~8.10! in ~8.5!, thereby obtaining an algebraic equation~i.e., one
without derivatives!. Differentiate it byy and eliminate the derivatives in the same way aga
What results is an identity 050. Hence, the left-hand side of~8.5! is identically constant in virtue
of the other equations.

In terms of the variableu from ~8.9!, Eqs.~8.1!–~8.3!, ~8.8!, and~8.10! form an autonomous
set of first-order equations that can be investigated further by qualitative methods~see, e.g., Ref.
17!. This is left as a subject for a separate study.

In analogy with the Bianchi type I spatially homogeneous~nonrotating! dust solutions~see
Ref. 18! one might expect further progress by adapting the coordinates suitably~in the case
considered in Ref. 18, the metric can be diagonalized!. However, this author was not able t
achieve any such progress.

The functionsA(y) and k13(y) have invariant meaning: they are proportional to the sca
products of the Killing vectors@see Eqs.~7.7! and ~7.15! with b50#:

A52gabk~2!
a k~3!

b /G2, k1352gabk~1!
a k~3!

b /G2 ~8.11!

~note thatG252gabk(3)
a k(3)

b , i.e., it is a scalar, too!. Hence,A50 and k1350 are invariant
properties. Note thatA50 implies, through~8.3!, that eitherY5const~in which case there is no
rotation! or B5D50. In the latter case,k135const and the coordinate transformationz5z8
2k13x leads tok1350 in the new coordinates. WithA5k1350, the Lanczos and Go¨del models
result from the Einstein equations as the only solutions. Hence, one more invariant definit
these models follows, similar to the six-point definition at the end of Sec. VII. Points 1, 2, 3
6 remain unchanged, while points 4 and 5 are replaced by the following.

~4! The generators form a Bianchi type I algebra.
~5! From the two generators spanned onua and wa, two linear combinations can be con

structed that are orthogonal to each other.
Point 58 is equivalent to the existence of coordinates in whichA50.
J. Math. Phys., Vol. 39, No. 1, January 1998
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Note that the Bianchi type I models considered in this section are more general tha
Bianchi type I limit of the models from Sec. VII; those from Sec. VII hadA5k1350 in virtue of
Einstein’s equations.

The assumptionk1350 ~i.e.,gabk(1)
a k(3)

b 50! alone does not lead to any immediate progress
solving the Einstein equations.

The Lanczos solution was originally derived in Ref. 1~an English translation, Ref. 19, is now
available!, and rediscovered in Ref. 20. Its limit of zero cosmological constant was rediscove
Ref. 21 as the cylindrically symmetric subcase of a family of stationary axially symmetric
tions. Geometrical and physical properties of the Lanczos solution were discussed in Ref.
in a more modern language, also in Ref. 22~the latter only for the caseL50!.

Coordinate transforms of the Go¨del solution were published as new solutions in Refs. 23
24 ~concerning Ref. 23 see also Ref. 25!.

A metric form that is a modest generalization of the Go¨del solution~it has two unknown

functions of one variable in place of Go¨del’s ex1
and e2x1

! came to be known as ‘‘Go¨del-type
metric’’ and became the subject of a rather large number of papers; the activity seems to
started with Ref. 26, one of the most recent appearances of it is Ref. 27. However, it was p
already in Ref. 28 that the only perfect fluid solution with this metric is the Go¨del solution itself;
indeed, all other ‘‘Go¨del-type solutions’’ have various nonperfect fluid sources, and therefore
do not show up in the scheme considered here.

As mentioned in Sec. I, several authors considered rotating charged dust solutions un
additional assumption that the electromagnetic fieldFmn exerts no force on the charged du
particles, i.e., thatFmnun50. These solutions were all derived with another, rather natural assu
tion: that all charges are attached to dust particles so that no currents are present apart from
created by the dust flow. Those solutions are found in Refs. 29–36. The one in Ref. 29 ha
two-dimensional symmetry, so it could not come up in this investigation. The remaining one
stationary and cylindrically symmetric and would have shown up here, had we allowed ch
and electromagnetic fields in the source. They have the following properties.

The one from Ref. 30 becomes a vacuum solution in the limitFmn50.
The one from Ref. 31 does not allow this limit at all.
The limit Fmn50 of the solution from Ref. 32 is the Minkowski metric.
The Som–Raychaudhuri solution33 reproduces theL50 subcase of the Lanczos solutio

whenFmn50.
The first of the six solutions by Banerjee and Banerji34 reduces to the Go¨del solution when

Fmn50. The other five behave as follows: 2 and 6 become vacuum solutions whenFmn50, no. 5
becomes the Minkowski spacetime, no. 3 does not allow this limit at all, and no. 4 has
two-dimensional symmetry group.

Both solutions by Mitskie´vič and Tsalakou35 are generalizations of the Go¨del solution; the
first one of them is in addition a generalization of the full (LÞ0) Lanczos solution~In fact, the
second solution has a nonzero pressure gradient that remains nonzero even after the limFmn

50 is taken. Another limiting transition, given in the paper, reduces the solution to Go¨del’s.! In
the limit L50, the first solution reduces to the one by Som and Raychaudhuri.33

The two solutions from Ref. 36 are coordinate transforms of those from Ref. 35.
Three other generalizations of the Go¨del solution exist in the literature that have zero acc

eration. Two were provided by Raval and Vaidya;37 the first of them is stationary, the secon
expanding, both have anisotropic pressure. The third is the solution by Rebouc¸as38 in which the
source is a free electromagnetic field~see also Ref. 39!. The metric of the Rebouc¸as solution is the
same as that in the first Banerjee–Banerji solution. This coincidence was explained by
chaudhuri and Guha Thakurta:40 The two electromagnetic fields~one generated by a current, th
other source-free! are related by a point-dependent duality rotation.
J. Math. Phys., Vol. 39, No. 1, January 1998
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IX. ANOTHER INVARIANT DEFINITION OF THE GÖ DEL AND OZSVATH CLASS III
SOLUTIONS

Assumptions about invariant properties of the velocity field of matter usually lead to pro
in solving the Einstein equations; the most impressive example were the shear-free normal
of Barnes,41 where a large class of solutions resulted from the assumptions of zero shear an
rotation in a perfect fluid source. Inspired by this, one can try to make assumptions abou
vector fields characterizing fluid sources, e.g., the rotation. Indeed, it turns out that the assu

wa;b50, ~9.1!

i.e., the rotation field being covariantly constant, together with the assumption of geodesic m
of a perfect fluid source, leads uniquely to two solutions of Einstein’s equations. However, b
them were obtained before by other methods. One is the Ozsvath class III metric,11 originally
identified as one of the solutions that are homogeneous in four dimensions; the other is the¨del
solution2 which is the shear-free limit of the Ozsvath solution.

From ~9.1! and from the Ricci identity 2wa;@bg#5Rr
abgwr one obtains for the Ricci tensor

Rr
gwr50, ~9.2!

and then from the Einstein equations for a perfect fluid,

Gab1Lgab5k@~e1p!uaub2pgab#, k58pG/c4, ~9.3!

and fromuawa50 one obtains

L5 1
2 k~e2p!. ~9.4!

In the caseL50, this is the well-known ‘‘stiff perfect fluid.’’ Equation~9.4! is a necessary
condition for ~9.1! when the source is a perfect fluid.

As stated at the end of Sec. III, if the perfect fluid moves geodesically with rotation,
necessarilyp5const. Equation~9.4! implies then thate5const, i.e., a geodesically moving an
rotating perfect fluid whose rotation vector is covariantly constant must have constant m
density. SinceL50 may be assumed with no loss of generality~this leads only to redefiningp!,
we shall assume this from now on. Thene5p ande1p52p is a conserved quantity. Hence, w
may assume

n5e1p52p5const ~9.5!

in all formulae. In particular,~3.20! implies then that

g5det~gab!52~2p!22. ~9.6!

Using ~9.6! and ~3.23! in ~9.1! we obtain, in the Pleban´ski coordinates,

1
2 n~ga3,b2gb3,a1gab,3!50. ~9.7!

After a simple algebraic manipulation this set of equations yields the following result:

g3352A25const, gab,z50, g13,t5g23,t50,

g23,x2g13,y50. ~9.8!
J. Math. Phys., Vol. 39, No. 1, January 1998
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The second equation in~9.8! means thatwa is a Killing vector, as should be expected from~9.1!,
~9.6!, and~3.23!. Equations~9.8! imply that g13 andg23 depend only onx andy, and that there
exists a functionF (x,y) such that

g235F ,y , g135F ,x . ~9.9!

Since we assumed that rotation is nonzero, we know thatg3352gabwawb/n2Þ0, and so we are
allowed to carry out the coordinate transformation:

z5z82F /g33, ~9.10!

that, in virtue of~9.9!, will lead to

g135g2350 ~9.11!

in the new coordinates. We have thus arrived at the metric form:

ds25~dt1ydx!22h~ t,x,y!@dx1k~ t,x,y!dy#22 l ~ t,x,y!dy22A2dz2, ~9.12!

whereh, k, and l are functions to be found from the Einstein equations andA is an arbitrary
constant.

From now on, the allowed coordinate transformations are~5.6!–~5.7!, but with T5const.
The components of the Einstein tensor will now be referred to the orthonormal tetrad im

by ~9.12!. The equationG1250 is integrated with the result

k,t5K~x,y!l 1/2/h3/221/h. ~9.13!

The equationG225kp, with l eliminated by~9.6!, is integrated with the result

h5@H2~x,y!1K2/~4kp!#1/21H sin@2~kp!1/2t1t~x,y!#, ~9.14!

where H(x,y), k(x,y), and t(x,y) are arbitrary functions. NowG111G2252kp imposes an
additional condition on~9.13! and ~9.14! that leads toH50 or

H5~A22k/p!1/2K/~2k!. ~9.15!

The caseH50 leads to the Go¨del solution~see below!, so we shall consider the more general ca
~9.15!. Then, from~9.14!,

h5@K/~2k!#$A1~A22k/p!1/2 sin@2~kp!1/2t1t#%. ~9.16!

With suchh, Eq. ~9.13! can be integrated with the result

k5@2A~kp!1/2h#21~A22k/p!1/2 cos@2~kp!1/2t1t#1L~x,y!, ~9.17!

whereL is a new arbitrary function. The functionl is then calculated from~9.6!, and an explicit
solution of Einstein’s equations is determined by~9.16! and ~9.17!.

The transformations~5.6!–~5.7! with T5const can now be used to simplify the metric tens
so that L50. The transformation that yields this is given in Appendix A. The still allow
coordinate transformations that preserve the propertyL50 are given by~5.6!–~5.7! with T
5const and with the additional condition

KF ,xF ,y1@k/~A2pK!#G,xG,y50. ~9.18!

With L50, from the equationsG015G0250 one obtains further
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t ,x52y~kp!1/22A~p/k!1/2K ,y ,
~9.19!

t ,y52~k/p!1/2K ,x /~AK2!.

The integrability condition of~9.19! is

~p/k!1/2~AK! ,yy1~kp!1/2@1/~AK!# ,xx22~kp!1/250. ~9.20!

By the same method as was used in Ref. 4 it can now be shown that Eq.~9.20! is at the same time
the integrability condition for such a coordinate transformation~5.6!–~5.7!–~9.18! after which~see
Appendix A again!

K5~k/A!y2, ~9.21!

and then~9.19! implies

t5c5const. ~9.22!

The value ofc can be set arbitrarily by transformations oft of the form t5t81const. To match
Ref. 11 one should choose

c52p/2. ~9.23!

Finally, the functionsh, k, and l in ~9.12! are thus

h5 1
2 y2$11@12k/~pA2!#1/2 cos@2~kp!1/2t#%,

k5 1
2 @~kp!1/2h#21@12k/~pA2!#1/2 sin@2~kp!1/2t#,

~9.24!

l 5~4p2A2h!21.

This is equivalent under a simple coordinate transformation to the Ozsvath class III solution
Ref. 11.

The velocity fieldua5d0
a for this solution has nonzero shear. The shear will vanish if

only if:

A25k/p, ~9.25!

and then the Go¨del solution in the form~5.11! results.
The invariant definitions of the Ozsvath class III and of the Go¨del solutions given at the en

of Sec. I follow from the derivation in this section.

X. CONCLUDING REMARKS

These are the main results of the paper.
1. With nonzero rotation, any Killing field, existing for a metric whose matter source inh

the symmetry, must have the form~5.5! when represented in the Pleban´ski coordinates. When
f ;aÞ0, the Pleban´ski coordinates can be adapted to the Killing field so thatka5da

1 .
2. When two of the generators of the group are spanned on the velocity and rotation

fields, while the third one is not, the collection of solutions with a dust source is exhausted b
following two sets.

~a! The set of Sec. VII, defined by a single differential equation~7.24!, where the metric is
~7.15! with A5k1350, F defined by~7.23! andy(Y) defined by~7.21!.
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~b! The set of Sec. VIII, where the metric is~7.15! with b50, and the metric functions ar
defined by an autonomous set of first-order equations~8.1!–~8.3!, ~8.8!, and~8.10! @the integral in
~8.8! and ~8.10! can be calculated if the variable is changed as in~8.9!#.

3. The solutions of Lanczos1,19 and Gödel2 are limiting cases of both sets; their invaria
definitions are given at the end of Sec. VII and of Sec. VIII.

4. With no symmetries pre-assumed, if the source is a rotating geodesic perfect fluid
rotation vector field is covariantly constant, then the solution of the Einstein equations
homogeneous~in four dimensions! Ozsvath class III solution.11 If shear is zero in addition, then
the Gödel solution~Ref. 2; see also Ref. 4! results.

Note the modification that the results 2~a! and 2~b! introduce in theorem 3.1 of King and
Ellis.42 Those authors considered spatially homogeneous models in which the velocity fie
matter was tilted~i.e., was not orthogonal! with respect to the hypersurfaces of homogene
Theorem 3.1 says, among other things, that there are no tilted models of type I and tha
models of type II have zero vorticity. Evidently, this does not apply to the case where
hypersurfaces of homogeneity are timelike. The solutions of Sec. VII are of Bianchi type II,
are ‘‘tilted’’ ~because the velocity field is tangent to the hypersurfaces of homogeneity!, yet
rotation is not zero. The solutions of Sec. VIII are tilted in the same sense, yet they are of B
type I.

Other solutions that have been published earlier will be mentioned where appropri
papers 2 and 3. A general overview of literature on related subjects will be included in pap
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APPENDIX A: THE TRANSFORMATION TO L 50 IN „9.17…

A transformation of the class~5.6!–~5.7! with T5const changes the functionsh andk to such
ones that can be cast in the form~9.16! and ~9.17!, respectively, with the new functionsK8, t8,
andL8 expressed through the old ones as follows:

K85K~F ,x81LG,x8!
21kG,x8

2 /~A2pK!, ~A1!

t85t22~kp!1/2S1U, ~A2!

L85K821@KF ,x8F ,y812KLF ,y8G,x81KL1KL2G,x8G,y81kG,x8G,y8 /~A2pK!#, ~A3!

whereS in ~A2! is the function from~5.6!–~5.7! andU is determined by

cot U52A~kp!1/2@2G,x8~F ,x81LG,x8!#
21@2K~F ,x81LG,x8!

2/~2k!1G,x8
2 /~2A2pK!#.

~A4!

Note that we are applying here~5.6!–~5.7! in reverse, i.e., with the roles ofxa and x8a inter-
changed. The functions of the inverse transformation, denoted again byS, F, G, andT, still obey
~5.7!. For consistency of all the formulae it is convenient to chooseU from the segment~p, 2p!.
Then, the limiting casesG,x850 andF ,x81LG,x850 are included in~A4! as the limitsU52p
andU5p, respectively~these limiting cases occur whenL ,xx50 in the original coordinates!.

From~A3!, the equationL850 turns out to be consistent with~5.6!–~5.7!. In order to see this,
one can solve~A3! and ~5.7! for F ,x8 and F ,y8 and then impose the integrability conditio
F ,x8y82F ,y8x850. What comes out is a well-defined~though highly nonlinear! partial differential
equation of second order forG whose coefficients depend only onK andL.
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The transformation preserving the propertyL50 are~5.6!–~5.7! with ~9.18!, the latter easily
follows from ~A3!. Equation~A1! with L50 then shows howK is changed by such a transfo
mation; this is useful in showing that coordinates exist in whichK ,x50 @see the remark afte
~9.20!#. The proof is identical as in Appendix C to Ref. 4. Note that the conclusion in Ref.
weaker than it could be: theK(x) @v(t) in Ref. 4# is determined up to an additive constantC.
Hence, by a transformation of the formy5y81const and by an appropriate choice ofC one can
remove the linear and the constant terms inK ~resp.,v! so thatK}y2 ~resp.,v}t2 in Ref. 4!.
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