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On the thermodynamical interpretation of perfect fluid
solutions of the Einstein equations with no symmetry
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The Gibbs–Duhem equationdU1pdV5TdS imposes restrictions on the perfect
fluid solutions of Einstein equations that have a one-dimensional symmetry group
or no symmetry at all. In this paper, we investigate the restrictions imposed on the
Stephani Universe and on the two classes of models found by Szafron. Upon the
Stephani Universe and theb8Þ0 class of Szafron symmetries are forced. We find
the most general subcases of theb850 model of Szafron that are consistent with
the Gibbs–Duhem equation and have no symmetry. ©1997 American Institute of
Physics.@S0022-2488~97!02012-9#

I. INTRODUCTION

In relativity, a perfect fluid is defined as a continuous medium whose state is determin
the energy–density~e!, the pressure (p) and the four-velocity~ua! fields, and whose energy
momentum tensor has the form

Tab5~e1p!uaub2pgab ~1.1!

@we will use the signature~1, 2, 2, 2!, Greek indices running through the values 0, 1, 2, 3 a
Latin indices running through the values 1, 2, 3#. Indeed, this form of the energy–momentu
tensor guarantees that energy transport occurs only by means of mass-flow. However, a
component perfect fluid must also obey the Gibbs–Duhem equation:

dU1pdV5TdS, ~1.2!

which forms a part of the second law of thermodynamics, whereU is the internal energy,p is the
pressure,V is the volume,T is the temperature andS is the entropy of a thermally isolated portio
of a perfect fluid.

In relativity, and in particular in cosmology, we require that Eq.~1.2! applies when the
internal energy, volume and entropy are referred to one particle of the fluid. If we assum
there exists a functionn ~the particle number density! which is conserved,

~nua! ;a50, ~1.3!

thenU5e/n, V51/n andS5s/n, wheres is the entropy–density, and the relativistic version
Eq. ~1.2! for a perfect fluid with the energy–momentum tensor~1.1! takes the form

d~e/n!1pd~1/n!5TdS. ~1.4!

a!Electronic mail: akr@alfa.camk.edu.pl
0022-2488/97/38(5)/2602/9/$10.00
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It is usually taken for granted that this equation applies. However, most of the perfect
solutions of the Einstein equations considered in the literature are thermodynamically trivial
way or another. For dust,p50, e/n5const andS5const, so~1.4! is no limitation. For perfect
fluids with a barotropic equation of statee5e(p), Eq. ~1.4! with dS50 is a part of the definition
of a solution. For cosmological models with a Robertson–Walker, Kantowski–Sachs or Bia
type geometries, all the functionse, p andn depend only on the comoving timet of the fluid, so
any equation of state can be imposed on them, and then~1.4! simply defines entropy. For solution
that have a symmetry group with two-dimensional orbits~for example, the spherically symmetri
ones!, the functionse, p andn depend on two variables only. In this case, the left-hand sid
~1.4! is a differential form in two variables and is guaranteed to have an integrating factor, h
T andS obeying~1.4! are guaranteed to exist.

Problems appear when the perfect fluid solution in question has a one-dimensional sym
group or no symmetry at all. For such solutions,e, p andn depend on three or four variables, an
the existence of an integrating factor for the left-hand side of~1.4! is an additional limitation on
the state functions. This problem has received only fleeting attention in the literature~see below!.
In this paper, we shall consider the consequences of~1.4! for a few perfect fluid cosmologica
models with no symmetry. If [d(e/n)1pd(1/n)] has no integrating factor, then the solution c
be interpreted as a mixture of perfect fluids~possibly interacting through reversible chemic
reactions!, but not as a single-component perfect fluid. If~1.3! and ~1.4! can be imposed simul
taneously, then, for brevity, we shall say that the model allows for a thermodynamical sc
Note that~1.3! merely defines the functionn(x) and is no limitation on any model; the limitation
all result from~1.4!.

Bona and Coll1 were apparently the first to observe that~1.4! may restrict a metric: they
showed that the Stephani Universe2–5 allows for a thermodynamical scheme only if the met
acquires a 3-dimensional symmetry group acting on two-dimensional orbits. Relativistic th
dynamics of perfect fluids was discussed at length by Coll and Ferrando6 without invoking explicit
examples. Quevedo and Sussman7 gave an example of the Szarfronb850 model8 that has no
symmetry and allows for a thermodynamical scheme, and showed that the parabolic Szafronb8Þ0
model does not allow for it unless it has a symmetry. Quevedo and Sussman9 also analyzed the
conditions for the existence of a thermodynamical scheme in the Stephani Universe, and d
the corresponding nonbarotropic equation of state. In this case the equation of state does n
any plausible physical interpretation. The Gibbs–Duhem equation~1.4! together with the conti-
nuity equation~1.3! were also discussed by Goode10 and by Coley.11 Goode discussed them as a
element of thermodynamical interpretation of a solution with a heat-conducting dust so
Goode’s solution, before thermodynamics is imposed on it, is a generalization of theb850 solu-
tion of Szekeres.12 After imposing the thermodynamical relations, the solution simplifies. Whe
the simplification necessarily involves symmetries is not known. Coley11 emphasized the impor
tance of considering~1.3!–~1.4! as a necessary part of physical interpretation of any cosmolog
model. This seems to be the whole body of literature on the subject published so far.

In this paper, we identify the most general Szafron models of theb850 family that allow for
a thermodynamical scheme~Sec. IV! even though they have no symmetry; we also verified t
the general Szafron models of theb8Þ0 family do not allow a thermodynamical scheme unle
they have symmetries~Sec. V!. These are the main results of the paper. In addition, in Sec. I
describe the necessary conditions for the existence of the thermodynamical scheme, and in
we give some additional details of the result of Bona and Coll1 for the Stephani Universe.

The models of Stephani2 and of Szafron8 are so far the only known exact solutions of th
Einstein equations that have no symmetry, can be considered to be cosmological models~because
they generalize the Robertson–Walker class of solutions! and allow for nontrivial thermodynam
ics; see also Ref. 13. The other class of solutions found by Stephani14 has no symmetry as well
and has some cosmological relevance,13 but it has constant pressure. Therefore its source is in
dust in a spacetime with cosmological constant, and~1.4! is trivially satisfied for it. The well-
J. Math. Phys., Vol. 38, No. 5, May 1997
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known Szekeres solutions12 with no symmetry are the dust limit of the Szafron models conside
here, and so pose no thermodynamical problems either.

II. THE NECESSARY CONDITIONS FOR THE EXISTENCE OF THE THERMODYNAMICAL
SCHEME

Let us write~1.4! in the form

v:5~1/n!de2~1/n2!~e1p!dn5TdS. ~2.1!

In general, the quantitiese, and p are obtained from Einstein’s equations as functions of
coordinates. Equation~1.3! can always be integrated yielding a functionn in terms of the coor-
dinates, and sov will be a given differential form in four variables~although the form is spanne
on just two differentials,de anddn, the functionp will in general be functionally independent o
e andn!. Equation~2.1! can be solved forT andS if v has an integrating factor, i.e. ifv`dv50.
This may be written equivalently as

de`dp`dn50, ~2.2!

which means that a functional dependence~an equation of state! connectse, p andn.
Note that Eq.~1.3! is a necessary, but not a sufficient condition forn to be interpreted as a

particle number density. The physical particle number density must obey a thermodynam
meaningful equation of state, which should be derived from Eq.~2.2!. In this paper, we shall no
impose any condition onn apart from~1.3! and~2.2!. Therefore, only our negative results will b
conclusive: if ~1.3! and ~2.2! imply additional symmetry, then the model does not allow fo
thermodynamical scheme in general. If~1.3! and ~2.2! can be imposed without introducing
symmetry, then additional work on the interpretation ofn is required. This we postpone to
separate paper.

The result of this paper is that for the Szafron models withb8Þ0 a nontrivial thermodynami-
cal scheme imposes symmetries, while the Szafron models withb850 are restricted by the ther
modynamical scheme in a different way which not necessarily implies a symmetry.~We call the
thermodynamical scheme trivial if it impliesp5const, and in particularp50.!

III. THE THERMODYNAMICAL SCHEME IN THE STEPHANI UNIVERSE

The metric of the Stephani Universe is

ds25D2dt22V22~ t,x,y,z!~dx21dy21dz2!, ~3.1!

where

V5R21$11 1
4 k~ t !@~x2x0~ t !!21~y2y0~ t !!21~z2z0~ t !!2#%, D5F~ t !V,t /V, ~3.2!

and F(t), R(t), k(t), x0(t), y0(t) and z0(t) are arbitrary functions of time. The source in th
Einstein equations is a perfect fluid with the velocity fieldua5D21d0

a and energy–densitye and
pressurep given by

ke53C2~ t !, kp523C212CC,tV/V,t , ~3.3!

wherek58pG/c4 andC(t) is connected with the other functions of time by

k~ t !5@C2~ t !21/F2~ t !#R2~ t !. ~3.4!
J. Math. Phys., Vol. 38, No. 5, May 1997
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The Stephani Universe has in general no symmetry and is the most general conforma
perfect fluid solution with nonzero expansion~see theorem 32.15 in Ref. 15!. A particle number
density function obeying~1.3! has here the formn5N(x,y,z)V3, whereN is an arbitrary function.

The problem of existence of a thermodynamical scheme in this model was solved by
and Coll.1 The scheme exists whenV has the special form

V5
k

4R
~x21y21z222x0x14Ax014B!, ~3.5!

whereA andB are arbitrary constants. Only the rotational symmetry in the (y,z) plane is evident
here, but in fact this subcase of the Stephani Universe has a 3-dimensional symmetry group
on 2-dimensional orbits; see Ref. 1. The generators of the group, found from the Killing equa
are

k15S 2
1

2
xy1AyD ]

]x
1F14 ~x22y21z2!2Ax2BG ]

]y
2
1

2
yz

]

]z
,

k25S 2
1

2
xz1AzD ]

]x
2
1

2
yz

]

]y
1F14 ~x21y22z2!2Ax2BG ]

]z
, ~3.6!

k35z
]

]y
2y

]

]z
,

and the commutators among them are [k1 ,k2]5(A21B)k3 , [k2 ,k3]5k1 and [k3 ,k1]5k2 . From
here, it is seen that withB.2A2 the solution is spherically symmetric, withB,2A2 it is
hyperbolically symmetric, and withB52A2 it is plane symmetric. This result is equivalent to th
one by Bona and Coll1 except that Bona and Coll obtained it by postulating invariance ofn with
respect to~3.6!, while we have found that it is a general solution of the conditions for a ther
dynamical scheme, and invariance ofn necessarily follows. TheN5n/V3 is restricted by~2.2! to
the form

N5CG~w!/~x22A!3, ~3.7!

whereC is an arbitrary constant,G is an arbitrary function and

w:5x1~y21z214A214B!/~x22A!. ~3.8!

In Ref. 9, the thermodynamical scheme conditions for a special case of the solution~3.5! were
investigated using the work by Bona and Coll.16 The result of Ref. 9 is erroneous; that spec
solution admits in fact a 3-dimensional group of isometries.

IV. THE THERMODYNAMICAL SCHEME IN THE SZAFRON MODELS WITH b850

The metric of the Szafron models withb850 is

ds25dt22e2adz22e2b~dx21dy2!, ~4.1!

where

eb5F~ t !/@11 1
4 k~x21y2!#, ~4.2!

ea5l~ t,z!1Seb, ~4.3!
J. Math. Phys., Vol. 38, No. 5, May 1997
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S5@ 1
2 U~z!~x21y2!1V1~z!x1V2~z!y12W~z!#, ~4.4!

k is an arbitrary constant,U(z), V1(z), V2(z) andW(z) are arbitrary functions, the functionF(t)
is determined by the equation

2F,tt /F1F,t
2/F21k/F21kp~ t !50, ~4.5!

wherep(t) ~the pressure in the perfect fluid source! is an arbitrary function, and the functio
l(t,z) is determined by the equation

Fl,tt1F,tl,t2~F,tt1F,t
2/F1k/F!l5U~z!1kW~z!. ~4.6!

The source in the Einstein equations is a geodesically and irrotationally moving perfec
with the pressurep(t), the velocity fieldua5d0

a and the energy-density given by

ke52E~ t,z!e2a13~F,t
21k!/F2, ~4.7!

where

E~ t,z!:5lF,tt /F2l,tt[F,tl,t /F2~F,t
21k!l/F22~U1kW!/F. ~4.8!

The b850 means thatb does not depend onz; this case has to be considered separa
because the limitb,z→0 of the corresponding solutions withb,zÞ0 is singular; see Sec. V. An
overview of properties of these solutions, along with a complete list of literature about the
given in Ref. 13. Theb850 solutions simultaneously generalize the Robertson–Walker~R–W!
metrics~which result whenl50 andU52kW, k is the spatial curvature index in the limit! and
metrics with the Kantowski–Sachs~K–S! symmetry13,17,18 ~which result when
U5V15V25W5l,z50!.

With no loss of generality, we can assumeW(z)50. This specialization amounts to jus
redefiningU andl ~see Ref. 13!, and we shall do so in the following.~After such a specialization
the R–W limit changes to$U52ku(z), l5Fu%!. Note that the coordinatez is not defined
uniquely. All the formulae given are covariant with the transformationsz5 f (z8), where f is an
arbitrary function. The particle number density function obeying~1.3! has here the form
n5N(x,y,z)e2a22b, whereN(x,y,z) is an arbitrary function.

Equation~2.2! implies hereN5e2BF(SeB,z), whereeB5eb/F, and

@~l/F1X!E,Z2El,Z /F#F,X /F1EF,Z /F5E,Z , ~4.9!

whereX5SeB, Z5z. This is a quasi-linear partial differential equation determiningF(X,Z).
However, the coefficients in~4.9! do depend on time, whileF should be, by the definition ofN,
independent oft. We first solve~4.9! as ifF were allowed to depend ont, and then we impose the
conditionF,t50. The general solution of~4.9! is F5EG~U!, whereG is an arbitrary function and
U:5(l/F1X)/E1 f (t), with f (t) being another arbitrary function. The conditionF,t50 reads
now as

E,tG1G,U@~l/F!,t2~l/F1X!E,t /E1 f ,tE#50. ~4.10!

Three cases arise here: I.E,t505G,U , this will turn out to be included in the case III below an
does not require a separate treatment; II.E,t50, (l/F),t52 f ,tE, this one will be considered
separately further on; III.E,tÞ0ÞG,U , this is the generic case that we will consider first.

In case III, Eq.~4.10! impliesG,UU50, i.e.,F5A(l/F1X)1c(t)E, whereA is an arbitrary
constant andc(t) is an arbitrary function. Now it is seen that the caseE,t505G,U is contained
here as the subcaseA505E,t5c,t . We can assumecÞ0 because withc50 the conditionF,t50
J. Math. Phys., Vol. 38, No. 5, May 1997
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implies eitherA5F50, i.e., n502a thermodynamical nonsense, or~l/F!,t50, i.e., a R–W
metric. The conditionF,t50 implies nowAl/F1cE5H(z), whereH(z) is an arbitrary func-
tion. Substituting the definition ofE into this we obtain

l,t5K~ t !l1L~ t,z!, ~4.11!

where

K~ t !:5F,t /F1k/~FF,t!2A/~cF,t!, L~ t,z!:5U~z!/F,t1H~z!F/~cF,t!. ~4.12!

~We may assumeF,tÞ0 because otherwisep5const.! The solution of Eq.~4.11! is

l5J~z!e*Kdt1e*KdtE Le2*Kdtdt, ~4.13!

whereJ(z) is another arbitrary function ofz. Substituting~4.13! into ~4.6! we obtain an equation
of the following form:

J~z!F1~ t !1U~z!F2~ t !1H~z!F3~ t !50, ~4.14!

whereF1 , F2 andF3 are functions oft composed ofF,c and their derivatives~see Appendix A!.
Three possibilities now arise.

~a! All the three functionsJ, U and H are linearly independent. Then~4.14! implies
F15F25F350, and it can be shown from~4.5! and ~4.6! that p5const, so this case is thermo
dynamically trivial.

~b! Two of the functions$J,U,H% are linearly independent, while the third one is their line
combination. In each of these cases, two linear combinations of the functions$F1 ,F2 ,F3% must
vanish, which leads to a set of two differential equations to be obeyed byc(t) andF(t). Some of
the resulting solutions are nontrivial, but not all of them. For example, the trivial solution
point ~a! reappears in the two cases:H50, with $J,U% being linearly independent, andU50, kÞ0
with $J,H% being linearly independent. However, withU5k50 and$J,H% being linearly inde-
pendent, the functionsF andc have to obey only one equation:

F,tt52A/c13F,t
2/F2c,tF,t /c, ~4.15!

which means thatF(t) can be arbitrary,p(t) ~in general nontrivial! is determined by~4.5! with
k50, andc(t) is determined by~4.15!. It can be shown~by careful retracing and adaptation of th
reasoning in Ref. 19 to the casepÞ0! that withU5k50, ~l/F!,tÞ0 and genericV1 andV2 the
model has no symmetry. Hence, the case we have just identified is an example of a Szafrob850
model with no symmetry that allows for a thermodynamical scheme.

~g! Each pair in the set$J,U,H% is linearly dependent. This means that there is only o
function of z in this set and thatF andc are connected by~4.14! with J, U, andH replaced by
arbitrary constants, i.e.,F(t) is again arbitrary. It can be shown again that the Szafron model
in general no symmetry also in this case, so we have here another example of a model
thermodynamical scheme and with no symmetries. The case discussed by Quevedo and S7

is contained in the class~g! as the caseJ5H5F250.
It remains now to investigate the case II of the three cases listed after Eq.~4.10!. We have then

E,t50 and

l52E~z! f ~ t !F~ t !1H~z!F~ t !, ~4.16!

whereE(z) andH(z) are arbitrary functions. Thisl must obey~4.6! with W50 and~4.8! with
E5E(z). The conditionF,t50 is identically satisfied. This subcase has nonzero shear as lo
J. Math. Phys., Vol. 38, No. 5, May 1997
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f ,tÞ0 ~if f ,t50, then the thermodynamically trivial solution withF,t50 results!. Equations~4.16!,
~4.6! and ~4.8! lead to the following two equations determiningF and f :

f ,t5k f /~FF,t!21/F,t2C/~FF,t!, ~4.17!

F~F1C!F,tt2k~F1C!2~3F1C!F,t
25~2k1FF,tt2F,t

2!k f , ~4.18!

whereC is an arbitrary constant. The functionsE, H andU are connected bykH1U5CE. When
k50, Eq.~4.18! decouples from~4.17!. Even in that special case,p is not constant and the solutio
has in general no symmetry. Hence, this is another example of a Szafronb850 model without a
symmetry and with a nontrivial thermodynamical scheme.

V. THE THERMODYNAMICAL SCHEME IN THE SZAFRON MODELS WITH b8Þ0

The metric of these models is of the same form as in~4.1! but here~in a notation adapted from
Szafron8!:

eb5F~ t,z!/S~x,y,z!, ea5h~z!S•~eb!,z , ~5.1!

S:5A~z!~x21y2!12B1~z!x12B2~z!y1C~z!, ~5.2!

whereh, A, B1, B2 andC are arbitrary functions ofz, the functionF(t,z) is determined by Eq.
~4.5! with k being a function ofz that obeys the relationship:

AC2B1
22B2

25 1
4 @h22~z!1k~z!#. ~5.3!

Note that the limitb,z→0 of this solution is singular. Therefore the caseb,z50 discussed in Sec
IV has to be derived separately from the Einstein equations. The source in the Einstein eq
is again a geodesically and irrotationally moving perfect fluid with the velocity fieldua5d0

a , the
arbitrary pressurep(t), and the energy–density:

ke5~h/F2!E~ t,z!e2a13~F,t
21k!/F2, with E~ t,z!5F~F,t

21k!,z22F,z~F,t
21k!.

~5.4!

The R–W limit results whenF5zR(t), andk5k0z
2, wherek0 is a constant~the spatial curvature

index of the R–W metric!.13,20 The particle number density function defined by~1.3! is here
n5N(x,y,z)e2a22b. In this case, Eq.~2.2! can be shown~by a rather long and tedious calcula
tion! to either reduce the solution~5.1!–~5.4! to dust or to impose a symmetry group on it. Th
group has at least 3 dimensions, and its orbits are at least two-dimensional. Hence, for th
of Szafron models a nontrivial thermodynamical scheme can exist only if there are symmet
the spacetime.

VI. CONCLUSIONS

We have verified the following
1. For the Stephani Universe and the Szafron models withb8Þ0 a nontrivial thermodynamica

scheme~that is, one in whichpÞ0! can exist only in those subcases in which the spacet
acquires an at least 3-dimensional symmetry group acting on at least 2-dimensional orbits

2. The Szafron model withb850 does have subcases that have no symmetry and allow
nontrivial thermodynamical scheme. In the subcase of class~g! in Sec. IV, the scale factorF(t)
remains arbitrary, but the form of the functionl is limited. In the nontrivial subcases of class~b!,
the evolution of the scale factor is fixed, while the generality ofl is limited to a lesser degree.

Like we stated in the Introduction, only the first result is conclusive. For the Szafron m
with b850 it remains to be verified whether among the functionsn there are any which obey a
J. Math. Phys., Vol. 38, No. 5, May 1997
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interpretable equation of state. Also, as stated in the Introduction, the negative result of p
above only means that these models cannot be interpreted as single-component perfect fl
remains to be seen whether they can be interpreted as noninteracting mixtures of perfect fl
mixtures in which reversible chemical reactions occur. Our results show that there is no s
connection between the existence of a thermodynamical scheme and symmetries.

The hope that motivated this paper was that the Gibbs–Duhem equation~1.2! would force a
definite form upon the arbitrary functions of time in the models, and thus would play a simila
as the equation of state does. This happens indeed in the class~b! models of Sec. IV, but it is not
a general rule. In the class~g! models of Sec. IV, the one arbitrary function of time,p(t), survives
intact after the integrability of~1.2! is ensured.

In those classes in which arbitrary functions of time are present in spite of the lac
symmetry, an equation of state still has to be imposed on the resulting solution. We reca~see
Refs. 3 and 21! that for the Szafron model the barotropic equation of statep5p(e) trivializes it to
a spatially homogeneous one~and in particular to an R–W one in some cases!.
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APPENDIX A

The three functions appearing in Eq.~4.14! are defined as follows:

F1~ t !5Fk/F2kF,tt /F,t
21AFc,t /~c2F,t!1AFF,tt /~cF,t

2!

1S kF2
A

c D 2F/F,t
22

3A

c GexpS E KdtD , ~A1!

F2~ t !5F1~ t !E ~1/F,t!expS 2E KdtDdt111
k

F,t
22

AF

cF,t
22

FF,tt
F,t

2 , ~A2!

F3~ t !5F1~ t !E F F

cF,t
GexpS 2E KdtDdt1S F

c D
3F11

k

F,t
22

AF

cF,t
22

FF,tt
F,t

2 G1
2F

c
2

F2c,t
c2F,t

, ~A3!

whereK(t) is given by~4.12!.

1C. Bona and B. Coll, Gen. Relativ. Gravit.20, 297 ~1988!.
2H. Stephani, Commun. Math. Phys.4, 137 ~1967!.
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