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T h e  p r o g r a m  ORTOCARTAN can  calcula te  the  cu rva tu re  tensors  (Rie- 
m a n n ,  Ricci, E i n s t e i n  a n d  Weyl)  f rom a given o r t h o n o r m a l  t e t r a d  repre-  
s en t a t i on  of the  me t r i c  tensor .  It  was first a n n o u n c e d  in  1981, b u t  s ince 
t h e n  ha s  u n d e r g o n e  severa l  ex tens ions  a n d  t r a n s p l a n t s  onto  o the r  com-  
pu te r s .  T h i s  art icle reviews t he  cma'ent  s t a t u s  of  the  p r o g r a m  f rom the  
po in t  of  view of  a user.  T h e  following topics are d iscussed:  t he  p rob lems  
t h a t  t he  p r o g r a m  coal be  appl ied  to, the  special  fea tures  of t he  a lgo r i t hms  
t h a t  m a k e  the  p r o g r a m  powerful ,  t he  technica l  r equ i r emen t s  to r u n  the  
p r o g r a m  a n d  two s imple  examples  of  appl ica t ions .  

1. WHAT CAN THE PROGRAM DO? 

ORTOCARTAN takes the components of an orthonormal tetrad of exterior 
differential forms representing a metric tensor as the input data. Let e i = 

eiadx ~ be the forms (i , j ,  k , . . .  label the forms and the tetrad components 
of tensors, a , / 3 , 7 , . . ,  label the coordinate components), and let [mj] = 
d i a g ( + l , -  1 , -  1 , -  1). Any metric form can be represented either by 

d 2  = ga~dx~'dx ~ (1) 

or by 
ds 2 = r l i je ie  j , (2 )  
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where g~z = qijeic~eJ~. The input data for ORTOCARTAN are the compo- 
nents of the matrix [ei,]. 

The program calculates det[ei,] ,  the inverse matr ix [eZj] that is de- 
fined by 

d x  fl --  efl j e  j ,  (3)  

the Ricci rotation coefficients Fijk defined by 

de i = F i j  A e j ,  (4 )  

where Fij = Fijke k, the tetrad components of the Riemann tensor defined 
by 

1Di  ~k dFij W Fis A FSj ~.t~ jkte A e t, (5) 

and the tetrad components of the Ricci and Weyl tensors. The main ap- 
plication of the program is for writing out the Einstein equations given 
the metric tensor and for verifying the solutions. In addition to the quan- 
tities listed, the program can also calculate the metric tensor, the inverse 
metric, the Christoffel symbols, the Einstein tensor and the coordinate 
components of the Riemann, Ricci, Einstein and Weyl tensors, with ar- 
bi trary positions (up or down) of each index. The main program is dis- 
tr ibuted together with the program CALCULATE which is a handy algebraic 
"abacus". CALCULATE was meant to allow the users of ORTOCARTAN to per- 
form such algebraic operations as differentiation of symbolic expressions, 
simplifying the results of algebraic operations on complicated expressions, 
transforming symbolic expressions by series of substitutions, verifying so- 
lutions to differential equations, or any combination thereof. With the 
exception of calculating integrals and simplifying rational functions, the 
program should be able to perform all kinds of algebraic operations (see 
example in Table III, Section 4). 

In contrast to several other systems, such as SHEEP [1,2] (now probably 
the main player in the applications of algebraic computing to relativity), in 
ORTOCARTAN the main emphasis was put  not on the number of secondary 
programs for special tasks (such as the Petrov classification, the Segre 
classification of the Einstein tensor or calculating the Newman-Penrose 
spin coefficients), but  on the power and generality of the algorithms. We 2 
wanted to make sure that  the program will not fail the user even with most 
complicated expressions to process, and with most sophisticated substitu- 
tions to perform in them. To what extent we succeeded can only be judged 
by the users. The next section is meant to encourage the candidates for 
users to give ORTOCARTAN a chance and try it. 

2 See Appendix  A to find out who "we" are. 
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2. THE ADVANTAGES OF ORTOCARTAN'S ALGORITHMS 

This section was partly inspired by reports written by users of other 
algebraic systems, published in conference proceedings and such journals 
as the SIGSAM Bulletin and the Journal of Symbolic Computation. 3 It 
seems that  in addition to those programming problems that  we wanted to 
solve, we managed to bypass other problems without knowing that  they ex- 
ist and cause trouble in other systems. In most of the cases, we succeeded 
by exploiting the most powerful device in any LISP system: recursive defi- 
nitions. 

ORTOCARTAN can handle rational powers of rational numbers. It will 
first simplify each rational number by detecting common factors of the 
numerator and the denominator, producing an integer whenever possible. 
Then, it will transform the number to such a form that  the exponent is 
positive (by using the identity (k/1) -~ = (l/k) ~ ), the base is integer (by 
using the identity (k/1) '~/'~ = l-'~(kl'~-l)r"/'~), and the exponent is of 
the form 1/(integer) (by using k m/'~ = (k'~)l/=). Finally, it will try to 
make the denominator of the exponent as small as possible by using the 
identity (kPq) I/(pt) = (kq) 1/t. It will miss simplifications resulting from 
multiplying different bases for the same exponent, such as v ~ .  ~ = 2v~ ,  
but such failures can be easily corrected through user-defined substitutions 
(see below). 4 

ORTOCARTAN has no problems making substitutions for sub-sums and 
sub-products in sums and products, respectively. For example, if the user 
defines the substitution B + D  = U, then ORTOCARTAN will readily recognize 
that  ( A + B + C + D + E )  is to be substituted by ( A + C + U + E ) .  Technically, 
such a substitution is equivalent to recognizing a given subset in a given set 
and replacing it with another subset. This is simple in ORTOCARTAN only 
because sums and products are automatically ordered in a unique way. To 
explain the principle of ordering would require going into too much detail 
of LISP for the taste of a typical reader of this journal; it is explained in 
the program's documentation [7]. The substitution for a part of a sum 
or a product can be missed only if the expression to be substituted for is 
multiplied by a factor or disguised in a more tricky way. The B + D = U 
would be missed, for example, in (B + 2D + E). 

Detailed references withheld in order to avoid making them seem negative. 
This  kind of failure may  occur only with numbers .  In  order  to avoid it, each ex- 
ponent ia ted  integer would have to be factorized into prime factors, and the identity 
(a .  b)P(a, c)q = a p+q �9 bP �9 cq would have to be applied. It was our feeling that ,  more  
often t han  in a simplification, this would result  in making the representa t ion of the 
number  longer. 
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The arguments of functions can be functions themselves, or can be 
symbols for explicit algebraic expressions. The chain rule for differentia- 
tion will go into the arguments to an arbitrary depth, until it finds the 
independent variables or until the derivative is found to be zero. The 
user can use only the names of the functions in the formulae, or can write 
out explicitly the whole functional expressions (together with their argu- 
ments). The program will automatically pick up the style chosen by the 
user and continue the same style throughout the calculation. 

While performing user-defined substitutions ORTOCARTAN automati- 
cally calls the algebraic simplification on the result of each single substi- 
tution. In some other systems, all the substitutions are first performed as 
simple replacements, and the algebraic simplification is called only after- 
wards. This can result in difficulties. The scheme followed by ORTOCARTAN 
guarantees that  when a new substitution is added to a series of previous 
substitutions, then the new substitution will be performed exactly in the 
same expression that  the user has seen previously. 

The feature which is rarely reported in the literature on other systems 
is substitutions by pattern-matching. They can be most simply explained 
by examples. Suppose r is the symbol for ( x 2 +  y 2 +  Z2)1/2, where x , y  
and z are coordinates. The most economical way of doing a calculation 
with r is to define r as a function of (x, y, z) and then tell the program 
to substitute r , ,  by (x/r) ,  r,u by (y/r)  and r,z by (z/r) .  However, the 3 
substitutions would normally all have to be written out explicitly. With 
pattern-matching, one can define some variables as members of a special 
class called MARKERS; suppose M is one of them. Then M will become 
a represent-anything symbolic variable, and the 3 substitutions can be 
defined by the single equation r,M ~ - -  M / r .  

The usefulness of pattern-matching can be demonstrated by the fol- 
lowing other examples: 
(i) Suppose E is a small parameter,  and the calculation is to be performed 
only up to terms linear in E.  Instead of writing out all the substitutions 
E 2 ---- 0, E 3 ~- 0, . . . ,  E n - -  0, up  t o  the highest power that could possibly 
show up, it is enough to write E M -~ 0. 5 
(ii) Suppose a can only be equal to +1 or - 1 .  Instead of writing out 
the substitutions a 2 -= 1, a 3 -- a, a 4 = 1, and so on, one can write here 

50RTOCARTAN cannot automatically develop a functional expression into a truncated 
power series, but all the user has to do in order to perform an approximate calculation 
is to substitute the truncated series for the components of the metric tensor, define 
the appropriate expression for the determinant, and define the powers of the small 
parameter that  should be neglected. Then all the expressions processed will become 
just  polynomials in the small parameter. 
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a M ---- a (remainderM2), and ORTOCARTAN will understand. 
(iii) Suppose p is the symbol for (t 2 - r2) 1/2, and you want to develop all 
integer powers of p so as to get rid of all fractional powers of (t 2 - r 2) 
except possibly for (t 2 - r2) 1/2. Then the appropriate substitution is: 

p M  = ( t2  _ r2)(quotient M 2 ) ( t 2  _ r2)(remainder M 2 ) .  

The first factor in the above formula will, for each positive value of M, 
be an integer power of (t 2 - r 2) and will be developed into a polynomial, 
while the second factor will be either 1 or (t 2 - r2) 1/2. 

More examples of substitutions can be found in the user's manual [3]. 
The printing procedure of ORTOCARTAN can handle nested exponentials 

to an arbitrary height (see Table III in Section 4). More exactly, each line 
of superscripts can carry one level of its own subscripts, but superscripts 
to superscripts can go arbitrarily high. The price that  we had to pay for 
this generality is a certain untidiness of the line-breaks. For example, it 
happens that  f ( x )  is split into two lines as f ( \ x )  or that  sin2(x) is split as 
sin 2 \ ( z )  ( \  represents here the end of a line). We may correct this in the 
future, but  it is not very easy. 

Readers interested in computer science aspects of programming can 
find more information about the algorithms applied in ORTOCARTAN in 
Refs. 4-7. 

3. TECHNICAL INFORMATION 

The newest release of ORTOCARTAN is for Atari computers. The pro- 
gram will run on each model on which the Cambridge LISP dialect of LISP is 
available. Cambridge LISP is not a property of the authors of ORTOCARTAN 

and has to be bought separately (see Appendix B). For loading LISP and 
ORTOCARTAN, 250 kb of core are sufficient, and simple problems could be 
handled at 300 kb. However, computer-algebra systems are used only on 
the varieties of Atari with large memories (1 Mb and more). ORTOCARTAN 

has been implemented on the Mega ST E model with 4 Mb of core and a 
60 Mb hard disk. A hard disk, not necessarily of this large capacity, is 
essential. 

Normally, the output  is shown on the screen, but it can also be stored 
on a disk and printed on paper; the manual [3] explains how to do this. 
The output  stored on a disk can then be processed by a text-editor and 
built into a text for publication (the tables in this text are examples). 

Until recently, the main implementation of ORTOCARTAN was in the 
University of Texas LISP 4.1 on the cec  Cyber computers (see Refs. 4,5,8). 
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The code of that  version was preserved and is still available on a diskette. 
However, that  version will most probably become defunct because the CDr 
computers were scrapped in all sites where ORTOCARTAN has been in use 
on them. The other versions that  existed (see Appendix A) are hereby 
declared defunct. 

With 4 Mb of core, the problems with storing large expressions that  
used to show up occasionally in the past should be gone for ever. A 
metric whose curvature tensors cannot be stored in 4 Mb will probably 
have a totally unreadable Ricci tensor, and will anyway require several 
substitutions to be performed in the intermediate results. One of the more 
Complicated examples processed by ORTOCARTAN was the Kerr solution as 
represented by Chandrasekhar [9]. It takes the program about 3�89 minutes 
to find that  the Ricci tensor is zero in this case, but the list of substitutions 
takes 4 s tandard manuscript pages. Even more complicated examples are 
included in a collection of tests that  is distributed on a diskette together 
with the program. 

4. EXAMPLES O'F SESSIONS W I T H  ORTOCARTAN A N D  CALCUL- 
ATE 

In order to give the reader a better idea of the use of ORTOCAII.TAN, 
the input and output  for two simple examples are included here. 

The program is not fully interactive, i.e. the calculation is not done 
step-by-step, with user's input being inserted in pieces at intermediate 
stages. The input has to be defined first, and then the calculation will 
run all the way until the Weyl tensor. However, the substitutions can 
be directed to arbitrary intermediate stages of the calculation by simple 
commands (see user's manual, Ref. 3, for detailed instructions). Thus, 
effectively, the user has the same control over the run of the calculation as 
in an interactive system. It is most convenient to prepare the input data 
on a disk file, the data  can then be modified and resubmitted at will. 

Table I shows the input data  for the Robertson-Walker metric: 

ds 2 = dt 2 - R 2 ( t )  [dr2~(1 - k r  2) + r2(dO 2 + sin 2 6 de 2) ]. (6) 

For the program, 0 was changed to h and r was changed to p, but they 
could equally well be called t h e t a  and ph i ,  since the symbols do not have to 
consist of one letter each. The numbers on the right in Table I were added 
by a text-editor to facilitate the explanation. This whole input was stored 
on a disk file and read by the LISP system from there. Line (1) is a LISP 
command that  tells the LISP system to treat the upper-case and lower-case 
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TABLE I 

The Input data for the Robertson-Walker metric 
( t l ~  n~md~r$ o f  l i n e s  s~ided for e x p l s m L t i o n  o n l y  - s e e  t e x t }  

( s e t q  ! f l o w e r  n l l )  
( o r t o c a r t a n  ' (  

( r o b Q r t s o n  w a l k e r  m e t r i c )  
( e o o r d i n L t e s  t r h p)  
( f u n e t l o n m  R ( t ) }  
(constants k} 
(emeLtrlx I 0 0 0 0 (R / (1 - k * r Io 2)  oo (1 2 ) )  

0 0 0 0 (R ! r )  0 0 0 0 ( R t  r t ( s i n  h } } }  
(dent prlnt le ~mma ~ rlemann} 

}) 

(sctq t*lo~r t} 
(rds n l l )  

(1) 
(Z) 
(3} 
{4) 
(5} 
(a} 
(7} 
(7} 
( s }  
(s} 

(10} 
(11) 

letters as different (otherwise, r and R would be considered to represent 
the same quantity).  Line (2) is the call to the function ORTOCARTAN that  
performs the calculation. Line (3) is the title of the problem. This item 
is completely arbitrary and serves only to label the input and output  with 
a label chosen by the user. Line (4) defines the names of coordinates. 
Line (5) defines the names of arbitrary (unknown) functions and their 
explicit arguments. Line (6) defines the names of constants. Lines marked 
by (7) specify the components of the orthonormal tetrad e i = e i ~ d x  ~ which 
is in this case e ~ = d t ,  e 1 = R ( 1 - k r 2 ) - U 2 d r ,  e 2 = r R d O ,  e 3 = r R  sin ~ dO. 
Line (8) tells the program not to print the components of the inverse tetrad, 
the antisymmetrized Ricci rotation coefficients Fi[jk], the full Ricci rotation 
coefficients F i j k  and the scalar components of the Riemann tensor. Those 
parts of the printout are suppressed in order to make Table II shorter. 
Line (9) contains the two right parentheses that close those of line (2). 
The items labelled by the numbers 3 to 8 can extend over several lines 
each, if necessary, and the items (4) to (8) can be written in an arbitrary 
order. Line (10) undoes the command from line (1), and line (11) tells the 
LmP system to revert to the keyboard for more input. 

Table II shows the complete printout for the input data from Table I. 
Table III shows the input and output  for a simple application of CALCULATE. 
It is meant mainly to demonstrate the abilities of our printing procedure. 
With reference to Table I, it should be self-explanatory. 6 The texts in the 

6 In Tables II and III a text-editor was used to remove several empty lines in order to 
make the tables smaller. 
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tables are scanned copies of the authentic input and output. 

TANL~ I I 
The output f o C  the dntn from Tm.ble I 

(robertson walker metric) 

0 
> ematr ix  = 1 

0 

l 
ematrlx 

2 ~ (1/2) 

2 
e a t  r | x = r R  

2 

3 
emRtr i x = r R s i n  (h} 

3 

(ematr ix  completed) 
(TIME = 0 memo) 

2 3 Z - [ I / Z )  
> DETERMINANT EMATRIX = r R ( I  - k r ) s i n  ( h )  

(DETERMINANT EMATRIX C ~ I c u t a t e d )  

(TIME = 0 m s e c )  

( i ~  cm]~u la t ad~  
( T I M E =  0 m s e c )  

(eg~ma c e l c u l a t e d )  

(TIME = 2000 msec) 

(~gamm~ c o m p l e t e d )  

(TIME = 2 0 0 0  msec}  

(gamma c a [ c u t m t e d )  
(TIME = 2000 msec) 

{gamma completed) 
(TIME = 2000 msec) 

(riemann calculated) 
(TIME : 4000 msec} 
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( .r iemanncompleted) 
(TIME = 6000 msec] 

-1 
r i c c l  = - 3 R R. 

00 tt 

- 2  - 2  2 -1  

> r i c c t  = 2 k R + 2 R R, + R R, 
1 1  t t t 

- 2  - 2  2 -1  
> r l c c t  = 2 k R + 2 R R, + R R, 

2 2  t t t 

- 2  - 2  2 -1  
> r i c c t  = 2 k R + 2 R R. + R R. 

3 3  t t t  

( r i c c l  c a l c u l a t e d )  
( T I M E - -  BOO0 m s e c )  

(CURVATURE INVARIANT ca l cu la ted )  
(TIME = BOO0 msec) 

- 2  - 2  2 -1  
CURVATURE INVARIANT = - G k R - G R R, - G R 

t 

(weyl c a l c u l a t e d ]  
(TIME = 0 0 0 0  msec) 

(ALL COMPONENTS OF THE WEYL TENSOR ARE ZERO) 

(I REALLY LIKED THIS! CAN I HAVE MORE ? PLEASE ?!?] 

END OF WORK 
(RUN T I I ~  = 6 0 0 0  m s e c )  

R, 
t t 
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TABLE III 
The Input and output fop a ~Imple te~t of CALCULATE 

(calculate '( 
(print ex~..nple) 
(constants a b c d) 
(coordir~tes x} 
(functions f {x}} 
(operation {derlv x {a "" (b "" {{der x f) "" {c "" d)}))}} 

}} 

{rds nil} 

(print example) 

(I UNDERSTAND YOU RE.O~ THE FOld.OWING EXPRF~;SION TO BE .q[MP[.IFIED) 

d 
C 

X 

b 
> derlv (x,~ ) 

THE RESULT IS 

d 
c d 

f, c d 
X 

b f, d -l+c 
x 

> result = a b o log (a) log (b) f, f, 
I xx x 

(! PZ.AI--LY l wz~n THIS ~ C.*.N ! HAVE .MOPZ ? P~,E.AS5 ?E?} 

END OF WORK 
(RUN TIME - 2 0 0 0  m s e c )  
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A P P E N D I X  A. A SHORT HISTORY OF ORTOCARTAN 

ORTOCARTAN was created by an informal team whose members never 
met all together. This appendix gives credit to everyone who significantly 
contributed to the development of the program. The contributors are listed 
in chronological order of entry into the team: 

1. Mateusz Ward~cki wrote the algebraic simplification program as 
part of his M. S. thesis at the Department of Mathematics and Mechanics 
of the Warsaw University in 1973 [10]. The program was intended for the 
Polish computer KAR65, but  was never implemented because the small 
core-size of the computer did not allow for practical work with algebraic 
computing. Later, the program reached the hands of M. Perkowski and 
became the heart  of ORTOCARTAN. 

2. Marek Perkowski (then at the Warsaw Technical University, now at 
Port land State University, USA), in collaboration with this author (A. K.), 
put  together the first complete code of ORTOCARTAN in 1977, and then 
assisted A. K. in learning LISP and the tasks described in point 3. In 
writing our program, we were inspired by the program CLAM [11] that  we 
were using then for a brief period. We deliberately reproduced some of the 
features of CLAM'S input syntax and output  style. 

3. A. K. installed ORTOCARTAN on the CDC Cyber 73 computer in 
Warsaw in 1977, then debugged and optimized it. 

4. Zdzistaw Otwinowski (then a student of physics at Warsaw Univer- 
sity, now somewhere in Chicago) entered the team in 1979 and contributed 
several brilliant ideas that  resulted in making the algorithms simpler, more 
general and more efficient. His contributions resulted, among others, in 
reducing the execution times of the program by the factor of 5 to 10 (de- 
pending on the problem). 

5. Jacques Richer and Arthur Norman (at Cambridge University) 
modified ORTOCARTAN in 1981 to run with Cambridge LISP on the IBM 
360/370 computers and their compatible German copies; that  version is 
now defunct. 

6. A. K. extended ORTOCARTAN for a few "abacus" programs (CAL- 
CULATE was one of them). The work was part of a project supported by 
the Alexander von Humboldt Foundation and hosted by J. Ehlers at the 
Max Planck Institute in Garching in 1981-82. In 1983, A. K. rewrote OR- 
TOCARTAN into SLISP/360 and installed it on a Siemens 4004 computer at 
Konstanz University. That  task was part of a project supported by the 
Deutsche Forschungsgemeinschaft and hosted by H. Dehnen; the work was 
assisted through mail-exchange by J. Fitch. That  version is now defunct, 
too. 
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7. Goktiirk U~oluk and E. Karabudak rewrote ORTOCARTAN into LISP 
1108 and installed it on a UNIVAC 1100 computer  at the Istanbul Univer- 
sity in 1982. It  was reportedly of some use there, but the version is most 
probably defunct now. 

8. A. K. extended ORTOCARTAN for substi tutions by pat tern-matching 
and for a few other conveniences in 1984. It  was a project supported by the 
Deutsche Forschungsgemeinschaft and hosted by F. tIehl at the University 
of Cologne. 

9. The new Cambridge LISP version was created from the 1984 U.T. 
LISP extension and the old (1981) Cambridge LISP version. It  is fully equiv- 
alent to the latest ~.w. LISP version and takes over as the main implemen- 
tation. 

A P P E N D I X  B. H O W  TO OBTAIN ORTOCARTAN 

ORTOCARTAN can be used only together with Cambridge LISP. Infor- 
mat ion on this dialect of LISP can be obtained from: 

Professor John Fitch, Director 
C O D E M I S T  Limited 
"Alto", Horsecombe Vale 
Combe Down 
Bath,  Avon, BA2 SQR 
England 

All information concerning ORTOCARTAN itself can be obtained from the 
author of this article. The main program comes together with CALCULATE 
and the user 's manual  [3] on a single diskette. The manual  provides tech- 
nical information on installing Cambridge LISP and ORTOCARTAN on Atari 
computers.  Should this be insufficient, users are welcome to contact this 
author.  
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