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A SURVEY OF COSMOLOGICAL EXACT SOLUTIONS

ANDRZEJ KRASINSKI

N. Copernicus Astronomical Center, Polish Academy of Sciences
Bartycka 18, 00 716 Warszawa, Poland

ABSTRACT

This is a preliminary presentation of a review of those exact solutions of Ein-

stein’s equations that can be interpreted as inhomogeneous cosmological models.

This note is a report on an ongoing project. The purpose of the project is
to assemble and classify those exact solutions of Einstein’s equations that contain
the FLRW models as a limiting case, and so can be interpreted as inhomogeneous
cosmological models. It is hoped that this will allow to prevent duplication of work
already done, and to identify those problems of mathematical cosmology that are
not yet solved. The review omits Bianchi models because sufficient information on
them is already available. The solutions classified so far fall into 5 groups:

The Szekeres - Szafron family. These are perfect fluid solutions with
zero rotation and acceleration (a unique geometrical definition of this family exists,
but is rather extended!). The most general case (p # 0) was worked out by
Szafron®. It divides into class I, generalizing FLRW only, and class II, being a
different generalization of FLRW and at the same time a generalization of the
Kantowski - Sachs® solutions. The more important subcases are the solutions found
by Szekeres*™® (p = 0), Ellis® (p = —A = const + a 3-dimensional symmetry group
with 2-dimensional orbits), Lemaitre’ (the spherically symmetric limit of class I
with p = —A, known under the name ”Tolman-Bondi”), Datt® (the spherically
symmetric limit of class II with p = 0). For some of the solutions in this family
generalizations were found: by Goode® of the whole class II to nonzero heat flow,
by Vickers'® and Ori!! of the Lemaitre solution to the charged dust case, by De and
Ray'? - the plane symmetric counterpart of Vickers, and by Stephani'® - a rotating

(+)

inhomogeneous generalization of Kantowski and Sachs®. In all, 64 papers were

(=)

published with derivations of the various solutions. Only 33 of them can claim

to have been new at the time of publication. In addition, more than 50 papers (+)
were published that discussed geometrical and physical properties of the solutions.
The whole family, together with the generalizations, can be generated (by taking

(*)

3 parent solutions: the 2 classes of Szafron? and the Stephani®® solution.

limits) from just 8 parent solutions' ’ ; in the strict perfect fluid case there are just

The Stephani - Barnes family. These are perfect fluid solutions with zero
rotation and shear and nonzero expansion - it is the complete invariant definition

(+) All these numbers are likely to be revised upwards.
(=) These numbers are likely to be revised downwards.
(*) The most general solutions are defined by an ordinary differential equation to be solved.
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of this family. It was worked out in this generality by Barnes'®, but special cases
were solved by Dingle!® and Kustaanheimo - Qvist!® (the spherically symmetric
case), Stephani'” (the conformally flat case) and McVittie!® (a superposition of the
Schwarzschild solution with a FLRW background). A generalization of the spheri-
cal case to charged perfect fluid source was first found by Shah and Vaidya!®. The
author of this note showed?? that the 3 type D cases of Barnes can be unified into
a single 2-parameter family. In all, 81 papers(t) were published with derivations
of the solutions, of which 18(~) can lay claim to have discovered a new solution
or an important subclass, or to have introduced a new method of treating several
solutions in a unified way (among the latter ones, the paper by Sussman®! made
an outstanding contribution). This family holds the record of repeated discoveries:
so far 16 for the Kustaanheimo - Qvist class and 12 for the spherical limit of the
Stephani'” solution. About 15 other papers(t) were devoted to studying geometri-
cal and physical properties of the solutions of this family. Several of the 81 papers
discussed physical properties of the spherically symmetric solutions from the point
of view of stellar collapse. The family, together with generalizations, can be gener-
ated from 9 parent solutions (*), and from just two in the strict perfect fluid case:
the Stephani !7 solution and the one from Ref. 20.

The Vaidya - Patel - Koppar family. It contains 8 papers (*). These
solutions are superpositions of the FLRW background with the Kerr, Kerr-Newman
and Demianski solutions. The source is in each case a mixture of a perfect fluid,
null radiation and electromagnetic field. The 3 components of the source are,
unfortunately, coupled together in such a way that, for example, vanishing radiation
density automatically implies zero electromagnetic field and zero shear, rotation
and acceleration, leaving only either vacuum or the FLRW spacetime as a limit.
In spite of this drawback, the family is an interesting experiment in generating
new solutions from old ones. This activity was initiated by Vaidya ** who found a
superposition of the Kerr solution with a FLRW background (it does not reproduce
the McVittie '8 solution in the limit @ — 0!). Five of the 8 are parent solutions,
with the highest sophistication achieved in the papers by Patel and Koppar 23725

The Tabensky - Taub - Letelier - Tomita family. The papers of this
family, 15 so far, elaborate the field equations for a nonrotating ”stiff fluid” source
(p = p), with a 2-dimensional Abelian symmetry group G, acting on spacelike

orbits. Only 5 of the papers (f) provide explicit examples of solutions, the other
ones are prescriptions for solving the Einstein’s equations and form a partly ordered
sequence of progressing generality, from Tabensky - Taub 2 (plane symmetry)
through Letelier 2" and Ray ?® (orthogonal generators of G,) to Tomita 29 (arbitrary
G,). A subcase of the Ray - Letelier spacetime was generalized by Charach and

Malin 2° to include electromagnetic field of the same symmetry. Worth a separate
mention is the paper by Belinskii ®! discussing solitonic distortions of a FLRW
background with such beautiful physical insight that one begins to regret that
matter with p = p probably never existed. The sets of equations elaborated by
Tomita 2 and Charach - Malin 30 are parent sets for the whole family; in the case
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of pure perfect fluid all the solutions are subcases of Tomita’s equations.

Miscellaneous experiments. This is a loose collection of 14 papers(*) whose
authors found generalizations of the FLRW models by trial and error in various
directions. The families of solutions found by Wils 32 and Oleson 3 are most
elaborate. The first one is a collection of solutions with an abelian G, having no
definite equation of state, the second one is a complete collection of perfect fluid
solutions of Petrov type N where the principal null congruence of the Weyl tensor
is geodesic. Both can reproduce all 3 types of FLRW limits. Thirteen of the 14 are
parent solutions, not derivable as limits of the others.

The review allows to draw the following preliminary conclusions:

1. Very interesting solutions were found already in the 1930ies (Lemaitre’,
McVittie'®) Datt®) and 1940ies (Kustaanheimo-Qvist '), and their importance
was immediately recognized by a few authors (Dingle '°, Tolman 34, McVittie 3

Sen *°). Unfortunately, those papers were ignored by the opinion-forming elite who
34

)

just knew 3¢ that the Universe we live in is homogeneous. The papers by Tolman
and Sen %% contain proposals of paradigms that would be attractive still today. In
particular, Sen showed that the Lemaitre 7 solution predicts a behavior of density
distribution that today would be called formation of voids.

2. No rotating generalization of the FLRW models is known. Several solutions
exist for which 6 - w # 0, but they become static in the limit w — 0. The only ex-
ception is the Stephani ' solution that reduces to an inhomogeneous generalization
of Kantowski - Sachs when w = 0.

3. Those spherically symmetric perfect fluid solutions for which §-0-4® # 0 were
studied without solving the Einstein’s equations®’3%. The examples of solutions
found by Narlikar-Moghe3®4% and McVittie-Wiltshire?! are rather special and no
invariant definition was provided. The effort spent at investigating the special cases
o =0 and 4* = 0 produced multiple repetitions of the same results.
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