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Wyman (1946) found the unique spherically symmetric inhomogeneous solution of Ein-
stein’s equations where the source is a shearfree expanding barotropic perfect fluid. Two
independent proofs of this statement are reconciled: a missing detail in Wyman’s .proof
is reinserted, and the additional assumption Srivastava and Prasad (1983) is shown to be
automatically fulfilled fg)r a perfect fluid. The uniqueness of Wyman's soluticn is shown
to imply that the barotropic equation of state is a strong and rather artificial constraint

on cosmological models.



1. THE PROBLEM.

* The problem of solving the Einstein field equations for a spherically symmetric shear-
free expanding barotropic perfect fluid was posed for the first time by Wyman! in 1946
(though in the language of then the words "shear” and ”expansion” were not used). He
derived the field equations for the problem, then presented one solution to them (in fact
two, but the second one is a coordinate transform of the first) and stated that it was the
only solution apart from the Friedman-Lemaitre-Robertson-Walker metrics (FLRW - the
term also not in use by then). This statement looks suspicious because Wyman apparently
chose certain values of free parameters in his equations. However, the statement is correct.
After arriving at his set of equations (let us call it SE) Wyman did not warn the reader
that the condition p = p(p) was not fully used up yet, although his previous reasoning
suggests that it was. Consequently, each solution of SE had to be checked for consistency
with p = p(p), and in this way Wyman established the uniqueness of his metric. In sec.
2 of this paper, the condition p = p(p) is reformulated as an additional equation for the
metric functions which then uniquely selects Wyman’s metric from all possible solutions
of SE.

Srivastava and Prasad® (abbreviated S-P) repeated Wyman’s calculations in a differ-
ent coordinate system and confirmed his result. However, their proof contains a simplifying
assumption of mysterious origin that arouses suspicions about the generality of the con-
clusion. It turns out that S- P omitted an equation. Their assumption follows from the

equation they omitted and so is fulfilled automatically (sec. 3).

The uniqueness of the Wyman solution was confirmed also by Collins and Wainwright?

- who noticed that the simplifying assumption of S-P is superfluous for the proof, but did
not notice that it is always fulfilled.

Sec. 4 discusses the papers by McVittie* and Taub® who hit upon the Wyman'’s prob-
lem independently, apparently unaware of Ref. 1. McVittie’s solutions include Wyman’s
as a subcase, but do not include the FLRW models. Taub rederived Wyman’s equations

without discussing any solutions.

Finally, it is argued in sec. 5 that the barotropic equation of state turns out, in the
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light of Wyman’s result, to be a very st‘t’mg and rather artificial constraint on cosmological
models. Wyman’s solution in shown to reduce in the limitting case of spatial homogeneity
to the de Sitter solution. Hence, the equation of state p = p(p) selects from among

spherically symmetric shearfree expanding perfect fluid soh}tions a rather small subset,

leaving the FLRW models without inhomogeneous parent solutions.

2. THE FULL SET OF WYMAN’S EQUATIONS.

We shall quote here only the main points of Wyman’s reasoning without repeating
the proofs, and reinsert the information omitted.

Wyman began with the metric:

ds® = e” dt? — e*(dr® + r2d6” + r? sin? 0d4?), (2.1)

where v(t,r) and u(t,r) are functions to be determined from the field equations. He

assumed that the source is a perfect fluid with the barotropic equation of state, p = p(p),

while the coordinates of (2.1) are comoving, so the velocity field is u® = e=*/2 éy. From
*

the field equations he concluded that:

e’ =e?® ;2 (2.2)

where i = Op1/0¢, while ®(¢) is an arbitrary function, and that e must obey the equation:

(w7 — p )2 — ' 1) = p(r), (2.3)

where p = Opu/0r and (r) is another arbitrary function. The case f = 0 implies a static
solution and is not considered. Let us note that with the substitutions e* = 1 /F? and

u =r?, eq. (2.3) changes to:

Fouu [F? = fro(u); (24)

where frq(u) = —(r(u))/(8u). In the form (2.4), and without any assumption about
. ..the equation of state, the field. equations. for (2.1) were first. thoroughly investigated by.
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Kustaanheimo and Qvist® (see also Ref. 7). Eq. (2.3) fellows from the requirement that
the energy-momentum tensor has a triply degenerated eigenvalue (i.e. that the pressure is
- isotropic in the sense of the Pascal law), so it is oiten called the isotropy condition.
With (2.2) and (2.3) the field equations just define pressure p and matter-density p.
The requirement that the equation of state is barotropic imposes further limitations. From

the equations of motion, T#¥;, = 0, it follows that:

p=—(p+p)i /L (2.5)
) 3 .
p=—5(p+pl (2.6)
From here it follows:
(p+p)p' = pp" | (2.7)

Since p = p(p) by assumption, the function ¢(p) may be defined:

dgq

Bk S -1 2.
ap (p+p)7", (2.8)
and then it follows further that
o= p(v), (2.9
where
v=t+ k(r), (2.10)

k(r) being an arbitrary function. Actually, (2.7) and (2.8) imply v = aft) + k(r) where «
is another arbitrary function, but since a,; # 0 by assumption (otherwise a static solution

results), a(t) may be chosen as the new t-coordinate, with (2.10) resulting. Then (2.6)

may be integrated:

b= —3a(p) + 1(r), (211)
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where f(r) is one more arbitrary function. Wyman then introduces a set of new symbols:

22, (207 2h(a),  R((22)7) (),
@) Y 2(a), aleo0) S F(). - (212)

With these, eq. (2.11) substituted into (2.3) implies:

. 1 .
e(F+Z)/2 [(F _§F )yM: +F7v (yu:z —Ysz sz ) +2es — 2272] = h(l‘) (213)

Since ¢ # 0, the variables v and z can be treated as independent. This implies certain

conditions on F,y,z and h. Wyman concludes that the conditions are:

Yz Yz %25z = ayé ) (214)
' 1 2 2 =\
Zszz _52,1- = byu; ) (2'13/

F/2 1 2 4 a1
e’ (Fyy — QF’” tal™, +b) = ¢, (2.16)
h=cel?y2, (2.17)

where a,b and ¢ are arbitrary constants. The deduction of (2.14) - (2.17) from (2.13) is
more subtle than Ref. 1 allows to guess, but it is true that (2.14) - (2.17) follow from
(2.13) apart from special cases which lead either to static solutions or to FLRW models.
Egs. (2.14) - (2.17) allow a multitude of solutions for y,z and h (all of them elemen-
tary), and it is surprising to read in Wyman's paper: ”The author has carried through
a complete investigation of every case possible and only two new solutions exist” (one of
them follows when a = b = y,,, = 0, the other when a =p= (1/vy),zz = 0 and is related to
the first by the coordinate transformation r = 1/r'). The fact is that egs. (2.9) - (2.10) are

only necessary, but not sufficient conditions for (2.7) - (2.8) to held. Therefore in deriving
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(2.14) - (2.17) the condition p = p(p) was not fully used up and every solution of (2.14)

1
- (2.17) must be checked for consistency with p = p(p). This procedure is illustrated by

--Wyman’s case 2 in-his-sec. 3, but the necessity of the check is not verbalized in the paper:= -

The check runs as follows. Egs. (2.7) - (2.8) imply

/e—Q(”) dp = v, (2.18)

from which it follows, on differentiating by r that:

pr=elk,=e"3 k. (2.19)

Now, a formula for p results from the field equations (Wyman’s eq. (2.8)):

3
kp=—e M +p A2 )+ ST, (2:20)

(k i 87G/c*), and from here, using (2.11), (2.12) and (2.3) it follows that:

Kpyr= —(5rh + 2R, Y e 3H/2 (2.21)

Comparing (2.19) and (2.21), and using (2.12) again we obtain:

5h+2zh,, = —ker®y,,. (2.22)

Eq. (2.22) makes full use of (2.7) - (2.8), and it selects uniquely the two Wyman’s metrics
from the set of inhomogeneous (y,; # 0) solutions of (2.14) - (2.17). Hence, the full set of
equations to be considered consists of (2.14) - (2.17) and (2.22).

Wyman took note of the fact that with ¢ = 0 eq. (2.3) is fulfilled by e* = [A(t)r? +
B(t)]7? where A and B are arbitrary functions. This is the spherically symmetric subcase
of the Stephani solution®1°. Had the author taken it seriously, he would have been its
first discoverer. However, he dismissed it instantly observing that it leads to p = p(¢) what
is possible with p = p(p) only if also p = p(t), i. e. only for the FLRW metrics. The credit

for this discovery must thus go to Kustaanheimo and Qvist®.




3. THE FLAW IN THE ARGUMENT OF SRIVASTAVA AND PRASAD.

They begin with the metric:

ds? = e¥ d¢? — e“(dr2 + d6?* + sin? 9d¢2), (3.1)

where v = v(t,r),u = p(t,r). Note that the coordinates and functions of (3.1) are not
identical with those of (2.1). Marking the quantities from (3.1) by the subscript SP, the

transformation to (2.1) is:

rsp=1nr, psp=p-+2Inr. (3.2)

There are more clashes of notation between Refs. 1 and 2. Therefore we shall stick to
each paper’s original notation, and only point out the equivalence between formulae. The

following dictionary relates the various symbols of Wyman and S-P:

S-P T et T o X B
Wyman Inr r?ek e’ ef e /2 e

S-P C A o B Y
Wyman (22) /2212 28/225/2, 2/c 2(a+1)/c —b/c

S-P consider the field equations together with the equations of motion in the form:

2p' = ~(p+p)V, (3.4)
2 = =3(p + p)fs (3.5)
1__1_, 3p/2 1 ‘o
m = 4/»pe J7 (3.6)
77’1—-—}‘ sul? 7

= — et (3.7)



where

sm 4 predn/i—r _ petl?  gens?, (3.8)

They conclude from (3.6) - (3.8) that

8m = ZrpeSt? 4 a(r) 4 N, (3.9)

where A(r) and N(t) are arbitrary functions. Then they assume N(t) = const (so N =9
by redefining 4), arguing that this is hecessary for the metric to be regular at r = 0, Witp

N =0 they find that the assumption P =p(p) and egs. (3.6) - (3.9) imply:

(e—u/Z)» — e-—#/Q _ Ae“#. (310)

Eq. (3.10) is precisely the isotropy condition (2.3) what may be verified with use of (3.2).
Without the assumption N = () eq. (3.10) would contain the additional term (=Ne=#)on
the right-hand side. Then, however, the 1sotropy condition would imply N = 0, otherwise
the source would not he a perfect fluid. Hence N — 0 need not be assumed, and eq. (3.10)
applies generally, §-P found the assumptionnecessary because they left out the 1sotropy
condition from the get (3.5) - (3.8). In fact, one more equation is missing from the set, it
18 24" — ' = (only then is the Einstein tensor diagonal), but S-P recovered this one ag
the integrability condition of (3.4) - (3.5).

S-P further derive a set of equations that is equivalent to (2.14) - (2.17) (this may be
verified with use of (3:3)), and they do not neglect (2.22). In this way they conclude that

Wyman’s solution is indeed unique,

4. TWO OTHER RELATED STUDIES,

The papers of McVittie! and Tauh® discussed in this section touched upon the Wyman
problem only marginally, but they must be mentioned here in order to avoid a possible
confusion,

McVittie assumed the metric to be:



ds® = ydt* — R3S*e"[dr? + f*(d6” + sin? 6dg?)), (4.1)

where S(t) and f(r) are arbitrary functions, 1 is assumed to be a one-argument function

of the variable z defined by:

2 def

e’ = Q(r)/S(2), (4.2)

Q(r) is another arbitrary function, and:

y=1-mn,./2. (4.3)

The last relation follows from the (O 1) field equation if the coordinates of (4.1) are co-
moving and the source is a perfect fluid.

The equations (4.1) - (4.3) follow from the field equations and the equations of motion
if it is assumed that the perfect fluid source obeys a barotropic equation of state. This was
demonstrated by Taub® (and, in fact, by Wyman?). However, the converse is not true:
if (4.1) - (4.3) are assumed, then p = p(p) need not hold (see also Ref. 5). Discarding
p = p(p) for (4.1) - (4.3) is equivalent, in Wyman’s notation, to dropping eq. (2.22)
while retaining (2.14) - (2.17). With (2.22) dropped, the set (2.14) - (2.15) admits several
solutions which can be all obtained by elementary though laborious calculations. Then A
can be calculated from (2.17) for each solution of (2.14) - (2.15). Eq. (2.16) is independent
of the others and is the only one that leads to transcendental functions.

Although the equations derived by McVittie (equivalent to our (2.14) - (2.17) with
(2.22) omitted) are fulfilled by the W yman and the FLRW metrics, the specific examples
presented in Ref. 4 include only the W yman solution as a subcase. The FLRW mod-
els which would result with Q = const are explicitly excluded from consideration. In
McVittie’s notation, the Wyman model results when f=r,a=1andb=0.

Taub® rederived the set equivalent to our egs. (2.14) - (2.17) in a notation that was
quite closely followed by S- P2 and in our sec. 3. but omitted the equivalent of eq. (2.22).
However, he did not attempt to solve the equations (Ref. 5 is mostly devoted to the

Kustaanheimo-Qvist problem® ).



5. THE BAROTROPIC EQUATION OF STATE AS A SELECTING AGENT
IN THE SET OF SOLUTIONS.

The Wyman’s solution is given by (2.1) with:

e = % /(144w?), (5.1)
e’ = w,? /[2(aCyCst + Bw?], (5.2)
where
e 1 X
v d:f t —+ 502’!‘2, (53)

C3,Cs,c and [ are arbitrary constants, o = 144/c?, w is a special case of the Weierstrass

elliptic function!! defined by the equation:

w,% = 4uw® — Cs, (5.4)

and the matter density and pressure are:

kp = 6aCy(ww,, +Csv) + K, (5.5)

Kp = —aC’z(ww,v +6C5v — ‘503w/ww ) - K, (5~6)

where K = const (there is a misprint in Ref. 1, the factor Cy in (5.6) is left out). Since
the FLRW models fulfil all the initial assumptions of Wyman’s paper (i.e. are spherically
symmetric, shearfree, expanding and admit a barotropic equation of state), one should
expect to find them among the solutions. They should result when p and p become
spatially homogeneous, i.e. cease to depend on r. This happens when either p,, = p,,=0
or v,r= 0. The first possibility leads to a static solution. In the second case, Cy = 0.
Then, however, p = —p = const, and the de Sitter metric results, the source degenerating

into the cosmological term. This means that within the family of spherically symmetric
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shearfree expanding perfect fluid spacetimes the barotropic equation of state selects a
"fiber” over the de Sitter spacetime, leaving the FLRW models as isolated points without
- any inhomogeneous parent -solutions. Note that without the assumption p = p(p), the
expanding perfect fluid solutions for the metric (2.1) are determined by (2.3) and (2.2),
i.e. any function t(r).generates a solution of (2.3) which then depends on two arbitrary
functions of ¢, so indeed p = p(p) throws out a lot (see also Ref. 7 and references therein).
All the FLRW models result from (2.3) when ¢ = 0 and x = In[R%(¢)/(1 + +kr?)?].

The barotropic equation of state turns out to be even more restrictive when ap-
piied to plane and hyperbolically symmetric solutions (with other assumptions as by
Wyman). They were considered, along with the spherically symmetric ones, by Collins and
Wainwright® (the solutions were originally derived by Barnes'?, their relation to the FLRW
models was discussed in Ref. 7). In the plane symmetric case, the condition p = p(p) also
selects a generalization of the de Sitter metric only, and necessarily brings in an additional
symmetry. In the hyperbolic case, it kills o{f all inhomogeneous spacetimes, letting only
the FLRW models survive (see Ref. 3).

This shows that the requirement p = p(p) is a very strong constraint on cosmological
models. It seems unnatural in inhomogeneous models because it forces the entropy per
particle to be a universal constant (see e.g. Ref. 13) where most other scalar quantities vary
in space and time. Thus the habit of calling p = p(p) the equation of state and claiming
that with dp A dp # 0 no equation of state exists (or, less extremely, no “reasonable” one)

is itself not necessarily reasonable (see also Ref.14).

10




-~

10

11

12

i3

M. Wyman, Phys. Rev. 70, 396 (1946).

D. C. Srivastava, S. S. Prasad, Gen. Rel. Grav. 15, 65 (1983).

C. B. Collins, J. Wainwright, Phys. Rev. D 27, 1209 (1983).

G. C. McVittie, AInn. Inst. Poincare A6, 1 (1967).

A. H. Taub, Ann. Inst. Poincare A9, 153 (1968).

P. Kustaanheimo, B. Qvist, Societas Scientiarum Fennica Commentationes Physico-
Mathematicae XIII no 16, 1 (1948).

. Krasinski, Shearfree normal cosniological models, submitted to J. Math. Phys.

A
H. Stephani, Commun. Math. Phys. 4, 137 (1967).
A. Krasitski, Gen. Rel. Grav. 13, 1021 (1981).

A. Krasinski, Gen. Rel. Grav. 15, 673 (1983).

M. Abramowitz and I. E. Stegun (Editors). Handbook of Mathematical Functions.
National Burearu of Standards, Washington 1970, p. 629.

A. Barnes, Gen. Rel. Grav. 4, 105 (1973).

A. Krasinski, Acta Phys. Polon. B5, 411 (1974).

4 R. Sﬁssman, J. Math. Phys. 29, 945 (1988).

11



