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Early inhomogeneous cosmological
models in Einstein’s theory

Andrzej Krasinski

7.1 Introduction

Just as everyone knew in the 1920s that the universe was static
(Ellis 1988b), so almost everyone knew for sure into late 1970s that the
universe was homogeneous. Therefore those works which explored the
possibility of our universe being lumpy were ignored by mainstream
cosmologists. However, a few early papers contain surprisingly powerful
results. Here, an attempt is made to pull them out of the shade and give
them the credit they deserve.

The investigation underlying this discussion was an offspring of a review
of all exact solutions of Einstein’s equations which generalize the Fried-
mann-Lemaitre-Robertson—-Walker (FLRW) cosmological models. The
main review is not yet completed, so it is possible that other papers will be
added at a later date to the present collection. In accordance with the
framework of this symposium, the only generalizations of the FLRW
models which will be discussed are those found before 1970. However, it is
worth knowing that many more were found later, and the main review
includes so far over seventy independently obtained (though not always
independent) solutions.

Each of the sections 7.2 to 7.6 contains a concise presentation of one
particular class of models, namely:

Section 7.2: the model found by Lemaitre (1933), known under the
name Tolman-Bondi, and the considerations of Tolman (1934)
and Bonnor (1956) which were based on it. |
Section 7.3: the model of McVittie (1933) which is a superposition
of the Schwarzschild and the FILRW solutions.

Section 7.4: the spherically symmetric shearfree barotroplc solu-
tion of Wyman (1946).

Section 7.5: the spherically symmetric shearfree perfect fluid
spacetimes of Kustaanheimo and Qvist (1948).

Section 7.6: the general conformally flat expanding perfect fluid
solution of Stephani (1967).
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~ Insection 7.7 note is taken of a few historical curiosities of alesser physical
significance.

7.2 The Lemaitre—-Tolman model

The solution of Einstein’s equations underlying this model was
found by Lemaitre (1933). It became later known as the “Tolman-Bondi
model,” even though Tolman (1934) referred to Lemaitre, and Bondi
(1947) quoted Tolman, and none of the latter authors claimed priority.
The model should thus properly be called after Lemaitre, but in order to
avoid confusion with the FLRW models I propose to call it Lemaitre—
Tolman (L-T).

In a convenient notation introduced by Zeldovich and Grishchuk (1989)
- the metric of the model is

rerRZ
1+f(R)

where f(R) is an arbitrary function, the prime denotes 3/3R, r(t,R) is
determined by the equation

(3] s ?

ds* = df* - — P(t,R) (d6? + sin 0.dg?), (1)

F(R) is another arbitrary function and A is the cosmological constant. The
matter density in the model is

iy 3)
xo —r_ir—"

where » = 87G/c? and the pressure is identically zero. The FLRW limit is
obtained when

r=RS(9), f=—kR?, F=CR?, 4)

where S(f) is the FLRW scale function, k is the FLRW curvature index
(k= %1,0), and C is a constant. In the limit, (2) becomes the Friedmann
equation (with the mass-conservation 1ntegral already incorporated).
Usmg this solution Tolman (1934) showed that the Einstein static
universe is unstable against a perturbation different from the one con-
sidered by Eddington (1930) (where the matter density was knocked off its
Einstein value and allowed to vary in time, but forced to remain constant
throughout space at each given moment). The L-T model can be thought
- of as such a perturbation of the Einstein universe in which the matter
density is allowed to vary both in space and time. If the density is initially
non-uniform in space, then the evolution determined by (2) will enhance
rather than suppress the inhomogeneity. This is simultaneously an
instability of the FLRW models against the growth of inhomogeneities.
"Tolman also observed that the universe could contain several homo-
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geneous regions, each described by a FLRW metric and having a different
matter-density, with transition zones interpolating between them des-
cribed by L-T metrics. In such a universe, each FLRW zone would ““then
behave as in some particular completely homogeneous model without
reference to the behavior of other parts of the model.” Tolman concluded
his paper as follows:

Hence, it would appear wise at the present stage of theoretical develop-
ment, to envisage the possibility that regions of the universe beyond the
range of our present telescopes might be contracting rather than expand-
ing and contain matter with a density and stage of evolutionary develop-
ment quite different from those with which we are familiar. It would also
appear wise not to draw too definite conclusions from the behavior of
homogeneous models as to a supposed initial state of the whole universe.

The paper contains other statements that sound surprisingly modern:

it is evident that some preponderating tendency for inhomogeneities to
disappear with time would have to be demonstrated, before such models
could be used with confidence to obtain extrapolated conclusions as to the
behavior of the universe in very distant regions or over exceedingly long
periods of time. [“such models” here means homogeneous] ... in
regions where the density starts to increase it is evident from the full form
of equation (18) that reversal in the process of condensation would not
occur short of arrival at a singular state involving infinite density or of the
breakdown in our simplified equations. [Tolman’s equation (18) expres-
ses [9%(log 0)]/[3*] through g and the metric functions.]

Bonnor (1956) used the L-T model to discuss the evolution of a localized
condensation of matter in the universe. He assumed that the condensation
is a sphere of a FLRW space surrounded by an L-T transition zone which is
in turn surrounded by another FLRW space with a different density thanin
the central region. By 1nvest1gat1ng the evolution of such condensations
Bonnor found that perturbations of homogeneous distribution of matter
may produce galaxies by today only if they are initially several orders of
magnitude larger than purely statistical fluctuations in density. This was a
problem of much debate in the 1970s in the framework of the so-called
theories of galaxy formation which were based on a linear approximation

to the field equations. Bonnor had the result earlier and from the exact
theory.

Note that from (1) and (4) we can write
f(R) = —k(R)R?, ©)

i.e. the curvature index k in the L-T model depends on position. It may
thus happen that the L-T universe will be “open” (k < 0) in one part of the
spacetime and “‘closed” (k > 0) elsewhere. This shows that the classifica-
tion of cosmological models into open and closed according to the
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curvature of their spatial sections applies only to the FLRW class and is
forced upon us by the strong assumptions about symmetry underlying this
class. In more general models such a distinction may be sometimes
impossible and so irrelevant in general (note also the last paragraph of
section 7.6 below).

From (2) one can conclude that the big bang may have occurred at
different times in different locations which is also quite an enlightening
departure from the FLRW picture.

Although originally derived in a coordinate-dependent way, the L-T
model can be uniquely defined by the following geometrical and physical
properties: 1. The spacetime is spherically symmetric, 2. The source in the
Einstein’s equations is dust + the cosmological term, 3. The expansion
and shear are nonzero. This characteristic follows from the work of Collins
and Szafron (1979). The model is the limiting case of spherical symmetry
and constant pressure (p = A) of the Szafron (1977) solutions. The subcase

A =0 is the spherically symmetric limit of one of the Szekeres (1975)
solutions.
- The L-T model is the only one among those described in this note that
gained a limited recognition and is occcasionally used for discussing
cosmological problems.

7.3  The McVittie (1933) model
This solution, called by McVittie “the mass particle in an expand-
ing universe” is a superposition of the Schwarzschild solution and the
FLRW models. The metric of the model (in a slightly modified notation) is

= ey 2’1 LI M) dr* + rA(d6? + sin® 0 d¢? (6)
* —‘<,1+M(t,r)‘)dt2 1+ k) [dr”+7(d67+sin"0 dgT)],
where] :
M(t ) tu( )(1+1k1’2)1/2 | (7)

k and c are constants, u(¢) is an arbitrary function, and 8(¢) is related to u by

Pu=—2u. (8)
In McVittie’s original notation k was represented as 1/R* which suggested
(incorrectly) that the constant must be positive. The metric (6)—(8) fulfills
the Einstein equations with the source being a shearfree expanding perfect
fluid that has non-geodesic flowlines (the non-geodesic flow is forced by
spatial gradients of pressure).
The Schwarzschild solution in the isotropic coordinates is obtamed from
(6)-(8) when u and B are constant and k =0. The FLRW models result
when u =0 (so M =0), then (8) is fulfilled with arbitrary 5().
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This solution looks appropriate for discussing, for example, the follow-
ing problems:

1. The influence of the expanding universe on the mass of an
isolated object. Note that u(f) becomes the mass in the Schwarzs-
child limit, and e#> becomes the scale factor in the FLRW limit.
Consequently, (8) implies that the mass of an isolated object
decreases with time (/4<0) when the universe expands (3>0)
which is a very neat Machian effect.

2. The influence of cosmological expansion on the orbits of gravi-
tationally bound systems. The “‘Swiss chieese’”” model of Einstein
and Strauss (1945) suggested that no such influence should occur.
The McVittie model shows that the orbits should be expanding at
least due to the decrease of the mass of the central body (see
another reason two paragraphs below).

3. The description of black holes in the cosmological background
(i.e. asymptotically nonflat black holes). Even the definition of
such a black hole is a problem of debate (Ellis 1984) while here we
have a rather obvious example for testing the (not yet form-
ulated) theory.

Problem 3 is too modern to have been considered in the 1930s, but 1 and
2 could well have been attempted. McVittie did some preliminary work on
problem 2. It was a qualitative discussion, without proper care being taken
to define the radius of the orbit in an invariant or measurable way.
Noerdlinger and Petrosian (1971) used the McVittie model to discuss, also
only qualitatively, the general relativistic correction to the Newtonian
effect of the expansion of an orbit due to the outflow of mass from within
the orbit (in (6) the cosmic medium extends throughout the planetary
system and streams outward; Noerdlinger and Petrosian were actually
interested in the orbit of a galaxy in a cluster). No other studies of problem
2 and no studies at all of problem 1 are known to me.

The solution (6)—(8) was guessed rather than derived, and no derivation
was presented until today. The model will be shown in section 7.5 to be a
subcase of a more general class but the limiting transition has no physical
interpretation.

McVittie observed that if the cosmological constant is nonpositive, then
“at some time in the past the expansion started instantaneously with a
finite velocity” and ““there is a ‘retarding force’ slowing up the expansion
which, obviously, cannot be the initial cause that started the latter.”
McVittie used this as an argument that A must be positive, but today we
would say that it was a prediction of singularity, apparently independent of
the earliest singularity theorem by Tolman and Ward in 1932 (Ellis 1988a).
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7.4  The Wyman (1946) solution
Wyman (1946) investigated the spherically symmetric solutions of
Einstein’s equations for which the source was a shearfree expanding

perfect fluid obeying a barotropic equation of state. He found the follow-
inhomogeneous solution:

ds? = YaCyCat + B) "L P2PLdP — (a FP?)~Mdr + r*(d6? +sin* 0 dw?)],|  (9)
where C,, C5, a, B ;?md c care arbitrary constants, a = 144/c?, |

vt =+ 3G, : ~ (10)
and 2 (v) is determined by

P2 =4P3 — C;. | (11)

The physical interpretation of the metric in unknown, but it is a general
solution of a formal problem: under the assumptions stated,' (9)—(11) is
the unique inhomogeneous model. Such a statement is contained in
Wyman’s paper, but the original proof made it difficult to see how (9)—(11)
is singled out from among the other solutions (Krasiiski 1988). A
transparently complete proof by a different method was published later by
Collins and Wainwright (1983). | '

In the limit of spatial homogeneity, C,— 0, only the de Sitter model is
obtained from (9)—(11), although the general FLRW models fulfill all the
initial assumptions and should be expected to also show up as subcases.
Thus the FLRW models are isolated in Wyman’s class, with no inhomo-
geneous parent solutions. This is a consequence of the barotropic equation
of state (Krasinski 1988, see also section 7.5).

7.5  The Kustaanheimo-Qvist (1948) spacetimes

Kustaanheimo and Qvist (1948) (abbreviated K-Q) considered
the same problem as Wyman, but without the assumption p = p(p). The
metric they obtained is

ds? = [FI(A()F)|?d? — F~[dr? + *(d6? + sin? 0 d¢?)], (12)
where A({) is an arbitrary function, x = 7* and F(¢,x) obeys
F JF*=f(x), (13)

f(x) being an arbitrary function. For two forms of f(x) general solutions
were given later: by Wagh (1955) for f= ax where a = constant and by
Wyman (1978) for f= (ax® + bx + ¢) > where a, b and ¢ are constants.
Even with these special forms of f, the general solution for F is not an

! The assumptions were transiated into modern language, the terms shear and expansion not being in
use in 1946.
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- elementary function. K-Q discussed briefly the problem of solvability of
(13) in elementary functions, and a more systematic investigation was
done much later by Stephani (1983). The conditions given by K—Q and
Stephani are sufficient, but not necessary, so they do not exhaust all the
possibilities. The class defined by (12)—(13) includes as subcases, among
others:

1. The FLRW models in which f=0 and F = (1 + 2k?)/R(¢).

2. The Wyman solution of section 7.4 in which f=3C2 = const and
F(t,x) =|27|(v), v=1+3Cyx.

3. The McVittie solution of section 7.3 in which f=
—3(uePc)(x + 3kx*) 2 and F=ce P21 + tkx)[1 + M(¢t,x)] 2
(note that by (8), ue”? is a constant).

4. The spherically symmetric limit of the Stephani model of section
7.6in which f = 0 and Fis the same as in FLRW, but k£ = k(¢) is an
arbitrary function.

The limiting transition 2 is equivalent to imposing the barotropic
equation of state on inhomogeneous solutions of (13). Transition 4 is
equivalent to setting the conformal curvature to zero, and transition 1
results when pressure is homogeneous in addition. Transition 3 does not
seem to have any clear interpretation.

The K-Q paper is a rare example of a problem satisfactorily treated
already at first go. The authors reduced the Einstein’s equations in their
case to the simple (13). After forty years their result is still at the top of a
large family of models, and no far-reaching generalizations were found
(Barnes 1973 obtained the plane- and hyperbolically symmetric counter-
parts of (12)—(13), and Faulkes (1969) found the generalization of (13) in
which a spherically symmetric electromagnetic field is present).
Unfortunately, the paper was published in an unknown journal and the
result did not reach anyone for a long time. Over the years, the K-Q
equation (13) was rederived repeatedly by several authors (see list in
section 7.7). Some of the particular solutions of (13) were discussed as
stellar models. The only cosmological application of a subcase of (12)—(13)
that I know about is the one discussed in section 7.3.

Note that, f(x) given, the general solution of (13) will contain two
arbitrary functions of time as integration “constants.” Hence, with
arbitrary f the family of solutions of (13) is labelled by three arbitrary
functions, each of one variable. All this wealth of solutions shrinks to (9)-
(11) plus the FLRW models when the barotropic equation of state is
imposed. This shows how restrictive the assumption p = p(p) is.
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- 7.6  The Stephani (1967) universe

Stephani (1967) found the following simple generalization of the
FLRW models:

ds?* = D*(t,x,y,2)d? — ROV 2(t,x,y, z)(dx* + dy* + dz?) (14)
where
V=1+3k(@O[(x — xo(0))* + (v = yo())* + (2 = 25(8))*], (15)
_ e (RY(Y) 16)
o, "

~and R(?), k(1), x.(2), yo(1), zo(f) and F(¢) are arbitrary functions. The
matter-density and pressure are given by

%o = 3C2 (f), ' (17)
, VoV (18) -
— 21, Y. ,
xp = 3C +;2CCR /(R )J, B
where C(¢) is a function related to k, F and R by
k=(C*—1/F>)R>. (19)

This is the most general conformally flat solution with an expanding
perfect fluid source (Kramer et al. 1980). It was found in this generality
only in 1967, but its spherically symmetric subcase (which is the limit f=0
of the K-Q models and results from (14)—(16) when x,, y, and z, are all
constant) appeared already in the papers by Wyman (1946) and K-Q
(1948), and was rediscovered many times more (see listin section 7.7). The
- FLRW models result when x,, y,, z, and k are constant; then D becomes a
function of 7 only and may be scaled to 1 by transforming ¢. After such a
transformation F=—R/R and (19) coincides with the Friedmann
equation.

Since k = k(f), the model predicts that the universe can have its spatial
curvature negative at one time #, (when k(t;) <0) and positive at another
time ¢, (when k(z,) > 0). This model is thus complementary to the L-T
solution where the spatial curvature index varies in space (see the remark
in the paragraph after (5) ). This intriguing property of the Stephani model
was pointed out in several earlier papers of the present writer, but as yet
the solution has not been seriously considered as a viable model of our
observed universe. The spherically symmetric subcase was repeatedly
used as a model of stellar collapse

7.7  Some historical curiosities

The previous sections presented only those papers which, in the
present writer’s opinion, were significant though not properly appreciated
contributions to theoretical cosmology. The same solutions, or their
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subcases, were rediscovered later, however, more than once in each case.
Such rediscoveries are listed here, but the lists are not guaranteed to be
complete. The papers which make reference to previous discoveries are
omitted deliberately.

The A = 0 subcase of the L-T model from section 7.2 was reobtained by
Datt (1938). Four of the five special cases listed by Datt are trivial: (a) is
the Minkowski metric in spherical coordinates, (b) is the Minkowski
metric in a more clever disguise, (c) is the flat FLRW model and (d) is a
simple coordinate transform of (b). Case (e) is the metric which later
appeared in the paper by Oppenheimer and Snyder (1939) (see below).
Datt’s section 7 introduces one more solution which is a subcase of the
Szekeres (1975) solutions and a generalization of the spherical Kantowski—
Sachs (1966) solution to inhomogeneous matter-density. The L-T model
with A =0 was rederived once again by Carr and Hawking (1974).

Oppenheimer and Snyder (1939) investigated the gravitational collapse
of a spherical cloud of dust. Their physical discussion of the process was a
new result, but the metric they derived is the A4 =0 = f limit of the L-T
solution and coincides with Datt’s (1938) case (e) (they instantly spe-
cialized the metric further so that the flat FLRW model surrounded by
Schwarzschild space resulted). :

The Kustaanheimo—-Qvist equation (13) was for the first time obtained
(in different variables) by Wyman (1946), and then rederived by Wagh
(1955, in Wyman’s variables), Taub (1968, in still other variables), Cahill
and McVittie (1970, in yet other variables), Barnes (1973), Wyman
(1976), Glass (1979) and Banerjee and Chakravarty (1979). It should be
noted that Barnes (1973) found all rotation-free shearfree perfect fluid
solutions to Einstein’s equations, among them the plane- and hyperboli-
cally symmetric counterparts of the Kustaanheimo—Qvist spacetimes and
the Stephani (1967) model. Wyman (1976) presented a wealth of solutions
of the K-Q equation. Banerjee and Chakravarty (1979) reobtained the
plane-symmetric models of Barnes (1973) (this may be difficult to
reognize) and the Stephani (1967) model, but all under more restrictive
assumptions. The papers dealing with various particular solutions of the
K-Q equation (13), corresponding to different f(x) are too numerous to be
listed here (see Krasinski 1989 for a partial list). Also omitted are
particular solutions with electric charge (see Sussman 1987 and 1988).

The spherically symmetric subcase of the Stephani (1967) model of
section 7.6 was for the first time casually mentioned (and instantly
dismissed because it does not admit p = p(p) ) by Wyman (1946), and then
reobtained by Kustaanheimo and Qvist (1948, their case 1), Raychaudhuri
(1955), Gupta (1959), Bondi (1967), Thompson and Whitrow (1967),
Taub (1968), Cahill and McVittie (1970), Cook (1975), Glass (1979) and
Pandey, Gupta and Sharma (1983). Some more authors discussed still
simpler subcases of the model.



124 Andrzej Krasiriski

7.8 Conclusion

The foregoing sections show that inhomogeneous cosmological
models have been since more than fifty years a subject of scientific activity
which produced interesting and valuable results. Unfortunately, they were
mostly ignored (with the possible exception of the L-T model) because
most cosmologists knew that our actual universe was homogeneous. For
this reason, the papers mentioned in this note did not really count in
making history of cosmology. A symposium such as this one is perhaps the
right place to recall them and in this way, at least, prevent further
rediscoveries.
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Discussion
Ehlers:

Could you please state again the assumptions underlying Wyman’s
- solution?

Krasifiski:

It follows uniquely from the following assumptions: 1) The spacetime is
spherically symmetric, 2) The source is a perfect fluid, 3) Shear is zero, 4)
- Expansion is nonzero, 5) The barotropic equation of state holds, 6) The
- spacetime is inhomogeneous.

Ehlers:

But then it does not seem to reproduce the static spherically symmetric
solutions.

Krasinski:

This is correct. In the process of integrating the Finstein equations for a
spherically symmetric metric with a perfect fluid source, alternatives occur
at which we must choose between mutually exclusive possibilities. One
such choice is: either g;; ; # 0 and then g,, = f(t)[(In g41) .]*, or else a static
solution results. From this point on, if we follow the first possibility, we
lose control of the static case. Similarly, at a later point, another alterna-
tive occurs: either (g;7?)u &F F= 0 where u = r* (then the FLRW models
result) or F# 0 and the Wyman solution follows. These possibilities are
mutually exclusive, too: in the limiting case of spatial homogeneity, the
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Wyman solution reproduces only the de Sitter spacetime, the general
FLRW models are not contained in it, even though they fulfil assumptions
1to 5.

Ellis:
1) De Sitter wrote down field equations for Lemaitre-Tolman in 1917,
2) Guy Omer investigated inhomogeneous cosmologies in 1949.

Krasinski:

Omer investigated the Lemaitre-Tolman solution. I did not take into
account all papers written on inhomogeneous models, I only tried to
present the different inhomogeneous solutions and a selection of papers in
their interpretation.



