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INHOMOGENEOUSGENERALIZATIONS
OF THE ROBERTSON-WALKER COSMOLOGICAL MODELS

Andrzej Krasinski
N. Copernicus Astronomical Center
Polish Academy of Sciences
Bartycka 18, 00 716 Warszawa, Poland

ABSTRACT

Solutions of Einstein s equations are dis-
cussed in which the flow of matter is hy-
persurface-orthogonal and shearfree, but
accelerating, the hypersurfaces being con--
formally flat. The field equations require
integrability conditions which are solved.
In 4 of the 8 cases the field equations are
reduced to a single ordinary differential
equation of 2nd order, the other 4 cases
are under investigation. In some solutions
at an initial instant the matter density is
a periodic function of the distance along
the curves orthogonal to the orbits of the
symmetry group. When the amplitude of the
spatial variation of density goes to =zero,
the flat FLRW model is obtained.

1. WHY ARE SUCH GENERALIZATIONS NEEDED?

It is fair to say that no observational evidence of
the Universe being homogeneous has been found1). Homogenei-
ty is a convenient assumption which makes models simple and
is philosophically appealing because of the Copernician
principle saying that we do not occupy a preferred position
in the Universe. On a small scale (up to groups of galaxies
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at least) the Universe is evidently inhomogeneous. Thus it
may be homogeneous only in the sense that a certain large

structure is repetitive (in other words, that the symmetry

group defining homogeneity is discrete1)). It is not known
how a discrete symmetry group may be built into a metric.
It is clear however that such a spacetime will have no Lie
group of symmetries, and so the absence of built-in isome-

tries is a precondition of success.
2. HOW CAN THEY BE OBTAINED?

At the beginning, for simplicity, as few assumptions
as possible of those underlying the Friedman-Lemaitre-Ro-
bertson-Walker (FLRW) models should be rejected. In the
first step, it was assumed that homogeneity and isotropy
are "intrinsic symmetries" in the sense of Collinszy, i.e.
that only spatial sections of the Universe have this symme-
try. The resulting Stephani Universe3_5) turned out not to
be general enough: matter-density in it depended only on
time. We will therefore make still weaker assumptions:

(A1) The source is the perfect fluid, thus:

Gus = (8rG/ch) (e + p)uOLuB - P9 g v (2.1)

(A2) The fluid velocity uy is irrotational (i.e. orthogonal
to a family of spacelike hypersurfaces S).

(A3) The velocity field is shearfree and expanding.

(A4) All hypersurfaces S are conformally flat.

From (A2) it follows that if the flow lines are taken to be

the t-coordinate lines, and the spatial coordinates are

chosen within the hypersurfaces S, then goi =0 = ui, i =

1, 2, 3. From (A3) it folows then

1, 1/2
9;4 = bygexp | 3/89,,7dt) (2.2)
where hij't = 0 and g is the expansion scalar. From (A4) it

follows further that hij is proportional to the flat
3-metric, and so, in suitably chosen coordinates,
2 - p23t2 - (r%/v?) (ax? 2 4 az?), (2.3)

ds® =D + dy
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where D = D(t,x,y,z), R(t) and V(t,x,y,z) are functions to
be determined from the field equations.

3. THE FIELD EQUATIONS

From GOi =0, i =1,2,3, we conclude that either

(V/R),t =0 (3.1)
or
D = F(t) (R/v) 52 (v/m), (3.2)

where F(t) is an arbitrary function. The case (3.1) is not
interesting for cosmology because it implies & = 0 = éi
Therefore we will follow only (3.2) (which is a restatement

of (2.1) s;nce & = -3/F). Then, from Gij =0, 1 #3:

R,v,ij / V© o= F(x, v, 2) , , (3.3)
where (i,j,k) = (1,2,3) cyclically and Fk.are arbitrary
functions. Furth.eré from Gii<- ij = 0 (no summation)

R (V,ii - V,jj)/ A Gk(x, Y. 2), (3.4) |
with Gk being other arbitrary functions. With Fk = Gk = 0

“and Vi # 0 the Stephani solution follows, if further V,t =
0, the FLRW solutions result.

Egs. (2.1) are now solved. However, (3.3) - (3.4) are
5 equations (because G, = -G, - G;) for the function V, so
iptegrability conditions are necessary. They have the form:
MUV, / V= Wy, (3.5)
where A = 1,...,5; the 3x5 matrix M and the 5-vector W
being determined by Fk’ Gk and their derivatives. At most 3
equations in (3.5) can be independent, otherwise the set
cannot be algebraically solved for V,i/V. However, with 3
independent equations, one of the following cases occurs:

1. Either V,t = 0 and a FLRW model (not even
Stephani!) results, which is nothing new;

2..0r vV (t,x,y,z) = R(t) H(x,y,z), and the stationary
case (3.1) results which we left out of consideration.

A new solution can thus result only if at most 2 equa-

tions in (3.5) are independent. This means:
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Every 3x3 sub-matrix of M is singular. (3.6)
Each 3 equations in (3.5) are linearly dependent. (3.7)
Two cases must be considered separately now:
1. The degenerate case when F1_F2 F3 =0,
2. The generic case when F1 F2 F3 # 0.

4, THE SOLUTIONS FOR THE DEGENERATE CASE

Egs (2.1) reduce here to one of the following cases:
Case I: The plane-symmetric Universe: .
R (t) v,zz/v2-= £,(2), (4.1)
where fP(z) is an arbitrary function. Only the flat FLRW
model is contained here which results with fP =0, V= 1.

Case II: The line-homogeneous Universe:

2

R (t ’ = £ ’ .
(t) w gg/w L(g) (4.2)

where

g = x/y, w (t,g) =V/y, (4.3)

and fL(g) is an arbitrary function. These solutions gener-
alize also only the flat FLRW model. Note that (4.1) and
(4.2) is the same equation, only the meaning of the wvari-

able and of the function is in each case different.

5. THE SOLUTIONS FOR THE GENERIC CASE, F1 F2 FB.# 0

The equations resulting from (3.6) are solved here by:

G, = Fy(F3/ Fy = Fy/ F3)
G, = F3(F2/ F, - F./ Fy) : (5.1)
while those resulting from (3.7), with the substitutions:
F, = P,F, , Fy= P,F, (5.2)
reduce to the following set:
- P2'x - P2'y / P2 + P3 (P2 - 1/P2)'z = 0, (5.3)
- P3fx - P 374 / P3 +.P2 (P3 - 1/P3),y =0, (5.4)
- P3,y + P3P2, /P 2, - P2P3,Z/P3 .

+ (P /P - P /P ), 0 . : . (5.5)

Note that F1 does not appear here. The solutlons of (5.3) -
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(5.5) must then be substituted into the integrability con-
ditions (3.5) (of which only two remain in virtue of (3.6)
- (3.7)), and after (3.5) are solved, the solution of (3.3)
- (3.4) 1is guaranteed to exist, but must be found in the
next step. Several cases have to be considered separately
Case IIa: P, = const fulfills (5.3). Then P_. is found

2 3

from (5.4). The subcase P3 = const leads to (4.1), but in

coordinates rotated and dilatated with respect to those of

(4.1). 1f P3 is not constant, then (4.2) results, again in
rotated and dilatated coordinates.

Case III: The spherically symmetric Universe:

= 0, then (5.3) is independent of the other equa-
3y = O,”then
(5.4) can also be solved independently. In this case, the
solution of (5.3) - (5.5) is

If P2,Z

tions and can be solved. If in addition P

P2 = x/y, P3 = x/z (5.6)
and (3.3) - (3 4) reduce to the follow1ng equation:

R(t) V, / V = fs(u) ' (5.7)
where

u = x2 + y2 + 22 , (5.8)

and fs(u) is an arbitrary function. The subcases of (5.7)
include the spherically symmetric Stephani solution (which
results wi,th.fS =0, V,t # 0) and all the FLRW solutions
(if in addition V,t = 0). Note that (5.7) is again the same
as (4.1), with a still different meaning of the wvariable.
Case 1V: The axially symmetric Universe:
If Py,, = 0 # Py, , then the solution of (5.3) - (5.5) is
P2 = x/y, P3 = x/(z + L), (5.9)
where L (x,y,2) is given by
¥+ 92+ (z+ 2% = %), (5.10)
Q(L) being an arbitrary function. The case of constant L is
singular, then (5.10) does not hold and Case III is reobta-
ined. The field equations (3.3) - (3.4) reduce here to
R (6) W, /W = £ (2), (5.11)
where
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z = (C - %% - y2'— 22)/(22), W =1V/z, c = const, (5.12)
and fA(Z) is an arbitrary function. With fA = 0 #'W,t, the
axially symmetric case of the Stephani solution results, if
further W,t = 0, then all the 3 FLRW solutions are reco-

vered. Note that (5.11) is (4.1) in one more disguise.

When P, # 0 # P3’y , the complete set of solutions
of (5.3) - (5.5) was found, but the corresponding solutions
of (3.3) - (3.4) are not yet known (work in progress).

Case V: The most general solution of (5.3) - (5.5) is
P, = A[x - H(A) ]/{ay + F(A)], | (5.13)
Py = [x - H(A)]/[2z + L(A) ], (5.14)

where H(A), F{(A) and L(A) are arbitrary functions of
A(x,y,z) which is given implicitly by

22(x -m2 + (ay + M) + A%z + )2 = 1. (5.15)
This solution is obtained under the assumption that A is
not constant. It reduces to Case IV when H = F = 0 (with A
= 1/Q) and to Case III if L = 0 in addition. ’

Case VI: If A = const, then

P, = Alx - H(F)]/(ay + F), |  (5.16)
P, [x - H(F)]/[z + L(F) ], (5.17)
where now H(F) and L(F) are arbitrary and F(x,y,z) is given

by (5.12) with A = const. Here F cannot be constant.

Case VII: If A and F are constant and A # 0, then
P, = Alx - H)/(ay + F), P (5.18)
P, (x - H)/[z + L(H)], (5.19)
where L(H) is arbitrary and H(x,y,z) 1is given by (5.12)

with A and F being constant.

Case VIII: If A ---> 0, then
Py = - Pylz + L(P,) 1/ (xP, + ¥), (5.20)
where L(P ) is arbltrary and P (x,y z) is glven by
F(P,)) (xP, +y) = - (z + L)1 - ‘g2 (2, - 22 F2(e,)1"%(5.21)

F(Pz) being another arbitrary functlon.
The proof that Cases IIa - VIII are all solutions of
(5.3) - {5.5) is contained in their derivation which will

be published separately.
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6. AN EXAMPLE OF A SOLUTION OF (4.1)

In any solution of (4.1) the pattern of inhomogeneity
will Dbe one-dimensional. However, if the matter distribu-
tion is a periodic function of the distance in the direc-
tion of 2z, then we can expect it to be a first approxima-
tion to a model with 3-dimensional spatial periodicity.

Let us rewrite (4.1) in terms of the variable 1 where

1(t,z) = R(t) fdz/V(t,z), | (6.1)
i.e. 1 is the geodesic distance in the z-direction. Then

3 4 _ 3 2,5 _

RI(E)V, /v RE(B)V,, 7/V = f,(z(1)). (6.2)

Note that if V is a periodic function of 1, then so will be
V,z. Consequently, also p will be perlodlc in 1, since
81Gp/c? = 2£ V3/R3 - 3v, 2/R% + 3/F2. (6.3)
V can be periodic in 1 at an initial instant t = (*) We
first note that (6.2) can be understood as the deflnltlon
of‘fP(z(l)): we choose V(to,l) arbltrarlly, e.g.:

V(to,l) = A + B sin(Cl), (6.4)
where A, B and C are constants and A > §Bl. Then
£,(1) = —R3BC2[A + B sin(cl)]” [B + A sin(Cl)] (6.5)
8ﬂGp/C = - BC [A + B sin(C1l)] " [2B + 2A sin (C1)

+ 3B cos?(Cl)] + 3/F2 (6.6)

and p(t »1) is indeed periodic in 1. The function f (1) can
be reexpressed in terms of z with use of (6.1), i.e.:

R(to)z = Al + (B/C)[1 - cos (Cl)]/R(to). (6.7)
The equation (6.2) will then -determine V(t,1l) at other
times. The solution of (6.2) will contain two arbitrary
functions of t, so the evolution of V will be indeterm14

nate. This is because we did not consider an equation of
In a previous version of this text6) V and p were con-
structed as periodic functions of the coordinate z at t =
to' Since z has no invariant meaning, that construction did
not yleld a spacetime with a discrete symmetry group Wthh

was its aim. I thank Dr. J. Gruszczakvfor this remark.
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state. The evolution of V can be qualitatively discussed if

the energy conditions of Hawking and Ellis7)

are imposed.
The periodicity of p will persist in time if also V,t is
periodic in 1 at t = tO (this corresponds to the velocity
field of matter being periodic in 1 at t = to). Otherwise,
the structure will dissolve during evolution into an irreg-
ular pattern.

With B = 0, eq. (6.4) gives the flat FLRW model. Note
that a model with constant fP in which (4.1) can be integ-
rated to a first order equation is not interesting since

then Pr, = 0 and so p = p(t).
7. COMMENTS

The previous section shows that initial conditions can
be set up so that the matter-density will be periodic in
one spatial direction at t = t . What happens with this
structure as time proceeds, remains to be investigated. The
structure is not complicated enough to be a model of the
real Universe (but is more general than the flat FLRW
model!), nevertheless, can be useful as an example for stu-
dying the consequences of averaging physical quantities
over space. In the terminology of Ellis1) the model of sec.
6 can be said to be at scale 42, intermediate between scale
5 (the FLRW models) and scale 4 appropriate for describing
the evolution of superclusters of galaxies; the structure
being smoothed out in 2 of the 3 spatial dimensions.

In cases II, III and IV (egs. (4.2), (5.7) and (5.11))
it is difficult to verify whether p can be a pericdic func-
tion of the invariant distance 1 since V would have to con-
tain nonperiodic terms as well, to compensate for nonperi-
odic factors in p. Even if p is periodic in 1, however,
owing to the symmetries present in those cases, the distri-
bution of extrema of p will have nothing to to with

large-scale homogeneity, and so these other models are just
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totally‘inhomogeneous.

The solutions discussed here are still very special:
each of them depends on the spatial coordinates through a
single variable, ‘and so they represent one-dimensional
structures. This feature results most probably from the as-
sumption of spatial conformal flatness which is very strong
and artificial from the physical point of view. Thus it re-
mains as a challenge for the future to obtain models with

3-dimensional patterns of inhomogeneity.

* * *

An earlier stage of this work was described in the Proceed-
ings of the 4th Marcel Grossman Meeting in Rome (reference
below). Part of that material was used here with the per-
mission of the North-Holland Publishing Company.
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