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Hydrodynamical functions for an object whose newtonian gravitational field is constant on confocal ellipsoids of revolution
are investigated. The conditions: pressure > 0 and (angular velocity field)? > 0 are fulfilled, but a ring singularity in matter
density or a disk singularity in the angular velocity distribution are inevitable.

1. Introduction. A solution of the Poisson equation
and the Euler equations of motion found in 1980 [1]
describes the interior and exterior gravitational fields
having oblate confocal ellipsoids as equipotential sur-
faces. However, the functions describing the fluid
source of that field were not all given by closed-form
formulae: the pressure p was determined by a linear
partial differential equation (see next section), and
the angular velocity w was given as an expression for
w? which involved derivatives of p (not known ex-
plicitly). In this paper we present the solution in a
form in which the conditions p(outer surface) =0 and
p(inside the source) >0 are fulfilled evidently, and
necessarily imply w2 > 0. This form enables one to
conclude that a singularity either in the mass density
p on the focal ring of the ellipsoids or in «w on the
central disk is unavoidable. The exterior field dis-
cussed here was first found by Chasles in 1840 [2].
However, the source given by Chasles (a layer of mass
of finite surface density) was rather artificial. It was
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- replaced by a continuous spatial distribution of per-

fect fluid in a previous paper [1]. For this reason we
call the configuration “the extended Chasles equilib-
rium figure”.

2. Equations defining the source. We list without
repeating the proofs the results of a previous paper
[1]. The oblate spheroidal coordinates (r, 8, ¢) used
here are defined in terms of the cartesian coordinates

(x,y,z)by
x=Dsinf cos¢, y=Dsinfsing,

z=rcosf, D=(@F2+a?)l/2,

2.1)

The surfaces = const. are confocal oblate ellipsoids

of revolution, the surfaces 8 = const. are one-sheet hy-

perboloids of the same focal ring {(x2 +y2)1/2 =4,
=0} [which is the locus of singularity of the coordi-
nates (7,0, ¢)]. The mass density inside the source is

p(r,0)=F@OI (2.2)

where f(r) is an arbitrary function. The total mass of
the source is M = M(R) where

J =r2+a? cos20 ,
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R
M(R) = 4 f 77 dr, (2.3)
0

r = R being the outer surface of the source. The exte-
rior gravitational potential in the point (7, 8, ¢) is
given by

Ve(r) = —(Gla)M(R) arctan(a/r) . 2.49)

The interior potential depends also only on 7 and is

¥ r'
Vi) = f [4nG/(r'2 +a?)] dr' f e dr" + vy,
0 0 (2.5)
where ¥, is a constant whose value ensures that Vi(R)

= Vo(R). The field of pressure is determined by the
equation

[D2/f()] cos 0 1,
—[rsin8/f(")]p ¢ + G cosO MPI =0,  (2.6)
- and the field of angular velocity is
W27, 0) = [HfPp,
* [cot 0/f)]p o + GrM()/(D?]) . 2.7)

3. The solution for pressure. Eq. (2.6) is solved by
the standard method of solving linear partial differen-
tial equations of the first order (see e.g. ref. [3] for
details). The general solution p(r, 8) of (2.6) is deter-
mined by
F(wl(p:r’0)9 d/Z(p:r’G))=O9 (31)
where F is an arbitrary function, while 1and ¥, are
functions such that Y4 = C; = const. and Yy, = C, =

const. are the first integrals of the following set of or-
dinary differential equations implied by (2.6):

f®)dr __f(do__ Jdp (3.2)
D2 cosd rsing G cos 0 M(r)” '

The first integrals of (3.2) are

Y1(»,7,0) =Dsin6 =Cy , (3.3)
Vo(p,r,0) =p+®(r,D sin 0)=C,, (3.9
where
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FOME) . (3.5)
(x2 + a2)2 — a2y2
After (3.4) and (3.5) are substituted into (3.1), the
resulting equation can be solved for p:

p(r,0) = —®(r, D sin 6) + H(D sin 9) , (3.6)

D(x,y) .=Gf

‘where H is an arbitrary function [it fulfills the homo- |

geneous part of (2.6)]. This can be written in an
equivalent form which is more useful in calculations:

p(r.0)=—G [ FG)MEW-1(,x,0) dx

R
+H(D sin §) , 3.7
where
W(r,x,0) = (x2+a2)2 — 42 sin20 D? (3.8)
H=H—®R,Dsin), (3.9)

and R is an arbitrary constant. We shall choose R so
that 7 = R is the outer surface of the source. If we

now impose the free surface boundary condition

P(R, 0) =0, then H = 0. In that case, p >0 implies
p(r,0) = 0: from (2.2) we have f(r) >0, so M(r) =0 |
from (2.3); furthermore W(r, x, 6) >D2J > 0 because
r <x <R in the integration range and so p =0 for r

<R in (3.7).

4. The angular velocity and singularities. We find
from (2.7) with the help of (2.3),

w2 = —[Ga2I2nf ()] [ MGx)(@Mdx)W-2(r, x,0) dx
R

(4.1) |

where H' is the derivative of H with respect to its argu-
ment.

With H = 0 we have w?2 >0 necessarily, by the
reasoning used after (3.9), and moreover w(R,8) = 0.
We have thus shown that the solution considered here
is not unrealistic. We recall however that the motion
in the source is shearing unless w =a = 0 [1]. Thus the
fluid must be nonviscous or else the flow cannot be
stationary. This is not what one expects from a real
star. In addition, a singularity is necessarily present on
the disk 7 = 0 or on its edge {# =0, 0 = 7/2}. This can

+JH'[[f(r)D sin 0] ,
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be seen from (2.2), (3.7) and (4.1) if we consider the
following two cases: '
Case A.

AM/dr = Anf(r) —> 0 so that lim [f(r)/r?] <ee.
=0 r—
4.2)
In this case, p(r,0) and p(r, 8) are finite every-

where (but the values of p(0, 7/2) and p(0, n/2) will
in general depend on the path of approaching the ring

{r=0,6 =7/2}). However, for 8 # /2, w = o (r>0).

This “explains” why p =0 at ¥ =0, 6 # n/2 in this
case: all matter inside the disk is swept out by an in-
finitely fast rotation.

Case B.

7(0)>0. (4.3)

Then, with H = 0, w2(0, ) will be finite for 6 #
7/2. However, p(r, 0), p(r, 8) and w?2(r, 0) will all be
singular on the ring {r=0,6 =7/2}.

There are other cases possible, but, with H =0, in
every other case both the ring-singularity in p and p
and the disk-singularity in w2 will appear. The singu-
larities are invisible from outside and thus physically
harmless because it is seen from (2.3) that M(0) =0.

Because of the property w(R, 0) =0, a distant star,
if described by this model, would not reveal its rota-
tion: there would be no Doppler-broadening of spec-
tral lines.

5. No way to avoid a singularity. Since the exterior
potential (2.4) has a finite limit for # = 0, one could
avoid the singularities by leaving a vacuum cavity in-
side the source so that the ring {r=0, 60 =n/2} is con-
tained in the cavity. This is not a physical situation,
however.

Another conceivable way to avoid the singularities
would be to give up the boundary condition p(R) =0

and replace it with the condition of regularity at 7 = 0.

This simply does not work. The functions p and p are
finite at 7 = 0 only in case A. In order to prevent then
w? from diverging at {r =0, 6 # /2} one must ad-
just H in (4.1) so that

H'(a sin 6)/(a sin 0)

R
= —(Ga?/2m) [ M(x)(dM/dx)W2(0, x,0) dx .
0 | (5.1)
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This can be integrated with the result
H(Dsin 9)

R
= —(G/4m) [ MGIAM]dx)W=1(r,x, 0) dx .

’ 0 (5.2)
The result of substituting such A in (3.7) and (4.1) is
the same as if H =R = 0. Then, however, W(r, x, 0)
will have a zero at a certain x in the integration range
for each 7 >0, and so both p and w? will be singular
on a two-dimensional surface while p will even cease
to be positive-definite.

Still another conceivable way to remove the sin-
gularity would be to replace the interior of a certain
surface g(r, 0) = 0 with a different distribution of
matter. The continuity of the potential can be
achieved e.g. by inserting a Maclaurin spheroid inside
the surface r =r; <R. Then, however, pressure, den-
sity and angular velocity will suffer discontinuities at
r =r;. It seems certain that problems with continuity
will arise with any other distribution of matter, but
we leave this question as a challenge for the future.

These difficulties are an example of what can go
wrong inside a source even if it matches smoothly to
a given exterior field. This danger thus exists for the
(still unknown explicitly) perfect fluid source of the
Kerr metric [4,5], although Roos [6] has shown that
the field equations are integrable in the vicinity of
the outer surface.

6. The equation of state and temperature
distribution. Apart from the limiting case @ =0, the
body considered here cannot obey the simple equa-
tion of state p = F(p). The equation of state must ex-
plcitly involve a third function, e.g. temperature. One
possibility is the ideal gas equation:

T=Cplp, (6.1)

where C = const. Using (2.2) and (3.7) with H = 0 one
concludes easily the following:

(i) In case A, the temperature has a singularity in-
side the disk 7 =0. On the ring {r =0, 0 =7/2} the
temperature may have a finite or infinite limit de-
pending on the path on which the ring is approached.

(ii) In case B the temperature has no singularity.

On every surface 7 = const. <R the temperature
has a minimum on the symmetry axis (§ =0 and 0 =
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7) and a maximum on the equator (6 =n/2). Note that

T(R) = 0, this equation of state is thus not very realis-
tic.

7. The distribution of pressure. From (3.7) one can
find in case A that p ,(0,6) =0 and p,(0,0)>0.
Thus p has a local minimum at » = 0 for every value of
6, including 6 = m/2. Since p =0 and p(R) = 0, it fol-
lows that in this case p must have (at least one) local
maximum somewhere between 7 = 0 and =R for
every 7. In case B, p (0, 0) = 0 for 6 #7/2, but the
sign of p ,,(0, 6) cannot be determined (it depends on
the shape of f(r) in the neighborhood of 7 = 0). Thus
in case B, p always has an extremum at r = 0,0 # /2,
but it is either maximum or minimum. At r=0,0 =
/2, both p,andp ,, are singular in case B.

In both cases one sees easily from (3.7) that for
every 7,0 <r<R, p hasminimaat0 =0and 0 =7
(on the symmetry axis) and a maximum on the equa-
tor 0 =m/2.

The distribution of density was discussed in ref. [1].

The distribution of w? cannot be discussed without
specifying f(r). For every , w? has extrema at @ = 0,
6 =m/2 and 6 =, but which of them is minimum and
which is maximum depends on the shape of f(r).

8. A symmetry of the gravitational field. Let us

consider the following transformations of the space:

(i) Let each point move within its 7 = const. sur-
face, parallel to the plane x =0 and counterclockwise
so that: '

() each point in the plane x = 0 has its initial coor-
dinate 6 changed by A@, the same for all points;

(b) points in a plane x = const. # 0 (which move
on an ellipse similar to the ellipse {x =0, 7 = const. })
are displaced between positions corresponding to
those in (a) under the similarity transformation.
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(i) An analogous motion parallel to the plane y
=0.
(iii) A rotation around the z-axis.
These transformations reduce to rotations around
the x, y and z axes in the limit @ — 0, i.e. when the
ellipsoids degenerate into spheres. With ¢ # 0, they
are not isometries of the space, but are symmetries of
the potential. Their generator, calculated from:

\

Jy= lim dx;/d(Af) (8.1) ki
200 }t
are, respectively: B
Jy, =sin ¢ 9/d6 + cos ¢ cot 6 /0 , 8.2
Jy; =c0s ¢ 3/30 —sin ¢ cot § 9/90 , (8.3)

and J,.,, = 9/0¢. Thye have thus, in the spheroidal
coordinates, the same form as the generators of rota-
tions have in spherical coordinates and form the alge-
bra of the O(3) group. This is an analogy to the prob-
lem of collineations of the Riemann tensor (which de-
scribes the gravitational field in Einstein’s theory)
which are not symmetries of the spacetime. See refs.
[7—9] for more details.
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