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A SPATIALLY PERIODIC GENERALIZATION OF THE FLRW COSMOLOGICAL
MODELS
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Bartycka 18, 00 716 Warszawa, Poland

A class of exact inhomogeneous solutions of the Einstein field
equations 1is discussed which contains the Friedman-Lemaitre-
Robertson-Walker (FLRW) metrics as a limitting case. The class
is defined by the flow of matter being hypersurface-orthogonal
and shearfree, but accelerating, while the hypersurfaces are
conformally flat. The resulting class of solutions is shown to
contain such Universes in which at a certain initial  instant
the matter density is a periodic function of one spatial vari-
able. In the limit when the amplitude of the spatial variation
of density goes to 2zero, the FLRW models are obtained. This
shows that discussing structure-development in the Universe
within the exact theory of gravitation is not totally hopeless.

1. WHY? ,

It is fair to say that no observational evidence of the Univ-
erse being homogeneous has been found1, in spite of a lot of pro-
paganda to the contrary. Homogeneity is just a convenient assump-
tion which makes models simple and is philosophically appealing
because of the Copernician principle saying that we do not- occupy
a preferred position in the Universe. On a small scale (up to gro-
ups of galaxies at least) the Universe is evidently very inhomo-
geneous. Thus it may be homogeneous only in the sense that a cer-

tain structure, larger than a group of galaxies, is repetitive,

i.e. that the matter distribution is spatially periodic (or, in

other words, that the symmetry group defining homogeneity is dis-
crete1). Such a Universe is automatically homogeneous on the aver-
age if physical guantities are averaged over the volume of the re-
petitive structure. There are serious problems of principle with
averaging, e.d. as conjectured by Ellis1 and proven by Carfora and
Marzuoliz, if Einstein”s equations are fulfilled on the fine scale
before averaging, then they will not hold after averaging: new
source terms will show up which can seriously influence the dynam-
ics of geometry and matter. However, it is expected that an aver-
aged model will have a FLRW geometry so that the generalized model

can inherit all the successes of the classical models.
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2. HOW?

For the beginning, as few assumptions as possible of those
underlying the FLRW models should be rejected. In the‘first step,
it was assumed that homogeneity and isotropy are "intrinsic symme -
tries" in the sense of Collins3, i.e. that only the spatial sec-
tions of the Universe have this symmetry while the whole Spacetime
has no symmetry a priori. The resulting Stephani
Universe‘l_6 turned out not to be general enough: matter—density in
it depended only on time. We will therefore make the still weaker
assumption that the hypersurfaces orthogonal to the fluid flow are

conformally flat. More precisely, we assume the metric form to be:
as® = p%at? - 82/ v2) (ax? + ay? + az?), (2.1)
where D = D(t,x,v,z), R(t) and Vi(t,x,y,z) are fuctions to be de-
termined from the field eéquations, and t is a parameter on the
flow-lines of matter.

There are differences between (2.1) and the Szekeres-type mo-
dels7_12 which have also conformally flat slices. In the latter,
it is only required that the Ricci 3-tensor RAB(t,xA) a, B8 = 1,
2, 3) fulfills the equations

Fag;c * Rac;s * (/4 (g5 Rig = g, Ryp) = 0

and has one double eigenvalue. The resulting 3-metric for the
space t = const is more complicated, it can be brought to the form
az(dx2 + dy2 + dzz) in each spacelike slice separately, but not in
all the slices simultaneously, wunless time-space terms in the
4-metric are allowed. Thus (2.1) puts a stronger limitation on the
3-geometries of the slices. On the other hand, matter in the'Szek—
eéres—type models moves on geodesics what happens in (2.1) only
with D =D (t), and so (2.1) is more general in this respect. In
fact, the only common subset of (2.1) and the Szekeres-type me-
trics are the FLRW solutions.

The source term in the Einstein”s equations will be the perfect
fluid, thus:

Sag = (876/cN) [ + p)u ug - py 1, (2.2)

_ naO
u, = DS o
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No definite equation of state will be assumed.

3. THE FIELD EQUATIONS

From the equations Goi =0, i=1,2,3, we conclude that either
(V/R),t =0 (3.1)
or
D = F(t) (R/V) %E (V/R), (3.2)

where F(t) is an arbitrary function. The case (3.1) is not inter-
esting for cosmology because it implies that matter-density is
time-independent and the scalar of expansion is zero. Therefore we

will follow only (3.2). Then, from the 3 equations Gij =0, 1 # 3j;

i,3 =1, 2, 3 we obtain:

RV / V2 = F (x, v, 2) (3.3)

L Iij k 14 14 14 -

where (i,j,k) = (1,2,3) cyclically and Fk are arbitrary functions

of the space-coordinates. Further, from Gii - ij = 0 (no summa-

tion, i,j = 1,2,3) we obtain

R (V -V )/V2=G(xyz) (3.4)
Iii Ijj k 14 7 14 °

(no summation), with i, j, k as before and Gk being other arbitra-

ry functions. With Fi. = G = 0 and Vi # 0 the Stephani solution
follows, if further V, = 0, the FLRW solutions result. Thus the
set of solutions of (3.3) - (3.4) is not empty.

In fact, egs. (2.2) are already solved. However, (3.3) and
(3.4) are 5 equations (because G2 = —G1 - G3) for the function v,
and so integrability conditions are necessary. They have the form:

MlAv,i/ Vo= Wy, (3.5)

where i =1, 2, 3; A =1,...,5; the 3x5 matrix M and the 5-vector
W Dbeing determined by Fk, Gk and their derivatives, thus M and W
do not depend on t. At most 3 equations in the set (3.5) can be

independent, otherwise the set cannot be algebraically solved for
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V,i/V. However, an elementary analysis of (3.5) shows that with
exactly 3 equations being independent, one of the following two
cases must occur:

1. Either V,ij = 0 and a FLRW model (not even Stephani!) re-
sults, which is nothing new;

2. Or V (t,x,y,z) = R(t) H(x,v,z), and the stationary case
(3.1) results. We 1left it out of consideration anyway, but with
(3.2), on which all further equations are based, this would 1lead
to the singular result D = 0.

We can thus expect a new cosmological model only when at most 2

equations in the set (3.5) are independent. This is equivalent to
2 requirements:

Every 3%x3 sub-matrix of M is singular. (3.6)

Each subset of 3 equations in (3.5) is linearly dependent. (3.7)

In order to translate these statements into equations, two sep-
arate cases must be considered:
1. The degenerate case when F1-F2~F3 = 0,

2. The generic case when F -F2-F3 # 0.

1
4. THE SOLUTIONS FOR THE DEGENERATE CASE

The integrability conditions (3.5) -are completely solved in
this case. The field equations (2. 2) reduce to one of the follow-
ing two ordinary differential equations:

4.1. The plane-symmetric Universe:

2 _
R (t) V’zz/v = fP(Z), (4.1)
where z is a coordinate, V = V (t,z), and f (z) 4is an arbitrary

function. Since V, = V,y = 0, these solutlons contain only the

flat FLRW model whlch results wiht f =0, V.= 1.

4.2. The line-homogeneous Universe:

R (t) w,__/w” = £_(q) (4.2)
Igg L 14 .

where

g =x/y, w (t,g) = V/y, (4.3)
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and fL(g) is an arbitrary function. These solutions generalize
also only the flat FLRW model. Note that (4.1) and (4.2) is in
fact the same equation, only the geometrical meaning of the inde-
pendent variable and of the unknown function is in each case dif-
ferent. The equétion will appear once more below,'in a still dif-

ferent disguise.

5. THE SOLUTIONS FOR THE GENERIC CASE, F1-F2‘F3 # 0

In this case, the equations resulting from (3.6) are solved by:

m .
I

" F1(F3/ Fy - F2/ F3) '
G3 = F3(F2/ F1 - F1/ F2) ’ (5.1)
while those resulting from (3.7), with the substitutions:
F, = P.,F, , F. = P.F (5.2)

reduce to the following set:

-Pp, -P, /P +P (P -1/P), =0,
2 x 2y 2 3 2 2 z
-P, -P, /P +P (P -1/P), =0, (5.3)
3 x 3 z 3 2 3 3 v
-p, +PP, /P +P, -PP, /P+ (P/P -P/P), =20.
3y 32y 2 2 z 23z 3 3 2 2 3 x

Note that these are 3 equations for only 2 functions, since
F, does not appear here. The solutions of (5.3) must then be sub-
stituted into the integrability conditions (3.5)  (of which only
two will remain in virtue of (5.3)); and after (3.5) are solved,
the solution of (3.3) - (3.4) is guaranteed to exist (but must be
found in the next step!). So far, only one special solution of
(5.3) was found which results when Por, = P3,y = 0 and the first
two equations decouple. With that, (3.3) - (3.4) reduce to the

following single ordinary differential equétion:
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2 _
R(t) V’uu / V© = fs(u) , (5.4)
where
u = x2 + y2 + 22 ’ {5.5)

and fs(u) is an arbitrary function. We call the resulting solution
a spherically symmetric Universe. Its subcases include the spheri-
cally symmetric Stephani solution (which results with fS = 0,
V,u # 0) and all the FLRW solutions (which result if in addition
V,t = 0). Note that (5.4) is again the same equation as (4.1) and
(4.2), with a still different meaning of the wvariable.

More solutions of (5.3), and thus of (3.3) - (3.4), very possi-

bly exist, but are not explored so far; the work is in progress.

6. AN EXAMPLE OF A SOLUTION OF (4.1)
Let fP = CP = const in (4.1). Then:

V,ZZ = (2/3) cPv3/R(t) FR(E) (6.1)

where K(t) is an arbitrary function. Equation (6.1) reminds of the

defining equation of the Weierstrass elliptic function Sﬂz)13:
P 24P - 4.0 (6.2)
"z 2 3 7 .

where g2, g3 = const. In (6.1) the second term is missing, and
that is a pity because with 95 # 0 some solutions of (6.2) are
periodic in z. Let us then change the choice of fP (z). Let

fp(2) = [6 - (1/2) g, /5%(2)] R(x) , (6.3)

where = and tO are arbitrary constants, and J (z) is defined by
the equation

3, /3% =6 - (1/2) g2/J2. (6.4)

zZz
Eg. (6.4) results from the Weierstrass equation (6.2) on differen-
tiating with respect to z2, so J (z) = g>(z) is one of the solu-

tions of (6.4) and can thus be periodic in z. Then, with (6.3), vV
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= J (z) is a solution of (4.1) at t = to’ and so V(to,z) is peri-

odic in z. With such V(t,z) the mattter-density
snGo/c” = -2£ vO/R>- 3v, */R® + 3/p” (6.5)

(where F is the function from (3.2)) is periodic in z at t = to.
7. COMMENTS

The previous section shows that initial conditions can be set
up in such a way that the matter-density in the model will be per-
iodic in one spatial variable at t = to. What happens with this
structure as time proceeds, remains to be investigated. The struc-
ture is not complicated enough to be a model of the real Universe
(but is more general'than the flat FLRW model!), nevertheless, can
be useful as an explicit example for studying the consequences of

averaging physical‘quantities over space.

Analogous solutions exist fbf (4.2) and (5.4). In (4.2), w
(to,g) can be periodic in g = x/y. In (5.4), V(to,u) can be peri-
odic in u = x2 + y2 + 22. In both cases, however, p(to,g)

and p(to,u) are not periodic, but only periodically modulated
(with a variable amplitude). These two solutions thus represent
Universes which are totally inhomogeneous at t = to.

It would be desirable to obtain a further generalization of the
solution from sec. 6 which would be periodic in all three spatial

coordinates. This remains a challenge for the future.
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