AL:C4¥CB* DK={147%EP+33*EP222)/3/5prx3
AL, CR**2*KNK=3%73/EP
AL, CT**22KDK=3%73 /EP

ALy PR2¥CE¥*2=1/8/EP ¥3¢49/LB/EP¥¥24531 /96 /7
AL PR{®C3 KOK={148 EP+44¥EP ¥2), 7 /Eper3

ALy PR2 C2%QDO=~!1+11%EP)/6/EP*%2423 /EF
FLyPR2% 3%C7=-(1+11%EP) /6/EP**2

ALy R2*CE*C7=-~{1+11%EP) /6/EP**2473/Ep
ALy PR2Z¥C7#¥2=a (14 1%EP) /6 /EP**2473/Ep
AL PRETCLI®C7=~(1+11%EF /6/EP=%2

AL, PR2%C2¥C3==(1+11%EP) /6/EP**2

PRINT NOUY

*YEP

AL, PRZ¥CL**2 =0 (1427 /22 EP+L4OL/ L EP*%2) /24 /EP+»
AL« PR2*CS*%2=wii4+27/0% PELOL/4PEPRR2; f24/7EP®Y
AL, PR2FC.* 0Q=(141"/2hE +199/7L%EP %2)/6/EP*+3
Al.s PR2*C PROA=(1+19/2%EP+265/45EP% +2) /12 /EP ¢
AL, PRI¥*ME¥CI=(1+13/2 EP+245/L¥EPS22) /12 JEP¥43
PFINT NOUT

YYEP

IR PR2¥C2¥C4=m (14 10%FEP) 3I/EP*%2

ALy PR2Z¥CBE0T7== (1 +10%EP) /3/EP¥%2

ALy PRZ¥(DCP¥2=4{/R/EP**3 4Q/48/EP*%24534/96/EP
ALy PR2Z®CT¥KIK= ¥ 7 3LEP

AL ¢ PR2#C27KJIK=2% 25 /EP

A sy R2¥C1CL=1/12/EP

ki, PR2*CS™C8=1/12/EP

ALy PR2¥ ¥(CH==(1423/2%EP)/12/EP*%D

AL s PR2¥*CB*QDQA=~(1423/2%EP) _2/EPex

ALy PR2Z¥C37CH=(148%F LL¥CP¥*2)/6/EP*Y

AL ,PR2*CI*QDQ=(1+B*EP+LL*EP**2) /6 /EP*+3

PRINY NOUT

CYEP

ID, PRI*C C3=0

AHAAMTUNISECKHUE
BBIYMVICAEHMSI HA DSBM
M MX IIPVIMEHEHMWE

B TEOPETMYECKOM
PDOUNINKE

IDyPRI¥CT7* DQ=<{1+117FP)
Al . PRIFCOVLC A= (14448500 FLICDY. o
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THE PROGRAM ORTOCARTAN FOR APPLICATIONS IN THE RELATIVITY THEORY

Andrzej Krasinski,
N. Copernicus Astronomical Center, Polish Academy of Sciences,
- Bartycka 18, 00 716 Warszawa, Poland

1. %,short histo:y of the program

Almost every physicist working in the relativity theory had the
painful experience of calculating the curvature tensors from a given
metric tensor. The algorithm of the calculation is ~simple, but the
chains of algebraic operations are long and in each step the expres-
sions processed become increasingly complex before (if at all) they
finally simplify. The idea that such calculations should be done by a
computer was thus very natural and it occurred to several individuals
at different times. The first algebraic program for use in relativity
(called ALBERT) was implemented in mid-sixties /1/. Several more were
created later; SHEEP /2/ is the most widely used today. We therefore
first thought of having one of the existing programs installed in War-
saw. Soon we discovered that most of them would not run on our CDC
Cyber 73. For a while we used CLAM /3/, but after noticing a bug in it
we realized we wili not avoid tampering with the program”™s code. And
after a few trials we saw that it will be easier to write our own pro-
gram than to squeeze out of our institutions the very modest fees re-
quired for copies of systems like REDUCE. We started the project in
1977 in a loose team which included M. Perkowski, this author, and,
later, Z. Otwinowski. The program worked for the first time in 1977,
but it tcok two more years of error-fixing and optimizing before we
decided we can go public with it. The program is now available =in 4
machine-implementations (see below) together with a set of documenta-
tion /4, 5, 6/. This note will describe shortly the essential features
of the algorithms in the program. A user-oriented review /7/ and a
more extended (but slightly outdated now) description of the algor-
ithms /8/ were published elsewhere.

2. The calculatons performed by ORTOCARTAN

The details of the calculation are irrelevant from our point of

view here (see refs. 4, 5 and 7), so only a general outline will be
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presented The program takes as input a 4%4 matrix composed of func—
tions of at most 4 variables. The Ffunctions are either unknown (to be
later found as solutions of certain differential equations) or are ex-
plicit algebraic expressions {in the second case the program checks
whether the matrix fulfills the eqﬁations). The inverse matrix is
first found, then the components of the input matrix are differentiat-
ed with respect to all the variables, the resulting expressions are
combined into polynomlals with coefficients taken from the inverse ma-
trix, the polynomlals being further differentiated and multlplled
among themselves, and flnally ‘the results of several such operations
are added up. Consequently, the program is able to differentiate func-
tional expressions, calculate determinants and inverse matrices, per-
form substitutlons and simplify the resulting expressions algebraical-
ly. Wlthln ORTOCARTAN these elementary operations are performed in a
flxedrsequence, the user having a chance to change only the 1nput. The
program -is not interactive, nevertheless, substitutions can be defined
in the input data and directed to arbitrary intermediate expressions,
so that the user has effectively the same power at his disposal as in
an interactive system. A few secondary programs give the user a direct
access to such operations as inverting symbolic matrices of arbitrary
rank, differentiation,algebraic simplification and performing series
of substitutions. These functions were added to ORTOCARTAN as an
"algebraic abacus" and cannot be combined into other programs unless
one is able to do some pregramming in LISP, their base-language.

3. Objects processed by ORTOCARTAN .

These okjects divide into 3 classes:

I. Numbers

They may be integers or rational numbers which are internally re-
presented as dotted pairs, e.g. (1 . 2) for 1/2. Floating-point
numbers are not allowed. All the elementary arithmetics of rational

numbers is included. Exponentiations to fractional powers are also
processed (though formally they belong to class IIT below). The pro-
, 1/6 1/2 ‘

gram will simplify e.g. v27 to 3v3 or 8 to 2 » but may occasion=-
ally fail, e.g. it would not recognize that vV2*/§ = 2%/3. The substi-
tutions may always be used to correct such failures.

II. variables

These fall further into 4 categories: constants, coordinates (the
independent variables for differentiaton), arbitrary functlons and
symbols for explicit expressions. The variables are assigned to
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classes by the user on input. Each variable carries a number with it,
called its "priority" and stored on the variable’s property-list. The
numbers are used to order sums and products uniquely, according to
descending priorities. Numbers have by definition higher priorities
than variables, lists which represent aigebraic expressions have by
definition lower priorities than atomic symbdls. The priorities vare
assigned by the program (the user need not even know about this busi-
ness) and do not change from run to run, unless the input data were
changed by including new symbols or reordering them.

I1I. Algebraié expfessions

They are represented internally in the prefix nctation as 1lists,
the " first element of a list being the name of a function. However, on
output all algebraic expressions are printed in the standard infix no-
tation. Input syntax is also essentially infix, with only a few nui-
sances which ensure uniqueness of notation (e.g. obligatory use of
symbols for multiplication and exponentiation). of two lists, the
higher priority is assigned to the one whose first element has the
higher priority; if both first elements have equal priorities, the re-
maining parts of the lists are compared in the same way. Two expres-
sions may have the same priority only if they are identical. ’

4. Algebraic simplification

ORTOCARTAN follows a fixed set of rules in simplifying algebraic
expressions, e.g. it will expand each exponentiated sum unless the ex-
ponent is greater thah 3, it will also expand each product containing
a factor being a sum. However, each of the rules can be changed by the
user through input commands or substitutions. a thorough; simplifica-
tion on all levels of the élgebréic expressions is performed only in
the user”s input. Later, the kind of simplification needed is known in
advance. For example, after several expressions are added, only can-
cellations of terms and adding up of numerical factors should be per-
formed, re-analysing the temrs is not necessary. Such limited simplif-
ications are- performed by 6  specialized functions with
self~explanatory names: SMINUS, SPLUS, SLOG; STIMES, SEXPT and SEXP.
In this way, the program avoids repeated simplifications.

The : program cannot factorize polynomials and simplify rational
functions. These operations require a different kind of algorithm
which is rather long and complicated, and are rarely wuseful in the
practice of the relativity theory. The user can however handle ration-
al functions quite efficiently through substitutions.
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5. Differentiation. _ : ,
ORTOCARTAN has no difficulties differentiating functions whose
arguments are other functions. The user-command {(DERIV X <a function>)

is always understood as the total derivative with respect to X. For
instance, if x, y, z, t are independent variables and f = £ {g, h, %),
| | 2 2 2 ‘
g=g(u, t), h=h(x,¥, 2, u=x +y +2z , then {(DERIV X F)
will be printed as 2 XF, G, +F, H, +F, s+ Where commas denote
‘ G U H X X o

partial derivatives. The arbitrary functlons may be processedv ‘either
‘with thelr arguments written out expllcitly or with the arguments om-
1tted as in the example given. The arguments will be written out in
subsequent calculations when the user writes them out on input. The
dependencies of functions on their arguments are specified in a separ-
~ ate piece of input. ‘

6. Substitutiocns
In addition to the replacement of a given sub-expression in a

formula by another expression, ORTOCARTAN can execute more trlcky op-
‘erations. It can replace parts of sums and products, e.g. the substi-
tution B + D = U w111 be performed in (A + B + C + D + E) producing (A
+ C + E + U). Such a substitution is equivalent to identifying a sub-
set in a larger set and replacing it with another subset. The most re-
cent version of ORTOCARTAN can also do some pattern—matching in the
substitutions. The user can define certain variables (e.g. M and N) as
~ MARKERS which can represent any expression. Then, (TAN M) = ({(SIN M) /
(COS M)) will mean that tan of any argument is to be replaced by
sin/cos of the same argument. This is especiélly useful in processing
truncated power series where by writing (E **'N) = 0 one ensures that
only the terms linear in the parameter E will be kept while all higher
powers will be discarded. The ratching procedure recognizes the equal-
ity of functional foxms of two expressions and assigns a value to each
MARKER, the value being the sub—expression presently represented by
the MARKER. The values are reassigned anew in each formula, so the
same MARKER can represent different expressions in different formulae.
The value is then inserted on the right-hand side of the equation in
place of the MARKER, and the substitution is performed in the ordinary
way. Each substitution is automatically followed by the appropriate
aigebraic simplification. The substitutions and the subsequent sim-
plifications are performed in an economical way: the program begins to
simplify a given expression only at the level wherg a replacement of a
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sub-expression actually occurred and proceeds from that level. upwards.
If no replacement occurred in an expression, then no simplification
and no copying of list structures is performed.

7 Core sav1ng

At no point of the calculation is it necessary to reference all
~the functions in the program. Therefore the program is divided into 2
parts which are lcaded into core separately. Part 1 contains the pro-
gram for printing; it forms a separate overlay and during the initial
phase of work (ca 80% of the time) is not active. Part 2 contains the
programs for algebraic simplification and differentiation which must
be active during the wheole calculation, it alsc forms a separate over-
lay. Part 3 contains definitions‘of those functions which are needed
only briefly (e.g. for rewriting the input into the internal code or
for inverting the matrix). Part 2 is first lcaded into éore, and a
small group of definitions from part 3 is read. The functions from
part 3 do their work and their definitions are then erased. Further
definitions from part 3 are read only when they are first needed. The
results 6f the calculation are not printed immediately, but stored in
their internal format on a disk'file called PRINTS. When part 2 is
ready with its work, the bverlay with part 1 overwrites the core, and
the file PRINTS becomes the input file. In this way, core-requirements
.are much reduced. Simple calculations can be done at 30 000 words or
300 kbytes of core, and 50 000 words were sufficient for the most com-
plicated ones ever tried. '

8. Availability

ORTOCARTAN is available in 4 implementations: 1. In Cambridge
LISP on 1IBM 360/370 computers; 2. In University of Texas LISP 4.1 on
CDC Cyber computers; 3. InASLISP/360 on IBM 360/370 and Siemens 4004
computers; 4. In LISP 1108 on UNIVAC 1100 computers. The IBM and UNI-
VAC versions were not updated since 1983, only the CDC version is con-

stantly maintained. 1In particular, the pattern-matching is available
only in the CDC version.

9. An example of application
Since the main application of ORTOCARTAN would not be intelli-
glble for most readers of this note, we shall show how to use an
' 2 2 2 2
"abacus"” program to verify that 1/r where r = x + y +z , is a so-
lution of the Laplace equation. The input would be the following:
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CALCULATE ((

(LAPLACE EQUATION)
(COORDINATES X Y Z)
(SYMBOLS R = ((X ** 2 + Y *% 2 4+ g %% 2) *x (1 2)) )
(OPERATION- ((DERIV X X (1 / R)) + (DERIV Y ¥ (1 / R))
+ (DERIV 2 2 (1 7/ R))) ) |
(SUBSTITUTIONS (2 ** 2) = (R ** 2 - X %% 2 — Y *% 2) )
})

The printout would look as follows:

I ASSUME YOU REQUEST‘THE FOLLOWING EXPRESSION TO BE SIMPLIFIED

-1

R

-1 -1
¢ + R , + R
XX YY 77

HERE YOU HAVE IT
RESULT = 0

1

The subscripts at RESULT are useful when there is more than one OPERA-

TION to be executed within a single call to CALCULATE. In this way,
the same variables do not have to be defined more than once.
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