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GENERALIZED COSMOLOGICAL MODELS

Andrze]j Krasinski
N. Copernicus Astronomical Center,
Polish Academy of Sciences,
Bartycka 18, 00 716 Warszawa, Poland

ABSTRACT

Two classes of generalizations of the
Friedman-Lemaitre models within Einstein”s
theory of relativity are presented. One is
obtained by assuming that the spacetime is
a congruence of homogeneous and isotropic
hypersurfaces whose orthogonal trajectories
coincide with matter world-lines - without
assuming that the spacetime inherits these
symmetries. In the resulting Stephani Univ-
erse the topology of the spatial sections
may vary with time. A second class is obta-
ined by assuming that the spatial sections
are conformal to flat spaces. The field
equations are in this case reduced to three
linear partial differential equations of
first order for two functions. Only the —
spherically symmetric subclass of a possi-
bly rich family of solutions is investigat-
ed. In one solution the density of matter
contains terms which are spatially periodic
at a certain instant.

1. THE MOTIVATION FOR THIS INVESTIGATION

_ The classical Friedman-Lemaitre-Robertson-Walker cos-
mological models proved successful in explaining and pred-
icting several physical properties of our Universe. There

is, however, one problem that cannot be exactly solved in
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them, and that is the formation of galaxies. All attempts
1)

to describe that process were based on perturbations of

the FLRW models. This fact alone shows that more general

solutions of the Einstein”s equations would be useful. More

arguments for such generalizations may be found in the work
2)

of Ellis .

Since, however, the FLRW models were so successful, it
is reasonable to expect that the more general and more re-
alistic models will contain them as special cases, 1i.e.
first approximations within the collection of solutions of
the Einstein”s equations. This note will show how two fami-
lies of such generalized models may be obtained by gradual-
ly weakening the assumptions underlying the FLRW solutions.

3-5)

In one of them, called thé Stephani Universe , the spa-
tial sections are assumed to be still homogeneous, isotro-
pic and orthogonal to the world-lines of matter, but the
whole spacetime is not required to inherit the symmetry of
the sections. The resulting solution has in general no sym-
metry at all, and the topology of the sections may be
changing with time. |

In another family, the sections are assumed to be con-
formal to a flat space. The second family thus contains the
first one. The field equations could not be so far solved
in the most general case, and only two special spherically
symmetric solutions were found. In one of them, the matter
density contains terms which are periodic or periodically
modulated in the radial coordinate. This solution (which
contains the FLRW solutions as special cases) thus repre-
sents a Universe with an evolving structure. Being spheri-
éally symmetric and inhomogeneous, it violates the Coperni-
cian principle, but may represent a first step in con-

structing a model endowed wih discrete homogeneity rath-
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er than a continuous one .

2. CASE I: INTRINSICALLY HOMOGENEOUS AND ISOTROPIC SPACE-
TIMES.

In the FLRW models many important conclusions for the
whole Universe follow from the distribution of matter in a
single 3-space t = const. Among other things, the matter
density in a 3-space should decide whether our Universe is
closed, spatially flat or open. This raises the question:
to what extent is the 4-dimensional geometry of our space-
time determined by a given class of 3-dimensional geome-
tries of the t = const spaces? Since it is commonly be-
lieved that these 3-spaces are homogeneous and isotropic,
we shall at first keep that assumption and ask the
question: what kind of spacetimes can have such t = const
sections? |

Spacetimes which contain subspaces of a definite sym-

6)
metry group were called by Collins "intrinsically symme-
tric". We shall thus deal with "intrinsically homogeneous
and isotropic" spacetimes. It should be remembered that
there exist the 9 Bianchi types of homogeneous spaces, 3 of
which can simultaneously be isotropic. Consequently, we did
not specify the 3-geometries uniquely by our assumption,
and it should not be surprising when the consequences of

this nonuniqueness show up.
3. THE SPACETIME METRIC IN CASE TI.
In order to make the calculations easier, we shall

make two more assumptions in addition to the assumption

made in sec. 2 to which we refer by (1):
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(2) The lines of the t-coordinate are orthogonal to
the spaces t = const.

(3) Matter flow-lines coincide with the t-lines.

We also assume that:

(4) The Einstein’s field equations hold, the source
being a perfect fluid.
However, we shall not assume anything about the symmetry of
the whole spacetime.

The assumption (1) implies that the metric form of the

3-spaces t = const can be represented as:

2 2 2 2 2 2
ds = (R/ V) (dx + dy + dz ), (3.1)
3
where
1 2 2 2
Vv=19+-% [(x - x ) + (y—y) + (z - 2z ) ] 7 (3.2)
4 0 0 0

R, kK, x , vy , z being arbitrary constants. Since this is
0 0 0

supposed to be a section t = const of a spacetime, each

constant must be understood as a momentary value of a func-

tion of t at t = t . Consequently, the 4-dimensional metric

0
will contain functions R (t), k (t), x (t), y (t) and z (t)
0 0 0
in place of the constants R, k, x , vy , z .
0 0 0
Assumption (2) now implies g =g =g = 0, so our
tx ty tz

metric will be:
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2 2 2 2 2 2 2 2
ds =Ddt - (R/V) (dx +dy + dz ), (3.3)

where D = D (t, x, y, 2), and V is given by (3.2) with the
constants replaced by the appropriate functions.
When this metric is substituted into the Einstein”s

field equations, it produces the following solution:

R 9 V
D =F(t) - - (-), ' (3.4)
V 9t R
2 2 2
k (¢) = (C -1/F )R , (3.5)

where F(t) and C(t) are new arbitrary functions of t. R(t),

x (t), y (t) and =z (t) are not determined by the field
0 0 0

equations. The matter-density and the pressure are given by

2
ke = 3C (t),
(3.6)
2 . Vv 9 Vv
kKp = - 3C + 2CC - / -- (=) ,
R ot R
4
Kk = 8mG/c . The function F is related to the expansion sca-
lar of the fluid flow by 6 = -3/F.

3)
This solution was found by Stephani in 1967 , but not

discussed by then in the cosmological context.
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4. PROPERTIES OF THE STEPHANI SOLUTION

The Stephani solution shares the following properties
with the FLRW solutions:

1. The matter source is a perfect fluid moving with
zero shear and zero rotation.

2. The metric is conformally flat (moreover, it is the
most general conformally flat solution with an expanding

7)
perfect fluid source ).

The solution is different from FLRW in the following
respects:

1. In general it has no symmetry at all.

2. The matter moves with acceleration, i.e. not on ge-
odesic lines. ,

3. No equation of state of the simple form p = p/(e)
holds, pressure depends also on spatial position (it simply
means that temperature must enter the equation of state and
that the temperature varies with spatial position).

The characteristic property of this Stephani solution
is the dependence of k on time in such a way that the sign
of k is not determined. Since the sign of k is the sign of
spatial curvature of the sections t = const, it means that
in this Universe some spatial sections may have positive
curvature and so be closed, while some others will have ne-
gative curvature and be open. An example of a spacetime
with such a topology of spatial sections will be given
below. Let us only note that the FLRW models are contained
in this one as special cases. Namely, the Stephani solution
reduces to a FLRW solution under any of the following con-
ditions:

1. The functions k, x , vy , z are all constant (the

0 0 0

time-derivatives of these functions are responsible for the
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lack of symmetry; with only x , v , z being constant and
0 0 0
k, # 0 the solution becomes spherically symmetric but in-

t
homogeneous) .

2. The acceleration field vanishes (i.e. matter moves
on geodesics).

3. The equation of state is of the form p = pl(e), i.e.
does not depend on position.

Stephani has shown that this solution may be embedded
in a flat b5-dimensional space. The embedding is a conve-
nient method of studying global properties of a spacetime.
However, it would be a difficult study for the Stephani so-
lution in its full generality because of the 6 arbitrary
functions. It is more instructive to consider the simpler
special case C = const. The Stephani solution reduces then
to the deSitter solution. If we further simplify the folia-
tion by assuming x =y =12z =0, R = const, k = -t, then

_ 0 0 0
the embedding can be described by simple formulae and shown

on a figure. The metric of the 5-space is then:

2 2 2 2 2 2
ds =dz -dX -du - daw - dy , ' (4.1)

while the equation of the deSitter (sub-)space is:

2 2 2 2 2 2
z - X -0 -wWw - (y-1/C) =-1/Cc , (4.2)

or, in parametric form:

2 2 2 2 2 1/2
Z =R (x +y +2z) (CR + t) /2v, (4.3)
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(X, U, W = (R/V) (x, v, 2), ‘ (4.3)

2 2 2 2
Y =CR (x +y + 2z )/2V . (4.3)

From these equations it can be seen that the whole space-
time 1is a 4-dimensional one-sheet hyperboloid (eq. 4.2)
while its sections t = const are intersections of the hy-
2 2 1/2
perboloid with the planes Z/Y = (C R + t) /CR
2 2
at t = const). It can be seen that for t = -C R the inter-
2 2

section is a 3-sphere, for -C R < t < 0 the intersections

—
]

const

are 3-dimensional ellipsoids, for t = 0 the intersection is
a 3-dimensional paraboloid, and for t > 0 the intersections
are 3-dimensional two—sheét hyperboloids. The projection of
the deSitter hyperboloid on the plane X, U, W = const is
shown in the figure. |
The proper times between different t = const spaces
along a t-line and the proper distances within each single
t = const space may be calculated or estimated in the gen-
eral case. In this way, it can be verified that the figure
faithfully represents the topology of the general Stephani
solution, except for one aspect. The singularity seen at %
=Y = 0 is in general a true curvature singularity that oc-
curs at different spatial positions for every t. It is an
additional singularity to the one predicted by the
Hawking—Penrose ‘theorems, and it can be avoided if the
funct%ons k,“R and their time-derivatives obey certain in-
~ 5)
equalities . .The inequalities can be fulfilled if either k
is always positive or p is negative in some range of (x, vy,
2) at every t for which k (t) < 0.
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t=o0] (pair of

r=0J straight lines,
the light-cone
at X=Y=Z=0)

t=—C2R?
/ (circle)

Fig. 1. Projection of the deSitter manifold onto the (Y, %)
plane. The parametrization (4.3) covers only the two sec-

tors where YZ > 0. (Adapted from Ref. 5 with the permission
of the Plenum Publishing Corporation).
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5. CASE II: SPACETIMES WITH CONFORMALLY FLAT SECTIONS

The Stephani solution is still not general enough in
order to cure the main failure of the FLRW models: the den-
sity of matter in it is spatially homogeneous, so no struc-
tures can develop. Further (or other) generalizations are
necessary.

It would be nice to proceed from a set of physically
motivated assumptions. However, none would be obvious. The
guiding principle which I want to retain is that the gener-
alized models searched for shduld contain the FLRW ones as
special cases and should be mathematically as close to them
as possible, in order to avoid too great complexities for
the beginning. A reasonably simple assumption is: let all
the t = const spaces be conformally flat. While being a
rather formal one, this assumption is fulfilled by the FLRW
models, and adds only one more unknown function to the me-
tric considered in sec. 3 (we shall retain the other 3 as-
sumptions made at the beginning of sec. 3). Thus the metric
form we shall start with is:

2 2 2 -2 2 2 2 2
ds =Ddt -V R (t) (dx + dy + dz ), (5.1)

where now both D and V are unknown functions of (t, x, Y,

z). The velocity field of the fluid will, as before, have
the form:
a L
u =D ¢ . (5.2)
0
With such ua, the field equations G = 0 yield at once:

0i
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R o5 V

D= F(t) - -—- (=), (5.3)
V 9t R

just as in the Stephani model. From this equation alone it
follows that the shear of the fluid flow vanishes while the
scalar of expansion equals again 6 = -3/F = 9§(t), i.e. is
homogeneous and isotropic. In order to get rid of this re-
sidual regularity we should thus give up the assumption
which produced (5.3), and that was (5.2). We can have shear
or inhomogeneous expansion only if we consider flows in
which the velocity field is not tangent to the t-lines of
the metric (5.1).
The other field equations imply then:

RV, /' V. =TF (x, vy, 2z) , (5.4)
ij ' k

2
R (Vl - VI )/ \Y = G (XI Vi Z) (5-5)
ii 33 k

(no summation), where F and G are arbitrary functions of
k k
X, v, 2z (independent of t), and the indices i, 3j, k run
cyclically through the values 1, 2, 3. The Stephani solu-
tion follows uniquely when F = G = 0.
k k

The equations (5.3), (5.4) and (5.5) guarantee that
GaB = k(e + p)uauB - ngLB . The remaining field equations
simply define pressure and energy-density. However, the
functions F and G must obey several integrability condi-

k k

tions in order that (5.4) and (5.5) are solvable.
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6. THE RELEVANT SET OF SUBCASES

Since G =G + G , there are only five equations in
2 1 3
the set (5.4) - (5.5). Their integrability conditions have
the form:
i
AV, /V = B ’ (6.1)
L i L
i

where A is a 5X3 matrix and B is a 5-vector, both com-
L L
posed of the functions F , G and their derivatives, thus
k k
being independent of t. At most 3 of these 5 equations can
be independent, otherwise the set is not even algebraically
solvable for V, . However, even this would be too much. It
i

can be shown by elementary considerations that if a subset
of 3 independent equations is contained in (6.1), then ei-
ther the FLRW solutions result or else V = R(t): H(x,y,z).
In the second case it can be further shown that the matter
density does not depend on time and the expansion scalar is
zero. Such a solution is not interesting from the point of
view of cosmology, and we shall not consider it here.

Thus we can expect a generalization of the Stephani
solution only when no subset of 3 equations can be chosen
from (6.1) which would be solvable algebraically for V, .

i i
This means that every 3%X3 matrix contained in A should
| L
have a vanishing determinant. Setting aside the special ca-
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ses when F F F = 0 this condition is equivalent to:
1 2 3
G =fF (F/F -F/F),
1 1 3 2 2 3
(6.2)
G =F (F/F -F /F) .
3 3 2 1 1 2
The'special cases F F F = 0 are easily shown to lead to
1 2 3

solutions which do not contain the FLRW ones and so are not
interesting from our point of view.
With (6.2) fulfilled, the equations (6.1) do not de-
termine all the derivatives V, . That means, at most two of
i
them can be independent if the set is not to be contradic-

tory. This imposes 3 more equations on the functions F .

k
Let us denote:
F =PF ,
2 21
(6.3)
F =PF .
3 31
The 3 equations are then:
- P r - P ’ / P + P (P - 1/P )I = Or (6-4)
2 x 2y 2 3 2 2 z
- P, - P, / P + P (p - 1/P ), =0, (6.5)

3 x 3 2z 3 2 3 3 v



(6.6)

These equations connect P and P , the function F remains
2 3 1
arbitrary. There are again several special cases to be con-
sidered separately, and not all of them have been investi-
gated as yet. One case, however, is seen at once to be par-
ticularly simple: if P , =P , = 0, then (6.4) and (6.5)
2 z 3y
become independent and can be integrated. This case leads

to two interesting solutions.
7. ANOTHER GENERALIZATION OF THE FLRW MODELS
The solutions of (6.4) and (6.5) must also obey (6.6),
this 1is why the result of the ansatz P , =P , = 0 is so
2 z 3y
special:

P = x/y ,

(7.1)

With such P and P the whole set (6.1) reduces to Jjust
2 3

two equations which are easily solved, the solution is:
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(7.2)
u = x +y +z ,

where U is an arbitrary function of its two arguments. We
recall that (7.2) solves only the integrability conditions
of the equations (5.4) - (5.5) which are still to be
solved. With (7.1) and (7.2) it can be shown from (5.4) -
(5.5) that F = yz f(u) where f(u) is an arbitrary func-
N 1 L
tion, and so V = V (t,u), i.e. the spacetime is spherically
symmetric, see (5.1) - (5.3). The whole set (5.4)- (5.5)

reduces then to the single equation:

2
R(t) v, / VvV = f(u) . (7.3)

uu

7)
A general solution of this equation is so far unknown

However, two special cases can be discussed in more detail.
Let first:

f(u) = B = const. (7.4)
~Then (7.3) has a first integral:
2 3

V = 2BV /3R(t) + S(t) , (7.5)

where S(t) is an arbitrary function. The solution of this
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equation may be represented by:

3 -1/2
{ [2BV /3R(t) + S(t)] av = u + 4/k(t), (7.6)

where k(t) is another function of time. From this form, all

the FLRW solutions are seen to be contained in this one as
2

the special case B = 0, k = const, S = k /16. The solution

(7.6) 1is spherically symmetric, so it cannot contain the

2
most general Stephani Universe, but with B = 0, S = k /16
and k # const it reduces to the spherically symmetric sub-
case X =y =12 =0 o0of (3.1) - (3.5). The matter density
0 0 0

corresponding to (7.5) is:

2 2
ke = 12[VV, - s(t)u]l / R (t) + 3/F (t) , (7.7)
1

and so is seen to be spatially inhomogeneous - and changing
with time. This solution thus describes an "exact perturba-
tion" of the FLRW models in which there exist evolving
structures.

One can also obtain a more interesting solution with
evolving structure. Note that eqg. (7.5) is similar to the

equation:

2 3
L =4¥ -g®-g4 (7.8)
u

2 3

9)
which defines the Weierstrass elliptic function . This
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(*)

function is periodic in its argument u, provided g '# 0

2
while (7.5) corresponds to g = 0. We can, however, choose
| 2
f(u) in another way. Let:
2
f(u) =[6-g /2J (u] R(t) , (7.9)
2 0
where g = const, t = t 1is an arbitrarily chosen instant
2 0

of time, and J(u) is defined by the differential equation:

2 2

J, /J =6-g / 2J (u) . (7.10)
uu 2

It is easily seen that any solution of (7.8) fulfills also
(7.10), and so (7.10) contains periodic functions among its

solutions. Now we have, in virtue of (7.9) and (7.3):

2 2
v, /' V =[R(t)/R(¥)] [6-g9g /23T (0] . (7.11)

It can be easily seen that V given by (7.5) or g)given
by (7.8) with g = 0 are not periodic. If we replace u by t
2
and'g>by r, then (7.8) becomes formally identical to the
energy integral of the Newtonian equation of radial motion
3
in the potential U (r) = -C r . This motion is evidently
not periodic. I am grateful to Pascal Nardone for this neat
argument.
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Thus V(t ,u) = J(u) is a solution of (7.11) at t = t , i.e.
0 0
V (t ,u) can be spatially periodic. But even then, the
0

matter-density:

2 3 2 2
ke = (4/R ) [3vv, + 2uf(u)v /R - 3uv, ] + 3/F (t) ,(7.12)

u u

is not strictly periodic at t = t . The second and third
0

term in brackets are periodically modulated, but their am-

plitudes grow with u. Whether there exist solutions with

spatially periodic matter distribution in this class rema-

ins to be seen.
8. POSSIBLE FURTHER GENERALIZATIONS
The problem of existence of solutions with spatially

periodic matter density is interesting, since spatial peri-

odicity is a way of reconciling the evident inhomogeneity

10)
of the Universe in a small scale with the postulated
large-scale homogeneity - by means o a discrete symmetry
2)
group acting on spatial sections of the spacetime . Then,

however, V (t, %, y, z) would have to be a periodic func-
tion in each of the three coordinates. The existence of the
solution (7.11) may Dbe an indication that the search for
such periodic solutions is not totally futile. Some pro-
gress may be expected even within the class of spacetimes

given by (5.1). We were directed towards spherically symme-

tric solutions by the assumptions P , =P , 0. Without

2 z 3y
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these assumptions, we are still left with a possibly large

family of less symmetric solutions.

9.

10.
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